1
|
Deka TJ, Osman AI, Farghali M, Alengebawy A, Baruah DC, Rooney DW. Quantitative Modelling of Biohydrogen Production from Indian Agricultural Residues via Dark Fermentation. ChemistryOpen 2025; 14:e202400095. [PMID: 40156291 PMCID: PMC12075106 DOI: 10.1002/open.202400095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 01/02/2025] [Indexed: 04/01/2025] Open
Abstract
BioH2, a modern biofuel with clean energy attributes and effective waste management capabilities, emerges as a promising energy source. This study employs quantitative modelling to evaluate India's bioH2 production potential from major crop residues. Among the seven selected crop residues, West Bengal, Uttar Pradesh, and Karnataka stand out as the top three states with surplus crop residues. The annual estimated bioH2 generation potential, without pretreatment, reaches approximately 103 PJ, a figure that soars to around 300 PJ with pretreatment, representing a remarkable 191 % improvement. The study underscores the effectiveness of pretreatment methods involving acid, alkali, or heat in enhancing bioH2 production. Despite these promising findings, efficiency-related challenges, including temperature, pH, and pretreatment factors, are recognised. The study proposes further research and decentralised production projects as potential strategies to address these challenges, enhancing India's energy security by reducing dependence on imported fossil fuels.
Collapse
Affiliation(s)
- Tanmay J. Deka
- School of Chemistry and Chemical EngineeringQueen's University BelfastBelfastUnited Kingdom
| | - Ahmed I. Osman
- School of Chemistry and Chemical EngineeringQueen's University BelfastBelfastUnited Kingdom
- School of Engineering, TechnologyDesign, Canterbury Christ Church University, CanterburyCanterburyCT1 1QUUK
| | - Mohamed Farghali
- Department of Agricultural Engineering and Socio-EconomicsKobe UniversityKobe657-8501Japan
- Department of Animal and Poultry Hygiene & Environmental SanitationFaculty of Veterinary MedicineAssiut UniversityAssiut71526Egypt
| | - Ahmed Alengebawy
- College of EngineeringHuazhong Agricultural University430070WuhanChina
| | | | - David W. Rooney
- School of Chemistry and Chemical EngineeringQueen's University BelfastBelfastUnited Kingdom
| |
Collapse
|
2
|
Vaz LP, Sears HB, Miranda EA, Holwerda EK, Lynd LR. Solubilization of sugarcane bagasse by mono and cocultures of thermophilic anaerobes with and without cotreatment. BIORESOURCE TECHNOLOGY 2024; 406:130982. [PMID: 38879055 DOI: 10.1016/j.biortech.2024.130982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
Cotreatment, mechanical disruption of lignocellulosic biomass during microbial fermentation, is a potential alternative to thermochemical pretreatment as a means of increasing the accessibility of lignocellulose to biological attack. Successful implementation of cotreatment requires microbes that can withstand milling, while solubilizing and utilizing carbohydrates from lignocellulose. In this context, cotreatment with thermophilic, lignocellulose-fermenting bacteria has been successfully evaluated for a number of lignocellulosic feedstocks. Here, cotreatment was applied to sugarcane bagasse using monocultures of the cellulose-fermenting Clostridium thermocellum and cocultures with the hemicellulose-fermenting Thermoanaerobacterium thermosaccharolyticum. This resulted in 76 % carbohydrate solubilization (a 1.8-fold increase over non-cotreated controls) on 10 g/L solids loading, having greater effect on the hemicellulose fraction. With cotreatment, fermentation by wild-type cultures at low substrate concentrations increased cumulative product formation by 45 % for the monoculture and 32 % for the coculture. These findings highlight the potential of cotreatment for enhancing deconstruction of sugarcane bagasse using thermophilic bacteria.
Collapse
Affiliation(s)
- Luisa P Vaz
- Universidade Estadual de Campinas, School of Chemical Engineering, Department of Materials and Bioprocess Engineering, Av. Albert Einstein 500, Campinas, SP 13083-852, Brazil
| | - Helen B Sears
- Thayer School of Engineering, Dartmouth College, 15 Thayer Drive, Hanover, NH 03755, USA
| | - Everson A Miranda
- Universidade Estadual de Campinas, School of Chemical Engineering, Department of Materials and Bioprocess Engineering, Av. Albert Einstein 500, Campinas, SP 13083-852, Brazil
| | - Evert K Holwerda
- Thayer School of Engineering, Dartmouth College, 15 Thayer Drive, Hanover, NH 03755, USA.
| | - Lee R Lynd
- Thayer School of Engineering, Dartmouth College, 15 Thayer Drive, Hanover, NH 03755, USA
| |
Collapse
|
3
|
Chou KJ, Croft T, Hebdon SD, Magnusson LR, Xiong W, Reyes LH, Chen X, Miller EJ, Riley DM, Dupuis S, Laramore KA, Keller LM, Winkelman D, Maness PC. Engineering the cellulolytic bacterium, Clostridium thermocellum, to co-utilize hemicellulose. Metab Eng 2024; 83:193-205. [PMID: 38631458 DOI: 10.1016/j.ymben.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/15/2024] [Accepted: 03/29/2024] [Indexed: 04/19/2024]
Abstract
Consolidated bioprocessing (CBP) of lignocellulosic biomass holds promise to realize economic production of second-generation biofuels/chemicals, and Clostridium thermocellum is a leading candidate for CBP due to it being one of the fastest degraders of crystalline cellulose and lignocellulosic biomass. However, CBP by C. thermocellum is approached with co-cultures, because C. thermocellum does not utilize hemicellulose. When compared with a single-species fermentation, the co-culture system introduces unnecessary process complexity that may compromise process robustness. In this study, we engineered C. thermocellum to co-utilize hemicellulose without the need for co-culture. By evolving our previously engineered xylose-utilizing strain in xylose, an evolved clonal isolate (KJC19-9) was obtained and showed improved specific growth rate on xylose by ∼3-fold and displayed comparable growth to a minimally engineered strain grown on the bacteria's naturally preferred substrate, cellobiose. To enable full xylan deconstruction to xylose, we recombinantly expressed three different β-xylosidase enzymes originating from Thermoanaerobacterium saccharolyticum into KJC19-9 and demonstrated growth on xylan with one of the enzymes. This recombinant strain was capable of co-utilizing cellulose and xylan simultaneously, and we integrated the β-xylosidase gene into the KJC19-9 genome, creating the KJCBXint strain. The strain, KJC19-9, consumed monomeric xylose but accumulated xylobiose when grown on pretreated corn stover, whereas the final KJCBXint strain showed significantly greater deconstruction of xylan and xylobiose. This is the first reported C. thermocellum strain capable of degrading and assimilating hemicellulose polysaccharide while retaining its cellulolytic capabilities, unlocking significant potential for CBP in advancing the bioeconomy.
Collapse
Affiliation(s)
- Katherine J Chou
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80228, USA.
| | - Trevor Croft
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80228, USA
| | - Skyler D Hebdon
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80228, USA
| | - Lauren R Magnusson
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80228, USA
| | - Wei Xiong
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80228, USA
| | - Luis H Reyes
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80228, USA; Grupo de Diseño de Productos y Procesos, Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá, Colombia
| | - Xiaowen Chen
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80228, USA
| | - Emily J Miller
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80228, USA
| | - Danielle M Riley
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80228, USA
| | - Sunnyjoy Dupuis
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80228, USA
| | - Kathrin A Laramore
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80228, USA
| | - Lisa M Keller
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80228, USA
| | - Dirk Winkelman
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80228, USA
| | - Pin-Ching Maness
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80228, USA
| |
Collapse
|
4
|
Liu YJ, Zhang Y, Chi F, Chen C, Wan W, Feng Y, Song X, Cui Q. Integrated lactic acid production from lignocellulosic agricultural wastes under thermal conditions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118281. [PMID: 37290309 DOI: 10.1016/j.jenvman.2023.118281] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/10/2023]
Abstract
The production of lactic acid (LA) from agricultural wastes attracts great attention because of the sustainability and abundance of lignocellulosic feedstocks, as well as the increasing demand for biodegradable polylactic acid. In this study, we isolated a thermophilic strain Geobacillus stearothermophilus 2H-3 for use in robust production of L-(+)LA under the optimal conditions of 60 °C, pH 6.5, which were consistent with the whole-cell-based consolidated bio-saccharification (CBS) process. Sugar-rich CBS hydrolysates derived from various agricultural wastes, including corn stover, corncob residue, and wheat straw, were used as the carbon sources for 2H-3 fermentation by directly inoculating 2H-3 cells into the CBS system, without intermediate sterilization, nutrient supplementation, or adjustment of fermentation conditions. Thus, we successfully combined two whole-cell-based steps into a one-pot successive fermentation process to efficiently produce LA with high optical purity (99.5%), titer (51.36 g/L), and yield (0.74 g/gbiomass). This study provides a promising strategy for LA production from lignocellulose through CBS and 2H-3 fermentation integration.
Collapse
Affiliation(s)
- Ya-Jun Liu
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China; Shandong Energy Institute, Qingdao, China; Qingdao New Energy Shandong Laboratory, Qingdao, China; Dalian National Laboratory for Clean Energy, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuedong Zhang
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China; Shandong Energy Institute, Qingdao, China; Qingdao New Energy Shandong Laboratory, Qingdao, China; Dalian National Laboratory for Clean Energy, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Fang Chi
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China; Shandong Energy Institute, Qingdao, China; Qingdao New Energy Shandong Laboratory, Qingdao, China; Dalian National Laboratory for Clean Energy, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Chaoyang Chen
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China; Shandong Energy Institute, Qingdao, China; Qingdao New Energy Shandong Laboratory, Qingdao, China; Dalian National Laboratory for Clean Energy, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Weijian Wan
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China; Shandong Energy Institute, Qingdao, China; Qingdao New Energy Shandong Laboratory, Qingdao, China; Dalian National Laboratory for Clean Energy, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yingang Feng
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China; Shandong Energy Institute, Qingdao, China; Qingdao New Energy Shandong Laboratory, Qingdao, China; Dalian National Laboratory for Clean Energy, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiaojin Song
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China; Shandong Energy Institute, Qingdao, China; Qingdao New Energy Shandong Laboratory, Qingdao, China; Dalian National Laboratory for Clean Energy, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Qiu Cui
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China; Shandong Energy Institute, Qingdao, China; Qingdao New Energy Shandong Laboratory, Qingdao, China; Dalian National Laboratory for Clean Energy, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
5
|
Evaluating Bio-Hydrogen Production Potential and Energy Conversion Efficiency from Glucose and Xylose under Diverse Concentrations. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8120739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Lignocellulose bioconversion to hydrogen has been proposed as a promising solution to augment the fossil fuel dominated energy market. However, little is known about the effects of the substrate concentration supplied on hydrogen production. Herein, the hydrogen producing bacteria Thermoanaerobacter thermosaccharolyticum W16 feeding with respective glucose, xylose, and glucose and xylose mixture (glucose–xylose) at different concentrations was evaluated, to study whether substrate concentration could impact the lignocellulose bioconversion to hydrogen and the associated kinetics. An average bio-hydrogen yield of 1.40 ± 0.23 mol H2·mol−1 substrate was obtained at an average substrate concentration of 60.89 mM. The maximum bio-hydrogen production rate of 0.25 and 0.24 mol H2·mol−1 substrate h−1 was achieved at a substrate concentration of 27.75 mM glucose and 30.82 mM glucose–xylose, respectively, while the value reached the high point of 0.08 mol H2·mol−1 xylose·h−1 at 66.61 mM xylose. Upon further energy conversion efficiency (ESE) analysis, a substrate of 10 g·L−1 (amounting to 55.51 mM glucose, 66.61 mM xylose or 60.55 mM glucose–xylose) provided the maximum ESE of 15.3 ± 0.3%, which was 15.3% higher than that obtained at a substrate concentration of 5 g·L−1 (amounting to 27.75 mM glucose, 33.30 mM xylose or 30.28 mM glucose–xylose). The findings could be helpful to provide effective support for the future development of efficient and sustainable lignocellulosic bio-hydrogen production.
Collapse
|
6
|
Ujor VC, Okonkwo CC. Microbial detoxification of lignocellulosic biomass hydrolysates: Biochemical and molecular aspects, challenges, exploits and future perspectives. Front Bioeng Biotechnol 2022; 10:1061667. [PMID: 36483774 PMCID: PMC9723337 DOI: 10.3389/fbioe.2022.1061667] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 10/31/2022] [Indexed: 08/26/2023] Open
Abstract
Valorization of lignocellulosic biomass (LB) has the potential to secure sustainable energy production without impacting food insecurity, whist relieving over reliance on finite fossil fuels. Agro-derived lignocellulosic residues such as wheat straw, switchgrass, rice bran, and miscanthus have gained relevance as feedstocks for the production of biofuels and chemicals. However, the microorganisms employed in fermentative conversion of carbohydrates to fuels and chemicals are unable to efficiently utilize the sugars derived from LB due to co-production of lignocellulose-derived microbial inhibitory compounds (LDMICs) during LB pretreatment. LDMICs impact microbial growth by inhibition of specific enzymes, cause DNA and cell membrane damage, and elicit cellular redox imbalance. Over the past decade, success has been achieved with the removal of LDMICs prior to fermentation. However, LDMICs removal by chemical processes is often accompanied by sugar losses, which negatively impacts the overall production cost. Hence, in situ removal of LDMICs by fermentative organisms during the fermentation process has garnered considerable attention as the "go-to" approach for economical LDMICs detoxification and bio-chemicals production. In situ removal of LDMICs has been pursued by either engineering more robust biocatalysts or isolating novel microbial strains with the inherent capacity to mineralize or detoxify LDMICs to less toxic compounds. While some success has been made along this line, efficient detoxification and robust production of target bio-chemicals in lignocellulosic hydrolysates (LHs) under largely anaerobic fermentative conditions remains a lingering challenge. Consequently, LB remains an underutilized substrate for bio-chemicals production. In this review, the impact of microbial LH detoxification on overall target molecule production is discussed. Further, the biochemical pathways and mechanisms employed for in situ microbial detoxification of furanic LDMICs [e.g., furfural and 5-hydroxymethylfurfural (HMF)] and phenolic LDMICs (e.g., syringaldehyde, p-coumaric acid, 4-hydroxybenzaldehyde, vanillin, and ferulic acid) are discussed. More importantly, metabolic engineering strategies for the development of LDMIC-tolerant and bio-chemicals overproducing strains and processes are highlighted.
Collapse
Affiliation(s)
- Victor C. Ujor
- Metabolic Engineering and Fermentation Science Group, Department of Food Science, University of Wisconsin-Madison, Madison, WI, United States
| | - Christopher C. Okonkwo
- Biotechnology Program, College of Science, The Roux Institute, Northeastern University, Portland, ME, United States
| |
Collapse
|
7
|
Reena R, Alphy MP, Reshmy R, Thomas D, Madhavan A, Chaturvedi P, Pugazhendhi A, Awasthi MK, Ruiz H, Kumar V, Sindhu R, Binod P. Sustainable valorization of sugarcane residues: Efficient deconstruction strategies for fuels and chemicals production. BIORESOURCE TECHNOLOGY 2022; 361:127759. [PMID: 35961508 DOI: 10.1016/j.biortech.2022.127759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
The global climate crisis and the ongoing increase in fossil-based fuels have led to an alternative solution of using biomass for fuel production. Sugarcane bagasse (SCB) is an agricultural residue with a global production of more than 100 million metric tons and it has various applications in a biorefinery concept. This review brings forth the composition, life cycle assessment, and various pretreatments for the deconstruction techniques of SCB for the production of valuable products. The ongoing research in the production of biofuels, biogas, and electricity utilizing the bagasse was elucidated. SCB is used in the production of carboxymethyl cellulose, pigment, lactic acid, levulinic acid, and xylooligosaccharides and it has prospective in meeting the demand for global energy and environmental sustainability.
Collapse
Affiliation(s)
- Rooben Reena
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Maria Paul Alphy
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - R Reshmy
- Department of Science and Humanities, Providence College of Engineering, Chengannur 689 122, Kerala, India
| | - Deepa Thomas
- Post Graduate and Research Department of Chemistry, Bishop Moore College, Mavelikara 690 110, Kerala, India
| | - Aravind Madhavan
- Rajiv Gandhi Center for Biotechnology, Jagathy, Thiruvananthapuram 695 014, Kerala, India; School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, Kerala, India
| | - Preeti Chaturvedi
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR Indian Institute for Toxicology Research (CSIR-IITR), 31 MG Marg, Lucknow 226 001, India
| | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712 100, China
| | - Hector Ruiz
- Biorefinery Group, Food Research Department, Faculty of Chemistry Sciences, Autonomous University of Coahuila, Saltillo, Coahuila 25280, Mexico
| | - Vinod Kumar
- Fermentation Technology Division, CSIR - Indian Institute of Integrative Medicine (CSIR-IIIM), Jammu-180001, J & K, India
| | - Raveendran Sindhu
- Department of Food Technology, T K M Institute of Technology, Kollam-691505, Kerala, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India.
| |
Collapse
|
8
|
Dzulkarnain ELN, Audu JO, Wan Dagang WRZ, Abdul-Wahab MF. Microbiomes of biohydrogen production from dark fermentation of industrial wastes: current trends, advanced tools and future outlook. BIORESOUR BIOPROCESS 2022; 9:16. [PMID: 38647867 PMCID: PMC10991117 DOI: 10.1186/s40643-022-00504-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/14/2022] [Indexed: 01/02/2023] Open
Abstract
Biohydrogen production through dark fermentation is very attractive as a solution to help mitigate the effects of climate change, via cleaner bioenergy production. Dark fermentation is a process where organic substrates are converted into bioenergy, driven by a complex community of microorganisms of different functional guilds. Understanding of the microbiomes underpinning the fermentation of organic matter and conversion to hydrogen, and the interactions among various distinct trophic groups during the process, is critical in order to assist in the process optimisations. Research in biohydrogen production via dark fermentation is currently advancing rapidly, and various microbiology and molecular biology tools have been used to investigate the microbiomes. We reviewed here the different systems used and the production capacity, together with the diversity of the microbiomes used in the dark fermentation of industrial wastes, with a special emphasis on palm oil mill effluent (POME). The current challenges associated with biohydrogen production were also included. Then, we summarised and discussed the different molecular biology tools employed to investigate the intricacy of the microbial ecology associated with biohydrogen production. Finally, we included a section on the future outlook of how microbiome-based technologies and knowledge can be used effectively in biohydrogen production systems, in order to maximise the production output.
Collapse
Affiliation(s)
| | - Jemilatu Omuwa Audu
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
- Department of Science Laboratory Technology, Modibbo Adama University, PMB 2076, Yola, Adamawa, Nigeria
| | - Wan Rosmiza Zana Wan Dagang
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Mohd Firdaus Abdul-Wahab
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
- Taiwan-Malaysia Innovation Centre for Clean Water and Sustainable Energy (WISE Centre), Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
| |
Collapse
|
9
|
Yang F, Liu S, Jia C, Wang Y. Identification of groundwater microbial communities and their connection to the hydrochemical environment in southern Laizhou Bay, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:14263-14278. [PMID: 34608579 DOI: 10.1007/s11356-021-16812-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
The microbial community plays an important role in the biogeochemical cycle in coastal groundwater ecosystems. However, the composition and controlling factors of the microbial community in coastal closed groundwater systems (CCGSs) with high salinity have rarely been studied. Here, we investigated and analyzed the hydrochemical characteristics and microbial community composition of seven brine samples with high total dissolved solid (TDS) values ranging from 74.5 to 132.3 g/L within and across three coastal saltworks (Yangkou, Hanting, and Changyi) in southern Laizhou Bay (SLB). The bacterial diversity was independent of salinity. Compared with those of low-salinity groundwater, the diversity of the microbial community in brine was lower, but the richness was slightly higher. There was a significant correlation between the microbial community diversity and groundwater sources, which indicated that the microbial communities were affected by groundwater sources. A comparison of the microbial community compositions of the three saltworks showed that the Hanting and Changyi saltworks had similar microbial communities due to their similar sampling depths. In addition, the main force shaping the differences in the microbial communities in both coastal open groundwater systems (COGSs) and CCGSs was identified as the hydraulic connection with the seawater controlled by hydrogeological conditions formed throughout geological history. This study can help to elucidate the biogeochemical processes in coastal aquifers.
Collapse
Affiliation(s)
- Fan Yang
- Institute of Marine Science and Technology, Shandong University, Binhai Road No. 72, Qingdao, 266237, Shandong, China
| | - Sen Liu
- Institute of Marine Science and Technology, Shandong University, Binhai Road No. 72, Qingdao, 266237, Shandong, China.
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200062, China.
| | - Chao Jia
- Institute of Marine Science and Technology, Shandong University, Binhai Road No. 72, Qingdao, 266237, Shandong, China.
| | - Yujue Wang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200062, China
| |
Collapse
|
10
|
Singh T, Alhazmi A, Mohammad A, Srivastava N, Haque S, Sharma S, Singh R, Yoon T, Gupta VK. Integrated biohydrogen production via lignocellulosic waste: Opportunity, challenges & future prospects. BIORESOURCE TECHNOLOGY 2021; 338:125511. [PMID: 34274587 DOI: 10.1016/j.biortech.2021.125511] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
Hydrogen production through biological route is the cleanest, renewable and potential way to sustainable energy generation. Productions of hydrogen via dark and photo fermentations are considered to be more sustainable and economical approach over numerous existing biological modes. Nevertheless, both the biological modes suffer from certain limitations like low yield and production rate, and because of these practical implementations are still far away. Therefore, the present review provides an assessment and feasibility of integrated biohydrogen production strategy by combining dark and photo-fermentation as an advanced biochemical processing while using lignocellulosics biomass to improve and accelerate the biohydrogen production technology in a sustainable manner. This review also evaluates practical viability of the integrated approach for biohydrogen production along with the analysis of the key factors which significantly influence to elevate this technology on commercial ground with the implementation of various environment friendly and innovative approaches.
Collapse
Affiliation(s)
- Tripti Singh
- School of Biosciences IMS Ghaziabad UC Campus, Ghaziabad, Uttar Pradesh 201015, India
| | - Alaa Alhazmi
- Medical Laboratory Technology Department Jazan University, Jazan, Saudi Arabia; SMIRES for Consultation in Specialized Medical Laboratories, Jazan University, Jazan, Saudi Arabia
| | - Akbar Mohammad
- School of Chemical Engineering, Yeungnam University, Gyeongsan-si, Gyeongbuk 38541, South Korea
| | - Neha Srivastava
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005 India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia; Bursa Uludağ University Faculty of Medicine, Görükle Campus, 16059, Nilüfer, Bursa, Turkey
| | - Shalini Sharma
- School of Biosciences IMS Ghaziabad UC Campus, Ghaziabad, Uttar Pradesh 201015, India
| | - Rajeev Singh
- Department of Environmental Studies, Satyawati College, University of Delhi, Delhi 110052, India
| | - Taeho Yoon
- School of Chemical Engineering, Yeungnam University, Gyeongsan-si, Gyeongbuk 38541, South Korea
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK; Center for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK.
| |
Collapse
|
11
|
|
12
|
Sanchez N, Ruiz RY, Cifuentes B, Cobo M. Controlling sugarcane press-mud fermentation to increase bioethanol steam reforming for hydrogen production. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 98:1-13. [PMID: 31421484 DOI: 10.1016/j.wasman.2019.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/14/2019] [Accepted: 08/06/2019] [Indexed: 06/10/2023]
Abstract
Hydrogen (H2) production from sugarcane press-mud, a waste obtained from the non-centrifugal sugarcane agroindustry, was assessed by coupling hydrolysis, fermentation, purification, and ethanol steam reforming (ESR). Two culture media were employed on three different sugarcane press-mud samples to produce bioethanol by fermentation using Saccharomyces cerevisiae at 30 °C. One culture medium was supplemented with nutrients and the other without supplementation. The supplementation did not have a significant effect over ethanol production (∼82.1 g L-1) after 70 h fermentation, but the concentration of the impurities was always lower under supplemented conditions. Among tested impurities, differences in 3-methyl-1-butanol showed the effect of the supplementation on the ESR over RhPt/CeO2-SiO2 catalyst at 700 °C, where the H2 yield decreased significantly in the presence of 3-methyl-1-butanol (p < 0.05). The spearman correlation coefficient showed that the H2 yield was correlated with the 3-methy-1-butanol content (RHO = -0.929) and carbon deposits (RHO = -0.964). Therefore, supplemented bioethanol could deliver 3.0 g H2 kg-1 sugarcane press-mud, which is almost twice that of the non-supplemented samples, likely due to the reduction of harmful impurities in the bioethanol. Additionally, supplemented conditions allowed for energy savings in the process and improved catalyst stability. This study provides insights into the effect of supplementing culture media to produce purer bioethanol samples, which further deliver higher H2 yields by ESR.
Collapse
Affiliation(s)
- Nestor Sanchez
- Energy, Materials, and Environmental Laboratory, Department of Chemical Engineering, Universidad de La Sabana, Campus Universitario Puente del Común, Km. 7 Autopista Norte, Bogotá, Colombia; Doctoral Program in Biosciences, Faculty of Engineering, Universidad de La Sabana, Campus Universitario Puente del Común, Km. 7 Autopista Norte, Bogotá, Colombia.
| | - Ruth Y Ruiz
- Agroindustrial Process Laboratory, Agroindustrial Process Engineering, Universidad de La Sabana, Campus Universitario Puente del Común, Km. 7 Autopista Norte, Bogotá, Colombia.
| | - Bernay Cifuentes
- Energy, Materials, and Environmental Laboratory, Department of Chemical Engineering, Universidad de La Sabana, Campus Universitario Puente del Común, Km. 7 Autopista Norte, Bogotá, Colombia.
| | - Martha Cobo
- Energy, Materials, and Environmental Laboratory, Department of Chemical Engineering, Universidad de La Sabana, Campus Universitario Puente del Común, Km. 7 Autopista Norte, Bogotá, Colombia.
| |
Collapse
|
13
|
Hu B, Zhu M. Reconstitution of cellulosome: Research progress and its application in biorefinery. Biotechnol Appl Biochem 2019; 66:720-730. [DOI: 10.1002/bab.1804] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 08/03/2019] [Indexed: 09/01/2023]
Affiliation(s)
- Bin‐Bin Hu
- Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals School of Biology and Biological Engineering South China University of Technology, Guangzhou Higher Education Mega Center Panyu Guangzhou People's Republic of China
- Yunnan Academy of Tobacco Agricultural Sciences Kunming People's Republic of China
- State Key Laboratory of Pulp and Paper Engineering South China University of Technology Guangzhou People's Republic of China
| | - Ming‐Jun Zhu
- Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals School of Biology and Biological Engineering South China University of Technology, Guangzhou Higher Education Mega Center Panyu Guangzhou People's Republic of China
- State Key Laboratory of Pulp and Paper Engineering South China University of Technology Guangzhou People's Republic of China
- College of Life and Geographic Sciences Kashi University Kashi People's Republic of China
- The Key Laboratory of Ecology and Biological Resources in Yarkand Oasis at Colleges & Universities under the Department of Education of Xinjiang Uygur Autonomous Region Kashi University Kashi People's Republic of China
| |
Collapse
|
14
|
An Q, Wang JL, Wang YT, Lin ZL, Zhu MJ. Investigation on hydrogen production from paper sludge without inoculation and its enhancement by Clostridium thermocellum. BIORESOURCE TECHNOLOGY 2018; 263:120-127. [PMID: 29738974 DOI: 10.1016/j.biortech.2018.04.105] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 06/08/2023]
Abstract
The feasibility and performance of hydrogen production from paper sludge without inoculation was investigated under thermophilic conditions. The maximum hydrogen production reached 64.32 mM with 7.4% PS. The dynamic changes in bacterial community structures during hydrogen production were investigated by analyzing 16S rDNA gene sequences using high throughput sequencing technology. The results showed that microbial community was dominated by order Clostridiales and Thermoanaerobacterales. Genus Thermoanaerobacterium and Ruminiclostridium played a leading role in the fermentation process, which was responsible for the hydrolysis of PS and hydrogen production. Effect of inoculation with Clostridium thermocellum on hydrogen production from PS was also studied. The results showed that C. thermocellum supplement significantly increased hydrogen yield and holocellulose degradation rate by 96.80% and 32.95%, respectively. In addition, inoculation of C. thermocellum enhanced VFA generation and shortened the lag phase of hydrogen production. The present study lays the foundation on the valorization of waste lignocellulose.
Collapse
Affiliation(s)
- Qian An
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou 510006, People's Republic of China
| | - Ji-Lian Wang
- College of Life and Geographic Sciences, Kashgar University, Kashgar 844000, People's Republic of China; The Key Laboratory of Ecology and Biological Resources in Yarkand Oasis at Colleges & Universities under the Department of Education of Xinjiang Uygur Autonomous Region, Kashgar University, Kashgar 844000, People's Republic of China
| | - Yu-Tao Wang
- College of Life and Geographic Sciences, Kashgar University, Kashgar 844000, People's Republic of China; The Key Laboratory of Ecology and Biological Resources in Yarkand Oasis at Colleges & Universities under the Department of Education of Xinjiang Uygur Autonomous Region, Kashgar University, Kashgar 844000, People's Republic of China
| | - Zhang-Lin Lin
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou 510006, People's Republic of China.
| | - Ming-Jun Zhu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou 510006, People's Republic of China; College of Life and Geographic Sciences, Kashgar University, Kashgar 844000, People's Republic of China; The Key Laboratory of Ecology and Biological Resources in Yarkand Oasis at Colleges & Universities under the Department of Education of Xinjiang Uygur Autonomous Region, Kashgar University, Kashgar 844000, People's Republic of China.
| |
Collapse
|
15
|
Mudhoo A, Torres-Mayanga PC, Forster-Carneiro T, Sivagurunathan P, Kumar G, Komilis D, Sánchez A. A review of research trends in the enhancement of biomass-to-hydrogen conversion. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 79:580-594. [PMID: 30343791 DOI: 10.1016/j.wasman.2018.08.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/09/2018] [Accepted: 08/12/2018] [Indexed: 06/08/2023]
Abstract
Different types of biomass are being examined for their optimum hydrogen production potentials and actual hydrogen yields in different experimental set-ups and through different chemical synthetic routes. In this review, the observations emanating from research findings on the assessment of hydrogen synthesis kinetics during fermentation and gasification of different types of biomass substrates have been concisely surveyed from selected publications. This review revisits the recent progress reported in biomass-based hydrogen synthesis in the associated disciplines of microbial cell immobilization, bioreactor design and analysis, ultrasound-assisted, microwave-assisted and ionic liquid-assisted biomass pretreatments, development of new microbial strains, integrated production schemes, applications of nanocatalysis, subcritical and supercritical water processing, use of algae-based substrates and lastly inhibitor detoxification. The main observations from this review are that cell immobilization assists in optimizing the biomass fermentation performance by enhancing bead size, providing for adequate cell loading and improving mass transfer; there are novel and more potent bacterial and fungal strains which improve the fermentation process and impact on hydrogen yields positively; application of microwave irradiation and sonication and the use of ionic liquids in biomass pretreatment bring about enhanced delignification, and that supercritical water biomass processing and dosing with metal-based nanoparticles also assist in enhancing the kinetics of hydrogen synthesis. The research areas discussed in this work and their respective impacts on hydrogen synthesis from biomass are arguably standalone. Thence, further work is still required to explore the possibilities and techno-economic implications of combining these areas for developing robust and integrated biomass-to-hydrogen synthetic schemes.
Collapse
Affiliation(s)
- Ackmez Mudhoo
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Mauritius, Réduit 80837, Mauritius
| | - Paulo C Torres-Mayanga
- Faculty of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, 13083-862, Campinas, São Paulo, Brazil
| | - Tânia Forster-Carneiro
- Faculty of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, 13083-862, Campinas, São Paulo, Brazil
| | - Periyasamy Sivagurunathan
- Department of Bioenergy, Indian Oil Corporation Limited, R&D Centre, Sector 13, Faridabad 121007, India
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus, 4036 Stavanger, Norway
| | - Dimitrios Komilis
- Department of Environmental Engineering, Democritus University of Thrace, Xanthi 67132, Greece
| | - Antoni Sánchez
- Composting Research Group (GICOM), Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, 08193 Barcelona, Spain.
| |
Collapse
|
16
|
Biomass based hydrogen production by dark fermentation — recent trends and opportunities for greener processes. Curr Opin Biotechnol 2018; 50:136-145. [DOI: 10.1016/j.copbio.2017.12.024] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 12/30/2017] [Indexed: 01/01/2023]
|
17
|
Zhao Z, Song X, Zhang Y, Zhao Y, Wang B, Wang Y. Effects of iron and calcium carbonate on contaminant removal efficiencies and microbial communities in integrated wastewater treatment systems. CHEMOSPHERE 2017; 189:10-20. [PMID: 28922630 DOI: 10.1016/j.chemosphere.2017.09.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/25/2017] [Accepted: 09/05/2017] [Indexed: 06/07/2023]
Abstract
In the paper, we explored the influences of different dosages of iron and calcium carbonate on contaminant removal efficiencies and microbial communities in algal ponds combined with constructed wetlands. After 1-year operation of treatment systems, based on the high-throughput pyrosequencing analysis of microbial communities, the optimal operating conditions were obtained as follows: the ACW10 system with Fe3+ (5.6 mg L-1), iron powder (2.8 mg L-1), and CaCO3 powder (0.2 mg L-1) in influent as the adjusting agents, initial phosphorus source (PO43-) in influent, the ratio of nitrogen to phosphorus (N/P) of 30 in influent, and hydraulic retention time (HRT) of 1 day. Total nitrogen (TN) removal efficiency and total phosphorus (TP) removal efficiency were improved significantly. The hydrolysis of CaCO3 promoted the physicochemical precipitation in contaminant removal. Meanwhile, Fe3+ and iron powder produced Fe2+, which improved contaminant removal. Iron ion improved the diversity, distribution, and metabolic functions of microbial communities in integrated treatment systems. In the treatment ACW10, the dominant phylum in the microbial community was PLANCTOMYCETES, which positively promoted nitrogen removal. After 5 consecutive treatments in ACW10, contaminant removal efficiencies for TN and TP respectively reached 80.6% and 57.3% and total iron concentration in effluent was 0.042 mg L-1.
Collapse
Affiliation(s)
- Zhimiao Zhao
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China; Engineering Research Center for Water Environment Ecology in Shanghai, Shanghai, 201306, China
| | - Xinshan Song
- College of Environmental Science and Engineering, Donghua University, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Shanghai, 201620, China.
| | - Yinjiang Zhang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China; Engineering Research Center for Water Environment Ecology in Shanghai, Shanghai, 201306, China
| | - Yufeng Zhao
- College of Environmental Science and Engineering, Donghua University, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Shanghai, 201620, China
| | - Bodi Wang
- College of Environmental Science and Engineering, Donghua University, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Shanghai, 201620, China
| | - Yuhui Wang
- College of Environmental Science and Engineering, Donghua University, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Shanghai, 201620, China
| |
Collapse
|
18
|
Kanmani P, Aravind J, Kamaraj M, Sureshbabu P, Karthikeyan S. Environmental applications of chitosan and cellulosic biopolymers: A comprehensive outlook. BIORESOURCE TECHNOLOGY 2017; 242:295-303. [PMID: 28366689 DOI: 10.1016/j.biortech.2017.03.119] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/18/2017] [Accepted: 03/20/2017] [Indexed: 05/13/2023]
Abstract
Biopolymers are substances naturally produced by living organisms and are hence considered to be eco-friendly and sustainable. Chitosan and cellulose are of specific significance owing to their abundant availability, ease of modification, and application potential. On the environmental front, their coagulating and flocculating effects have helped in wastewater clarification, while minimizing the dependability on synthetic polyelectrolytes. Biopolymer based hydrogels and nanocomposite films have functioned as effective biosorbents in removing an array of organic and inorganic pollutants, including xenobiotics, from wastewater. Specifically, they have been vastly harnessed for heavy metal and dye adsorption. They have also played a pivotal part in other environmental applications including anti-desertification, natural bio-sealants for preventing concrete leaks and proton conducting membranes in electrochemical devices. Such recent research on the environmental applications of biopolymers has been comprehensively analysed, thus providing a fresh insight into the future prospects of research in this domain.
Collapse
Affiliation(s)
- P Kanmani
- Department of Biotechnology, Kumaraguru College of Technology, Coimbatore 641046, India
| | - J Aravind
- College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa 16417, Ethiopia.
| | - M Kamaraj
- College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa 16417, Ethiopia
| | - P Sureshbabu
- College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa 16417, Ethiopia
| | - S Karthikeyan
- School of Bio Sciences and Technology, VIT University, Vellore 632014, India
| |
Collapse
|
19
|
Hu BB, Zhu MJ. Direct hydrogen production from dilute-acid pretreated sugarcane bagasse hydrolysate using the newly isolated Thermoanaerobacterium thermosaccharolyticum MJ1. Microb Cell Fact 2017; 16:77. [PMID: 28468624 PMCID: PMC5415828 DOI: 10.1186/s12934-017-0692-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 04/26/2017] [Indexed: 11/23/2022] Open
Abstract
Background Energy shortage and environmental pollution are two severe global problems, and biological hydrogen production from lignocellulose shows great potential as a promising alternative biofuel to replace the fossil fuels. Currently, most studies on hydrogen production from lignocellulose concentrate on cellulolytic microbe, pretreatment method, process optimization and development of new raw materials. Due to no effective approaches to relieve the inhibiting effect of inhibitors, the acid pretreated lignocellulose hydrolysate was directly discarded and caused environmental problems, suggesting that isolation of inhibitor-tolerant strains may facilitate the utilization of acid pretreated lignocellulose hydrolysate. Results Thermophilic bacteria for producing hydrogen from various kinds of sugars were screened, and the new strain named MJ1 was isolated from paper sludge, with 99% identity to Thermoanaerobacterium thermosaccharolyticum by 16S rRNA gene analysis. The hydrogen yields of 11.18, 4.25 and 2.15 mol-H2/mol sugar can be reached at an initial concentration of 5 g/L cellobiose, glucose and xylose, respectively. The main metabolites were acetate and butyrate. More important, MJ1 had an excellent tolerance to inhibitors of dilute-acid (1%, g/v) pretreated sugarcane bagasse hydrolysate (DAPSBH) and could efficiently utilize DAPSBH for hydrogen production without detoxication, with a production higher than that of pure sugars. The hydrogen could be quickly produced with the maximum hydrogen production reached at 24 h. The hydrogen production reached 39.64, 105.42, 111.75 and 110.44 mM at 20, 40, 60 and 80% of DAPSBH, respectively. Supplementation of CaCO3 enhanced the hydrogen production by 21.32% versus the control. Conclusions These results demonstrate that MJ1 could directly utilize DAPSBH for biohydrogen production without detoxication and can serve as an excellent candidate for industrialization of hydrogen production from DAPSBH. The results also suggest that isolating unique strains from a particular environment offers an ideal way to conquer the related problems. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0692-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bin-Bin Hu
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou, 510006, People's Republic of China
| | - Ming-Jun Zhu
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou, 510006, People's Republic of China. .,School of Life and Geographical Sciences, Kashi University, 29 Xueyuan Road, Kashi, 844006, Xinjiang Uygur Autonomous Region, People's Republic of China.
| |
Collapse
|
20
|
Singh N, Mathur AS, Tuli DK, Gupta RP, Barrow CJ, Puri M. Cellulosic ethanol production via consolidated bioprocessing by a novel thermophilic anaerobic bacterium isolated from a Himalayan hot spring. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:73. [PMID: 28344648 PMCID: PMC5361838 DOI: 10.1186/s13068-017-0756-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 03/10/2017] [Indexed: 05/07/2023]
Abstract
BACKGROUND Cellulose-degrading thermophilic anaerobic bacterium as a suitable host for consolidated bioprocessing (CBP) has been proposed as an economically suited platform for the production of second-generation biofuels. To recognize the overall objective of CBP, fermentation using co-culture of different cellulolytic and sugar-fermenting thermophilic anaerobic bacteria has been widely studied as an approach to achieving improved ethanol production. We assessed monoculture and co-culture fermentation of novel thermophilic anaerobic bacterium for ethanol production from real substrates under controlled conditions. RESULTS In this study, Clostridium sp. DBT-IOC-C19, a cellulose-degrading thermophilic anaerobic bacterium, was isolated from the cellulolytic enrichment cultures obtained from a Himalayan hot spring. Strain DBT-IOC-C19 exhibited a broad substrate spectrum and presented single-step conversion of various cellulosic and hemicellulosic substrates to ethanol, acetate, and lactate with ethanol being the major fermentation product. Additionally, the effect of varying cellulose concentrations on the fermentation performance of the strain was studied, indicating a maximum cellulose utilization ability of 10 g L-1 cellulose. Avicel degradation kinetics of the strain DBT-IOC-C19 displayed 94.6% degradation at 5 g L-1 and 82.74% degradation at 10 g L-1 avicel concentration within 96 h of fermentation. In a comparative study with Clostridium thermocellum DSM 1313, the ethanol and total product concentrations were higher by the newly isolated strain on pretreated rice straw at an equivalent substrate loading. Three different co-culture combinations were used on various substrates that presented two-fold yield improvement than the monoculture during batch fermentation. CONCLUSIONS This study demonstrated the direct fermentation ability of the novel thermophilic anaerobic bacteria on various cellulosic and hemicellulosic substrates into ethanol without the aid of any exogenous enzymes, representing CBP-based fermentation approach. Here, the broad substrate utilization spectrum of isolated cellulolytic thermophilic anaerobic bacterium was shown to be of potential utility. We demonstrated that the co-culture strategy involving novel strains is efficient in improving ethanol production from real substrate.
Collapse
Affiliation(s)
- Nisha Singh
- Bioprocessing Laboratory, Centre for Chemistry and Biotechnology, Deakin University, Waurn Ponds, VIC 3217 Australia
- DBT-IOC Centre for Advance Bioenergy Research, Research & Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad, 121007 India
| | - Anshu S. Mathur
- DBT-IOC Centre for Advance Bioenergy Research, Research & Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad, 121007 India
| | - Deepak K. Tuli
- DBT-IOC Centre for Advance Bioenergy Research, Research & Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad, 121007 India
| | - Ravi. P. Gupta
- DBT-IOC Centre for Advance Bioenergy Research, Research & Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad, 121007 India
| | - Colin J. Barrow
- Bioprocessing Laboratory, Centre for Chemistry and Biotechnology, Deakin University, Waurn Ponds, VIC 3217 Australia
| | - Munish Puri
- Bioprocessing Laboratory, Centre for Chemistry and Biotechnology, Deakin University, Waurn Ponds, VIC 3217 Australia
- Centre for Marine Bioproducts Development, Medical Biotechnology, Flinders University, Adelaide, Australia
| |
Collapse
|
21
|
Qu XS, Hu BB, Zhu MJ. Enhanced saccharification of cellulose and sugarcane bagasse by Clostridium thermocellum cultures with Triton X-100 and β-glucosidase/Cellic®CTec2 supplementation. RSC Adv 2017; 7:21360-21365. [DOI: 10.1039/c7ra02477k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Increased saccharification and utilization of biomass directly byC. thermocellumcultures with Triton X-100 and β-glucosidase supplementation.
Collapse
Affiliation(s)
- Xiao-Su Qu
- School of Bioscience and Bioengineering
- South China University of Technology
- Guangzhou Higher Education Mega Center
- Guangzhou 510006
- People's Republic of China
| | - Bin-Bin Hu
- School of Bioscience and Bioengineering
- South China University of Technology
- Guangzhou Higher Education Mega Center
- Guangzhou 510006
- People's Republic of China
| | - Ming-Jun Zhu
- School of Bioscience and Bioengineering
- South China University of Technology
- Guangzhou Higher Education Mega Center
- Guangzhou 510006
- People's Republic of China
| |
Collapse
|
22
|
Zhao Z, Song X, Wang W, Xiao Y, Gong Z, Wang Y, Zhao Y, Chen Y, Mei M. Influences of iron and calcium carbonate on wastewater treatment performances of algae based reactors. BIORESOURCE TECHNOLOGY 2016; 216:1-11. [PMID: 27214163 DOI: 10.1016/j.biortech.2016.05.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/12/2016] [Accepted: 05/13/2016] [Indexed: 06/05/2023]
Abstract
The influences of iron and calcium carbonate (CaCO3) addition in wastewater treatments reactors performance were investigated. Adding different concentrations of Fe(3+) (5, 10, 30 and 50mmol/m(3)), iron and CaCO3 powder led to changes in algal characteristics and physico-chemical and microbiological properties. According to the investigation results, nutrient removal efficiency in algae based reactors was obviously increased by the addition of 10mmol/m(3) Fe(3+), iron (5mmol/m(3)) and CaCO3 powder (0.2gm(-3)) and the removal efficiencies of BOD5, TN, and TP in Stage 2 were respectively increased by 28%, 8.9%, and 22%. The improvements in physico-chemical performances were verified by microbial community tests (bacteria quantity, activity and community measured in most probable number, extracellular enzymes activity, and Biolog Eco Plates). Microbial variations indicated the coexistence of Fe ions and carbonate-bicarbonate, which triggered the synergistic effect of physico-chemical action and microbial factors in algae based reactors.
Collapse
Affiliation(s)
- Zhimiao Zhao
- College of Environmental Science and Engineering, Donghua University, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Shanghai 201620, China
| | - Xinshan Song
- College of Environmental Science and Engineering, Donghua University, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Shanghai 201620, China
| | - Wei Wang
- College of Environmental Science and Engineering, Donghua University, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Shanghai 201620, China
| | - Yanping Xiao
- College of Environmental Science and Engineering, Donghua University, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Shanghai 201620, China
| | - Zhijie Gong
- College of Environmental Science and Engineering, Donghua University, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Shanghai 201620, China
| | - Yuhui Wang
- College of Environmental Science and Engineering, Donghua University, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Shanghai 201620, China
| | - Yufeng Zhao
- College of Environmental Science and Engineering, Donghua University, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Shanghai 201620, China
| | - Yu Chen
- College of Environmental Science and Engineering, Donghua University, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Shanghai 201620, China
| | - Mengyuan Mei
- College of Environmental Science and Engineering, Donghua University, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Shanghai 201620, China
| |
Collapse
|
23
|
Wang M, Zhao Q, Li L, Niu K, Li Y, Wang F, Jiang B, Liu K, Jiang Y, Fang X. Contributing factors in the improvement of cellulosic H2 production in Clostridium thermocellum/Thermoanaerobacterium co-cultures. Appl Microbiol Biotechnol 2016; 100:8607-20. [PMID: 27538932 DOI: 10.1007/s00253-016-7776-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/17/2016] [Accepted: 08/01/2016] [Indexed: 02/04/2023]
Abstract
Lignocellulosic biohydrogen is a promising renewable energy source that could be a potential alternative to the unsustainable fossil fuel-based energy. Biohydrogen production could be performed by Clostridium thermocellum that is the fastest known cellulose-degrading bacterium. Previous investigations have shown that the co-culture of C. thermocellum JN4 and a non-cellulolytic bacterium Thermoanaerobacterium thermosaccharolyticum GD17 produces more hydrogen than the C. thermocellum JN4 mono-culture, but the mechanism of this improvement is unknown. In this work, we carried out genomic and evolutionary analysis of hydrogenase-coding genes in C. thermocellum and T. thermosaccharolyticum, identifying one Ech-type [NiFe] hydrogenase complex in each species, and, respectively, five and four monomeric or multimeric [FeFe] hydrogenases in the two species. Further transcriptional analysis showed hydrogenase-coding genes in C. thermocellum are regulated by carbon sources, while hydrogenase-coding genes in T. thermosaccharolyticum are not. However, comparison between transcriptional abundance of hydrogenase-coding genes in mono- and co-cultures showed the co-culturing condition leads to transcriptional changes of hydrogenase-coding genes in T. thermosaccharolyticum but not C. thermocellum. Further metabolic analysis showed T. thermosaccharolyticum produces H2 at a rate 4-12-fold higher than C. thermocellum. These findings lead to the suggestion that the improvement of H2 production in the co-culture over mono-culture should be attributed to changes in T. thermosaccharolyticum but not C. thermocellum. Further suggestions can be made that C. thermocellum and T. thermosaccharolyticum perform highly specialized tasks in the co-culture, and optimization of the co-culture for more lignocellulosic biohydrogen production should be focused on the improvement of the non-cellulolytic bacterium.
Collapse
Affiliation(s)
- Mingyu Wang
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Qi Zhao
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Ling Li
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Kangle Niu
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Yi Li
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, 250100, China.,Taishan College, Shandong University, Jinan, 250100, China
| | - Fangzhong Wang
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Baojie Jiang
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Kuimei Liu
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Yi Jiang
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Xu Fang
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, 250100, China.
| |
Collapse
|
24
|
Sheng T, Zhao L, Gao LF, Liu WZ, Cui MH, Guo ZC, Ma XD, Ho SH, Wang AJ. Lignocellulosic saccharification by a newly isolated bacterium, Ruminiclostridium thermocellum M3 and cellular cellulase activities for high ratio of glucose to cellobiose. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:172. [PMID: 27525041 PMCID: PMC4982309 DOI: 10.1186/s13068-016-0585-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 07/27/2016] [Indexed: 05/25/2023]
Abstract
BACKGROUND Lignocellulosic biomass is one of earth's most abundant resources, and it has great potential for biofuel production because it is renewable and has carbon-neutral characteristics. Lignocellulose is mainly composed of carbohydrate polymers (cellulose and hemicellulose), which contain approximately 75 % fermentable sugars for biofuel fermentation. However, saccharification by cellulases is always the main bottleneck for commercialization. Compared with the enzyme systems of fungi, bacteria have evolved distinct systems to directly degrade lignocellulose. However, most reported bacterial saccharification is not efficient enough without help from additional β-glucosidases. Thus, to enhance the economic feasibility of using lignocellulosic biomass for biofuel production, it will be extremely important to develop a novel bacterial saccharification system that does not require the addition of β-glucosidases. RESULTS In this study, a new thermophilic bacterium named Ruminiclostridium thermocellum M3, which could directly saccharify lignocellulosic biomass, was isolated from horse manure. The results showed that R. thermocellum M3 can grow at 60 °C on a variety of carbon polymers, including microcrystalline cellulose, filter paper, and xylan. Upon utilization of these substrates, R. thermocellum M3 achieved an oligosaccharide yield of 481.5 ± 16.0 mg/g Avicel, and a cellular β-glucosidase activity of up to 0.38 U/mL, which is accompanied by a high proportion (approximately 97 %) of glucose during the saccharification. R. thermocellum M3 also showed potential in degrading natural lignocellulosic biomass, without additional pretreatment, to oligosaccharides, and the oligosaccharide yields using poplar sawdust, corn cobs, rice straw, and cornstalks were 52.7 ± 2.77, 77.8 ± 5.9, 89.4 ± 9.3, and 107.8 ± 5.88 mg/g, respectively. CONCLUSIONS The newly isolated strain R. thermocellum M3 degraded lignocellulose and accumulated oligosaccharides. R. thermocellum M3 saccharified lignocellulosic feedstock without the need to add β-glucosidases or control the pH, and the high proportion of glucose production distinguishes it from all other known monocultures of cellulolytic bacteria. R. thermocellum M3 is a potential candidate for lignocellulose saccharification, and it is a valuable choice for the refinement of bioproducts.
Collapse
Affiliation(s)
- Tao Sheng
- State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090 China
| | - Lei Zhao
- State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090 China
- Advanced Water Management Centre, Faculty of Engineering, Architecture and Information Technology, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Ling-Fang Gao
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Wen-Zong Liu
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Min-Hua Cui
- State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090 China
| | - Ze-Chong Guo
- State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090 China
| | - Xiao-Dan Ma
- State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090 China
| | - Shih-Hsin Ho
- State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090 China
| | - Ai-Jie Wang
- State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090 China
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
25
|
Kök MS. An integrated approach: advances in the use ofClostridiumfor biofuel. Biotechnol Genet Eng Rev 2016; 31:69-81. [DOI: 10.1080/02648725.2016.1168075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|