1
|
Zhang K, Wang L, Lyu Y, Zhou J, Zhang L, Zhang C. The effect of protein-glutaminase from Chryseobacterium proteolyticum on physicochemical and functional properties of high-temperature soybean meal protein. Int J Biol Macromol 2024; 277:134252. [PMID: 39084450 DOI: 10.1016/j.ijbiomac.2024.134252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/27/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Protein-glutaminase (EC 3.5.1.44, PG) can significantly improve the functional properties of food proteins. However, the low yield of PG has limited industrial applications. Results showed that 0.02 % tea saponin could increase the PG yield by 18.93 %. The transcription level of the PG gene was significantly enhanced, which promoted the extracellular secretion of PG through an increase in membrane permeability. On this basis, PG was used to modify high-temperature soybean meal protein (HSMP) due to its poor properties. In this study, the deamidation degree (DD) of PG-modified HSMP was optimized to 58.61 % by the response surface method. HSMP with different DD was prepared and its physicochemical and functional properties were studied. After PG treatment, the intermolecular repulsive force of HSMP increased, the particle size distribution became uniform, and the solution system was more stable. In addition, the surface morphology of HSMP gradually became loose and porous. The solubility of HSMP significantly improved, reaching 11.34 times that of untreated HSMP at pH 5.00. Meanwhile, the emulsifying and foaming capacity of HSMP significantly improved, but the foaming stability was reduced.
Collapse
Affiliation(s)
- Kai Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Lijuan Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yunbing Lyu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jiayi Zhou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Lu Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Chong Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
2
|
Watthanasakphuban N, Ninchan B, Pinmanee P, Rattanaporn K, Keawsompong S. In Silico Analysis and Development of the Secretory Expression of D-Psicose-3-Epimerase in Escherichia coli. Microorganisms 2024; 12:1574. [PMID: 39203416 PMCID: PMC11356227 DOI: 10.3390/microorganisms12081574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 07/27/2024] [Accepted: 07/28/2024] [Indexed: 09/03/2024] Open
Abstract
D-psicose-3-epimerase (DPEase), a key enzyme for D-psicose production, has been successfully expressed in Escherichia coli with high yield. However, intracellular expression results in high downstream processing costs and greater risk of lipopolysaccharide (LPS) contamination during cell disruption. The secretory expression of DPEase could minimize the number of purification steps and prevent LPS contamination, but achieving the secretion expression of DPEase in E. coli is challenging and has not been reported due to certain limitations. This study addresses these challenges by enhancing the secretion of DPEase in E. coli through computational predictions and structural analyses. Signal peptide prediction identified PelB as the most effective signal peptide for DPEase localization and enhanced solubility. Supplementary strategies included the addition of 0.1% (v/v) Triton X-100 to promote protein secretion, resulting in higher extracellular DPEase (0.5 unit/mL). Low-temperature expression (20 °C) mitigated the formation of inclusion bodies, thus enhancing DPEase solubility. Our findings highlight the pivotal role of signal peptide selection in modulating DPEase solubility and activity, offering valuable insights for protein expression and secretion studies, especially for rare sugar production. Ongoing exploration of alternative signal peptides and refinement of secretion strategies promise further enhancement in enzyme secretion efficiency and process safety, paving the way for broader applications in biotechnology.
Collapse
Affiliation(s)
- Nisit Watthanasakphuban
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand; (N.W.); (B.N.); (K.R.)
| | - Boontiwa Ninchan
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand; (N.W.); (B.N.); (K.R.)
| | - Phitsanu Pinmanee
- Enzyme Technology Research Team, National Center of Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani 12120, Thailand;
| | - Kittipong Rattanaporn
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand; (N.W.); (B.N.); (K.R.)
| | - Suttipun Keawsompong
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand; (N.W.); (B.N.); (K.R.)
| |
Collapse
|
3
|
Yi Y, Jin X, Chen M, Coldea TE, Zhao H. Surfactant-mediated bio-manufacture: A unique strategy for promoting microbial biochemicals production. Biotechnol Adv 2024; 73:108373. [PMID: 38704106 DOI: 10.1016/j.biotechadv.2024.108373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/03/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
Biochemicals are widely used in the medicine and food industries and are more efficient and safer than synthetic chemicals. The amphipathic surfactants can interact with the microorganisms and embed the extracellular metabolites, which induce microbial metabolites secretion and biosynthesis, performing an attractive prospect of promoting the biochemical production. However, the commonness and differences of surfactant-mediated bio-manufacture in various fields are largely unexplored. Accordingly, this review comprehensively summarized the properties of surfactants, different application scenarios of surfactant-meditated bio-manufacture, and the mechanism of surfactants increasing metabolites production. Various biochemical productions such as pigments, amino acids, and alcohols could be enhanced using the cloud point and the micelles of surfactants. Besides, the amphiphilicity of surfactants also promoted the utilization of fermentation substrates, especially lignocellulose and waste sludge, by microorganisms, indirectly increasing the metabolites production. The increase in target metabolites production was attributed to the surfactants changing the permeability and composition of the cell membrane, hence improving the secretion ability of microorganisms. Moreover, surfactants could regulate the energy metabolism, the redox state and metabolic flow in microorganisms, which induced target metabolites synthesis. This review aimed to broaden the application fields of surfactants and provide novel insights into the production of microbial biochemicals.
Collapse
Affiliation(s)
- Yunxin Yi
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiaofan Jin
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Teodora Emilia Coldea
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca 400372, Romania
| | - Haifeng Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Research Institute for Food Nutrition and Human Health, Guangzhou 510640, China.
| |
Collapse
|
4
|
Vitharana S, Stillahn JM, Katayama DS, Henry CS, Manning MC. Application of Formulation Principles to Stability Issues Encountered During Processing, Manufacturing, and Storage of Drug Substance and Drug Product Protein Therapeutics. J Pharm Sci 2023; 112:2724-2751. [PMID: 37572779 DOI: 10.1016/j.xphs.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 07/24/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
The field of formulation and stabilization of protein therapeutics has become rather extensive. However, most of the focus has been on stabilization of the final drug product. Yet, proteins experience stress and degradation through the manufacturing process, starting with fermentaition. This review describes how formulation principles can be applied to stabilize biopharmaceutical proteins during bioprocessing and manufacturing, considering each unit operation involved in prepration of the drug substance. In addition, the impact of the container on stabilty is discussed as well.
Collapse
Affiliation(s)
| | - Joshua M Stillahn
- Legacy BioDesign LLC, Johnstown, CO 80534, USA; Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | | | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Mark Cornell Manning
- Legacy BioDesign LLC, Johnstown, CO 80534, USA; Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
5
|
Fu L, Sun M, Wen W, Dong N, Li D. Extracellular production of Ulp1 403-621 in leaky E. coli and its application in antimicrobial peptide production. Appl Microbiol Biotechnol 2022; 106:7805-7817. [PMID: 36260100 DOI: 10.1007/s00253-022-12235-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 11/02/2022]
Abstract
Small ubiquitin-like modifier (SUMO) tag is widely used to promote soluble expression of exogenous proteins, which can then be cleaved by ubiquitin-like protease 1 (Ulp1) to obtain interested protein. But the application of Ulp1 in large-scale recombinant protein production is limited by complicated purification procedures and high cost. In this study, we describe an efficient and simple method of extracellular production of Ulp1403-621 using a leaky Escherichia coli BL21(DE3), engineered by deleting the peptidoglycan-associated outer membrane lipoprotein (pal) gene. Ulp1403-621 was successfully leaked into extracellular supernatant by the BL21(DE3)-Δpal strain after IPTG induction. The addition of 1% glycine increased the extracellular production of Ulp1403-621 approximately four fold. Moreover, extracellular Ulp1403-621 without purification had high activities for cleaving SUMO fusion proteins, and antimicrobial peptide pBD2 obtained after cleavage can inhibit the growth of Staphylococcus aureus. The specific activity of extracellular Ulp1403-621 containing 1 mM EDTA and 8 mM DTT reached 2.0 × 106 U/L. Another commonly used protease, human rhinovirus 3C protease, was also successfully secreted by leaky E. coli strains. In conclusion, extracellular production of tool enzymes is an attractive way for producing large-scale active recombinant proteins at a lower cost for pharmaceutical, industrial, and biotechnological applications. KEY POINTS: • First report of extracellular production of Ulp1403-621 in leaky Escherichia coli BL21(DE3) strain. • One percent glycine addition into cultivation medium increased the extracellular production of Ulp1403-621 approximately four fold. • The specific activity of extracellular Ulp1403-621 produced in this study reached 2.0 × 106 U/L.
Collapse
Affiliation(s)
- Linglong Fu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Mengning Sun
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Weizhang Wen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Na Dong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China.
| | - Defa Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
6
|
Yang H, Wang H, Wang F, Zhang K, Qu J, Guan J, Shen W, Cao Y, Xia Y, Chen X. Efficient extracellular production of recombinant proteins in E. coli via enhancing expression of dacA on the genome. J Ind Microbiol Biotechnol 2022; 49:kuac016. [PMID: 35648451 PMCID: PMC9338883 DOI: 10.1093/jimb/kuac016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/21/2022] [Indexed: 11/14/2022]
Abstract
D, D-carboxypeptidase DacA plays an important role in the synthesis and stabilization of Escherichia coli cell wall peptidoglycan. The production level of extracellular recombinant proteins in E. coli can be enhanced by high D, D-carboxypeptidase activity. Construction of expression systems under optimal promoters is one of the main strategies to realize high protein production in E. coli. In this study, the promoter PdacA-3 from DacA on the genome of E. coli BL21 (DE3) was verified to be efficient for recombinant green fluorescent protein using the plasmid mutant pET28a-PdacA with PdacA-3. Meanwhile, the promoter PdacA-3 was engineered to increase the production level of proteins via inserting one or two Shine-Dalgarno (SD) sequences between the promoter PdacA-3 and the target genes. The expression level of dacA on the genome was increased by the improved transcription of the engineered promoters (especially after inserting one additional SD sequence). The engineered promoters increased cell membrane permeabilities to significantly enhance the secretion production of extracellular recombinant proteins in E. coli. Among them, the extracellular recombinant amylase activities in E. coli BL21::1SD-pET28a-amyK and E. coli BL21::2SD-pET28a-amyK were increased by 2.0- and 1.6-fold that of the control (E. coli BL21-pET28a-amyK), respectively. Promoter engineering also affected the morphology and growth of the E. coli mutants. It was indicated that the engineered promoters enhanced the expression of dacA on the genome to disturb the synthesis and structural stability of cell wall peptidoglycans.
Collapse
Affiliation(s)
- Haiquan Yang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Haokun Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Fuxiang Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Kunjie Zhang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jinfeng Qu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jianmin Guan
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Wei Shen
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yu Cao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yuanyuan Xia
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xianzhong Chen
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
7
|
Sánchez Muñoz S, Rocha Balbino T, Mier Alba E, Gonçalves Barbosa F, Tonet de Pier F, Lazuroz Moura de Almeida A, Helena Balan Zilla A, Antonio Fernandes Antunes F, Terán Hilares R, Balagurusamy N, César Dos Santos J, Silvério da Silva S. Surfactants in biorefineries: Role, challenges & perspectives. BIORESOURCE TECHNOLOGY 2022; 345:126477. [PMID: 34864172 DOI: 10.1016/j.biortech.2021.126477] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/26/2021] [Accepted: 11/28/2021] [Indexed: 06/13/2023]
Abstract
The use of lignocellulosic biomass (LCB) as feedstock has received increasing attention as an alternative to fossil-based refineries. Initial steps such as pretreatment and enzymatic hydrolysis are essential to breakdown the complex structure of LCB to make the sugar molecules available to obtain bioproducts by fermentation. However, these steps increase the cost of the bioproduct and often reduces its competitiveness against synthetic products. Currently, the use of surfactants has shown considerable potential to enhance lignocellulosic biomass processing. This review addresses the main mechanisms and role of surfactants as key molecules in various steps of biorefinery processes, viz., increasing the removal of lignin and hemicellulose during the pretreatments, increasing enzymatic stability and enhancing the accessibility of enzymes to the polymeric fractions, and improving the downstream process during fermentation. Further, technical advances, challenges in application of surfactants, and future perspectives to augment the production of several high value-added bioproducts have been discussed.
Collapse
Affiliation(s)
- Salvador Sánchez Muñoz
- Bioprocesses and sustainable products laboratory. Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), 12.602.810. Lorena, SP, Brazil
| | - Thércia Rocha Balbino
- Bioprocesses and sustainable products laboratory. Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), 12.602.810. Lorena, SP, Brazil
| | - Edith Mier Alba
- Bioprocesses and sustainable products laboratory. Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), 12.602.810. Lorena, SP, Brazil
| | - Fernanda Gonçalves Barbosa
- Bioprocesses and sustainable products laboratory. Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), 12.602.810. Lorena, SP, Brazil
| | - Fernando Tonet de Pier
- Bioprocesses and sustainable products laboratory. Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), 12.602.810. Lorena, SP, Brazil
| | - Alexandra Lazuroz Moura de Almeida
- Bioprocesses and sustainable products laboratory. Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), 12.602.810. Lorena, SP, Brazil
| | - Ana Helena Balan Zilla
- Bioprocesses and sustainable products laboratory. Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), 12.602.810. Lorena, SP, Brazil
| | - Felipe Antonio Fernandes Antunes
- Bioprocesses and sustainable products laboratory. Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), 12.602.810. Lorena, SP, Brazil
| | - Ruly Terán Hilares
- Laboratório de Materiales, Universidad Católica de Santa María - UCSM. Urb. San José, San José s/n, Yanahuara, Arequipa, Perú
| | - Nagamani Balagurusamy
- Bioremediation laboratory. Faculty of Biological Sciences, Autonomous University of Coahuila (UA de C), Torreón Campus, 27000 Coah, México
| | - Júlio César Dos Santos
- Biopolymers, bioreactors, and process simulation laboratory. Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), 12.602.810. Lorena, SP, Brazil
| | - Silvio Silvério da Silva
- Bioprocesses and sustainable products laboratory. Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), 12.602.810. Lorena, SP, Brazil.
| |
Collapse
|
8
|
Microbial starch debranching enzymes: Developments and applications. Biotechnol Adv 2021; 50:107786. [PMID: 34147588 DOI: 10.1016/j.biotechadv.2021.107786] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 06/04/2021] [Accepted: 06/15/2021] [Indexed: 12/28/2022]
Abstract
Starch debranching enzymes (SDBEs) hydrolyze the α-1,6 glycosidic bonds in polysaccharides such as starch, amylopectin, pullulan and glycogen. SDBEs are also important enzymes for the preparation of sugar syrup, resistant starch and cyclodextrin. As the synergistic catalysis of SDBEs and other starch-acting hydrolases can effectively improve the raw material utilization and production efficiency during starch processing steps such as saccharification and modification, they have attracted substantial research interest in the past decades. The substrate specificities of the two major members of SDBEs, pullulanases and isoamylases, are quite different. Pullulanases generally require at least two α-1,4 linked glucose units existing on both sugar chains linked by the α-1,6 bond, while isoamylases require at least three units of α-1,4 linked glucose. SDBEs mainly belong to glycoside hydrolase (GH) family 13 and 57. Except for GH57 type II pullulanse, GH13 pullulanases and isoamylases share plenty of similarities in sequence and structure of the core catalytic domains. However, the N-terminal domains, which might be one of the determinants contributing to the substrate binding of SDBEs, are distinct in different enzymes. In order to overcome the current defects of SDBEs in catalytic efficiency, thermostability and expression level, great efforts have been made to develop effective enzyme engineering and fermentation strategies. Herein, the diverse biochemical properties and distinct features in the sequence and structure of pullulanase and isoamylase from different sources are summarized. Up-to-date developments in the enzyme engineering, heterologous production and industrial applications of SDBEs is also reviewed. Finally, research perspective which could help understanding and broadening the applications of SDBEs are provided.
Collapse
|
9
|
Catalytic Performance of a Recombinant Organophosphate-Hydrolyzing Phosphotriesterase from Brevundimonas diminuta in the Presence of Surfactants. Catalysts 2021. [DOI: 10.3390/catal11050597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Phosphotriestease (PTE), also known as parathion hydrolase, has the ability to hydrolyze the triester linkage of organophosphate (OP) pesticides and chemical warfare nerve agents, making it highly suitable for environment remediation. Here, we studied the effects of various surfactants and commercial detergents on the esterase activity of a recombinant PTE (His6-tagged BdPTE) from Brevundimonas diminuta. Enzymatic assays indicated that His6-tagged BdPTE was severely inactivated by SDS even at lower concentrations and, conversely, the other three surfactants (Triton X-100, Tween 20, and Tween 80) had a stimulatory effect on the activity, especially at a pre-incubating temperature of 40 °C. The enzyme exhibited a good compatibility with several commercial detergents, such as Dr. Formula® and Sugar Bubble®. The evolution results of pyrene fluorescence spectroscopy showed that the enzyme molecules participated in the formation of SDS micelles but did not alter the property of SDS micelles above the critical micelle concentration (CMC). Structural analyses revealed a significant change in the enzyme’s secondary structure in the presence of SDS. Through the use of the intentionally fenthion-contaminated Chinese cabbage leaves as the model experiment, enzyme–Joy® washer solution could remove the pesticide from the contaminated sample more efficiently than detergent alone. Overall, our data promote a better understanding of the links between the esterase activity of His6-tagged BdPTE and surfactants, and they offer valuable information about its potential applications in liquid detergent formulations.
Collapse
|
10
|
Xu P, Zhang SY, Luo ZG, Zong MH, Li XX, Lou WY. Biotechnology and bioengineering of pullulanase: state of the art and perspectives. World J Microbiol Biotechnol 2021; 37:43. [PMID: 33547538 DOI: 10.1007/s11274-021-03010-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 01/19/2021] [Indexed: 11/26/2022]
Abstract
Pullulanase (EC 3.2.1.41) is a starch-debranching enzyme in the α-amylase family and specifically cleaves α-1,6-glycosidic linkages in starch-type polysaccharides, such as pullulan, β-limited dextrin, glycogen, and amylopectin. It plays a key role in debranching and hydrolyzing starch completely, thus bring improved product quality, increased productivity, and reduced production cost in producing resistant starch, sugar syrup, and beer. Plenty of researches have been made with respects to the discovery of either thermophilic or mesophilic pullulanases, however, few examples meet the demand of industrial application. This review presents the progress made in the recent years from the first aspect of characteristics of pullulanases. The heterologous expression of pullulanases in different microbial hosts and the methods used to improve the expression effectiveness and the regulation of enzyme production are also described. Then, the function evolution of pullulanases from a protein engineering view is discussed. In addition, the immobilization strategy using novel materials is introduced to improve the recyclability of pullulanases. At the same time, we indicate the trends in the future research to facilitate the industrial application of pullulanases.
Collapse
Affiliation(s)
- Pei Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, China
| | - Shi-Yu Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, China
| | - Zhi-Gang Luo
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, China
| | - Min-Hua Zong
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, China
| | - Xiao-Xi Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, China
| | - Wen-Yong Lou
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, China.
| |
Collapse
|
11
|
Triton X-100 improves co-production of β-1,3-D-glucan and pullulan by Aureobasidium pullulans. Appl Microbiol Biotechnol 2020; 104:10685-10696. [PMID: 33170326 DOI: 10.1007/s00253-020-10992-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/21/2020] [Accepted: 10/31/2020] [Indexed: 10/23/2022]
Abstract
The effects of several surfactants on the biosynthesis of β-1,3-D-glucan (β-glucan) and pullulan by Aureobasidium pullulans CCTCC M 2012259 were investigated, and Triton X-100 was found to decrease biomass formation but increase β-glucan and pullulan production. The addition of 5 g/L Triton X-100 to the fermentation medium and bioconversion broth significantly increased β-glucan production by 76.6% and 69.9%, respectively, when compared to the control without surfactant addition. To reveal the physiological mechanism underlying the effect of Triton X-100 on polysaccharides production, the cell morphology and viability, membrane permeability, key enzyme activities, and intracellular levels of UDPG, NADH, and ATP were determined. The results indicated that Triton X-100 increased the activities of key enzymes involved in β-glucan and pullulan biosynthesis, improved intracellular UDPG and energy supply, and accelerated the transportation rate of precursors across the cell membrane, all of which contributed to the enhanced production of β-glucan and pullulan. Moreover, a two-stage culture strategy with combined processes of batch fermentation and bioconversion was applied, and co-production of β-glucan and pullulan in the presence of 5 g/L Triton X-100 additions was further improved. The present study not only provides insights into the effect of surfactant on β-glucan and pullulan production but also presents a feasible approach for efficient production of analogue exopolysaccharides. KEY POINTS: • Triton X-100 increased β-glucan and pullulan production under either batch fermentation or bioconversion. • Triton X-100 increased the permeability of cell membrane and accelerated the transportation rate of precursors across cell membrane. • Activities of key enzymes involved in β-glucan and pullulan biosynthesis were increased in the presence of Triton X-100. • Intracellular UDPG levels and energy supply were improved by Triton X-100 addition.
Collapse
|
12
|
Zhang SY, Guo ZW, Wu XL, Ou XY, Zong MH, Lou WY. Recombinant expression and characterization of a novel cold-adapted type I pullulanase for efficient amylopectin hydrolysis. J Biotechnol 2020; 313:39-47. [DOI: 10.1016/j.jbiotec.2020.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/14/2020] [Accepted: 03/16/2020] [Indexed: 01/01/2023]
|
13
|
Chi L, Wei J, Hou J, Wang J, Hu X, He P, Wei T. Optimizing the DO-stat protocol for enhanced production of thermostable pullulanase in Escherichia coli by using oxygen control strategies. J Food Biochem 2020; 44:e13173. [PMID: 32150658 DOI: 10.1111/jfbc.13173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 01/18/2023]
Abstract
Production of a thermostable pullulanase by DO-stat fed-batch fermentation of recombinant Escherichia coli BL 21 was investigated in a 5 L of fermentor. The effect of three oxygen control strategies, glucose feedback, shifting fermentor pressure, and adding oxygen-enriched air, on cell growth and pullulanase expression were examined. The oxygen-transfer capacity was found to be enhanced with increasing fermentor pressure and oxygen ratio in oxygen-enriched air, but the cell growth and pullulanase production were restrained under high fermentor pressure. The highest cell density and pullulanase activity reached 55.1 g/L and 412 U/mL, respectively, in the case by adding oxygen-enriched air, which was suggested as an effective approach to enhance both cell growth and pullulanase production. PRACTICAL APPLICATIONS: This thermostable pullulanase displayed optimal activity at 90°C and pH 5.4, which could be applied for one-step saccharification of starch biomass. The optimization of the DO-stat fed-batch fermentation in high cell density level would provide a research basis for its industrialization.
Collapse
Affiliation(s)
- Lei Chi
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Jiajia Wei
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Junchao Hou
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Jingyu Wang
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Xiaolong Hu
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Peixin He
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Tao Wei
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
| |
Collapse
|
14
|
Wang X, Nie Y, Xu Y. Industrially produced pullulanases with thermostability: Discovery, engineering, and heterologous expression. BIORESOURCE TECHNOLOGY 2019; 278:360-371. [PMID: 30709762 DOI: 10.1016/j.biortech.2019.01.098] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 06/09/2023]
Abstract
Pullulanases (EC 3.2.1.41) are well-known starch-debranching enzymes widely used to hydrolyze α-1,6-glucosidic linkages in starch, pullulan, amylopectin, and other oligosaccharides, with application potentials in food, brewing, and pharmaceutical industries. Although extensive studies are done to discover and express pullulanases, only few are available with desirable characteristics for industrial applications. This raises the challenge to mine new enzyme sources, engineer proteins based on sequence/structure, and regulate expressions. We review here the identification of extremophilic and mesophilic microbes as sources of industrial pullulanases with desirable characteristics, including acid-resistance, thermostability, and psychrotrophism. We present current advances in site-directed mutagenesis and sequence/structure-guided protein engineering of pullulanases. In addition, we discuss heterologous expression of pullulanases in prokaryotic and eukaryotic microbial systems, and address the effectiveness of the expression elements and their regulation of enzyme production. Finally, we indicate future research needs to develop desired industrial pullulanases.
Collapse
Affiliation(s)
- Xinye Wang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yao Nie
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Yan Xu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; The 2011 Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
15
|
Efficient production of aggregation prone 4-α-glucanotransferase by combined use of molecular chaperones and chemical chaperones in Escherichia coli. J Biotechnol 2019; 292:68-75. [PMID: 30690094 DOI: 10.1016/j.jbiotec.2019.01.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/14/2019] [Accepted: 01/16/2019] [Indexed: 12/21/2022]
Abstract
In this study, a combined optimization strategy, based on co-expression of molecular chaperones and supplementation of osmolytes, was used to reduce the formation of inclusion bodies and enhance the expression of the soluble form of 4-α-glucanotransferase. The 4-α-glucanotransferase yield was enhanced by co-expression with pGro7 and supplementation of trimetlylamine oxide. Subsequently, the effects of process conditions (temperature, inducer concentration, and arabinose concentration) on cell growth and 4-α-glucanotransferase production were also investigated in shake flasks. In addition, a modified high-cell-density fermentation approach was proposed and applied in 3-L fermentor supplied with l-arabinose and trimetlylamine oxide, which achieved a dry cell weight of 65.92 g·L-1. Through this cultivation approach at 28 °C, the activity of 4-α-glucanotransferase reached 332.5 U·g-1 dry cell weight, which was 24.6-fold greater than the initial activity in shake flask cultivation. This combined strategy is expected to provide an efficient and economical approach to overproduction of aggregation prone proteins on a large scale.
Collapse
|
16
|
Akassou M, Groleau D. Advances and challenges in the production of extracellular thermoduric pullulanases by wild-type and recombinant microorganisms: a review. Crit Rev Biotechnol 2019; 39:337-350. [PMID: 30700157 DOI: 10.1080/07388551.2019.1566202] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Thermoduric pullulanases, acting as starch-debranching enzymes, are required in many industrial applications, mainly in the production of concentrated glucose, maltose, and fructose syrups. To date, however, a single pullulanase, from Bacillus acidopullulyticus, is available on the market for industrial purposes. This review is an investigation of the major advances as well as the major challenges being faced with regard to optimization of the production of extracellular thermoduric pullulanases either by their original hosts or by recombinant organisms. The critical aspects linked to industrial pullulanase production, which should always be considered, are emphasized, including those parameters influencing solubility, thermostability, and catalytic efficiency of the enzyme. This review provides new insights for improving the production of extracellular thermoduric pullulanases in the hope that such information may facilitate their commercial utilization and potentially be applied to the development of other industrially relevant enzymes.
Collapse
Affiliation(s)
- Mounia Akassou
- a Department of Chemical Engineering and Biotechnological Engineering , Faculty of Engineering, University of Sherbrooke , Sherbrooke , Canada
| | - Denis Groleau
- a Department of Chemical Engineering and Biotechnological Engineering , Faculty of Engineering, University of Sherbrooke , Sherbrooke , Canada
| |
Collapse
|
17
|
Hong H, Zhao X, Wu Z. A two-stage glycine supplementation strategy enhances the extracellular expression of sortase A in Escherichia coli. Process Biochem 2019. [DOI: 10.1016/j.procbio.2018.09.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Costa DAL, Filho EXF. Microbial β-mannosidases and their industrial applications. Appl Microbiol Biotechnol 2018; 103:535-547. [PMID: 30426153 DOI: 10.1007/s00253-018-9500-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 12/18/2022]
Abstract
Heteropolymers of mannan are polysaccharide components of the plant cell wall of gymnosperms and some angiosperms, including palm trees (Arecales and Monocot). Degradation of the complex structure of these polysaccharides requires the synergistic action of enzymes that disrupt the internal carbon skeleton of mannan and accessory enzymes that remove side chain substituents. However, complete degradation of these polysaccharides is carried out by an exo-hydrolase termed β-mannosidase. Microbial β-mannosidases belong to families 1, 2, and 5 of glycosyl hydrolases, and catalyze the hydrolysis of non-reducing ends of mannose oligomers. Besides, these enzymes are also involved in transglycosylation reactions. Because of their activity at different temperatures and pH values, these enzymes are used in a variety of industrial applications and the pharmaceutical, food, and biofuel industries.
Collapse
|
19
|
Kleiner-Grote GRM, Risse JM, Friehs K. Secretion of recombinant proteins from E. coli. Eng Life Sci 2018; 18:532-550. [PMID: 32624934 DOI: 10.1002/elsc.201700200] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/07/2018] [Accepted: 03/13/2018] [Indexed: 11/10/2022] Open
Abstract
The microorganism Escherichia coli is commonly used for recombinant protein production. Despite several advantageous characteristics like fast growth and high protein yields, its inability to easily secrete recombinant proteins into the extracellular medium remains a drawback for industrial production processes. To overcome this limitation, a multitude of approaches to enhance the extracellular yield and the secretion efficiency of recombinant proteins have been developed in recent years. Here, a comprehensive overview of secretion mechanisms for recombinant proteins from E. coli is given and divided into three main sections. First, the structure of the E. coli cell envelope and the known natural secretion systems are described. Second, the use and optimization of different one- or two-step secretion systems for recombinant protein production, as well as further permeabilization methods are discussed. Finally, the often-overlooked role of cell lysis in secretion studies and its analysis are addressed. So far, effective approaches for increasing the extracellular protein concentration to more than 10 g/L and almost 100% secretion efficiency exist, however, the large range of optimization methods and their combinations suggests that the potential for secretory protein production from E. coli has not yet been fully realized.
Collapse
Affiliation(s)
| | - Joe M Risse
- Fermentation Engineering Bielefeld University Bielefeld Germany.,Center for Biotechnology Bielefeld University Bielefeld Germany
| | - Karl Friehs
- Fermentation Engineering Bielefeld University Bielefeld Germany.,Center for Biotechnology Bielefeld University Bielefeld Germany
| |
Collapse
|
20
|
Jia B, Jeon CO. High-throughput recombinant protein expression in Escherichia coli: current status and future perspectives. Open Biol 2017; 6:rsob.160196. [PMID: 27581654 PMCID: PMC5008019 DOI: 10.1098/rsob.160196] [Citation(s) in RCA: 207] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/03/2016] [Indexed: 12/26/2022] Open
Abstract
The ease of genetic manipulation, low cost, rapid growth and number of previous studies have made Escherichia coli one of the most widely used microorganism species for producing recombinant proteins. In this post-genomic era, challenges remain to rapidly express and purify large numbers of proteins for academic and commercial purposes in a high-throughput manner. In this review, we describe several state-of-the-art approaches that are suitable for the cloning, expression and purification, conducted in parallel, of numerous molecules, and we discuss recent progress related to soluble protein expression, mRNA folding, fusion tags, post-translational modification and production of membrane proteins. Moreover, we address the ongoing efforts to overcome various challenges faced in protein expression in E. coli, which could lead to an improvement of the current system from trial and error to a predictable and rational design.
Collapse
Affiliation(s)
- Baolei Jia
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
21
|
Elleuche S, Krull A, Lorenz U, Antranikian G. Parallel N- and C-Terminal Truncations Facilitate Purification and Analysis of a 155-kDa Cold-Adapted Type-I Pullulanase. Protein J 2017; 36:56-63. [DOI: 10.1007/s10930-017-9703-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Duan X, Hu S, Qi X, Gu Z, Wu J. Optimal extracellular production of recombinant Bacillus circulans β-galactosidase in Escherichia coli BL21(DE3). Process Biochem 2017. [DOI: 10.1016/j.procbio.2016.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Yu Z, Zheng H, Zhao X, Li S, Xu J, Song H. High level extracellular production of a recombinant alkaline catalase in E. coli BL21 under ethanol stress and its application in hydrogen peroxide removal after cotton fabrics bleaching. BIORESOURCE TECHNOLOGY 2016; 214:303-310. [PMID: 27151682 DOI: 10.1016/j.biortech.2016.04.110] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 06/05/2023]
Abstract
The effects of induction parameters, osmolytes and ethanol stress on the productivity of the recombinant alkaline catalase (KatA) in Escherichia coli BL21 (pET26b-KatA) were investigated. The yield of soluble KatA was significantly enhanced by 2% ethanol stress. And a certain amount of Triton X-100 supplementation could markedly improved extracellular ratio of KatA. A total soluble catalase activity of 78,762U/mL with the extracellular ratio of 92.5% was achieved by fed-batch fermentation in a 10L fermentor, which was the highest yield so far. The purified KatA showed high stability at 50°C and pH 6-10. Application of KatA for elimination of H2O2 after cotton fabrics bleaching led to less consumption of water, steam and electric power by 25%, 12% and 16.7% respectively without productivity and quality losing of cotton fabrics. Thus, the recombinant KatA is a promising candidate for industrial production and applications.
Collapse
Affiliation(s)
- Zhenxiao Yu
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Hongchen Zheng
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Xingya Zhao
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Shufang Li
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jianyong Xu
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Hui Song
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| |
Collapse
|
24
|
High level extracellular production of a truncated alkaline β-mannanase from alkaliphilic Bacillus sp. N16-5 in Escherichia coli by the optimization of induction condition and fed-batch fermentation. ACTA ACUST UNITED AC 2016; 43:977-87. [DOI: 10.1007/s10295-016-1773-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 04/11/2016] [Indexed: 10/21/2022]
Abstract
Abstract
To improve the extracellular production of alkaline β-mannanase from alkaliphilic Bacillus sp. N16-5 in Escherichia coli, two truncated recombinant mannanases (32a-ManAR2 and 22b-ManAR2) were obtained. Compared with the full-length mannanases (32a-ManAR1 and 22b-ManAR1), the truncated mannanases not only showed higher secretion rate, but also exhibited higher thermostability and alkalistability. The K m value (11 mg/mL) of 32a-ManAR2 was higher than that (1.46 mg/mL) of 32a-ManAR1. The specific activity of 22b-ManAR2 was 2.7 times higher than that of 22b-ManAR1. 22b-ManAR2 showed the highest k cat/K m value of 602.7 ml/mg s. The parameters of induction for recombinant mannanase production of E. coli BL21 (pET32a-manAR2) and E. coli BL21 (pET22b-manAR2) were subsequently optimized. The yield of soluble mannanase was found to be enhanced with lower induction temperature (25 °C), lower IPTG concentration (0.01–0.05 mM), and Triton X-100 supplement (0.1 %) in a shake flask. Moreover, a one-time feeding strategy and Triton X-100 supplement were applied in production of 22b-ManAR2 in a 10 L fermentor. The productivity of the total soluble mannanase reached 9284.64 U/mL with the extracellular rate of 74 % at 46 h of fermentation, which was the highest productive level of alkaline β-mannanase in recombinant E. coli to date.
Collapse
|
25
|
Zou C, Duan X, Wu J. Magnesium ions increase the activity of Bacillus deramificans pullulanase expressed by Brevibacillus choshinensis. Appl Microbiol Biotechnol 2016; 100:7115-23. [DOI: 10.1007/s00253-016-7386-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 02/02/2016] [Accepted: 02/07/2016] [Indexed: 12/22/2022]
|