1
|
Li J, Tong L, Xu J, Chen Q, Yang H. Corrosion Characteristics of Typical Gangue Minerals in Biometallurgical Systems. Appl Biochem Biotechnol 2025; 197:2258-2273. [PMID: 39724250 DOI: 10.1007/s12010-024-05128-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2024] [Indexed: 12/28/2024]
Abstract
Electrochemical and shake flask tests were used to examine the corrosion characteristics of typical gangue minerals in biometallurgical systems and their impact on microbial communities. The results show that the solubility order of the three gangue minerals is feldspar, mica, and quartz in descending order. Their corrosion processes are mainly controlled by cathodic electron-donating processes. They are subjected to triple resistance, which is defined as solution-resistant, colloidal silica passivation, and iron precipitation (ferric hydroxide or jarosite passivation). Fe3+ and microorganisms both greatly improve the corrosion capacity of the system for the three gangue minerals. The community diversity may rise to 9.3, 8.6, and 4.4 times that of the initial HQ0211 strain, respectively, in the presence of feldspar, mica, and quartz.. The proportions of autotrophic microorganisms Leptospirillum, Sulfobacillus, and Acidiplasma decreased significantly, and the mixed trophic archaeon Ferroplasma and heterotrophic archaeon Cuniculiplasma became the dominant microorganisms in the system. Finally, the dissolution mechanism of gangue minerals in biometallurgical systems is discussed. The results enrich the theory of the gangue mineral corrosion process, which can lay a foundation for the effective regulation of biometallurgical processes.
Collapse
Affiliation(s)
- Jiafeng Li
- School of Mines, China University of Mining and Technology, Xuzhou, China
- School of Metallurgy, Northeastern University, Shenyang, China
| | - Linlin Tong
- School of Metallurgy, Northeastern University, Shenyang, China
| | - Jianing Xu
- School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou, China
| | - Qiao Chen
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Hongying Yang
- School of Metallurgy, Northeastern University, Shenyang, China.
| |
Collapse
|
2
|
Izquierdo-Fiallo K, Muñoz-Villagrán C, Schimpf C, Mardonez MP, Rafaja D, Schlömann M, Tello M, Orellana O, Levicán G. Adaptive response of the holdase chaperone network of Acidithiobacillus ferrooxidans ATCC 23270 to stresses and energy sources. World J Microbiol Biotechnol 2025; 41:121. [PMID: 40167894 DOI: 10.1007/s11274-025-04325-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/15/2025] [Indexed: 04/02/2025]
Abstract
Acidithiobacillus ferrooxidans is a chemolithoautotrophic acidophilic bacterium belonging to microbial communities involved in sulfide ore bioleaching. This microorganism possesses redundancy of genes encoding ATP-independent chaperone holdases like Hsp20 (hps20.1, hsp20.2, and hsp20.3), Hsp31, Hsp33, RidA (ridA.1 and ridA.2), and Lon (lon.1, lon.2, and lon.3), and single copy genes encoding SlyD and CnoX. We evaluated the response of these holdases to short and long-term stresses induced by changes in temperature (30° to 37 °C), pH (1.6 to 1.2 or 2.0), and oxidative status (1 mM H2O2) as well as to different energy sources (iron, sulfur, pyrite, sphalerite or chalcopyrite). Cells adapted under thermal and oxidative stress conditions showed a generalized upregulation of holdase genes, while short-term stress led to more discrete increases in transcript levels, with only hsp20.2 and hsp31 showing higher mRNA levels. hsp31 was also upregulated under acidic stresses, sulfur and sulfides. hsp20 variants showed different mRNA levels under different conditions, and cnoX was induced under oxidative conditions. Cells cultured on chalcopyrite had similar responses to those grown with peroxide. With some exceptions, stresses led to significant increases in intracellular ROS content, and decreases in ATP. These results pave the way to understanding proteostasis systems in extreme acidophilic bacteria.
Collapse
Affiliation(s)
- Katherin Izquierdo-Fiallo
- Laboratory of Applied and Basic Microbiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile (USACH), Av. Libertador Bernardo O'Higgins 3363, Santiago, Chile
| | - Claudia Muñoz-Villagrán
- Laboratory of Applied and Basic Microbiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile (USACH), Av. Libertador Bernardo O'Higgins 3363, Santiago, Chile
| | - Christian Schimpf
- Institute of Materials Science, TU Bergakademie Freiberg, Freiberg, Germany
| | - Mick Parra Mardonez
- Laboratory of Natural Products Chemistry and its Applications, Faculty of Chemistry and Biology, CBA, University of Santiago of Chile (USACH), Av. Libertador Bernardo O'Higgins 3363, Santiago, Chile
| | - David Rafaja
- Institute of Materials Science, TU Bergakademie Freiberg, Freiberg, Germany
| | - Michael Schlömann
- Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Freiberg, Germany
| | - Mario Tello
- Laboratory of Natural Products Chemistry and its Applications, Faculty of Chemistry and Biology, CBA, University of Santiago of Chile (USACH), Av. Libertador Bernardo O'Higgins 3363, Santiago, Chile
| | - Omar Orellana
- Programa de Biología Celular y Molecular, Facultad de Medicina, ICBM, Universidad de Chile, Independencia 1027, Santiago, Chile
| | - Gloria Levicán
- Laboratory of Applied and Basic Microbiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile (USACH), Av. Libertador Bernardo O'Higgins 3363, Santiago, Chile.
| |
Collapse
|
3
|
Molaey R, Appels L, Yesil H, Tugtas AE, Çalli B. Sustainable heavy metal removal from sewage sludge: A review of bioleaching and other emerging technologies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177020. [PMID: 39427892 DOI: 10.1016/j.scitotenv.2024.177020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/29/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
By 2050, global sewage sludge production is expected to increase by 51 %, rising from its current level of over 45 million tons of dry solids to nearly 68 million tons. This growth is primarily driven by population growth and the implementation of increasingly stringent environmental regulations. This increase in sewage sludge volume poses substantial challenges for sustainable management due to its complex composition. While sewage sludge contains valuable nutrients such as nitrogen (N), phosphorus (P), and potassium (K) that make it suitable for agriculture use, the presence of heavy metals (HMs), including cadmium (Cd), lead (Pb), mercury (Hg), chrome (Cr), copper (Cu), nickel (Ni) and zinc (Zn) creates significant barriers to its safe reuse. Inadequately treated sewage sludge, when repeatedly applied to agricultural soils, can lead to the accumulation of HMs, posing risks to long-term soil fertility, crop productivity, and broader environmental health. This review discusses various techniques for de-metallization of sewage sludge, including aerobic- and anaerobic bioleaching, chemical leaching, electrokinetic treatment, and supercritical fluid extraction. Among these techniques, anaerobic bioleaching is identified as the most environmentally sustainable option, as it offers a lower-energy, less chemically intensive approach to decrease HM content in the solid fraction of sewage sludge. This approach utilizes microbial activity under anaerobic conditions to solubilize and remove HMs, while minimizing nutrient loss and preserving the ecological integrity of the treated sewage sludge. Future research should prioritize the optimizing of anaerobic bioleaching processes to enhance both HM removal efficiency and nutrient retention. Additionally, integrating anaerobic bioleaching with air-assisted ultrasonication as a post treatment technology could further improve metal removal efficiency. This review aims to provide a comprehensive reference for researchers and practitioners seeking environmentally friendly solutions for HM removal from sewage sludge, ensuring its safe reuse in land applications and contributing to a circular agro-economy.
Collapse
Affiliation(s)
- Rahim Molaey
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab., Jan De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium.
| | - Lise Appels
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab., Jan De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium.
| | - Hatice Yesil
- Marmara University, Department of Environmental Engineering, Aydinevler, 34854 Maltepe, Istanbul, Turkiye.
| | - A Evren Tugtas
- Marmara University, Department of Environmental Engineering, Aydinevler, 34854 Maltepe, Istanbul, Turkiye.
| | - Bariş Çalli
- Marmara University, Department of Environmental Engineering, Aydinevler, 34854 Maltepe, Istanbul, Turkiye.
| |
Collapse
|
4
|
Liu W, Sun J, Ai C, Zhang R, Cheng H, Chen Z, Zhou H, Wang Y. Moderate permeability enhanced microbial community turnover and copper extraction during bioleaching of low-grade copper ores. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176563. [PMID: 39343407 DOI: 10.1016/j.scitotenv.2024.176563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 07/30/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Heap bioleaching is one of the most promising technologies for extracting valuable metals from low-grade ores. However, the effects of permeability of the heap on microbial community and bioleaching efficiency remain unclear. In this study, heap bioleaching systems with different permeability were constructed. Despite the high content of larger particles had better permeability (0.25 cm/s) and oxygen transfer efficiency (0.14), there was a 25 % decrease in copper extraction compared with the moderate permeability group (81.2 %), while low permeability (0.025 cm/s) could cut the extraction in half (48.5 %). The fine profiles of microbial communities based on relatively and absolutely quantitative technologies suggested that permeability significantly affected microbial diversity, biomass, and composition. Microbial community evenness was crucial to improving extraction than biomass. Additionally, Thermoplasmatales except for Acidiplasma and Ferroplasma played vital roles in bioleaching. This study highlighted the delicate trade-off of particle size-mediated permeability for intensifying bioleaching efficiency of low-grade copper ores.
Collapse
Affiliation(s)
- Wenxian Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, PR China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, Hunan, PR China
| | - Jianxing Sun
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, PR China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, Hunan, PR China
| | - Chenbing Ai
- College of Life Sciences, Guangxi Normal University, Guilin 541004, Guangxi, PR China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, Guangxi, PR China
| | - Ruiyong Zhang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, Shandong, PR China
| | - Haina Cheng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, PR China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, Hunan, PR China
| | - Zhu Chen
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, PR China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, Hunan, PR China
| | - Hongbo Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, PR China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, Hunan, PR China
| | - Yuguang Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, PR China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, Hunan, PR China.
| |
Collapse
|
5
|
Nascimento GR, Bazan SF, de Lima GF. A brief review on computer simulations of chalcopyrite surfaces: structure and reactivity. Acta Crystallogr C Struct Chem 2024; 80:458-471. [PMID: 39115532 DOI: 10.1107/s2053229624006867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/12/2024] [Indexed: 09/04/2024] Open
Abstract
Chalcopyrite, the world's primary copper ore mineral, is abundant in Latin America. Copper extraction offers significant economic and social benefits due to its strategic importance across various industries. However, the hydrometallurgical route, considered more environmentally friendly for processing low-grade chalcopyrite ores, remains challenging, as does its concentration by froth flotation. This limited understanding stems from the poorly understood structure and reactivity of chalcopyrite surfaces. This study reviews recent contributions using density functional theory (DFT) calculations with periodic boundary conditions and slab models to elucidate chalcopyrite surface properties. Our analysis reveals that reconstructed surfaces preferentially expose S atoms at the topmost layer. Furthermore, some studies report the formation of disulfide groups (S22-) on pristine sulfur-terminated surfaces, accompanied by the reduction of Fe3+ to Fe2+, likely due to surface oxidation. Additionally, Fe sites are consistently identified as favourable adsorption locations for both oxygen (O2) and water (H2O) molecules. Finally, the potential of computer modelling for investigating collector-chalcopyrite surface interactions in the context of selective froth flotation is discussed, highlighting the need for further research in this area.
Collapse
Affiliation(s)
- Guilherme Randow Nascimento
- Grupo de pesquisa em Química Inorgânica Teórica - GPQIT, Departamento de Química, Universidade Federal de Minas Gerais, Brazil
| | - Selma Fabiana Bazan
- Laboratório de Química Computacional - LaQC, Instituto de Física e Química, Universidade Federal de Itajubá, Brazil
| | - Guilherme Ferreira de Lima
- Grupo de pesquisa em Química Inorgânica Teórica - GPQIT, Departamento de Química, Universidade Federal de Minas Gerais, Brazil
| |
Collapse
|
6
|
Marchetti A, Kupka D, Senatore VG, Bártová Z, Branduardi P, Hagarová L, Hredzák S, Lotti M. Iron bioleaching and polymers accumulation by an extreme acidophilic bacterium. Arch Microbiol 2024; 206:275. [PMID: 38775940 PMCID: PMC11111502 DOI: 10.1007/s00203-024-04005-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
In many European regions, both local metallic and non-metallic raw materials are poorly exploited due to their low quality and the lack of technologies to increase their economic value. In this context, the development of low cost and eco-friendly approaches, such as bioleaching of metal impurities, is crucial. The acidophilic strain Acidiphilium sp. SJH reduces Fe(III) to Fe(II) by coupling the oxidation of an organic substrate to the reduction of Fe(III) and can therefore be applied in the bioleaching of iron impurities from non-metallic raw materials. In this work, the physiology of Acidiphilium sp. SJH and the reduction of iron impurities from quartz sand and its derivatives have been studied during growth on media supplemented with various carbon sources and under different oxygenation conditions, highlighting that cell physiology and iron reduction are tightly coupled. Although the organism is known to be aerobic, maximum bioleaching performance was obtained by cultures cultivated until the exponential phase of growth under oxygen limitation. Among carbon sources, glucose has been shown to support faster biomass growth, while galactose allowed highest bioleaching. Moreover, Acidiphilium sp. SJH cells can synthesise and accumulate Poly-β-hydroxybutyrate (PHB) during the process, a polymer with relevant application in biotechnology. In summary, this work gives an insight into the physiology of Acidiphilium sp. SJH, able to use different carbon sources and to synthesise a technologically relevant polymer (PHB), while removing metals from sand without the need to introduce modifications in the process set up.
Collapse
Affiliation(s)
- Alessandro Marchetti
- Department of Biotechnology and Biosciences, State University of Milano-Bicocca, Milano, Italy
| | - Daniel Kupka
- Institute of Geotechnics of the Slovak Academy of Sciences, Watsonova 45, Kosice, 040 01, Slovakia
| | | | - Zuzana Bártová
- Institute of Geotechnics of the Slovak Academy of Sciences, Watsonova 45, Kosice, 040 01, Slovakia
| | - Paola Branduardi
- Department of Biotechnology and Biosciences, State University of Milano-Bicocca, Milano, Italy
| | - Lenka Hagarová
- Institute of Geotechnics of the Slovak Academy of Sciences, Watsonova 45, Kosice, 040 01, Slovakia
| | - Slavomír Hredzák
- Institute of Geotechnics of the Slovak Academy of Sciences, Watsonova 45, Kosice, 040 01, Slovakia
| | - Marina Lotti
- Department of Biotechnology and Biosciences, State University of Milano-Bicocca, Milano, Italy.
| |
Collapse
|
7
|
Ludovici F, Hartmann R, Rudolph M, Liimatainen H. Thiol-Silylated Cellulose Nanocrystals as Selective Biodepressants in Froth Flotation. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:16176-16184. [PMID: 38022739 PMCID: PMC10647933 DOI: 10.1021/acssuschemeng.3c04013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023]
Abstract
The extraction of various minerals is commonly conducted through froth flotation, which is a versatile separation method in mineral processing. In froth flotation, depressants are employed to improve the flotation selectivity by modifying the wettability of the minerals and reducing their natural or induced floatability. However, the environmental impact of many current flotation chemicals poses a challenge to the sustainability and selectivity of the ore beneficiation processes. To mitigate this issue, cellulose, particularly nanocelluloses, has been explored as a potential alternative to promote sustainable mineral processing. This study focused on silylated cellulose nanocrystals (CNCs) as biodepressants for sulfide minerals in froth flotation. CNCs containing thiol silane groups or bifunctional CNCs containing both thiol and propyl silanes were synthesized using an aqueous silylation reaction, and their performance in the flotation of chalcopyrite and pyrite was investigated in the presence of a sodium isobutyl xanthate collector. The results showed that the modified CNCs exhibited preferential interaction between chalcopyrite, and the flotation recovery of chalcopyrite decreased from ∼76% to ∼24% in the presence of thiol-grafted CNCs at pH 6, while the pyrite recovery decreased only from ∼82% to ∼75%, indicating the efficient selectivity of thiol-silylated CNCs toward chalcopyrite depression.
Collapse
Affiliation(s)
- Feliciana Ludovici
- Fiber
and Particle Engineering Research Unit, University of Oulu, P.O. Box 4300, FI-90014 Oulu, Finland
| | - Robert Hartmann
- Fraunhofer
Center for Chemical-Biotechnological Processes, 06237 Leuna, Germany
| | - Martin Rudolph
- Helmholtz-Zentrum-Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, 09599 Freiberg, Germany
| | - Henrikki Liimatainen
- Fiber
and Particle Engineering Research Unit, University of Oulu, P.O. Box 4300, FI-90014 Oulu, Finland
| |
Collapse
|
8
|
van Alin A, Corbett MK, Fathollahzadeh H, Tjiam MC, Rickard WDA, Sun X, Putnis A, Eksteen J, Kaksonen AH, Watkin E. Biofilm formation on the surface of monazite and xenotime during bioleaching. Microb Biotechnol 2023; 16:1790-1802. [PMID: 37291762 PMCID: PMC10443343 DOI: 10.1111/1751-7915.14260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/25/2023] [Accepted: 03/23/2023] [Indexed: 06/10/2023] Open
Abstract
Microbial attachment and biofilm formation is a ubiquitous behaviour of microorganisms and is the most crucial prerequisite of contact bioleaching. Monazite and xenotime are two commercially exploitable minerals containing rare earth elements (REEs). Bioleaching using phosphate solubilizing microorganisms is a green biotechnological approach for the extraction of REEs. In this study, microbial attachment and biofilm formation of Klebsiella aerogenes ATCC 13048 on the surface of these minerals were investigated using confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). In a batch culture system, K. aerogenes was able to attach and form biofilms on the surface of three phosphate minerals. The microscopy records showed three distinctive stages of biofilm development for K. aerogenes commencing with initial attachment to the surface occurring in the first minutes of microbial inoculation. This was followed by colonization of the surface and formation of a mature biofilm as the second distinguishable stage, with progression to dispersion as the final stage. The biofilm had a thin-layer structure. The colonization and biofilm formation were localized toward physical surface imperfections such as cracks, pits, grooves and dents. In comparison to monazite and xenotime crystals, a higher proportion of the surface of the high-grade monazite ore was covered by biofilm which could be due to its higher surface roughness. No selective attachment or colonization toward specific mineralogy or chemical composition of the minerals was detected. Finally, in contrast to abiotic leaching of control samples, microbial activity resulted in extensive microbial erosion on the high-grade monazite ore.
Collapse
Affiliation(s)
- Arya van Alin
- Curtin Medical SchoolCurtin UniversityBentleyWestern AustraliaAustralia
- The Institute for Geoscience Research, School of Earth and Planetary SciencesCurtin UniversityBentleyWestern AustraliaAustralia
| | - Melissa K. Corbett
- Curtin Medical SchoolCurtin UniversityBentleyWestern AustraliaAustralia
- The Institute for Geoscience Research, School of Earth and Planetary SciencesCurtin UniversityBentleyWestern AustraliaAustralia
| | - Homayoun Fathollahzadeh
- Curtin Medical SchoolCurtin UniversityBentleyWestern AustraliaAustralia
- The Institute for Geoscience Research, School of Earth and Planetary SciencesCurtin UniversityBentleyWestern AustraliaAustralia
| | - M. Christian Tjiam
- Curtin Medical SchoolCurtin UniversityBentleyWestern AustraliaAustralia
- Wesfarmers Centre of Vaccines and Infectious DiseasesTelethon Kids InstituteNedlandsWestern AustraliaAustralia
- Centre for Child Health ResearchThe University of Western AustraliaCrawleyWestern AustraliaAustralia
| | | | - Xiao Sun
- John de Laeter CentreCurtin UniversityBentleyWestern AustraliaAustralia
| | - Andrew Putnis
- The Institute for Geoscience Research, School of Earth and Planetary SciencesCurtin UniversityBentleyWestern AustraliaAustralia
- Institut für MineralogieUniversity of MünsterMünsterGermany
| | - Jacques Eksteen
- WA School of Mines, Minerals, Energy and Chemical EngineeringCurtin UniversityBentleyWestern AustraliaAustralia
| | - Anna H. Kaksonen
- WA School of Mines, Minerals, Energy and Chemical EngineeringCurtin UniversityBentleyWestern AustraliaAustralia
- CSIRO EnvironmentPerthWestern AustraliaAustralia
| | - Elizabeth Watkin
- Curtin Medical SchoolCurtin UniversityBentleyWestern AustraliaAustralia
- The Institute for Geoscience Research, School of Earth and Planetary SciencesCurtin UniversityBentleyWestern AustraliaAustralia
- School of ScienceEdith Cowan UniversityJoondalupWestern AustraliaAustralia
| |
Collapse
|
9
|
Xu H, Fu B, Lei J, Kang H, Wang J, Huang X, Zhu F. Soil microbial communities and their co-occurrence networks in response to long-term Pb-Zn contaminated soil in southern China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:26687-26702. [PMID: 36369447 DOI: 10.1007/s11356-022-23962-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Mining causes extreme heavy metal (HM) contamination to surrounding environments and poses threats to soil microbial community. The effects of HMs on soil microbial communities are not only related to their total amounts but also associated with the distribution of chemical fractions. However, the effects of chemical fractions on soil microbes and their interactions remain largely unclear. Here we investigated soil physicochemical properties and bacterial and fungal communities of soil samples from the control area and lightly (L), moderately (M), and heavily (H) contaminated areas, respectively, which were collected from long-term Pb-Zn slag contamination area in the southern China. The results showed that bacterial and fungal community composition and structure were significantly affected by HMs, while community diversity was not significantly affected by HMs. The critical environmental factor affecting bacterial and fungal communities was pH, and the impacts of chemical fractions on their changes were more significant than the total amounts of HMs. Variance partitioning analysis (VPA) revealed fungal community changes were mostly driven by HM total amounts, but bacterial community changes were mostly driven by soil chemical properties. Co-occurrence network indicated that interactions among species of fungal network were sparser than that of bacterial network, but fungal network was more stable, due to a more significant number of keystone taxa and a lower percentage of positive associations. These illustrated that the fungal community might serve as indicator taxa for HM-contaminated status, and specific HM-responsive fungal species such as Triangularia mangenotii, Saitozyma podzolica, and Cladosporium endophytica, and genus Rhizophagus can be considered relevant bioindicators due to their less relative abundance in contaminated areas. Additionally, HM-responsive bacterial OTUs representing five genera within Sulfurifustis, Thiobacillus, Sphingomonas, Qipengyuania, and Sulfurirhabdus were found to be tolerant to HM stress due to their high relative abundance in contaminated levels.
Collapse
Affiliation(s)
- Hongyang Xu
- College of Horticulture, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Bingqing Fu
- College of Life Science and Technology, Central-South, University of Forestry and Technology, Changsha, 410004, People's Republic of China
| | - Jiaqi Lei
- College of Landscape Architecture and Art Design, Hunan Agricultural University, Changsha, Hunan, 410128, People's Republic of China
| | - Hui Kang
- Changsha Environmental Protection College, Changsha, 410004, People's Republic of China
| | - Jun Wang
- College of Life Science and Technology, Central-South, University of Forestry and Technology, Changsha, 410004, People's Republic of China
| | - Xinhao Huang
- College of Landscape Architecture and Art Design, Hunan Agricultural University, Changsha, Hunan, 410128, People's Republic of China
| | - Fan Zhu
- College of Landscape Architecture and Art Design, Hunan Agricultural University, Changsha, Hunan, 410128, People's Republic of China.
| |
Collapse
|
10
|
Critical analysis of the role of various iron-based heterogeneous catalysts for advanced oxidation processes: A state of the art review. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
11
|
Sarkodie EK, Jiang L, Li K, Yang J, Guo Z, Shi J, Deng Y, Liu H, Jiang H, Liang Y, Yin H, Liu X. A review on the bioleaching of toxic metal(loid)s from contaminated soil: Insight into the mechanism of action and the role of influencing factors. Front Microbiol 2022; 13:1049277. [PMID: 36569074 PMCID: PMC9767989 DOI: 10.3389/fmicb.2022.1049277] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
The anthropogenic activities in agriculture, industrialization, mining, and metallurgy combined with the natural weathering of rocks, have led to severe contamination of soils by toxic metal(loid)s. In an attempt to remediate these polluted sites, a plethora of conventional approaches such as Solidification/Stabilization (S/S), soil washing, electrokinetic remediation, and chemical oxidation/reduction have been used for the immobilization and removal of toxic metal(loid)s in the soil. However, these conventional methods are associated with certain limitations. These limitations include high operational costs, high energy demands, post-waste disposal difficulties, and secondary pollution. Bioleaching has proven to be a promising alternative to these conventional approaches in removing toxic metal(loid)s from contaminated soil as it is cost-effective, environmentally friendly, and esthetically pleasing. The bioleaching process is influenced by factors including pH, temperature, oxygen, and carbon dioxide supply, as well as nutrients in the medium. It is crucial to monitor these parameters before and throughout the reaction since a change in any, for instance, pH during the reaction, can alter the microbial activity and, therefore, the rate of metal leaching. However, research on these influencing factors and recent innovations has brought significant progress in bioleaching over the years. This critical review, therefore, presents the current approaches to bioleaching and the mechanisms involved in removing toxic metal(loid)s from contaminated soil. We further examined and discussed the fundamental principles of various influencing factors that necessitate optimization in the bioleaching process. Additionally, the future perspectives on adding omics for bioleaching as an emerging technology are discussed.
Collapse
Affiliation(s)
- Emmanuel Konadu Sarkodie
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Luhua Jiang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Kewei Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Jiejie Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Ziwen Guo
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Jiaxin Shi
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Yan Deng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Hongwei Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Huidan Jiang
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Yili Liang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| |
Collapse
|
12
|
Wang S, Adekunle A, Raghavan V. Bioelectrochemical systems-based metal removal and recovery from wastewater and polluted soil: Key factors, development, and perspective. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115333. [PMID: 35617867 DOI: 10.1016/j.jenvman.2022.115333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/28/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Bioelectrochemical systems (BES) are considered efficient and sustainable technologies for bioenergy generation and simultaneously removal/recovery metal (loid)s from soil and wastewater. However, several current challenges of BES-based metal removal and recovery, especially concentrating target metals from complex contaminated wastewater or soil and their economic feasibility of engineering applications. This review summarized the applications of BES-based metal removal and recovery systems from wastewater and contaminated soil and evaluated their performances on electricity generation and metal removal/recovery efficiency. In addition, an in depth review of several key parameters (BES configurations, electrodes, catalysts, metal concentration, pH value, substrate categories, etc.) of BES-based metal removal and recovery was carried out to facilitate a deep understanding of their development and to suggest strategies for scaling up their specific application fields. Finally, the future intervention on multifunctional BES to improve their performances of mental removal and recovery were revealed.
Collapse
Affiliation(s)
- Shuyao Wang
- Bioresource Engineering, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada.
| | - Ademola Adekunle
- National Research Council of Canada, 6100 Avenue Royalmount, Montréal, QC, H4P 2R2, Canada.
| | - Vijaya Raghavan
- Bioresource Engineering, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada.
| |
Collapse
|
13
|
Azizitorghabeh A, Mahandra H, Ramsay J, Ghahreman A. A sustainable approach for gold recovery from refractory source using novel BIOX-TC system. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
14
|
Su Z, Li X, Xi Y, Xie T, Liu Y, Liu B, Liu H, Xu W, Zhang C. Microbe-mediated transformation of metal sulfides: Mechanisms and environmental significance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:153767. [PMID: 35157862 DOI: 10.1016/j.scitotenv.2022.153767] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/05/2022] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
Microorganisms play a key role in the natural circulation of various constituent elements of metal sulfides. Some microorganisms (such as Thiobacillus ferrooxidans) can promote the oxidation of metal sulfides to increase the release of heavy metals. However, other microorganisms (such as Desulfovibrio vulgaris) can transform heavy metals into metal sulfides crystals. Therefore, insight into the metal sulfides transformation mediated by microorganisms is of great significance to environmental protection. In this review, first, we discuss the mechanism and influencing factors of microorganisms transforming heavy metals into metal sulfides crystals in different environments. Then, we explore three microbe-mediated transformation forms of heavy metals to metal sulfides and their environmental applications: (1) transformation to metal sulfides precipitation for metal resource recovery; (2) transformation to metal sulfides nanoparticles (NPs) for pollutant treatment; (3) transformation to "metal sulfides-microbe" biohybrid system for clean energy production and pollutant remediation. Finally, we further provide critical views on the application of microbe-mediated metal sulfides transformation in the environmental field and discuss the need for future research.
Collapse
Affiliation(s)
- Zhu Su
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Xin Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Yanni Xi
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Tanghuan Xie
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Yanfen Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Bo Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Huinian Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Weihua Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Chang Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
15
|
Yang Z, Yang Z, Yang S, Liu Z, Liu Z, Liu Y, Drewniak L, Jiang C, Li Q, Li W, Yin H. Life cycle assessment and cost analysis for copper hydrometallurgy industry in China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 309:114689. [PMID: 35182981 DOI: 10.1016/j.jenvman.2022.114689] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 01/24/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Understanding the environmental and economic impacts of copper hydrometallurgy throughout the whole life cycle is necessary for sustainable development of the copper industry. In this study, the environmental impacts and economic costs throughout the two major copper hydrometallurgical routes in China, including heap leaching and heap-agitation leaching, are analyzed and compared using the life cycle assessment (LCA) and life cycle cost (LCC) technique. The life cycle inventory compiled from the annual statistics of the Muliashi Copper Mine, and the data regarding energy and materials process are based on the GaBi databases. The environmental impacts are quantified into 12 indicators. The results show that compared with heap leaching route, heap-agitation leaching route reduces 36.8% of abiotic depletion potential (ADP elements), but increases over half of cumulative energy demand (CED), marine aquatic ecotoxicity potential (MAETP) and human toxicity potential (HTP). Furthermore, the stage of electrowinning and agitation leaching contributes the largest environmental impact to heap leaching and heap-agitation leaching route, respectively. This is mainly due to huge consumption of electricity and sulfuric acid. The analysis of economic cost reveals that heap leaching route needs internal cost of $3225/t Cu and external cost of $426/t Cu. Compared with heap leaching route, heap-agitation leaching route increased the internal and external cost by 18.9% and 54.2%, respectively. But the economic return from heap-agitation leaching is double that from heap leaching. Together, these results indicate heap-agitation leaching has a larger environmental impact and higher economic benefit than heap leaching, which is helpful for the government to design ecological compensation policies in the balance between ecological environment and economic development.
Collapse
Affiliation(s)
- Zhaoyue Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, China
| | - Zhendong Yang
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, Sichuan, China
| | - Sheng Yang
- School of Energy Science and Engineering, Central South University, Changsha, 410083, Hunan, China
| | - Ziliang Liu
- CNMC - Luanshya Copper Mines Plc, Luanshya, 999134, Zambia
| | - Zhenghua Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, China
| | - Yongjun Liu
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Lukasz Drewniak
- Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Chengying Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qian Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, China
| | - Wen Li
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China; National Engineering Laboratory for Deep Process of Rice and Byproducts, Changsha, 410004, Hunan, China.
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, China; Ministry of Education, Key Laboratory of Biometallurgy, Changsha, 410083, China.
| |
Collapse
|
16
|
Zhang X, Zhang S, Huang T, Jin Z. Copper extraction from low-grade chalcopyrite in a bioleaching column assisted by bioelectrochemical system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:35459-35470. [PMID: 35050470 DOI: 10.1007/s11356-021-18283-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
Low-grade ores, tailings, and solid wastes contain small amounts of valuable heavy metals. Improper disposal of these substances results in the waste of resources and contamination of soil or groundwater. Accordingly, the treatment and recycling of low-grade ores, tailings, and solid wastes attracted much attention recently. Bioelectrochemical system, an innovative technology for the removal and recovery of heavy metals, has been further developed and applied in recent years. In the current study, the low-grade chalcopyrite was bioleached with the assistance of microbial fuel cells. Copper extraction along with electricity generation from the low-grade chalcopyrite was achieved in the column bioleaching process assisted by MFCs. Results showed that after 197 days bioleaching of low-grade chalcopyrite, 423.9 mg copper was extracted from 200 g low-grade chalcopyrite and the average coulomb production reached 1.75 C/d. The introduction of MFCs into bioleaching processes promoted the copper extraction efficiency by 2.7 times (3.62% vs. 1.33%), mainly via promoting ferrous oxidation, reducing ORP, and stimulating bacterial growth. This work provides a feasible method for the treatment and recycling of low-grade ores, tailings, and solid wastes. But balancing energy consumption of aeration and circulation frequency and chemical consumption of acid to improve the copper extraction efficiency need further investigation.
Collapse
Affiliation(s)
- Xueming Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430000, China
| | - Shaohui Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430000, China.
- Hubei Key Laboratory of Fuel Cell, Wuhan University of Technology, Wuhan, 430000, China.
| | - Tao Huang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430000, China
| | - Zhixin Jin
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430000, China
| |
Collapse
|
17
|
Arsenopyrite Dissolution and Bioscorodite Precipitation by Acidithiobacillus ferrivorans ACH under Mesophilic Condition. MINERALS 2022. [DOI: 10.3390/min12050520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Arsenopyrite is the most abundant arsenic-bearing sulfide mineral in the lithosphere, usually associated with sulfide gold ores. The recovery of this highly valuable metal is associated with the release of large quantities of soluble arsenic. One way to mitigate the effects of high concentrations of arsenic in solution is to immobilize it as scorodite precipitate, a more stable form. Hence, we addressed the scorodite formation capacity (under mesophilic conditions) of psychrotolerant Acidithiobacillus ferrivorans ACH isolated from the Chilean Altiplano. Bio-oxidation assays were performed with 1% arsenopyrite concentrate as unique energy source and produced solids were evaluated by X-ray diffraction (XRD) and QEMSCAN analysis. Interestingly, the results evidenced scorodite generation as the main sub-product after incubation for 15 days, due to the presence of the microorganism. Moreover, the QEMSCAN analysis support the XRD, detecting a 3.5% increase in scorodite generation by ACH strain and a 18.7% decrease in arsenopyrite matrix, implying an active oxidation. Finally, we presented the first record of arsenopyrite oxidation capacity and the stable scorodite production ability by a member of A. ferrivorans species under mesophilic conditions.
Collapse
|
18
|
Abstract
This paper reports on a study of column bioleaching of a low-grade chalcopyrite ore that is currently dump-leached under natural biological conditions without any control over microbial populations. The experimental methodology was focused on the effect of managing the bacterial populations in a raffinate solution sourced from a dump-leach operation. This study presents results from columns of two heights (0.45 and 1.0 m). We demonstrated that intermittent irrigation enhanced the chalcopyrite dissolution during column leaching, but excessively long rest periods negatively affected the chemical and bacterial activity due to the shortage of oxidizing agents and/or nutrients for microorganisms. The recovery of low-grade chalcopyrite ore was enhanced by increasing the microbial cell density. The addition of 1.5 × 108 cells/mL to the 0.45 m column and 5.0 × 107 cells/mL to the 1 m column resulted in increased extraction, with the copper dissolution increasing from 32% to 44% in the 0.45 m column and from 30% to 40% in the 1.0 m column over 70 days of leaching. Under these conditions, the pH level remained constant at ~1.8, and the redox potential was around 840 mV vs. the SHE throughout the experiment. These results provided useful insights for evaluating a sustainable controlled dump-based technology for mineral bioprocessing.
Collapse
|
19
|
Liu X, Li Y, Cao J, Zeng Z, Liu X, Zhang R, Li Q, Sand W. Bioleaching of Chalcopyrite Waste Rock in the Presence of the Copper Solvent Extractant LIX984N. Front Microbiol 2022; 13:820052. [PMID: 35369491 PMCID: PMC8972061 DOI: 10.3389/fmicb.2022.820052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/07/2022] [Indexed: 11/27/2022] Open
Abstract
Heap bioleaching, the solubilization of metal ions from metal sulfides by microbial oxidation, is often combined with solvent extraction (SX) and electrowinning to recover, e.g., copper from low-grade ores. After extraction, the leaching solution is recycled, but the entrained organic solvents may be toxic to the microorganisms. Here Acidithiobacillus ferrooxidans, Leptospirillum ferrooxidans, and Sulfobacillus thermosulfidooxidans were selected to perform bioleaching of chalcopyrite waste rock in the presence of the SX reagent (2.5% v/v LIX984N in kerosene). Possibly inhibitory effects have been evaluated by copper extraction, bacterial activity, number of actively Fe(II)-oxidizing cells, and biofilm formation. Microcalorimetry, most probable number determination, and atomic force microscopy combined with epifluorescence microscopy were applied. The results show that 100 and 300 mg/L SX reagent could hardly inhibit At. ferrooxidans from oxidizing Fe2+, but they seriously interfered with the biofilm formation and the oxidization of sulfur, thereby hindering bioleaching. L. ferrooxidans was sensitive to 50 mg/L SX reagent, which inhibited its bioleaching completely. Sb. thermosulfidooxidans showed different metabolic preferences, if the concentration of the SX reagent differed. With 10 mg/L LIX984N Sb. thermosulfidooxidans preferred to oxidize Fe2+ and extracted the same amount of copper as the assay without LIX984N. With 50 mg/L extractant the bioleaching stopped, since Sb. thermosulfidooxidans preferred to oxidize reduced inorganic sulfur compounds.
Collapse
Affiliation(s)
- Xiaohui Liu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Yuhong Li
- Biofilm Centre, Aquatische Biotechnologie, Universität Duisburg-Essen, Essen, Germany
| | - Jianfeng Cao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Zhenshun Zeng
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Xiaorong Liu
- Biofilm Centre, Aquatische Biotechnologie, Universität Duisburg-Essen, Essen, Germany
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Ruiyong Zhang
- Biofilm Centre, Aquatische Biotechnologie, Universität Duisburg-Essen, Essen, Germany
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Qingdao, China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qian Li
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
- Biofilm Centre, Aquatische Biotechnologie, Universität Duisburg-Essen, Essen, Germany
| | - Wolfgang Sand
- Biofilm Centre, Aquatische Biotechnologie, Universität Duisburg-Essen, Essen, Germany
- College of Environmental Science and Engineering, Donghua University, Shanghai, China
- Interdisciplinary Ecological Centre, TU Bergakademie Freiberg, Freiberg, Germany
| |
Collapse
|
20
|
Dong Y, Chong S, Lin H. Enhanced effect of biochar on leaching vanadium and copper from stone coal tailings by Thiobacillus ferrooxidans. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:20398-20408. [PMID: 34738215 DOI: 10.1007/s11356-021-17259-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Among the many extraction technologies for recovering metal resources from tailings, bioleaching technology is gradually showing its momentum. In our research, the enhanced effect of biochar on the bioleaching of stone coal tailings by Thiobacillus ferrooxidans (T. ferrooxidans) has been explored. In the static bioleaching experiment for 10 days, the leaching rate of vanadium (V) and copper (Cu) increased by 26.8% and 21.0% respectively after adding 5 g/L biochar. The dynamic bioleaching experiment further verified that under the promotion of biochar, the 44 day cumulative leaching rate of V and Cu increased by 15.3% and 14.5%, respectively. The promoting effect of biochar on T. ferrooxidans was mainly reflected in two aspects. The unique porous structure of biochar created a microenvironment for free microorganisms for inhabitation, while storing abundant nutrients. Biochar can also act as an excellent electronic medium to promote electron transfer, improving the oxidation ability of T. ferrooxidans on Fe2+. Furthermore, the presence of biochar may effectively inhibit the formation of jarosite precipitation on tailings in bioleaching, thereby improving the dissolution of tailings and the release of metal elements. This study demonstrates that biochar-enhanced bioleaching may be an efficient and environmentally friendly method for recovering metal resources from tailings.
Collapse
Affiliation(s)
- Yingbo Dong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory On Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Shijia Chong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
- Beijing Key Laboratory On Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China.
| |
Collapse
|
21
|
Hemdan B, Garlapati VK, Sharma S, Bhadra S, Maddirala S, K M V, Motru V, Goswami P, Sevda S, Aminabhavi TM. Bioelectrochemical systems-based metal recovery: Resource, conservation and recycling of metallic industrial effluents. ENVIRONMENTAL RESEARCH 2022; 204:112346. [PMID: 34742708 DOI: 10.1016/j.envres.2021.112346] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/25/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Metals represent a large proportion of industrial effluents, which due to their high hazardous nature and toxicity are responsible to create environmental pollution that can pose significant threat to the global flora and fauna. Strict ecological rules compromise sustainable recovery of metals from industrial effluents by replacing unsustainable and energy-consuming physical and chemical techniques. Innovative technologies based on the bioelectrochemical systems (BES) are a rapidly developing research field with proven encouraging outcomes for many industrial commodities, considering the worthy options for recovering metals from industrial effluents. BES technology platform has redox capabilities with small energy-intensive processes. The positive stigma of BES in metals recovery is addressed in this review by demonstrating the significance of BES over the current physical and chemical techniques. The mechanisms of action of BES towards metal recovery have been postulated with the schematic representation. Operational limitations in BES-based metal recovery such as biocathode and metal toxicity are deeply discussed based on the available literature results. Eventually, a progressive inspection towards a BES-based metal recovery platform with possibilities of integration with other modern technologies is foreseen to meet the real-time challenges of viable industrial commercialization.
Collapse
Affiliation(s)
- Bahaa Hemdan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India; Water Pollution Research Department, Environmental Research Division, National Research Centre, 33 El-Bohouth St., Dokki, Giza, 12622, Egypt
| | - Vijay Kumar Garlapati
- Department of Biotechnology & Bioinformatics, Jaypee University of Information Technology (JUIT), Waknaghat, Himachal Pradesh, 173234, India
| | - Swati Sharma
- Department of Biotechnology & Bioinformatics, Jaypee University of Information Technology (JUIT), Waknaghat, Himachal Pradesh, 173234, India
| | - Sudipa Bhadra
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, 506004, India
| | - Shivani Maddirala
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, 506004, India
| | - Varsha K M
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, 506004, India
| | - Vineela Motru
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, 506004, India
| | - Pranab Goswami
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Surajbhan Sevda
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, 506004, India.
| | - Tejraj M Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka, 580 031, India.
| |
Collapse
|
22
|
Chen SY, Wu JQ, Sung S. Effects of sulfur dosage on continuous bioleaching of heavy metals from contaminated sediment. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127257. [PMID: 34601403 DOI: 10.1016/j.jhazmat.2021.127257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/07/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
The bioleaching technology has been considered as a promising green technology for remediation of contaminated sediments in recent years. Bioleaching technology was generally conducted in the batch bioreactor; however, the continuous bioreactor should be developed for the application of bioleaching technology in the future. The purposes of this study were to establish a continuous bioleaching process, and to evaluate the effects of sulfur dosage on the efficiency of metal removal during this continuous bioleaching process. The obtained results show that the pH decrease, sulfate production and metal removal efficiency all increased with increasing sulfur dosage in the continuous bioleaching process due to high substrate concentration for sulfur-oxidizing bacteria. After 30 days of operation time, the maximum solubilization efficiencies for Zn, Ni, Cu and Cr were found to be 78%, 90%, 88% and 68%, respectively, at 5% of sulfur dosage. After the bioleaching process, heavy metals bound in the carbonates, Fe-Mn oxides and organics/sulfides in the sediment were effectively removed and the potential ecological and toxic risks of treated sediment were greatly reduced. The results of bacterial community analyses demonstrated that this continuous bioleaching process were dominated by several acidophilic sulfur-oxidizing bacteria; S. thermosulfidooxidans, At. thiooxidans/At. ferrooxidans, S. thermotolerans and At. albertensis, whereas the percentage of less-acidophilic sulfur-oxidizing bacteria (T. thioparus and T. cuprina) was lower than 15% of total bacteria. In addition, the cell numbers of sulfur-oxidizing bacteria increased as the sulfur dosage was increased in the continuous bioleaching process.
Collapse
Affiliation(s)
- Shen-Yi Chen
- Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan, ROC.
| | - Jun-Qi Wu
- Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan, ROC
| | - Shihwu Sung
- College of Agriculture, Forestry and Natural Resource Management, University of Hawaii at Hilo, Hilo, HI 96720-4091, USA
| |
Collapse
|
23
|
Zhou S, Liao X, Li S, Fang X, Guan Z, Ye M, Sun S. A designed moderately thermophilic consortia with a better performance for leaching high grade fine lead-zinc sulfide ore. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 303:114192. [PMID: 34861501 DOI: 10.1016/j.jenvman.2021.114192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Unwieldy fine sulfide ores are produced during mining; without being appropriately disposed of, they can cause environmental pollution and waste resources. This study investigated the leaching performance of a moderately thermophilic consortia (Leptospirillum ferriphilum + Acidithiobacillus caldus + Sulfobacillus benefaciens) for fine lead-zinc sulfide raw ore. The results showed this microbial community created a low pH, high ORP, and high cell concentration environment for mineral leaching, improving bioleaching efficiency. Under the action of this consortia, the zinc leaching rate reached 96.44 in 8 days, and reached 100% after 12 days. EPS analysis indicated that the consortia could mediate the secretion of more polysaccharides to ensure leaching efficiency. EPS levels and amino acids were the main factors affecting bioleaching. An analysis of mineral surface characteristics showed the consortia effectively leached pyrite and sphalerite from the fine sulfide ore, and prevented the mineral surface forming the jarosite that could hinder bioleaching. This study found that bioleaching reduced the potential environmental toxicity of the minerals, providing an important reference for guiding the bioleaching of unwieldy fine sulfide raw ore.
Collapse
Affiliation(s)
- Siyu Zhou
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiaojian Liao
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Shoupeng Li
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiaodi Fang
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhijie Guan
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Maoyou Ye
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Shuiyu Sun
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Polytechnic of Environmental Protection Engineering, Foshan, 528216, China.
| |
Collapse
|
24
|
Fang X, Sun S, Liao X, Li S, Zhou S, Gan Q, Zeng L, Guan Z. Effect of diurnal temperature range on bioleaching of sulfide ore by an artificial microbial consortium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150234. [PMID: 34562759 DOI: 10.1016/j.scitotenv.2021.150234] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/28/2021] [Accepted: 09/05/2021] [Indexed: 06/13/2023]
Abstract
Temperature is considered to be one of the main factors affecting bioleaching, but few studies have assessed the effects of diurnal temperature range (DTR) on the bioleaching process. This study investigates the effects of different bioleaching temperatures (30 and 40 °C) and DTR on the bioleaching of metal sulfide ores by microbial communities. The results showed that DTR had an obvious inhibitory effect on the bioleaching efficiency of the artificial microbial community, although this effect was mainly concentrated in the early and middle stages (0-18 days) of exposure, gradually decreasing until almost disappearing in the late stage (18-24 days). Extracellular polymeric substance (EPS) analysis showed that DTR did not change the composition of the EPS matrix (humic acid-like substances, polysaccharides and protein-like substances), but had a significant effect on the generative behavior of EPS, inhibiting the secretion of EPS during the early and middle stages of the bioleaching process. However, the continual increase in EPS secretion in the bioleaching system gradually reduced the adverse effects of DTR on mineral dissolution. X-ray diffraction (XRD), Fourier transform infrared (FTIR) and Scanning electron microscopy- energy dispersive spectrometry (SEM-EDS) analysis of the bioleached residue showed that DTR had no obvious effect on the mineralogical characteristics of sulfide ore. Therefore, in industrial sulfide ore bioleaching applications, in order to accelerate the artificial microbial community start-up process, temperature control measures should be increased in the bioleaching process to reduce the adverse effects of DTR on mineral dissolution.
Collapse
Affiliation(s)
- Xiaodi Fang
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Shuiyu Sun
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Polytechnic of Environmental Protection Engineering, Foshan 528216, China
| | - Xiaojian Liao
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Shoupeng Li
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| | - Siyu Zhou
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Qiaowei Gan
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Liuting Zeng
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhijie Guan
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
25
|
Copper and Zinc Recovery from Sulfide Concentrate by Novel Artificial Microbial Community. METALS 2021. [DOI: 10.3390/met12010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Exploring efficient methods to enhance leaching efficiency is critical for bioleaching technology to deal with sulfide concentrate. In our study, a novel artificial microbial community was established to augment the bioleaching efficiency and recovery of copper (Cu) and zinc (Zn). The optimum parameters in bioleaching experiments were explored according to compare a series of conditions from gradient experiments: the pH value was 1.2, temperature was 45 °C, and rotation speed was 160 r/min, which were different with pure microorganism growth conditions. Under optimal conditions, the result of recovery for Cu and Zn indicated that the average leaching rate reached to 80% and 100% respectively, which almost increased 1.8 times and 1.2 times more than control (aseptic condition) group. Therefore, this method of Cu and Zn recovery using a new-type artificial microbial community is expected to be an environmentally-friendly and efficient bioleaching technology solution, which has the potential of large-field engineering application in the future.
Collapse
|
26
|
Li J, Yang H, Tong L, Liu Z, Jin Z, Chen G. Effects of Mineral Salts on the Activity and Composition of a Mixed Culture of Acidophilic Microorganisms. Microbiology (Reading) 2021. [DOI: 10.1134/s0026261722010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
27
|
Chalcocite (bio)hydrometallurgy—current state, mechanism, and future directions: a review. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2021.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Bobadilla-Fazzini RA, Poblete-Castro I. Biofilm Formation Is Crucial for Efficient Copper Bioleaching From Bornite Under Mesophilic Conditions: Unveiling the Lifestyle and Catalytic Role of Sulfur-Oxidizing Bacteria. Front Microbiol 2021; 12:761997. [PMID: 34745072 PMCID: PMC8569243 DOI: 10.3389/fmicb.2021.761997] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/27/2021] [Indexed: 11/18/2022] Open
Abstract
Biofilm formation within the process of bioleaching of copper sulfides is a relevant aspect of iron- and sulfur-oxidizing acidophilic microorganisms as it represents their lifestyle in the actual heap/dump mining industry. Here, we used biofilm flow cell chambers to establish laminar regimes and compare them with turbulent conditions to evaluate biofilm formation and mineralogic dynamics through QEMSCAN and SEM-EDS during bioleaching of primary copper sulfide minerals at 30°C. We found that laminar regimes triggered the buildup of biofilm using Leptospirillum spp. and Acidithiobacillus thiooxidans (inoculation ratio 3:1) at a cell concentration of 106 cells/g mineral on bornite (Cu5FeS4) but not for chalcopyrite (CuFeS2). Conversely, biofilm did not occur on any of the tested minerals under turbulent conditions. Inoculating the bacterial community with ferric iron (Fe3+) under shaking conditions resulted in rapid copper recovery from bornite, leaching 40% of the Cu content after 10 days of cultivation. The addition of ferrous iron (Fe2+) instead promoted Cu recovery of 30% at day 48, clearly delaying the leaching process. More efficiently, the biofilm-forming laminar regime almost doubled the leached copper amount (54%) after 32 days. In-depth inspection of the microbiologic dynamics showed that bacteria developing biofilm on the surface of bornite corresponded mainly to At. Thiooxidans, while Leptospirillum spp. were detected in planktonic form, highlighting the role of biofilm buildup as a means for the bioleaching of primary sulfides. We finally propose a mechanism for bornite bioleaching during biofilm formation where sulfur regeneration to sulfuric acid by the sulfur-oxidizing microorganisms is crucial to prevent iron precipitation for efficient copper recovery.
Collapse
Affiliation(s)
- Roberto A Bobadilla-Fazzini
- Biosystems Engineering Laboratory, Department of Chemical Engineering, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Ignacio Poblete-Castro
- Biosystems Engineering Laboratory, Department of Chemical Engineering, Universidad de Santiago de Chile (USACH), Santiago, Chile
| |
Collapse
|
29
|
Roy JJ, Cao B, Madhavi S. A review on the recycling of spent lithium-ion batteries (LIBs) by the bioleaching approach. CHEMOSPHERE 2021; 282:130944. [PMID: 34087562 DOI: 10.1016/j.chemosphere.2021.130944] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/10/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
This review discusses the latest trend in recovering valuable metals from spent lithium-ion batteries (LIBs) to meet the technological world's critical metal demands. Spent LIBs are a secondary source of valuable metals such as Li (5%-7%), Ni (5%-10%), Co (5%-25%), Mn (5-11%), and non-metal graphite. Recycling is essential for the battery industry to extract valuable critical metals from secondary sources to develop new and novel high-tech LIBs for various applications such as eco-friendly technologies, renewable energy, emission-free electric vehicles, and energy-saving lightings. LIB waste is currently undergoing high-temperature pyrometallurgical or hydrometallurgical processes to recover valuable metals, and these processes have proven to be successful and feasible. These methods, however, are not preferable due to the difficulties in controlling the process, secondary waste produced, high operational cost, and high risk of scaling up. Biotechnological approaches can be promising alternatives to pyrometallurgical and hydrometallurgical technologies in metal recovery from LIB waste. Microbiological metal dissolution or bioleaching has gained popularity for metal extraction from ores, concentrates, and recycled or residual materials in recent years. This technology is eco-friendly, safe to handle, and reduces operating costs and energy demands. The pre-treatment process (material preparation), microorganisms used in the bioleaching of LIBs, factors influencing the bioleaching process, methods of enhancing the leaching efficiency, regeneration of electrode materials, and future aspects have been discussed in detail.
Collapse
Affiliation(s)
- Joseph Jegan Roy
- Energy Research Institute @ NTU (ERI@N), SCARCE Laboratory, Nanyang Technological University, 637459, Singapore; Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 639798, Singapore; School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore.
| | - Bin Cao
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 639798, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 637551, Singapore.
| | - Srinivasan Madhavi
- Energy Research Institute @ NTU (ERI@N), SCARCE Laboratory, Nanyang Technological University, 637459, Singapore; School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore.
| |
Collapse
|
30
|
Ning S, Li G, Shen P, Zhang X, Li J, Liu R, Liu D. Selective separation of chalcopyrite and talc using pullulan as a new depressant. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
31
|
Peng T, Liao W, Wang J, Miao J, Peng Y, Gu G, Wu X, Qiu G, Zeng W. Bioleaching and Electrochemical Behavior of Chalcopyrite by a Mixed Culture at Low Temperature. Front Microbiol 2021; 12:663757. [PMID: 34040597 PMCID: PMC8141852 DOI: 10.3389/fmicb.2021.663757] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/14/2021] [Indexed: 11/13/2022] Open
Abstract
Low-temperature biohydrometallurgy is implicated in metal recovery in alpine mining areas, but bioleaching using microbial consortia at temperatures <10°C was scarcely discussed. To this end, a mixed culture was used for chalcopyrite bioleaching at 6°C. The mixed culture resulted in a higher copper leaching rate than the pure culture of Acidithiobacillus ferrivorans strain YL15. High-throughput sequencing technology showed that Acidithiobacillus spp. and Sulfobacillus spp. were the mixed culture's major lineages. Cyclic voltammograms, potentiodynamic polarization and electrochemical impedance spectroscopy unveiled that the mixed culture enhanced the dissolution reactions, decreased the corrosion potential and increased the corrosion current, and lowered the charge transfer resistance and passivation layer impedance of the chalcopyrite electrode compared with the pure culture. This study revealed the mechanisms via which the mixed culture promoted the chalcopyrite bioleaching.
Collapse
Affiliation(s)
- Tangjian Peng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy, Ministry of Education, Changsha, China
| | - Wanqing Liao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Jingshu Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Jie Miao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yuping Peng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Guohua Gu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy, Ministry of Education, Changsha, China
| | - Xueling Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy, Ministry of Education, Changsha, China
| | - Guanzhou Qiu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy, Ministry of Education, Changsha, China
| | - Weimin Zeng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy, Ministry of Education, Changsha, China
- CSIRO Process Science and Engineering, Clayton, VIC, Australia
| |
Collapse
|
32
|
Sun J, Zhou W, Zhang L, Cheng H, Wang Y, Tang R, Zhou H. Bioleaching of Copper-Containing Electroplating Sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 285:112133. [PMID: 33607564 DOI: 10.1016/j.jenvman.2021.112133] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 01/28/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
The recovery of precious metals from solid waste through bioleaching has become a research hotspot in recent years. Thus, in this study, different strategies, such as chemical sulfuric acid leaching and mixed consortium bioleaching, were adopted to extract copper from Copper-Containing Electroplating Sludge. The results showed that, compared to chemical leaching, bioleaching showed a much better performance. Indeed, copper bioleaching efficiency reached 94.3% on day 7 (21.1% higher than that of chemical leaching). The results also indicated that the process of bioleaching involved more mechanisms and reactions than that of chemical leaching. The SEM and EDX tests showed that the surface morphology of the sludge changed significantly after bioleaching, and that an insignificant amount of copper remained in the leached residues. Furthermore, the leached residues passed the characteristic leaching toxic test and thus can be considered as non-hazardous raw materials for the construction industry. Hence, adopting a mixed consortium leaching process to extract copper from Copper-Containing Electroplating Sludge will not only significantly reduce environmental pollution, but will also use metal resources more efficiently.
Collapse
Affiliation(s)
- Jianxing Sun
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, PR China
| | - Wenbo Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, PR China; School of Metallurgy and Environment, Central South University, Changsha, 410083, Hunan, PR China
| | - Lijuan Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, PR China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha, 410083, Hunan, PR China
| | - Haina Cheng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, PR China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha, 410083, Hunan, PR China
| | - Yuguang Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, PR China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha, 410083, Hunan, PR China.
| | - Ruichang Tang
- Paddyfield Teli Middle School, Changsha, 410083, Hunan, PR China
| | - Hongbo Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, PR China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha, 410083, Hunan, PR China
| |
Collapse
|
33
|
Zheng Y, Wang L, Zhu Y, Li X, Ren Y. A triple-chamber microbial fuel cell enabled to synchronously recover iron and sulfur elements from sulfide tailings. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123307. [PMID: 32653783 DOI: 10.1016/j.jhazmat.2020.123307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Bioleaching by coupling iron oxidization with microbial growth is a process frequently used to extract target metals from sulfide tailing piles. However, the slower leaching, longer operational times, and lower efficiency compared to those of other extracting processes are the most important reasons that make this approach unattractive for the recovery of target elements. A triple-chamber microbial fuel cell (MFC) was explored to elevate the dissolution of sulfide tailings via in-situ removal of bioleached Fe3+/Fe2+ and SO42-, during which iron and SO42- ions were synchronously recovered as Fe(OH)3 and S° in the first and second cathode chambers, respectively. 107.9 % of iron and 99.8 % of sulfur contained in the sulfide tailings was bioleached over 50 h, with 80.0 % iron and 22.1 % sulfur elements synchronously recovered. The purities of the Fe(OH)3 and S° precipitates with high metallurgical values were up to 93.1 % and 90.2 %, respectively. The excellent leaching performance of the explored triple-chamber MFC was attributed to the synergistic effect of Acidithiobacillia catalysis and electrochemical oxidation. The explored approach, by virtue of having the higher bioleaching efficiency, less aggressive conditions and shorter operating times than the conventional bioleaching, is of potential commercial value.
Collapse
Affiliation(s)
- Yan Zheng
- Laboratory of Environmental Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, PR China; Jiangsu Cooperative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, PR China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, PR China
| | - Ling Wang
- College of Mining Engineering, North China University of Science and Technology, Tangshan 063210, PR China
| | - Yangguang Zhu
- Laboratory of Environmental Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, PR China; Jiangsu Cooperative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, PR China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, PR China
| | - Xiufen Li
- Laboratory of Environmental Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, PR China; Jiangsu Cooperative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, PR China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, PR China.
| | - Yueping Ren
- Laboratory of Environmental Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, PR China; Jiangsu Cooperative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, PR China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, PR China
| |
Collapse
|
34
|
Ye J, Liao W, Zhang P, Li J, Nabi M, Wang S, Cai Y, Li F. Fe 1-xS/biochar combined with thiobacillus enhancing lead phytoavailability in contaminated soil: Preparation of biochar, enrichment of thiobacillus and their function on soil lead. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115447. [PMID: 32866876 DOI: 10.1016/j.envpol.2020.115447] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/01/2020] [Accepted: 08/15/2020] [Indexed: 06/11/2023]
Abstract
Properly increasing mobility of heavy metals could promote phytoremediation of contaminated soil. Fe1-xS/biochar was successfully prepared from sawdust with loading pyrrhotite (Fe1-xS) at a pyrolysis temperature of 550 °C. Thiobacillus were successfully adsorbed and enriched on the surface of Fe1-xS/biochar. Microbial growth for 36 d supported by bio-oxidization of Fe1-xS decreased the system pH from 4.32 to 3.50, increased the ORP from 298 to 487 mV, and the Fe3+ release reached 25.48 mg/g, enhancing the oxidation and leaching of soil Pb. Finally, Fe1-xS/biochar and Thiobacillus were simultaneously applied into Pb-contaminated soil for 60 d, the soil pH decreased from 7.83 to 6.72, and the exchangeable fraction of soil Pb increased from 22.86% to 37.19%. Ryegrass planting for 60 d in Pb-contaminated soil with Fe1-xS/biochar and Thiobacillus showed that the Pb content in shoot and root of ryegrass increased by 55.65% and 73.43%, respectively, confirming an obvious increase of phytoavailability of soil Pb. The relative abundance of Thiobacillus in remediated soil significantly increased from 0.06% to 34.55% due to the addition of Fe1-xS/biochar and Thiobacillus. This study provides a novel approach for regulating the Pb phytoavailability for phytoremediation of Pb-contaminated soil.
Collapse
Affiliation(s)
- Junpei Ye
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Wenmin Liao
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Panyue Zhang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Juan Li
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Mohammad Nabi
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Siqi Wang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yajing Cai
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Fan Li
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
35
|
Zhou H, Zhang Z, Ou L, Mai Q. Flotation separation of chalcopyrite from talc using a new depressant carrageenan. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125274] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Abstract
Mechanical activation as a means of accelerating the mineral dissolution may play an important role in chalcopyrite bioleaching. In the present work, the mechanical activation by ball-milling with 10 min, 30 min, 60 min, 90 min, 120 min and 180 min time periods of bioleaching of chalcopyrite was studied, and then evaluated by a Density Functional Theory (DFT) calculation. The results showed that the specific surface area increased sharply in the very beginning of mechanical activation and then increased slowly until the agglomeration of the particles occurred, while the chalcopyrite lattices increased with the mechanical activation. The reaction activity analyzed by cyclic voltammetry (CV) increased slowly in 30 min, increased quickly in the following 90 min, and then decreased, while the hydrophobicity analyzed by contact angles of the chalcopyrite after activation showed less of a change. The results showed that after 15 days of bioleaching, the Cu leaching by Sulfobacillus thermosulfidooxidans (S. thermosulfidooxidans) increased from 9.39% in the 0 min of mechanical activation to 87.41% in the 120 min of mechanical activation, and the copper leaching rate increased by about 78%. The DFT results provide solid proof that the activated chalcopyrite can be adsorbed more easily by cells with higher adsorption energies and stronger bonds.
Collapse
|
37
|
Hu W, Feng S, Tong Y, Zhang H, Yang H. Adaptive defensive mechanism of bioleaching microorganisms under extremely environmental acid stress: Advances and perspectives. Biotechnol Adv 2020; 42:107580. [DOI: 10.1016/j.biotechadv.2020.107580] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/26/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022]
|
38
|
Ye J, Wang S, Zhang P, Nabi M, Tao X, Zhang H, Liu Y. L-cysteine addition enhances microbial surface oxidation of coal inorganic sulfur: Complexation of cysteine and pyrite, inhibition of jarosite formation, environmental effects. ENVIRONMENTAL RESEARCH 2020; 187:109705. [PMID: 32474315 DOI: 10.1016/j.envres.2020.109705] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/29/2020] [Accepted: 05/16/2020] [Indexed: 06/11/2023]
Abstract
Indigenous microorganisms were used to remove inorganic sulfur from high sulfur fat coal, and effect of L-cysteine on coal surface and biodesulfurization was investigated. It was found that L-cysteine addition enhanced coal biodesulfurization, and the optimal L-cysteine dosage was 1.6 g/L. With the optimal L-cysteine dosage, the Sulfobacillus were the dominant pyrite-oxidizing bacteria. After biodesulfurization for 30 days, the inorganic sulfur in coal decreased from 3.038% to 0.437%. L-cysteine was adsorbed on the coal surface through amino, carboxyl and sulfhydryl groups, and cysteine-Fe complex was formed by the interaction between interfacial -SH group of L-cysteine and pyrite, which was beneficial to sulfur transfer. Meanwhile, L-cysteine addition improved the adsorption of microorganisms on coal surface though reducing the Zeta potential of coal particle. The structural change of coal during the biodesulfurization showed that the pyrite was solubilized by Sulfobacillus to realize the removal of inorganic sulfur from coal, and L-cysteine addition inhibited the jarosite formation through improvement of pyrite bio-oxidation and corresponding pH decrease, which avoided the dissolved sulfur returning back to coal again. Moreover, the coal biodesulfurization with L-cysteine addition also presented obvious environmental benefit.
Collapse
Affiliation(s)
- Junpei Ye
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Siqi Wang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Panyue Zhang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Mohammad Nabi
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Xue Tao
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Haibo Zhang
- College of Urban and Rural Construction, Shanxi Agricultural University, Taigu, 030801, China
| | - Yanwei Liu
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
39
|
Systems biology of acidophile biofilms for efficient metal extraction. Sci Data 2020; 7:215. [PMID: 32636389 PMCID: PMC7340779 DOI: 10.1038/s41597-020-0519-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/12/2020] [Indexed: 11/26/2022] Open
Abstract
Society’s demand for metals is ever increasing while stocks of high-grade minerals are being depleted. Biomining, for example of chalcopyrite for copper recovery, is a more sustainable biotechnological process that exploits the capacity of acidophilic microbes to catalyze solid metal sulfide dissolution to soluble metal sulfates. A key early stage in biomining is cell attachment and biofilm formation on the mineral surface that results in elevated mineral oxidation rates. Industrial biomining of chalcopyrite is typically carried out in large scale heaps that suffer from the downsides of slow and poor metal recoveries. In an effort to mitigate these drawbacks, this study investigated planktonic and biofilm cells of acidophilic (optimal growth pH < 3) biomining bacteria. RNA and proteins were extracted, and high throughput “omics” performed from a total of 80 biomining experiments. In addition, micrographs of biofilm formation on the chalcopyrite mineral surface over time were generated from eight separate experiments. The dataset generated in this project will be of great use to microbiologists, biotechnologists, and industrial researchers. Measurement(s) | biofilm formation • Proteome • protein expression data • RNA • transcriptome | Technology Type(s) | fluorescence microscopy • mass spectrometry • RNA sequencing | Sample Characteristic - Organism | Leptospirillum ferriphilum • Sulfobacillus thermosulfidooxidans • Acidithiobacillus caldus | Sample Characteristic - Environment | mine |
Machine-accessible metadata file describing the reported data: 10.6084/m9.figshare.12173637
Collapse
|
40
|
Wang X, Ma L, Wu J, Xiao Y, Tao J, Liu X. Effective bioleaching of low-grade copper ores: Insights from microbial cross experiments. BIORESOURCE TECHNOLOGY 2020; 308:123273. [PMID: 32247948 DOI: 10.1016/j.biortech.2020.123273] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
The interaction between microorganisms and minerals was a hot topic to reveal the transformation of key elements that affecting bioleaching efficiency. Three typical low-grade copper ores, the main copper-bearing components of which were primary sulfide, secondary sulfide and high-oxidative sulfide copper, were obtained from Dexing, Zijinshan and Luanshya copper mine, respectively. Meanwhile, six typical microorganisms were isolated from each of the three habitats, and assembled as communities based on their origins. Cross bioleaching was carried out under identical conditions. The leaching parameters showed that native strains played excellent roles in their corresponding ore bioleaching process, and community structure was greatly determined by mineral composition, indicating that domestication for longitudinal adaption was an effective way to improve microbial leaching performance. Leptospirillum ferriphilum and Acidithiobacillus ferrooxidans promoted copper release by shifting redox potential and pH of the leachate, respectively, indicating that microbial population regulation was another effective way to improve bioleaching efficiency.
Collapse
Affiliation(s)
- Xingjie Wang
- School of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Liyuan Ma
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China.
| | - Jiangjun Wu
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Yunhua Xiao
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China; College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Jiemeng Tao
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Xueduan Liu
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| |
Collapse
|
41
|
Fomchenko NV, Muravyov MI. Bioleaching of Sulfide Concentrates with Different Copper and Zinc Contents and Evaluation of Bioleach Residue Grade. APPL BIOCHEM MICRO+ 2020. [DOI: 10.1134/s0003683820040055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Panda S. Magnetic separation of ferrous fractions linked to improved bioleaching of metals from waste-to-energy incinerator bottom ash (IBA): a green approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:9475-9489. [PMID: 31919815 DOI: 10.1007/s11356-020-07615-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 01/01/2020] [Indexed: 06/10/2023]
Abstract
Ferrous fractions in incinerated bottom ash (IBA) are linked to lower metal dissolution. In the present study, a novel eco-friendly biotechnological approach has been tested for multi-metal leaching using meso-acidophilic Fe2+/S° oxidizing bacterial consortium from magnetically separated IBA, owing to the inherent property of IBA to release Fe2+. Comprehensive lab-scale studies, first-of-its-kind, considered all the potential elements to understand targeted metal dissolutions from the sample under differential conditions. Concentrations of metals, Al > Ti > Ni > Zn > Cu, as analyzed by ICP-OES, were targeted to be bioleached. XRD analysis indicated the sample to be amorphous with magnetite (Fe3O4) and iron (Fe) forming major phases in the magnetic part (IBAM) and titano-magnetite (Fe3-x. TixO4) and iron (Fe) for the nonmagnetic part (IBAN). The study indicated that 73.98% Cu, 98.68% Ni, 59.09% Zn, 58.84% Al, and 92.85% Ti could be leached from IBAM when the bioleaching system operates at pH 1.5, 5% pulp density for 8 days. Under similar conditions, within 6 days, 37.55% Cu, 87.99% Ni, 45.03% Zn, 40.72% Al, and 63.97% Ti could be leached from IBAN. Two routes were identified and the mechanism of action has been proposed for the leaching of metals.
Collapse
Affiliation(s)
- Sandeep Panda
- Department of Mining Engineering, Mineral-Metal Recovery and Recycling (MMR&R) Research Group, Mineral Processing Division, Suleyman Demirel University, TR32260, Isparta, Turkey.
| |
Collapse
|
43
|
Chen W, Yin S, Wu A, Wang L, Chen X. Bioleaching of copper sulfides using mixed microorganisms and its community structure succession in the presence of seawater. BIORESOURCE TECHNOLOGY 2020; 297:122453. [PMID: 31787510 DOI: 10.1016/j.biortech.2019.122453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/17/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
The bacterial diversity and dynamics in the leaching solution were analyzed during bioleaching of low-grade copper sulfide ore in the presence of seawater in this study. The results indicated a promoting response of appropriate-proportion seawater to bioleaching with improved copper recoveries. A maximum of 84.70% copper recovery was obtained in the presence of 20.00% seawater in contrast to only 72.49% in its absence. The experiments verified that seawater owned a great influence on Attached bacteria and bacterial species. 16S rDNA analysis illustrated that bacterial species decreased distinctly in the presence of seawater. Little difference between blank sample (no seawater) and sample adding 20.00% seawater was indicated by beta diversity index. Bacteria (including Acidithiobacillus ferrooxidans, Sphingomonas leidyi and Lactobacillus acetotolerans) were influenced significantly after adding seawater. Acidithiobacillus ferrooxidans accounted for the highest proportion of the community whether seawater was added or not during bioleaching.
Collapse
Affiliation(s)
- Wei Chen
- Key Laboratory of Ministry of Education for High-Efficient Mining and Safety of Metal, University of Science and Technology Beijing, Beijing 100083, China; School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Shenghua Yin
- Key Laboratory of Ministry of Education for High-Efficient Mining and Safety of Metal, University of Science and Technology Beijing, Beijing 100083, China; School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Aixiang Wu
- Key Laboratory of Ministry of Education for High-Efficient Mining and Safety of Metal, University of Science and Technology Beijing, Beijing 100083, China; School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Leiming Wang
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xun Chen
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
44
|
Yu Z, Han H, Feng P, Zhao S, Zhou T, Kakade A, Kulshrestha S, Majeed S, Li X. Recent advances in the recovery of metals from waste through biological processes. BIORESOURCE TECHNOLOGY 2020; 297:122416. [PMID: 31786035 DOI: 10.1016/j.biortech.2019.122416] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/08/2019] [Accepted: 11/10/2019] [Indexed: 06/10/2023]
Abstract
Wastes containing critical metals are generated in various fields, such as energy and computer manufacturing. Metal-bearing wastes are considered as secondary sources of critical metals. The conventional physicochemical methods of metals recovery are energy-intensive and cause further pollution. Low-cost and eco-friendly technologies including biosorbents, bioelectrochemical systems (BESs), bioleaching, and biomineralization, have become alternatives in the recovery of critical metals. However, a relatively low recovery rate and selectivity severely hinder their large-scale applications. Researchers have expanded their focus to exploit novel strain resources and strategies to improve the biorecovery efficiency. The mechanisms and potential applicability of modified biological techniques for improving the recovery of critical metals need more attention. Hence, this review summarize and compare the strategies that have been developed for critical metals recovery, and provides useful insights for energy-efficient recovery of critical metals in future industrial applications.
Collapse
Affiliation(s)
- Zhengsheng Yu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, No. 222 Tianshuinan Road, Lanzhou, Gansu 730000, People's Republic of China
| | - Huawen Han
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, No. 222 Tianshuinan Road, Lanzhou, Gansu 730000, People's Republic of China
| | - Pengya Feng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, No. 222 Tianshuinan Road, Lanzhou, Gansu 730000, People's Republic of China
| | - Shuai Zhao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, No. 222 Tianshuinan Road, Lanzhou, Gansu 730000, People's Republic of China
| | - Tuoyu Zhou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, No. 222 Tianshuinan Road, Lanzhou, Gansu 730000, People's Republic of China
| | - Apurva Kakade
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, No. 222 Tianshuinan Road, Lanzhou, Gansu 730000, People's Republic of China
| | - Saurabh Kulshrestha
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh 173229, India
| | - Sabahat Majeed
- Department of Biosciences, COMSATS University, Park Road, Tarlai Kalan Islamabad, Islamabad 44000, Pakistan
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, No. 222 Tianshuinan Road, Lanzhou, Gansu 730000, People's Republic of China.
| |
Collapse
|
45
|
Huang X, Zhu T, Duan W, Liang S, Li G, Xiao W. Comparative studies on catalytic mechanisms for natural chalcopyrite-induced Fenton oxidation: Effect of chalcopyrite type. JOURNAL OF HAZARDOUS MATERIALS 2020; 381:120998. [PMID: 31422345 DOI: 10.1016/j.jhazmat.2019.120998] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/08/2019] [Accepted: 08/11/2019] [Indexed: 06/10/2023]
Abstract
The type of chalcopyrite plays a key role in determining its physicochemical properties. In this study, we present a systematic comparative study on the use of p- and n-type chalcopyrite (Cpy A and Cpy B, respectively) as Fenton catalysts for wastewater treatment. Experimental results showed that 60% of AO7 removal could be achieved in 30 min at a natural pH when H2O2 was activated by Cpy A. The removal rate could be further enhanced by up to 100% within 5 min using Cpy B as the catalyst. This is because Cpy B released far more Cu+ and Fe2+ ions, and less Cu2+ after being washed, and then activated H2O2 to produce more ·OH radicals (main active species). On the other hand, the excess copper ions released from Cpy A could react with AO7 to generate an intermediate product that would negatively affect the degradation process. Finally, the relative contribution of the homogeneous vs. heterogeneous process was calculated. Although only about 20% of the contribution for AO7 degradation was provided by heterogeneous processes in both systems, the time for full removal could be obviously reduced to 5 min from 20 min (homogeneous process) in the Cpy B/H2O2 system.
Collapse
Affiliation(s)
- Xiaotao Huang
- School of Resources Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Tonghe Zhu
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Weijian Duan
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Sheng Liang
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Ge Li
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Wei Xiao
- School of Resources Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China.
| |
Collapse
|
46
|
Liao X, Sun S, Zhou S, Ye M, Liang J, Huang J, Guan Z, Li S. A new strategy on biomining of low grade base-metal sulfide tailings. BIORESOURCE TECHNOLOGY 2019; 294:122187. [PMID: 31577980 DOI: 10.1016/j.biortech.2019.122187] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 06/10/2023]
Abstract
This study investigated the effect of designed microbial consortia on biomining of low grade base-metal sulfide tailings. The results show the amount of recycled metals were equal if the tailings were leached by mixed cultures of Leptospirillum ferriphilum and Acidithiobacillus thiooxidans at three different ratios or by pure culture of L. ferriphilum, which was better than the pure culture of Acidithiobacillus ferrooxidans. qPCR (quantitative polymerase chain reaction) demonstrated only L. ferriphilum functioned in the mixtures at initial stage. The results of extracellular polymeric substances (EPS) via three-dimensional excitation-emission matrix combined with parallel factor analysis (3DEEM-PARAFAC) collected from mixed or pure cultures indicated there were no interactions between two strains. Secondary minerals were formed, but did not influence the leaching process. A new strategy for tailings biomining was proposed: only ferrous oxidizers should be added during the initial and middle biomining stage, while sulfur oxidizers should be added at the end.
Collapse
Affiliation(s)
- Xiaojian Liao
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Shuiyu Sun
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Polytechnic of Environmental Protection Engineering, Foshan 528216, China
| | - Siyu Zhou
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Maoyou Ye
- College of Environmental Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510006, China
| | - Jialin Liang
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Jinjia Huang
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhijie Guan
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Shoupeng Li
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
47
|
Feng S, Hou S, Cui Y, Tong Y, Yang H. Metabolic transcriptional analysis on copper tolerance in moderate thermophilic bioleaching microorganism Acidithiobacillus caldus. J Ind Microbiol Biotechnol 2019; 47:21-33. [PMID: 31758413 DOI: 10.1007/s10295-019-02247-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/05/2019] [Indexed: 01/06/2023]
Abstract
Bioleaching, an alternative environmental smelting technology, typically uses high concentrations of heavy metal ions, especially in the subsequent phase, due to metal ion accumulation from the mineral. In this study, we analyzed the overall response of the bioleaching microorganism Acidithiobacillus caldus to copper stress through physiological and transcriptomic analyses. Scanning electron microscopy results showed higher extracellular polymeric substances secretion and cell aggregation under copper stress. Intracellular levels of glutamic acid, glycine and cysteine increased, favoring the synthesis of glutathione for maintenance of the oxidation-reduction state. GSH, during copper stress conditions, the activity of GSH-PX and CAT increased, resulting in reduced oxidative damage while maintaining stable intracellular pH. Higher unsaturated and cyclopropane fatty acid levels resulted in increased membrane fluidity and compactness and decreased ATP levels to support the energy requirements for stress resistance. Initially, H+-ATPase activity increased to provide energy for proton output and decreased later at higher copper ion stress. From transcriptome analysis, 140 genes were differentially expressed under low copper stress (1 g/L), while 250 genes exhibited altered transcriptional levels at higher copper stress (3 g/L). These differentially expressed genes were involved primarily in metabolic pathways such as energy metabolism, two-component systems, amino acid metabolism, and signal transduction. The Sox family cluster gene cluster involved in the conversion of thiosulfate to sulfate was upregulated in the sulfur metabolism pathway. In the oxidative phosphorylation pathway, genes participating in the synthesis of NADH oxidoreductase and cytochrome c oxidase, nuoL, cyoABD (cyoA, cyoB and cyoD) and cydAB (cydA and cydB), were downregulated. The TCS element ompR, closely associated with the osmotic pressure, exhibited active response, while Cu2+ efflux system gene cusRS was upregulated. In the amino acid metabolism, the glnA involved in nitrogen fixation was upregulated and promoted the synthesis of glutamine synthetase for reducing excessive oxidative stress. This study provides new insights into the mechanism underlying A. caldus response to heavy-metal ion stress under harsh bioleaching conditions.
Collapse
Affiliation(s)
- Shoushuai Feng
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, People's Republic of China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, Wuxi, People's Republic of China.,Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, People's Republic of China
| | - Shaoxiang Hou
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, People's Republic of China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, Wuxi, People's Republic of China.,Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, People's Republic of China
| | - Yaquan Cui
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, People's Republic of China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, Wuxi, People's Republic of China.,Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, People's Republic of China
| | - Yanjun Tong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China. .,School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, People's Republic of China.
| | - Hailin Yang
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, People's Republic of China. .,The Key Laboratory of Industrial Biotechnology, Ministry of Education, Wuxi, People's Republic of China. .,Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, People's Republic of China.
| |
Collapse
|
48
|
Chen SY, Cheng YK. Effects of sulfur dosage and inoculum size on pilot-scale thermophilic bioleaching of heavy metals from sewage sludge. CHEMOSPHERE 2019; 234:346-355. [PMID: 31228836 DOI: 10.1016/j.chemosphere.2019.06.084] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/26/2019] [Accepted: 06/10/2019] [Indexed: 06/09/2023]
Abstract
Land application of sewage sludge has received significant attention in recent years but the presence of elevated heavy metals in the sludge limits its land application. The purposes of this study were to investigate the effects of sulfur dosage and inoculum size on the thermophilic bioleaching of heavy metals from sewage sludge in a pilot-scale bioreactor. The microbial communities in this thermophilic bioleaching process were also identified using real-time polymerase chain reaction (real-time PCR). The results showed that the oxidation of sulfur and metal solubilization decreased with the increasing sulfur dosage. When the sulfur dosage was greater than 2% (w/v), the sulfur oxidation and metal solubilization rates decreased, indicating that the thermophilic bioleaching was hindered by high levels of substrate. However, it was found that the efficiency of metal solubilization and solid degradation was increased with the increase of inoculum size in the range from 5% to 20%. At the end of bioleaching, the efficiency of Mn, Zn, Ni, Cu and Cr from the sewage sludge reached 73-100%, 51-60%, 38-52%, 17-43% and 1-38%, respectively, while SS and VSS were degraded by 33-48% and 47-67%, respectively. Based on the analysis of real-time PCR, Sulfobacillus acidophilus was observed to be the predominant species (13-67% of total bacteria), whereas the populations of Sulfobacillus thermosulfidooxidans and Acidithiobacillus caldus were accounted relatively low (<1%).
Collapse
Affiliation(s)
- Shen-Yi Chen
- Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology 2 Jhuoyue Road, Nanzih, Kaohsiung, 811, Taiwan.
| | - Yun-Kai Cheng
- Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology 2 Jhuoyue Road, Nanzih, Kaohsiung, 811, Taiwan
| |
Collapse
|
49
|
Effects of Conventional Flotation Frothers on the Population of Mesophilic Microorganisms in Different Cultures. Processes (Basel) 2019. [DOI: 10.3390/pr7100653] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bioleaching is an environment-friendly and low-investment process for the extraction of metals from flotation concentrate. Surfactants such as collectors and frothers are widely used in the flotation process. These chemical reagents may have inhibitory effects on the activity of microorganisms through a bioleaching process; however, there is no report indicating influences of reagents on the activity of microorganisms in the mixed culture which is mostly used in the industry. In this investigation, influences of typical flotation frothers (methyl isobutyl carbinol and pine oil) in different concentrations (0.01, 0.10, and 1.00 g/L) were examined on activates of bacteria in the mesophilic mixed culture (Acidithiobacillus ferrooxidans, Leptospirillum ferrooxidans, and Acidithiobacillus thiooxidans). For comparison purposes, experiments were repeated by pure cultures of Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans in the same conditions. Results indicated that increasing the dosage of frothers has a negative correlation with bacteria activities while the mixed culture showed a lower sensitivity to the toxicity of these frothers in comparison with examined pure cultures. Outcomes showed the toxicity of Pine oil is lower than methyl isobutyl carbinol (MIBC). These results can be used for designing flotation separation procedures and to produce cleaner products for bio extraction of metals.
Collapse
|
50
|
Huang T, Wei X, Zhang S. Bioleaching of copper sulfide minerals assisted by microbial fuel cells. BIORESOURCE TECHNOLOGY 2019; 288:121561. [PMID: 31152952 DOI: 10.1016/j.biortech.2019.121561] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 06/09/2023]
Abstract
A proof-of-concept of copper sulfide mineral bioleaching assisted by microbial fuel cells (MFCs) was demonstrated in current study. Simultaneous copper extraction and electricity generation were obtained in this bioleaching process, providing a novel approach for copper sulfide mineral bioleaching. Compared with bioleaching of a mixture of chalcopyrite concentrate and porphyry molybdenite, bioleaching of chalcopyrite concentrate achieved higher coulomb production but lower copper extraction concentration. After 320 days bioleaching of chalcopyrite concentrate, the copper ion concentration in bioleaching solution was 244.2 mg/L and the average coulomb production was 4.4 ± 2.2C/d. The introduction of MFCs into bioleaching processes promoted copper extraction, mainly via the decrease of pH deriving from the anodic sulfide/sulfur oxidation.
Collapse
Affiliation(s)
- Tao Huang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Xia Wei
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Shaohui Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, PR China; Hubei Key Laboratory of Fuel Cell, Wuhan University of Technology, Wuhan 430070, PR China.
| |
Collapse
|