1
|
Dar RA, Tsui TH, Zhang L, Smoliński A, Tong YW, Mohamed Rasmey AH, Liu R. Recent achievements in magnetic-field-assisted anaerobic digestion for bioenergy production. RENEWABLE AND SUSTAINABLE ENERGY REVIEWS 2025; 207:114902. [DOI: 10.1016/j.rser.2024.114902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Xu X, Dockhorn T. Investigation of thermal alkaline pretreatment of primary and waste activated sludge on the energy efficiency of sludge digestion. BIORESOURCE TECHNOLOGY 2024; 407:131112. [PMID: 39009050 DOI: 10.1016/j.biortech.2024.131112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/06/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
Because of the naturally limited anaerobic degradability and limited biogas yield of raw sludge (RS), this study aims to increase the biogas production of primary sludge (PS) and waste activated sludge (WAS) by the integration of thermal alkaline process (TAP). PH 11 is confirmed to be the most suitable pH value for the TAP of both sludges. Moreover, with the pretreatment at pH 11 and 160 °C (6 bar) for 30 min, the investigated PSs and WASs achieved an increased biogas production of up to 81 % and 72 %, respectively. The improved net electricity production of WASs after TAP varied between 15-43 % compared to conventional WAS digestion. However, the TAP of PS at pH 11 enhanced the biogas production by 1-81 %, which did not constantly contribute to an improved net electricity production.
Collapse
Affiliation(s)
- Xiao Xu
- Institute of Sanitary and Environmental Engineering, Technische Universität Braunschweig, Germany, Pockelsstr. 2a, 38106 Braunschweig, Germany.
| | - Thomas Dockhorn
- Institute of Sanitary and Environmental Engineering, Technische Universität Braunschweig, Germany, Pockelsstr. 2a, 38106 Braunschweig, Germany
| |
Collapse
|
3
|
Machhirake N, Singh D, Yadav BR, Tembhare M, Kumar S. Optimizing alkali-pretreatment dosage for waste-activated sludge disintegration and enhanced biogas production yield. ENVIRONMENTAL RESEARCH 2024; 252:118876. [PMID: 38582420 DOI: 10.1016/j.envres.2024.118876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/25/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
The rapid transition towards modernization and industrialization led to an increase in urban population, resulting in paramount challenge to municipal sewage sludge management. Anaerobic digestion (AD) serves as a promising venue for energy recovery from waste-activated sludge (WAS). Addressing the challenge of breaking down floc structures and microbial cells is crucial for releasing extracellular polymeric substances and cytoplasmic macromolecules to facilitate hydrolysis and fermentation process. The present study aims to introduce a combined process of alkaline/acid pre-treatments and AD to enhance sludge digestion and biogas production. The study investigates the influence of alkali pretreatment at ambient temperature using four alkali reagents (NaOH, Ca(OH)2, Mg(OH)2, and KOH). The primary goal is to provide insights into the intricate interplay of alkali dosages (0.04-0.12 g/gTS) on key physic-chemical parameters crucial for optimizing the pre-treatment dosage. Under the optimized alkaline/acid pre-treatment condition, the TSS reduction of 18%-30% was achieved. An increase in sCOD concentration (24%-50%) signifies the enhanced hydrolysis and solubilization rate of organic substrate in WAS. Finally, the biomethane potential test (BMPT) was performed for pre-treated WAS samples. The maximum methane (CH4) yield was observed in combination A1 (244 mL/g) and D1 (253 mL/g), demonstrating the pivotal role of alkali optimization in enhancing AD efficiency. This study serves as a valuable resource to policymakers, researchers, and technocrats in addressing challenges associated to sludge management.
Collapse
Affiliation(s)
- Nitesh Machhirake
- CSIR- National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 440020, Maharashtra, India
| | - Deval Singh
- CSIR- National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 440020, Maharashtra, India
| | - Bholu Ram Yadav
- CSIR- National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 440020, Maharashtra, India
| | - Mamta Tembhare
- CSIR- National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 440020, Maharashtra, India
| | - Sunil Kumar
- CSIR- National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 440020, Maharashtra, India.
| |
Collapse
|
4
|
Banu JR, Kavitha S, Ravi YK, Tyagi VK, Kumar G. Combined sodium citrate and ultrasonic pretreatment of waste activated sludge for cost effective production of biogas. BIORESOURCE TECHNOLOGY 2023; 376:128857. [PMID: 36906239 DOI: 10.1016/j.biortech.2023.128857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
This study aimed to pretreat the waste activated sludge (WAS) by ultrasonication in an energy efficient way by combining sodium citrate with ultrasonic pretreatment at 0.03 g/g suspended solids (SS) of dosage. The ultrasonic pretreatment was done at various (20-200 W) power levels, sludge concentration (7 to 30 g/L), sodium citrate dosages (0.01 to 0.2 g/g SS). An elevated COD solubilization of 26.07 ± 0.6 % was achieved by combined pretreatment at a treatment time of 10 min, ultrasonic power level of 160 W when compared to individual ultrasonic pretreatment (18.6 ± 0.5 %). A higher biomethane yield of 0.26 ± 0.009 L/g COD was achieved in sodium citrate combined ultrasonic pretreatment (SCUP) than ultrasonic pretreatment (UP) 0.145 ± 0.006 L/g COD. Almost 50% of the energy can be saved through SCUP when compared to UP. Future study evaluating SCUP in continuous mode anaerobic digestion is vital.
Collapse
Affiliation(s)
- J Rajesh Banu
- Department of Biotechnology, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu 610005, India
| | - S Kavitha
- Environ Core Research Laboratory, Tamil Nadu, India
| | - Yukesh Kannah Ravi
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, United States of America
| | - Vinay Kumar Tyagi
- Environmental Hydrology Division, National Institute of Hydrology, Roorkee, Uttarakhand 247667, India
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea; Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger 4036, Norway.
| |
Collapse
|
5
|
Gao J, Li Z, Chen H. Untangling the effect of solids content on thermal-alkali pre-treatment and anaerobic digestion of sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158720. [PMID: 36113808 DOI: 10.1016/j.scitotenv.2022.158720] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Total solids (TS) content is critical for thermal hydrolysis and anaerobic digestion (AD) performance, but its role in thermal-alkaline pre-treatment (TAP) is unclear. Therefore, this study aimed to reveal the key role of TS content in TAP and AD of waste activated sludge. The results showed that the optimum TS content of TAP (at 90 °C for 1 h, pH = 10) was 8 %. Sludge disintegration and methane production increased from 19.7 ± 2.2 % to 34.3 ± 2.9 % and from 167.4 ± 4.2 to 246.0 ± 6.2 mL/g volatile solids, respectively, when TS content were increased from 2 % to 8 %. A high TS content will likely promote sludge disintegration since it will reduce heat loss and improve heating efficiency. Additionally, increasing TS content from 2 % to 10 % minimized the production of intracellular reactive oxygen species by 30.4 ± 0.7 % and increased cell viability by 11.5 ± 2.6 %. In contrast, excessive TS content (i.e., ≥10 %) deteriorated the fluidity of sludge, which prevents it from disintegration. Once TS reached 10 %, the accumulation of ammonia nitrogen and volatile fatty acids reached 812.7 ± 27.4 and 1932.0 ± 5.3 mg/L, respectively, which reduced the activity of acidulase and coenzyme F420 and shifted the archaeal community from acetylotrophic to hydrogenotrophic methanogens. This article provides new insights into the TS content in TAP and AD technology.
Collapse
Affiliation(s)
- Jiaxin Gao
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Zeyu Li
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Hongbo Chen
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
6
|
Amelioration of Biogas Production from Waste-Activated Sludge through Surfactant-Coupled Mechanical Disintegration. FERMENTATION 2023. [DOI: 10.3390/fermentation9010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The current study intended to improve the disintegration potential of paper mill sludge through alkyl polyglycoside-coupled disperser disintegration. The sludge biomass was fed to the disperser disintegration and a maximum solubilization of 6% was attained at the specific energy input of 4729.24 kJ/kg TS. Solubilization was further enhanced by coupling the optimum disperser condition with varying dosage of alkyl polyglycoside. The maximum solubilization of 11% and suspended solid (SS) reduction of 8.42% were achieved at the disperser rpm, time, and surfactant dosage of 12,000, 30 min, and 12 μL. The alkyl polyglycoside-coupled disperser disintegration showed a higher biogas production of 125.1 mL/gCOD, compared to the disperser-alone disintegration (70.1 mL/gCOD) and control (36.1 mL/gCOD).
Collapse
|
7
|
Ravi YK, Zhang W, Liang Y. Effect of surfactant assisted ultrasonic pretreatment on production of volatile fatty acids from mixed food waste. BIORESOURCE TECHNOLOGY 2023; 368:128340. [PMID: 36400272 DOI: 10.1016/j.biortech.2022.128340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
In this study, the potential effect of surfactant assisted ultrasonic pretreatment on mixed food waste was investigated. Surfactants, such as Rhamnolipid, Sodium dodecyl sulfate; Glucopon and Triton X 100 were evaluated in this work. Among them, the maximum solubilization of chemical oxygen demand of 45.5 % and the highest release of soluble COD of 31 g/L were observed for ultrasonication assisted by Triton X 100 at a dose of 0.01 g/g TS in 30 min. The presence of a surfactant also reduced 27.5 % of energy demand when compared to ultrasonic pretreatment alone. Compared to the non-pretreated samples after anaerobic digestion, ultrasonication assisted by Triton X 100 led to 95 % increase of volatile fatty acid titers and 83 % increase of carbon conversion efficiency. Thus, sonication with the addition of Triton X 100 was proven to be highly effective toward increasing digestibility of and yield of volatile fatty acid from mixed food waste.
Collapse
Affiliation(s)
- Yukesh Kannah Ravi
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA.
| | - Weilan Zhang
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Yanna Liang
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
| |
Collapse
|
8
|
Al-Mur BA, Pugazhendi A. A novel conversion of marine macroalgal biomass to biofuel (biohydrogen) via calcium hypochlorite induced dispersion. CHEMOSPHERE 2022; 308:136355. [PMID: 36087729 DOI: 10.1016/j.chemosphere.2022.136355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/10/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Environmental pollution due to the consumption of non-renewable energy lead the search for alternative eco-friendly renewable fuel. The study details the biohydrogen production efficiency by potential macroalgal (Ulva reticulata) biomass improved by a disperser combined with calcium hypochlorite pretreatment technology. Calcium hypochlorite was added to decrease the surface energy of the medium induced by sole disperser pretreatment. Optimum condition for algal disperser treatment was 10,000 rpm with 30 min as dispersion time. The specific energy spent for the disintegration of the macroalgal biomass was 1231.58 kJ/kg TS. COD solubilization rate of 11.79% was attained with mechanical pretreatment whereas increased to 20.23% with combined pretreatment. Combination of disperser with calcium hypochlorite significantly reduced the specific energy input spent to 500 kJ/kg TS. The amount of organic materials such as carbohydrates, proteins and lipids released were 680 mg/L, 283 mg/L and 136 mg/L respectively. Thus, the combinative pretreatment with disperser rotor speed (10,000 rpm) for pretreatment time (12 min) and calcium hypochlorite dosage (0.1 g/g) derived as optimum condition for effective solubilization of macroalgal biomass. Biohydrogen production potential was maximum in the macroalgae pretreated with both disperser and calcium hypochlorite recorded highest yield (54.6 mL H2/g COD) compared to the macroalgae pretreated with disperser alone (31.7 mL H2/g COD) and untreated macroalgae (11.5 mL H2/g COD).
Collapse
Affiliation(s)
- Bandar A Al-Mur
- Department of Environmental Science, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Arulazhagan Pugazhendi
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| |
Collapse
|
9
|
Panigrahi S, Tiwari BR, Brar SK, Kumar Dubey B. Thermo-chemo-sonic pretreatment of lignocellulosic waste: Evaluating anaerobic biodegradability and environmental impacts. BIORESOURCE TECHNOLOGY 2022; 361:127675. [PMID: 35878767 DOI: 10.1016/j.biortech.2022.127675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/16/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
In the present study, yard waste was pretreated by thermo-chemo-sonic pretreatment prior to anaerobic digestion to improve its anaerobic biodegradability. First, the pretreatment conditions were optimized using Box-Behnken design based response surface methodology for the maximum organic matter solubilisation. Then, the possible mechanism of delignification by thermo-chemo-sonic pretreatment was discussed. Moreover, the anaerobic digestion performance of untreated yard waste (UYW) and pretreated yard waste (PYW) was compared. The optimum pretreatment condition based on the increase in soluble COD and volatile solids (VS) was: 2997 kJ/kgTS ultrasonic energy, 74 °C, and 10.1 pH. The highest methane yield of 374 ± 28 mL/gVSadded for the PYW at the optimum condition was achieved, which was 37.5 % higher than the UYW (272 ± 16 mL/gVSadded). Finally, the environmental impacts associated with anaerobic digestion of both UYW and PYW were compared. The life cycle assessment confirmed a positive environmental impact of pretreatment.
Collapse
Affiliation(s)
- Sagarika Panigrahi
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India; Department of Biological and Chemical Engineering, Aarhus University, Hangøvej 2, Denmark
| | - Bikash R Tiwari
- Institut National de la recherche scientifique - Centre Eau Terre Environnement, Université du Québec, Quebec City G1K9A9 Canada
| | - Satinder K Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto M3J1P3, Canada
| | - Brajesh Kumar Dubey
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India.
| |
Collapse
|
10
|
Rajesh Banu J, Tyagi VK, Bajhaiya AK, Gugulothu P, Gunasekaran M. Biohydrogen production from waste activated sludge through thermochemical mechanical pretreatment. BIORESOURCE TECHNOLOGY 2022; 358:127301. [PMID: 35562024 DOI: 10.1016/j.biortech.2022.127301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/06/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
Generation of excess sludge in large quantities from wastewater treatment plant face huge problem in terms of handling and management, whereas it possess higher organic and inorganic constituents and thus it can be used as a feedstock for the generation of biofuel with proper disintegration techniques.In this regard, an effort has been made in this study to combine thermo-chemo-disperser pretreatment for the disintegration of paper mill waste activated sludge for the production of biohydrogen in an energy efficient way. These combinations of thermo-chemo-disperser (TCD) tend to be effective in disintegration and possess 24.3% COD solubilization and higher suspended solid reduction of 18.8% at the specific energy usage of 2081.82 kJ/kg TS. The pretreatment with TCD technique shows the biohydrogen production of 120.2 mLH2/gCOD as compared to thermochemically pretreated alone (73.6 mLH2/gCOD) sample. Thus, the combined process was considered to be potentially effective in sludge disintegration.
Collapse
Affiliation(s)
- J Rajesh Banu
- Department of Life Sciences, Central University of Tamil Nadu, Neelakudi, Thiruvarur 610005, India
| | - Vinay Kumar Tyagi
- Environmental Hydrology Division, National Institute of Hydrology, Roorkee 247667, India
| | - Amit Kumar Bajhaiya
- Department of Microbiology, Central University of Tamil Nadu, Neelakudi, Thiruvarur, 610005, India
| | - Poornachandar Gugulothu
- Department of Life Sciences, Central University of Tamil Nadu, Neelakudi, Thiruvarur 610005, India
| | - M Gunasekaran
- Department of Physics, Anna University Regional Campus, Tirunelveli, Tamil Nadu 627007, India.
| |
Collapse
|
11
|
Rajesh Banu J, Godvin Sharmila V, Yukesh Kannah R, Kanimozhi R, Elfasakhany A, Gunasekaran M, Adish Kumar S, Kumar G. Impact of novel deflocculant ZnO/Chitosan nanocomposite film in disperser pretreatment enhancing energy efficient anaerobic digestion: Parameter assessment and cost exploration. CHEMOSPHERE 2022; 286:131835. [PMID: 34426273 DOI: 10.1016/j.chemosphere.2021.131835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 07/28/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
This paper proposed to interpret the novel method of extracellular polymeric substance (EPS) removal in advance to sludge disintegration to enrich bioenergy generation. The sludge has been subjected to deflocculation using Zinc oxide/Chitosan nanocomposite film (ZCNF) and achieved 98.97% of solubilization which enhance the solubilization of organics. The obtained result revealed that higher solubilization efficiency of 23.3% was attained at an optimal specific energy of 2186 kJ/kg TS and disintegration duration of 30 min. The deflocculated sludge showed 8.2% higher solubilization than the flocculated sludge emancipates organics in the form of 1.64 g/L of SCOD thereby enhancing the methane generation. The deflocculated sludge produces methane of 230 mL/g COD attained overall solid reduction of 55.5% however, flocculated and control sludge produces only 182.25 mL/g COD and 142.8 mL/g COD of methane. Based on the energy, mass and cost analysis, the deflocculated sludge saved 94.1% of energy than the control and obtained the net cost of 5.59 $/t which is comparatively higher than the flocculated and control sludge.
Collapse
Affiliation(s)
- J Rajesh Banu
- Department of Life Science, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu, 610005, India
| | - V Godvin Sharmila
- Department of Civil Engineering, Rohini College of Engineering and Technology, Kanyakumari, Tamil Nadu, India
| | - R Yukesh Kannah
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, Tamil Nadu, India
| | - R Kanimozhi
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, Tamil Nadu, India
| | - Ashraf Elfasakhany
- Department of Mechanical Engineering, College of Engineering, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - M Gunasekaran
- Department of Physics, Anna University Regional Campus, Tirunelveli, Tamil Nadu, India
| | - S Adish Kumar
- Department of Civil Engineering, University V.O.C College of Engineering, Anna University Thoothukudi Campus, Tamil Nadu, India
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
12
|
Snehya AV, Sundaramahalingam MA, Rajeshbanu J, Anandan S, Sivashanmugam P. Studies on evaluation of surfactant coupled sonication pretreatment on Ulva fasciata (marine macroalgae) for enhanced biohydrogen production. ULTRASONICS SONOCHEMISTRY 2021; 81:105853. [PMID: 34861557 PMCID: PMC8640538 DOI: 10.1016/j.ultsonch.2021.105853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/22/2021] [Accepted: 11/27/2021] [Indexed: 06/13/2023]
Abstract
Biohydrogen production from marine macroalgal biomass by advanced pre-treatment strategies is considered a clean energy technology. The present study focuses on investigating the effects of sonication pre-treatment (SP) and saponin coupled sonic pre-treatment (SSP) on Ulva fasciata for enhancing the production of biohydrogen. The SP and SSP were optimized to improve the hydrolysis process during digestion. The optimized time and sonication power were found respectively as 30 min and 200 W. A high concentration of biopolymer release was noticed in SSP than SP at optimized conditions. The surfactant dosage in SSP was optimized at 0.0036 g/g TS. The effect of SSP process was assessed by estimation of COD (Chemical Oxygen Demand) and SCOD (Soluble Chemical Oxygen Demand) release. The study revealed that, at a specific energy of 36,000 KJ/Kg TS, the SCOD release was higher in SSP (1900 mg/L) than SP (1050 mg/L). The SSP process could improve the COD solubilization to 15 % more than the SP. Carbohydrate and protein release are also more in SSP than SP. The use of biosurfactants significantly reduced the energy utilization in the hydrolysis process. The SSP pre-treated Ulva fasciata biomass has yielded a higher biohydrogen of 91.7 mL/g COD which is higher compared to SP (40.5 mL/g COD) and Control (9 mL/g COD).
Collapse
Affiliation(s)
- A V Snehya
- Chemical and Biochemical Process Engineering Laboratory, Department of Chemical Engineering, National Institute of Technology Tiruchirappalli, Tamilnadu, India
| | - M A Sundaramahalingam
- Chemical and Biochemical Process Engineering Laboratory, Department of Chemical Engineering, National Institute of Technology Tiruchirappalli, Tamilnadu, India
| | - J Rajeshbanu
- Department of Life Sciences, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamilnadu, India
| | - S Anandan
- Department of Chemistry, National Institute of Technology Tiruchirappalli, Tamilnadu, India.
| | - P Sivashanmugam
- Chemical and Biochemical Process Engineering Laboratory, Department of Chemical Engineering, National Institute of Technology Tiruchirappalli, Tamilnadu, India.
| |
Collapse
|
13
|
Chong JWR, Yew GY, Khoo KS, Ho SH, Show PL. Recent advances on food waste pretreatment technology via microalgae for source of polyhydroxyalkanoates. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 293:112782. [PMID: 34052610 DOI: 10.1016/j.jenvman.2021.112782] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 05/07/2021] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
Polyhydroxyalkanoates (PHAs) are biodegradable and biocompatible polyester which are biosynthesized from the intracellular cells of microalgae through the cultivation of organic food waste medium. Before cultivation process, food waste must undergo several pre-treatment techniques such as chemical, biological, physical or mechanical in order to solubilize complex food waste matter into simpler micro- and macronutrients in which allow bio-valorisation of microalgae and food waste compound during the cultivation process. This work reviews four microalgae genera namely Chlamydomonas, Chlorella, Spirulina, and Botryococcus, are selected as suitable species due to rapid growth rate, minimal nutrient requirement, greater adaptability and flexibility prior to lower the overall production cost and maximized the production of PHAs. This study also focuses on the different mode of cultivation for the accumulation of PHAs followed by cell wall destabilization, extraction, and purification. Nonetheless, this review provides future insights into enhancing the productivity of bioplastic derived from microalgae towards low-cost, large-scale, and higher productivity of PHAs.
Collapse
Affiliation(s)
- Jun Wei Roy Chong
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P.R. China; Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Guo Yong Yew
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Kuan Shiong Khoo
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P.R. China
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
14
|
Effect of Different Pretreatments on Sludge Solubilization and Estimation of Bioenergy Potential. Processes (Basel) 2021. [DOI: 10.3390/pr9081382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Most of the conventional treatments of waste-activated sludge (WAS) are devoted to their minimization and destruction. On the other hand, the biomass contained in WAS can be utilized as a valuable source of renewable carbon. In this study, the influence of different pretreatments (ultrasonication, chemical, thermal, and combined pretreatments) was explored for sludge solubilization. Effects of the pretreatments were investigated as a function of the solubilization of total solids (TS), volatile solids (VS), and chemical oxygen demand (COD). Concentrations of soluble carbohydrates and total nitrogen were also measured. The most effective pretreatment to hydrolyze sludge was found to be the combined alkali–thermal (pH 12, 75 °C) pretreatment method, leading to TS and vs. solubilization of 9.6% and 17.2%, respectively. Soluble COD, carbohydrates, total nitrogen, and proteins estimated in the liquid phase were 5235 mg/L, 732 mg/L, 430 mg/L, and 2688 mg/L, respectively. Thus, the alkali–thermal method could be used for efficient valorization of WAS. Moreover, the solid fraction from all pretreated samples was further subjected to thermogravimetric analysis to estimate its potential for bioenergy from its higher heating value (HHV), which was found to be in the range of 10–11.82 MJ/kg. This study can provide better insight into the efficient valorization of liquid and solid phases of sludge after pretreatment.
Collapse
|
15
|
Zerrouki S, Rihani R, Lekikot K, Ramdhane I. Enhanced biogas production from anaerobic digestion of wastewater from the fruit juice industry by sonolysis: experiments and modelling. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:644-655. [PMID: 34388124 DOI: 10.2166/wst.2021.245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The aim of this study is to investigate the use of ultrasound pretreatment as potential technique to solubilize organic matter and fermentation of fruit juice effluents in anaerobic batch reactor. The efficacy of ultrasound pretreatment has been assessed at low frequency of 20 kHz and at different sonication times (20, 40 and 60 min). Compared with control, the amount of biogas produced increased by 47, 57 and 60% for sonication times of 20, 40 and 60 min, respectively. Methane content of the produced biogas was about 59% in the control and 64% in the case of effluent subjected to ultrasonication for 60 min. After 20 days of anaerobic digestion of the fruit juice effluents, the efficiency of chemical oxygen demand (COD) increased by 9, 31 and 35% with respect to control for sonication times of 20, 40 and 60 min, respectively, corresponding to total sugars uptake efficiency of about 35, 51 and 54%, respectively. The modified Gompertz equation was used to describe the cumulative biogas production. A good agreement was found between simulated and experimental data.
Collapse
Affiliation(s)
- Souhaib Zerrouki
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie Taoufik Khaznadar, Nouveau pôle universitaire Ali Mendjli BP E66 25100, Constantine, Algérie
| | - Rachida Rihani
- Université des Sciences et de la Technologie Houari Boumediene (USTHB), Faculté de génie mécanique et de génie des procédés (FGMGP), Laboratoire des phénomènes de transfert (LPDT), B.P. 32, Bab-Ezzouar, 16111 Alger, Algérie
| | - Karima Lekikot
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie Taoufik Khaznadar, Nouveau pôle universitaire Ali Mendjli BP E66 25100, Constantine, Algérie
| | - Ibtissem Ramdhane
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie Taoufik Khaznadar, Nouveau pôle universitaire Ali Mendjli BP E66 25100, Constantine, Algérie
| |
Collapse
|
16
|
Nanoparticles Synergistic Effect with Various Substrate Pretreatment and their Comparison on Biogas Production from Algae Waste. BULLETIN OF CHEMICAL REACTION ENGINEERING & CATALYSIS 2021. [DOI: 10.9767/bcrec.16.2.10637.374-382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Algae waste is one of the potential substrates for biogas and biohydrogen production and can comprehend multiple benefits of waste treatment and resource utilization. In view of the key bottlenecks such as low substrate degradation rate and poor productivity of algae waste production process, this study analyzes the combined effect of two metallic and metallic oxide nanoparticles with different substrate pretreatment methods (autoclave, ultrasonic, and microwave methods) to investigate the effect of anaerobic digestion of green algae (Enteromorpha). The results showed that out of the three pretreatment methods, microwave pretreatment and nanoparticles' synergistic effect significantly increases biogas production. The microbial community composition at the phylum level was analyzed. It was observed that the Firmicutes were most abundant across all samples. The relative abundance of Firmicutes for control, Ni NPs + MW, Co NPs + MW, and Fe3O4 NPs + MW groups were 51.78, 70.37, 75.77, and 83.93%, respectively. The second most abundant was of Bacteroidetes that also contributes to hydrogen production. This relatively high abundance of Firmicutes and Bacteroidetes promises its potential applications in a hydrogen production facility. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Collapse
|
17
|
Rajesh Banu J, Poornima Devi T, Yukesh Kannah R, Kavitha S, Kim SH, Muñoz R, Kumar G. A review on energy and cost effective phase separated pretreatment of biosolids. WATER RESEARCH 2021; 198:117169. [PMID: 33962241 DOI: 10.1016/j.watres.2021.117169] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/12/2021] [Accepted: 04/17/2021] [Indexed: 06/12/2023]
Abstract
Extracellular Polymeric Substances (EPS) existent in anaerobic sludge proves to be a barrier for sludge liquefaction and biomass lysis efficiency. Hence EPS deaggregation heightens the surface area for the subsequent pretreatment thereby uplifting the sludge disintegration and biomethanation rate. This review documents the role of EPS and its components which inhibits sludge hydrolysis and also the various phase separated pretreatment methods available with its disintegration mechanism to enhance the biomass lysis and methane production rate. It also illustrates the effects of phase separated pretreatment on the sludge disintegration rate which embodies two phases-floc disruption and cell lysis accompanied by their computation through biomethane potential assay and fermentation analysis comprehensively. Additionally, energy balance study and cost analysis requisite for successful implementation of a proposed phase separated pretreatment on a pilot scale level and their challenges are also reviewed. Overall this paper documents the potency of phase separated pretreatment for full scale approach.
Collapse
Affiliation(s)
- J Rajesh Banu
- Department of Life Sciences, Central University of Tamil Nadu, Neelakudy, Thiruvarur, India
| | - T Poornima Devi
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, India
| | - R Yukesh Kannah
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, India
| | - S Kavitha
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, India
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Raul Muñoz
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea; Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway.
| |
Collapse
|
18
|
Yukesh Kannah R, Merrylin J, Poornima Devi T, Kavitha S, Sivashanmugam P, Kumar G, Rajesh Banu J. Food waste valorization: Biofuels and value added product recovery. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.biteb.2020.100524] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
Farghali M, Mayumi M, Syo K, Satoshi A, Seiichi Y, Takashima S, Ono H, Ap Y, Yamashiro T, Ahmed MM, Kotb S, Iwasaki M, Ihara I, Umetsu K. Potential of biogas production from manure of dairy cattle fed on natural soil supplement rich in iron under batch and semi-continuous anaerobic digestion. BIORESOURCE TECHNOLOGY 2020; 309:123298. [PMID: 32289655 DOI: 10.1016/j.biortech.2020.123298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
This study provides a novel method for improving the anaerobic digestion (AD) of Holstein dairy manure (HDM) by the direct addition of Mineraso (MnS), a natural soil-derived supplement, to the feed of Holstein dairy cattle (HDC). MnS is chiefly composed of approximately 69.08% Fe3O4 and was supplemented at rates of 0 (F1), 25 (F2), and 50 (F3) g/head of HDC/d for two months. The HDM was then examined for non-absorbed iron prior to the batch and semi-continuous bench AD experiments. The results revealed that MnS enhanced CH4 generation in F2 and F3 by 25% and 42%, respectively, in the batch experiments compared to that of F1. Additionally, the gas yield improved in F2 and F3 by 45% and 66%, respectively, over the control after 7 d in the bench experiments. Therefore, supplementing animals with MnS represents a sustainable and economic approach to enhancing CH4 yields.
Collapse
Affiliation(s)
- Mohamed Farghali
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Japan; Department of Animal and Poultry Hygiene & Environmental Sanitation, Faculty of Veterinary Medicine, Assiut University, Egypt
| | | | | | | | | | - Sayoko Takashima
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Japan
| | - Hijiri Ono
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Japan
| | - Yuhendra Ap
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Japan
| | - Takaki Yamashiro
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Japan
| | - Moustafa M Ahmed
- Department of Animal and Poultry Hygiene & Environmental Sanitation, Faculty of Veterinary Medicine, Assiut University, Egypt
| | - Saber Kotb
- Department of Animal and Poultry Hygiene & Environmental Sanitation, Faculty of Veterinary Medicine, Assiut University, Egypt
| | - Masahiro Iwasaki
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Japan
| | - Ikko Ihara
- Graduate School of Agriculture Science, Kobe University, Kobe, Japan
| | - Kazutaka Umetsu
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Japan.
| |
Collapse
|
20
|
Sharmila VG, Angappane S, Gunasekaran M, Kumar G, Banu JR. Immobilized ZnO nano film impelled bacterial disintegration of dairy sludge to enrich anaerobic digestion for profitable bioenergy production: Energetic and economic analysis. BIORESOURCE TECHNOLOGY 2020; 308:123276. [PMID: 32251862 DOI: 10.1016/j.biortech.2020.123276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/27/2020] [Accepted: 03/29/2020] [Indexed: 06/11/2023]
Abstract
Proper treatment and disposal of sludge is a substantial task around the biosphere. To address this issue, sludge deflocculation using photocatalyst was opted to enhance bacterial disintegration which in turn accelerate sludge digestion anaerobically. During this investigation, Direct current (DC) sputtering together with annealing process was used to immobilize Zinc oxide (ZnO). This immobilized ZnO removes the extracellular components at 15 min. The deflocculation mediated bacterial pretreatment induced 22.9% of soluble organics solubilization which auguments the biodegradability to 0.195 g COD/g COD during anaerobic digestion. The quantity of methane generated by deflocculated sludge was 39.2% higher than sludge with bacterial disintegration only with maximum methane yield of 437.14 mL/g COD. Hence, the outcome of the proposed work confirmed that the method is scalable with a net profit of 27 USD with the maximum methane generation of 413.1 kWh. Additionally, this method reduced 57% of dry sludge (solid).
Collapse
Affiliation(s)
- V Godvin Sharmila
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, India
| | - S Angappane
- Centre for Nano and Soft Matter Sciences, Bangalore, India
| | - M Gunasekaran
- Department of Physics, Anna University Regional Campus, Tirunelveli, India
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - J Rajesh Banu
- Department of Life Sciences, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu, India.
| |
Collapse
|
21
|
Rajesh Banu J, Yukesh Kannah R, Kavitha S, Ashikvivek A, Bhosale RR, Kumar G. Cost effective biomethanation via surfactant coupled ultrasonic liquefaction of mixed microalgal biomass harvested from open raceway pond. BIORESOURCE TECHNOLOGY 2020; 304:123021. [PMID: 32086031 DOI: 10.1016/j.biortech.2020.123021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 05/16/2023]
Abstract
The present study aimed to enhance the biomethanation potential of mixed microalgae via cost effective surfactant coupled ultrasonic homogenization (SCUH). Mixed microalgae biomass was harvested using a coagulant (Alum) from a raceway pond. The harvested algal biomass was subjected to ultrasonic homogenization (UH) by varying the power from 100 to 180 W. A maximal soluble organic release of 2131 mg/L was achieved at an ultrasonic input energy (UIE) of 25200 kJ/kg TS. In order to enhance soluble organic release and to reduce energy spent, the optimized condition of ultrasonic pretreatment was coupled with varying sodium dodecyl sulphate (SDS) dosage. A higher solubilization of 30.5% was achieved at a UIE of 4200 kJ/kg SS with surfactant dosage of 0.02 g SDS/g SS for SCUH. SCUH showed higher methane production of 358 mL/g COD when compared to UH (185.9 mL/g COD), SCUH was economically feasible than UH.
Collapse
Affiliation(s)
- J Rajesh Banu
- Department of Life Sciences, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu 610005, India; Department of Civil Engineering, Anna University Regional Campus Tirunelveli, India
| | - R Yukesh Kannah
- Department of Civil Engineering, Anna University Regional Campus Tirunelveli, India
| | - S Kavitha
- Department of Civil Engineering, Anna University Regional Campus Tirunelveli, India
| | - A Ashikvivek
- Department of Civil Engineering, Anna University Regional Campus Tirunelveli, India
| | - Rahul R Bhosale
- Department of Chemical Engineering, College of Engineering, Qatar University, P.O. Box - 2713, Doha, Qatar
| | - Gopalakrishnan Kumar
- Green Processing, Bioremediation and Alternative Energies Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
22
|
Banu JR, Kavitha S, Kannah RY, Usman TMM, Kumar G. Application of chemo thermal coupled sonic homogenization of marine macroalgal biomass for energy efficient volatile fatty acid recovery. BIORESOURCE TECHNOLOGY 2020; 303:122951. [PMID: 32058908 DOI: 10.1016/j.biortech.2020.122951] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/30/2020] [Accepted: 02/01/2020] [Indexed: 06/10/2023]
Abstract
The present study aimed to employ energy efficient chemo thermal coupled sonic homogenization (CTSH) to obtain VFA from marine macroalgal hydrolysate, (Ulva fasciata). At first, chemo thermal homogenization (CTH) was applied on macroalgal biomass by adjusting the temperature, pH and treatment time from 60 to 90 ℃, 4-7 and 0-60 min, respectively. A higher organic matter solubilisation of 11.81% was obtained at an optimum pH of 6 at a temperature of 80 ℃ with 40 min of homogenization time. The results of CTSH implied that a higher organic matter solubilization of 26.4% was achieved by combined CTSH (sonic power & treatment time - 140 W & 14 min treatment time). CTSH considerably doubles the liquefaction in comparison with CTH. Based on OMS grouping, achieving 25% was sufficient for VFA production (2172.09 mg/L) and considered as economically feasible with net cost of 97.17 USD/ton of macroalgae.
Collapse
Affiliation(s)
- J Rajesh Banu
- Department of Life Sciences, Central University of Tamil Nadu, CUTN Bridge, Neelakudy, Tamil Nadu 610005, India; Department of Civil Engineering, Anna University Regional Campus Tirunelveli, India
| | - S Kavitha
- Department of Civil Engineering, Anna University Regional Campus Tirunelveli, India
| | - R Yukesh Kannah
- Department of Civil Engineering, Anna University Regional Campus Tirunelveli, India
| | - T M Mohamed Usman
- Department of Civil Engineering, Anna University Regional Campus Tirunelveli, India
| | - Gopalakrishnan Kumar
- Green Processing, Bioremediation and Alternative Energies Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
23
|
Moungmoon T, Chaichana C, Pumas C, Pathom-Aree W, Ruangrit K, Pekkoh J. Quantitative analysis of methane and glycolate production from microalgae using undiluted wastewater obtained from chicken-manure biogas digester. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 714:136577. [PMID: 31982736 DOI: 10.1016/j.scitotenv.2020.136577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 01/03/2020] [Accepted: 01/06/2020] [Indexed: 06/10/2023]
Abstract
Microalgal biomass is often used as a raw material in methane production. Some microalgae possess a complex cell-wall structure which has a low degradability of microorganisms in anaerobic digestion. However, some microalgae produce glycolate, which is excreted outside the cell and can be used to produce methane under anaerobic condition. This research aims to investigate microalgal cultivation using wastewater to reduce nutrients and efficiently create glycolate. Two strains of microalgae (Acutodesmus sp. AARL G023, Chlorella sp. AARL G049) and two microalgal consortia were cultivated at dilutions of 0.5-fold (W50), 0.75-fold (W75) and undiluted wastewater (W100). The results showed that the microalgal consortium with undiluted wastewater (WCW100) consisted of Leptolyngbya sp. (30.4%), Chlorella sp. (16.1%) and Chlamydomonas sp. (52.2%), revealed the highest biomass productivity at 64.38 ± 14.54 mg·L-1·d-1 and the highest glycolate productivity at 5.12 ± 0.48 mmol·L-1·d-1. The cultivation of microalgae effectively reduced ammonium‑nitrogen (NH4+-N) and soluble reactive phosphorus (SRP) levels in the wastewater at 43.5 ± 1.3% and 49.6 ± 6.9%. Furthermore, WCW100 showed the highest biogas productivity at 1.44 ± 0.07 mL·g-1·d-1 and the highest methane content at 58.3 ± 6.0% v/v. This study indicates that there is a definite potential of using undiluted wastewater for microalgal biomass production and glycolate production that can reduce the wastewater volume and be applied as a raw material for methane production.
Collapse
Affiliation(s)
- Thoranit Moungmoon
- PhD Degree Program in Environmental Science, Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chatchawan Chaichana
- Department of Mechanical Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chayakorn Pumas
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wasu Pathom-Aree
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Khomsan Ruangrit
- Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jeeraporn Pekkoh
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
24
|
Rajesh Banu J, Kavitha S, Yukesh Kannah R, Dinesh Kumar M, Atabani AE, Kumar G. Biorefinery of spent coffee grounds waste: Viable pathway towards circular bioeconomy. BIORESOURCE TECHNOLOGY 2020; 302:122821. [PMID: 32008862 DOI: 10.1016/j.biortech.2020.122821] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
The circular bioeconomy plan is an innovative research based scheme intended for augmenting the complete utilization and management of bio-based resources in a sustainable biorefinery route. Spent coffee grounds based biorefinery is the emerging aspect promoting circular bioeconomy. The sustainable circular bioeconomy by utilizing SCG is achieved by cascade approaches and the inclusion of many biorefinery approaches to obtain many bio-products. The maximum energy recovery can be obtained by process integration. The economic analysis of the biofuel production from SCG is dependent on the cost of raw material, transportation, the need of labor and energy, oil extraction operations and biofuel production. The inclusion of new products from already established product can minimize the investment cost when related to the production cost. A positive net present value can be achieved via SCG biorefinery which indicates the profitability of the process.
Collapse
Affiliation(s)
- J Rajesh Banu
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, India
| | - S Kavitha
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, India
| | - R Yukesh Kannah
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, India
| | - M Dinesh Kumar
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, India
| | - A E Atabani
- Alternative Fuels Research Laboratory (AFRL), Energy Division, Department of Mechanical Engineering, Faculty of Engineering, Erciyes University, Kayseri 38039, Turkey
| | - Gopalakrishnan Kumar
- Green Processing, Bioremediation and Alternative Energies Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
25
|
Farghali M, Andriamanohiarisoamanana FJ, Ahmed MM, Kotb S, Yamamoto Y, Iwasaki M, Yamashiro T, Umetsu K. Prospects for biogas production and H 2S control from the anaerobic digestion of cattle manure: The influence of microscale waste iron powder and iron oxide nanoparticles. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 101:141-149. [PMID: 31610475 DOI: 10.1016/j.wasman.2019.10.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/16/2019] [Accepted: 10/02/2019] [Indexed: 06/10/2023]
Abstract
Improving the quality and quantity of biogas usually requires pre-treatment to maximize methane yields and/or post-treatment to remove H2S, which involves considerable energy consumption and higher costs. Therefore, this study proposes a cost-effective method for the enhanced anaerobic digestion (AD) of dairy manure (DM) without pre/post-treatment by directly adding waste iron powder (WIP) and iron oxide nanoparticles (INPs) to batch digesters. The results showed that the addition of iron in the form of microscale WIP (generated from the laser cutting of iron and steel) at concentrations of 100 mg/L, 500 mg/L, and 1000 mg/L improved methane yields by 36.99%, 39.36%, and 56.89%, respectively. In comparison, the equivalent dosages of INPs improved yields by 19.74%, 18.14%, and 21.11%, respectively. Additionally, the highest WIP dose (1000 mg/L) achieved the maximum improvement in the rate of hydrolysis (k), which was 1.25 times higher than in control reactions, and a maximum biomethane production rate (Rmax) of 0.045 L/gVS/d according to kinetic analysis models (i.e., first-order and the Gompertz kinetic models). The rate of H2S production was also significantly reduced (by 45.20%, 58.16%, and 77.24%) using the three WIP concentrations in comparison with INPs (which achieved reductions of 33.59%, 46.30%, and 53.52%, respectively). Therefore, the direct mixing of WIP with cattle manure is proposed as a practical and economical means of addressing complex and high-cost pre- and post-treatments that are otherwise required in the digestion process.
Collapse
Affiliation(s)
- Mohamed Farghali
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan; Department of Animal and Poultry Hygiene & Environmental Sanitation, Faculty of Veterinary Medicine, Assiut University, 71526, Egypt
| | | | - Moustafa M Ahmed
- Department of Animal and Poultry Hygiene & Environmental Sanitation, Faculty of Veterinary Medicine, Assiut University, 71526, Egypt
| | - Saber Kotb
- Department of Animal and Poultry Hygiene & Environmental Sanitation, Faculty of Veterinary Medicine, Assiut University, 71526, Egypt
| | - Yuki Yamamoto
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Masahiro Iwasaki
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Takaki Yamashiro
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Kazutaka Umetsu
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan.
| |
Collapse
|
26
|
Wang J, Li H, Liu Y, Zhong C, Luo Z, Li D. Lysis characteristics and mechanism of excess sludge degraded by ozone and ultrasonic treatment. ENVIRONMENTAL TECHNOLOGY 2020; 41:222-231. [PMID: 29952719 DOI: 10.1080/09593330.2018.1494752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 06/23/2018] [Indexed: 06/08/2023]
Abstract
As a byproduct of activated sludge process, excess sludge has become one of the current problems in the field of environmental protection for its yield huge、high moisture content and easy to pollution. In this study, the joint technology combining ozone with ultrasonic was applied in treatment of excess sludge by strong ozone oxidation and prominent ultrasonic cavitation. The effect on lysis excess sludge cells was explored comprehensively. The lysis mechanism of excess sludge cells degraded by ozone + ultrasonic was revealed by analysis of three-dimensional spectral fluorometer, optical microscope and scanning electron microscopy (SEM). The results showed that the MLSS was 22.92% lower than the untreated sludge, the SCOD and [Formula: see text] -N content in the supernatant of the sludge was 1792 and 105.77 mg/L, which was 96.49% and 17.67% higher than the untreated. The supernatant of treated excess sludge contained macromolecular organic matters composed of proteins, polysaccharides, humic acids, and fulvic acids, etc. The whole process of lysis cells of excess sludge degraded by ozone + ultrasonic could be inferred that the microbial particles of excess sludge were exposed after EPS destructed, and then the cell walls of these exposed microbial particles were broken so that a great number of intracellular materials were released. Furthermore, these intracellular material composed of macromolecular organic matters were degraded into small molecule organic matters, H2O, CO2, etc. Finally, the excess sludge was treated gradually by ozone + ultrasonic.
Collapse
Affiliation(s)
- Junfeng Wang
- College of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, People's Republic of China
- Key Laboratory of Jiangxi Province's Mining and Metallurgy Environmental Pollution Control, Ganzhou, People's Republic of China
| | - Hai Li
- College of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, People's Republic of China
| | - Yaqi Liu
- College of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, People's Republic of China
| | - Changming Zhong
- College of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, People's Republic of China
- Key Laboratory of Jiangxi Province's Mining and Metallurgy Environmental Pollution Control, Ganzhou, People's Republic of China
| | - Zhijiang Luo
- College of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, People's Republic of China
| | - Dan Li
- College of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, People's Republic of China
| |
Collapse
|
27
|
Kavitha S, Schikaran M, Yukesh Kannah R, Gunasekaran M, Kumar G, Rajesh Banu J. Nanoparticle induced biological disintegration: A new phase separated pretreatment strategy on microalgal biomass for profitable biomethane recovery. BIORESOURCE TECHNOLOGY 2019; 289:121624. [PMID: 31203180 DOI: 10.1016/j.biortech.2019.121624] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 06/09/2023]
Abstract
This study involves the application of new phase separated biological pretreatment (PSBP) strategy on microalgal biomass using the nickel nanoparticle induced cellulase secreting bacterial disintegration. Particularly, interest was focussed on cell wall weakening (CWW) of microalgae biomass besides the cell disintegration (CD) and release of organics. During CWW, protein, carbohydrate, cellulose, hemicellulose and DNA were used as evaluation indexes. Similarly, during CD, soluble chemical oxygen demand was used as evaluation index to assess the disintegration effect. A higher CWW was achieved at nickel nanoparticle (Np) dosage of 0.004 g/g SS. During CD, a clear demarcation in biomass solubilisation was achieved by PSBP (36%) than the sole biological pretreatment -BP (24%). The biomethanogenesis test results showed that enhanced methane production of 411 mL/g COD was achieved by PSBP than BP. Energy analysis showed that a higher net energy production of 6.467 GJ/d was achieved by PSBP.
Collapse
Affiliation(s)
- S Kavitha
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, Tamil Nadu, India
| | - M Schikaran
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, India
| | - R Yukesh Kannah
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, Tamil Nadu, India
| | - M Gunasekaran
- Department of Physics, Anna University Regional Campus, Tirunelveli, Tamil Nadu, India
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus, 4036 Stavanger, Norway
| | - J Rajesh Banu
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, Tamil Nadu, India.
| |
Collapse
|
28
|
Combining Microwave Pretreatment with Iron Oxide Nanoparticles Enhanced Biogas and Hydrogen Yield from Green Algae. Processes (Basel) 2019. [DOI: 10.3390/pr7010024] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The available energy can be effectively upgraded by adopting smart energy conversion measures. The biodegradability of biomass can be improved by employing pretreatment techniques; however, such methods result in reduced energy efficiency. In this study, microwave (MW) irradiation is used for green algae (Enteromorpha) pretreatment in combination with iron oxide nanoparticles (NPs) which act as a heterogeneous catalyst during anaerobic digestion process for biogas enhancement. Batch-wise anaerobic digestion was carried out. The results showed that MW pretreatment and its combination with Fe3O4 NPs produced highest yields of biogas and hydrogen as compared to the individual ones and control. The biogas amount and hydrogen % v/v achieved by MW pretreatment + Fe3O4 NPs group were 328 mL and 51.5%, respectively. The energy analysis indicated that synergistic application of MW pretreatment with Fe3O4 NPs produced added energy while consuming less input energy than MW pretreatment alone. The kinetic parameters of the reaction were scientifically evaluated by using modified Gompertz and Logistic function model for each experimental case. MW pretreatment + Fe3O4 NPs group improved biogas production potential and maximum biogas production rate.
Collapse
|
29
|
Rajesh Banu J, Kannah RY, Kavitha S, Gunasekaran M, Kumar G. Novel insights into scalability of biosurfactant combined microwave disintegration of sludge at alkali pH for achieving profitable bioenergy recovery and net profit. BIORESOURCE TECHNOLOGY 2018; 267:281-290. [PMID: 30025325 DOI: 10.1016/j.biortech.2018.07.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 07/08/2018] [Accepted: 07/09/2018] [Indexed: 06/08/2023]
Abstract
In the present study, a novel alkali rhamnolipid combined microwave disintegration (ARMD) was employed to achieve net energy production, increased liquefaction and to increase the amenability of sludge towards biomethanation. Additionally, biosurfactant rhamnolipid under alkali conditions enhances the liquefaction at alkali pH of 10 with a maximal liquefaction of 55% with reduced energy consumption (1620 kJ/kg TS) than RMD (45.7% and 3240 kJ/kg TS specific energy) and MD (33.7% and 6480 kJ/kg TS specific energy). A higher biomethane production of 379 mL/g COD was achieved for ARMD when compared to RMD (329 mL/g COD) and MD (239 mL/g COD). The scalable studies imply that the ARMD demands input energy of -282.27 kWh. A net yield of (0.39 USD/ton) was probably achieved via novel ARMD technique indicating its suitability at large scale execution when compared to RMD (net cost -31.34 USD/ton) and MD (-84.23 net cost USD/ton), respectively.
Collapse
Affiliation(s)
- J Rajesh Banu
- Department of Civil Engineering, Regional Campus Anna University Tirunelveli, Tamilnadu, India
| | - R Yukesh Kannah
- Department of Civil Engineering, Regional Campus Anna University Tirunelveli, Tamilnadu, India
| | - S Kavitha
- Department of Civil Engineering, Regional Campus Anna University Tirunelveli, Tamilnadu, India
| | - M Gunasekaran
- Department of Physics, Regional Campus Anna University Tirunelveli, Tamilnadu, India
| | - Gopalakrishnan Kumar
- Green Processing, Bioremediation and Alternative Energies Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
30
|
Liu X, Xu Q, Wang D, Zhao J, Wu Y, Liu Y, Ni BJ, Wang Q, Zeng G, Li X, Yang Q. Improved methane production from waste activated sludge by combining free ammonia with heat pretreatment: Performance, mechanisms and applications. BIORESOURCE TECHNOLOGY 2018; 268:230-236. [PMID: 30081282 DOI: 10.1016/j.biortech.2018.07.109] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 07/20/2018] [Accepted: 07/21/2018] [Indexed: 05/16/2023]
Abstract
Anaerobic digestion of waste activated sludge (WAS) is often limited by low hydrolysis efficiencies and poor methane potentials. This work presents a novel pretreatment technology for WAS anaerobic digestion, i.e., combining free ammonia with heat pretreatment (CFHP). Experimental results showed that compared with control, solo free ammonia (135.4 mg NH3-N/L) and solo heat (70 °C) pretreatment, the combined free ammonia and heat (135.4 mg NH3-N/L with 70 °C) obtained 52.2%, 25.5% and 30.2% faster in hydrolysis rate and 25.2%, 17.9% and 16.5% higher in biochemical methane potential, respectively. Mechanism investigations showed that the combined pretreatment not only largely facilitated the disintegration of WAS but also increased the proportion of biodegradable organic matters, thereby providing better contract between biodegradable organics and the anaerobic microbes for methane production. Considering its effectiveness and renewability, the combined pretreatment is an attractive technology for the application in real-world situations.
Collapse
Affiliation(s)
- Xuran Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qiuxiang Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Jianwei Zhao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yanxin Wu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yiwen Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xiaoming Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qi Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
31
|
Ganesh Saratale R, Kumar G, Banu R, Xia A, Periyasamy S, Dattatraya Saratale G. A critical review on anaerobic digestion of microalgae and macroalgae and co-digestion of biomass for enhanced methane generation. BIORESOURCE TECHNOLOGY 2018; 262:319-332. [PMID: 29576518 DOI: 10.1016/j.biortech.2018.03.030] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 03/03/2018] [Accepted: 03/05/2018] [Indexed: 05/18/2023]
Abstract
Biogas production using algal resources has been widely studied as a green and alternative renewable technology. This review provides an extended overview of recent advances in biomethane production via direct anaerobic digestion (AD) of microalgae, macroalgae and co-digestion mechanism on biomethane production and future challenges and prospects for its scaled-up applications. The effects of pretreatment in the preparation of algal feedstock for methane generation are discussed briefly. The role of different operational and environmental parameters for instance pH, temperature, nutrients, organic loading rate (OLR) and hydraulic retention time (HRT) on sustainable methane generation are also reviewed. Finally, an outlook on the possible options towards the scale up and enhancement strategies has been provided. This review could encourage further studies in this area, to intend and operate continuous mode by designing stable and reliable bioreactor systems and to analyze the possibilities and potential of co-digestion for the promotion of algal-biomethane technology.
Collapse
Affiliation(s)
- Rijuta Ganesh Saratale
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Republic of Korea
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 38722, Republic of Korea
| | - Rajesh Banu
- Department of Civil Engineering, Regional Centre of Anna University, Tirunelveli, India
| | - Ao Xia
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Chongqing 400044, China
| | | | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Republic of Korea.
| |
Collapse
|
32
|
Liu N, Jiang J, Yan F, Gao Y, Meng Y, Aihemaiti A, Ju T. Enhancement of volatile fatty acid production and biogas yield from food waste following sonication pretreatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 217:797-804. [PMID: 29660705 DOI: 10.1016/j.jenvman.2018.03.135] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 03/27/2018] [Accepted: 03/31/2018] [Indexed: 06/08/2023]
Abstract
The positive effect of sonication on volatile fatty acid (VFA) and hydrogen production was investigated by batch experiments. Several sonication densities (2, 1.6, and 1.2 W/mL) and times (5, 10, and 15 min) were tested. The optimal sonication condition was ultrasonic density 2 W/mL and ultrasonic time 15 min (2-U15). The FW particle size larger than 50 μm (d > 50 μm) were more susceptible to the sonication treatment than the smaller particle size (d ≤ 50 μm). The SCOD increased and VS reduction accelerated under sonication treatment. The maximum VFA production and the highest proportion of hydrogen in the biogas increased 65.3% and 59.1%, respectively, under the optimal sonication conditions compared to the unsonicated batch. Moreover, a reduction of over 50% in the time required to reach its maximum production was also observed. Butyric acid fermentation type was obtained whether following sonication treatment or not. The composition of key microbial community differed under the various sonication conditions. The genera Clostridium and Parabacteroides are predominantly responsible for VFA generation and both were found to be abundant under the optimal condition.
Collapse
Affiliation(s)
- Nuo Liu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jianguo Jiang
- School of Environment, Tsinghua University, Beijing 100084, China; Key Laboratory for Solid Waste Management and Environment Safety, Ministry of Education of China, Beijing 100084, China.
| | - Feng Yan
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yuchen Gao
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yuan Meng
- School of Environment, Tsinghua University, Beijing 100084, China
| | | | - Tongyao Ju
- School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
33
|
Meng Z, Zhou Z, Zheng D, Liu L, Dong J, Yang Y, Li X, Zhang T. Optimizing dewaterability of drinking water treatment sludge by ultrasound treatment: Correlations to sludge physicochemical properties. ULTRASONICS SONOCHEMISTRY 2018; 45:95-105. [PMID: 29705330 DOI: 10.1016/j.ultsonch.2018.02.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/10/2018] [Accepted: 02/13/2018] [Indexed: 06/08/2023]
Abstract
Sludge dewatering has proven to be an effective method to reduce the volume of sludge. In this study, drinking water treatment sludge (DWTS) was treated by ultra-sonication under variable conditions comparing two sonoreactor types (bath and probe), four frequencies (25, 40, 68, 160 kHz) and four energy density levels (0.03, 1, 3, 5 W/mL). The effects of these conditions were studied using specific resistance to filtration and capillary suction time as measures of dewaterability, and floc size, the Brunauer, Emmett and Teller (BET) specific surface area and Zeta potential to determine treated sludge characteristics. The results indicated that the dewaterability of sonicated sludge improved at relatively low energy densities of 0.03 and 1.0 W/mL, while an optimum for sonication duration (within 10 min) was also identified. Higher frequencies (tested up to 160 kHz) with acoustic energy density of 0.03 W/mL also reduced the dewatering property. At higher energy densities of 3.0 and 5.0 W/mL, dewaterability of sludge deteriorated regardless of ultra-sonication time, with an increase of solubilized organic matter content and severely changed floc characteristics. The deterioration of the dewatering capacity was closely related to the considerably reduced floc sizes, dissolution of proteins and polysaccharides, and to the Zeta potential of sonicated sludge flocs. The dewaterability was not correlated with BET specific surface area. Mechanistic explanations for the observations were discussed by analyzing corrosion patterns of aluminum foil as a measure for cavitation field distribution.
Collapse
Affiliation(s)
- Zhili Meng
- School of Environmental and Biological Engineering, Wuhan Technology and Business University, Wuhan 430065, PR China
| | - Zhiwei Zhou
- School of Environmental and Biological Engineering, Wuhan Technology and Business University, Wuhan 430065, PR China; Engineering and Technology Research Center of Hubei Province for Wastewater Reclamation, Wuhan 430065, PR China; College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Dan Zheng
- School of Environmental and Biological Engineering, Wuhan Technology and Business University, Wuhan 430065, PR China; Engineering and Technology Research Center of Hubei Province for Wastewater Reclamation, Wuhan 430065, PR China
| | - Lujian Liu
- Engineering and Technology Research Center of Hubei Province for Wastewater Reclamation, Wuhan 430065, PR China
| | - Jun Dong
- Engineering and Technology Research Center of Hubei Province for Wastewater Reclamation, Wuhan 430065, PR China
| | - Yanling Yang
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Xing Li
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Tingting Zhang
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
34
|
Rajesh Banu J, Sugitha S, Kannah RY, Kavitha S, Yeom IT. Marsilea spp.-A novel source of lignocellulosic biomass: Effect of solubilized lignin on anaerobic biodegradability and cost of energy products. BIORESOURCE TECHNOLOGY 2018; 255:220-228. [PMID: 29427873 DOI: 10.1016/j.biortech.2018.01.103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 01/20/2018] [Accepted: 01/22/2018] [Indexed: 06/08/2023]
Abstract
The present study concerns the liquefying potential of an unusual source of lignocellulosic biomass (Marsilea spp., water clover, an aquatic fern) during combinative pretreatment. The focus was on how the pretreatment affects the biodegradability, methane production, and profitability of thermochemical dispersion disintegration (TCDD) based on liquefaction and soluble lignin. The TCDD process was effective at 12,000 rpm and 11 min under the optimized thermochemical conditions (80 °C and pH 11). The results from biodegradability tests imply that 30% liquefaction was sufficient to achieve enhanced biodegradability of about 0.280 g-COD/g-COD. When biodegradability was >30% inhibition was observed (0.267 and 0.264 g-COD/g-COD at 35-40% liquefaction) due to higher soluble lignin release (4.53-4.95 g/L). Scalable studies revealed that achievement of 30% liquefaction was beneficial in terms of the energy and cost benefit ratios (0.956 and 1.02), when compared to other choices.
Collapse
Affiliation(s)
- J Rajesh Banu
- Department of Civil Engineering, Regional campus, Anna University, Tirunelveli, India.
| | - S Sugitha
- Department of Civil Engineering, Regional campus, Anna University, Tirunelveli, India
| | - R Yukesh Kannah
- Department of Civil Engineering, Regional campus, Anna University, Tirunelveli, India
| | - S Kavitha
- Department of Civil Engineering, Regional campus, Anna University, Tirunelveli, India
| | - Ick Tae Yeom
- Graduate School of Water Resource, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
35
|
Kumar MD, Tamilarasan K, Kaliappan S, Banu JR, Rajkumar M, Kim SH. Surfactant assisted disperser pretreatment on the liquefaction of Ulva reticulata and evaluation of biodegradability for energy efficient biofuel production through nonlinear regression modelling. BIORESOURCE TECHNOLOGY 2018; 255:116-122. [PMID: 29414156 DOI: 10.1016/j.biortech.2018.01.116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/20/2018] [Accepted: 01/22/2018] [Indexed: 06/08/2023]
Abstract
The present study aimed to increase the disintegration potential of marine macroalgae, (Ulva reticulata) through chemo mechanical pretreatment (CMP) in an energy efficient manner. By combining surfactant with disperser, the specific energy input was considerably reduced from 437.1 kJ/kg TS to 264.9 kJ/kg TS to achieve 10.7% liquefaction. A disperser rpm (10,000), pretreatment time (30 min) and tween 80 dosage (21.6 mg/L) were considered as an optimum for effective liquefaction of algal biomass. CMP was designated as an appropriate pretreatment resulting in a higher soluble organic release 1250 mg/L, respectively. Anaerobic fermentation results revealed that the volatile fatty acid (VFA) concentration was doubled (782 mg/L) in CMP when compared to mechanical pretreatment (MP) (345 mg/L). CMP pretreated algal biomass was considered as the suitable for biohydrogen production with highest H2 yield of about 63 mL H2/g COD than (MP) (45 mL H2/g COD) and control (10 mL H2/g COD).
Collapse
Affiliation(s)
- M Dinesh Kumar
- Department of Civil Engineering, Anna University Regional campus, Tirunelveli, India
| | - K Tamilarasan
- Department of Civil Engineering, Anna University Regional campus, Tirunelveli, India
| | - S Kaliappan
- Institute of Remote Sensing, College of Engineering, Guindy, Anna University, Chennai, India
| | - J Rajesh Banu
- Department of Civil Engineering, Anna University Regional campus, Tirunelveli, India.
| | - M Rajkumar
- Department of Environmental Sciences, Bharathiar University, Coimbatore, India
| | - Sang Hyoun Kim
- Department of Environmental Engineering, Daegu University, Gyeongsan, Republic of Korea
| |
Collapse
|
36
|
Den W, Sharma VK, Lee M, Nadadur G, Varma RS. Lignocellulosic Biomass Transformations via Greener Oxidative Pretreatment Processes: Access to Energy and Value-Added Chemicals. Front Chem 2018; 6:141. [PMID: 29755972 PMCID: PMC5934431 DOI: 10.3389/fchem.2018.00141] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 04/12/2018] [Indexed: 01/30/2023] Open
Abstract
Anthropogenic climate change, principally induced by the large volume of carbon dioxide emission from the global economy driven by fossil fuels, has been observed and scientifically proven as a major threat to civilization. Meanwhile, fossil fuel depletion has been identified as a future challenge. Lignocellulosic biomass in the form of organic residues appears to be the most promising option as renewable feedstock for the generation of energy and platform chemicals. As of today, relatively little bioenergy comes from lignocellulosic biomass as compared to feedstock such as starch and sugarcane, primarily due to high cost of production involving pretreatment steps required to fragment biomass components via disruption of the natural recalcitrant structure of these rigid polymers; low efficiency of enzymatic hydrolysis of refractory feedstock presents a major challenge. The valorization of lignin and cellulose into energy products or chemical products is contingent on the effectiveness of selective depolymerization of the pretreatment regime which typically involve harsh pyrolytic and solvothermal processes assisted by corrosive acids or alkaline reagents. These unselective methods decompose lignin into many products that may not be energetically or chemically valuable, or even biologically inhibitory. Exploring milder, selective and greener processes, therefore, has become a critical subject of study for the valorization of these materials in the last decade. Efficient alternative activation processes such as microwave- and ultrasound irradiation are being explored as replacements for pyrolysis and hydrothermolysis, while milder options such as advanced oxidative and catalytic processes should be considered as choices to harsher acid and alkaline processes. Herein, we critically abridge the research on chemical oxidative techniques for the pretreatment of lignocellulosics with the explicit aim to rationalize the objectives of the biomass pretreatment step and the problems associated with the conventional processes. The mechanisms of reaction pathways, selectivity and efficiency of end-products obtained using greener processes such as ozonolysis, photocatalysis, oxidative catalysis, electrochemical oxidation, and Fenton or Fenton-like reactions, as applied to depolymerization of lignocellulosic biomass are summarized with deliberation on future prospects of biorefineries with greener pretreatment processes in the context of the life cycle assessment.
Collapse
Affiliation(s)
- Walter Den
- Department of Environmental Science and Engineering, Tunghai University, Taichung, Taiwan
| | - Virender K. Sharma
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, TX, United States
| | - Mengshan Lee
- Department of Safety, Health and Environmental Engineering, National Kaohsiung First University of Science and Technology, Kaohsiung, Taiwan
| | - Govind Nadadur
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, TX, United States
| | - Rajender S. Varma
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Olomouc, Czechia
| |
Collapse
|
37
|
Fatoorehchi E, West S, Abbt-Braun G, Horn H. The molecular weight distribution of dissolved organic carbon after application off different sludge disintegration techniques. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2017.11.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
38
|
|
39
|
Li X, Peng Y, Li B, Wu C, Zhang L, Zhao Y. Effects of alkali types on waste activated sludge (WAS) fermentation and microbial communities. CHEMOSPHERE 2017; 186:864-872. [PMID: 28826134 DOI: 10.1016/j.chemosphere.2017.08.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/04/2017] [Accepted: 08/05/2017] [Indexed: 06/07/2023]
Abstract
The effects of two alkali agents, NaOH and Ca(OH)2, on enhancing waste activated sludge (WAS) fermentation and short chain fatty acids (SCFAs) accumulation were studied in semi-continuous stirred tank reactors (semi-CSTR) at different sludge retention time (SRT) (2-10 d). The optimum SRT for SCFAs accumulation of NaOH and Ca(OH)2 adding system was 8 d and 10 d, respectively. Results showed that the average organics yields including soluble chemical oxygen demand (SCOD), protein, and carbohydrate in the NaOH system were as almost twice as that in the Ca(OH)2 system. For Ca(OH)2 system, sludge hydrolysis and protein acidification efficiencies were negatively affected by Ca2+ precipitation, which was revealed by the decrease of Ca2+ concentration, the rise of zeta potential and better sludge dewaterability in Ca(OH)2 system. In addition, Firmicutes, Proteobacteria and Actinobacteria were the main microbial functional groups in both types of alkali systems. NaOH system obtained higher microbial quantities which led to better acidification. For application, however, Ca(OH)2 was more economically feasible owning to its lower price and better dewaterability of residual sludge.
Collapse
Affiliation(s)
- Xiaoling Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, Heilongjiang, PR China; School of Civil Engineering, Key Laboratory of Water Supply & Sewage Engineering (Ministry of Housing and Urban-Rural Development), Chang'an University, Xi'an 710054, PR China
| | - Yongzhen Peng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, Heilongjiang, PR China; National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Baikun Li
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Changyong Wu
- Research Center of Water Pollution Control Technology, Chinese Research Academy of Environment Sciences, Beijing 100012, PR China
| | - Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Yaqian Zhao
- Centre for Water Resources Research, School of Civil Engineering, Newstead Building, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
40
|
Kavitha S, Yukesh Kannah R, Rajesh Banu J, Kaliappan S, Johnson M. Biological disintegration of microalgae for biomethane recovery-prediction of biodegradability and computation of energy balance. BIORESOURCE TECHNOLOGY 2017; 244:1367-1375. [PMID: 28522200 DOI: 10.1016/j.biortech.2017.05.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 04/27/2017] [Accepted: 05/01/2017] [Indexed: 06/07/2023]
Abstract
The present study investigates the synergistic effect of combined bacterial disintegration on mixed microalgal biomass for energy efficient biomethane generation. The rate of microalgal biomass lysis, enhanced biodegradability, and methane generation were used as indices to assess efficiency of the disintegration. A maximal dissolvable organics release and algal biomass lysis rate of about 1100, 950 and 800mg/L and 26, 23 and 18% was achieved in PA+C (protease, amylase+cellulase secreting bacteria), C (cellulase alone) and PA (protease, amylase) microalgal disintegration. During anaerobic fermentation, a greater production of volatile fatty acids (1000mg/L) was noted in PA+C bacterial disintegration of microalgal biomass. PA+C bacterial disintegration improve the amenability of microalgal biomass to biomethanation process with higher biodegradability of about 0.27gCOD/gCOD, respectively. The energy balance analysis of this combined bacterial disintegration of microalgal biomass provides surplus positive net energy (1.14GJ/d) by compensating the input energy requirements.
Collapse
Affiliation(s)
- S Kavitha
- Department of Civil Engineering, Regional Campus, Anna University, Tirunelveli, India
| | - R Yukesh Kannah
- Department of Civil Engineering, Regional Campus, Anna University, Tirunelveli, India
| | - J Rajesh Banu
- Department of Civil Engineering, Regional Campus, Anna University, Tirunelveli, India.
| | - S Kaliappan
- Department of Civil Engineering, Ponjesly College of Engineering, Nagercoil, India
| | - M Johnson
- Centre for Plant Biotechnology, St Xavier's College, Palayamkottai, Tirunelveli, India
| |
Collapse
|
41
|
Yukesh Kannah R, Kavitha S, Rajesh Banu J, Parthiba Karthikeyan O, Sivashanmugham P. Dispersion induced ozone pretreatment of waste activated biosolids: Arriving biomethanation modelling parameters, energetic and cost assessment. BIORESOURCE TECHNOLOGY 2017; 244:679-687. [PMID: 28818796 DOI: 10.1016/j.biortech.2017.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 07/31/2017] [Accepted: 08/02/2017] [Indexed: 06/07/2023]
Abstract
In this study, the phase separated effect of dispersion induced ozone pretreatment (DOP) was investigated. Solid reduction, biomass lysis and biomethane production were used as essential parameters to assess the potential of DOP over ozone pretreatment (OP). A higher suspended solid reduction of about 25.2% was achieved in DOP than OP 18%. The ozone dosage of 0.014gO3/g SS supported a maximal biomass lysis of about 32.8% when the biosolids were subjected to prior dispersion at 30s and 3000rpm. However, the same ozone dosage without phase separation achieved 9.6% biomass lysis. The second exponential model results of the biomethane assay showed that DOP enhanced the accessibility of disintegrated biosolids for methane production and induced about 1150mL/g VS of methane production. The energy analysis reveals that DOP provides significant amount of positive net energy (152.65kWh/ton) when compared to OP (-12.42kWh/ton).
Collapse
Affiliation(s)
- R Yukesh Kannah
- Department of Civil Engineering, Regional Centre of Anna University, Tirunelveli, India
| | - S Kavitha
- Department of Civil Engineering, Regional Centre of Anna University, Tirunelveli, India
| | - J Rajesh Banu
- Department of Civil Engineering, Regional Centre of Anna University, Tirunelveli, India.
| | - Obulisamy Parthiba Karthikeyan
- Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region; College of Marine and Environmental Science, James Cook University, Townsville, Queensland, Australia
| | - P Sivashanmugham
- Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, India
| |
Collapse
|
42
|
Yang S, McDonald J, Hai FI, Price WE, Khan SJ, Nghiem LD. The fate of trace organic contaminants in sewage sludge during recuperative thickening anaerobic digestion. BIORESOURCE TECHNOLOGY 2017; 240:197-206. [PMID: 28233607 DOI: 10.1016/j.biortech.2017.02.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/03/2017] [Accepted: 02/04/2017] [Indexed: 06/06/2023]
Abstract
The aim of this work was to study the fate of trace organic contaminants (TrOCs) in sewage sludge during recuperative thickening anaerobic digestion. Sludge shearing at 3142s-1 for 5minutes improved biogas production. By contrast, shearing at ≥6283s-1 for 5minutes caused a notable reduction in biogas production and the removal of volatile solids. Results reported here showed the prevalent occurrence of 17 TrOCs in sewage sludge and highlights the importance of assessing TrOC removal via mass balance calculation by taking into account partitioning between the aqueous and solid phase as well as biodegradation. Hydrophilic and readily-biodegradable TrOCs (caffeine, trimethoprim, and paracetamol) were well removed and were not affected by shearing. TrOCs such as carbamazepine, gemfibrozil, and diuron showed biodegradation only at high shearing. It is possible that shearing can facilitate the circulation of TrOCs between aqueous and solid phases, thus, enhancing the biodegradation of some TrOCs.
Collapse
Affiliation(s)
- Shufan Yang
- Strategic Water Infrastructure Lab, School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia
| | - James McDonald
- School of Civil and Environmental Engineering, University of New South Wales, NSW 2052, Australia
| | - Faisal I Hai
- Strategic Water Infrastructure Lab, School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia
| | - William E Price
- Strategic Water Infrastructure Lab, School of Chemistry, University of Wollongong, Australia
| | - Stuart J Khan
- School of Civil and Environmental Engineering, University of New South Wales, NSW 2052, Australia
| | - Long D Nghiem
- Strategic Water Infrastructure Lab, School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia.
| |
Collapse
|
43
|
Kavitha S, Subbulakshmi P, Rajesh Banu J, Gobi M, Tae Yeom I. Enhancement of biogas production from microalgal biomass through cellulolytic bacterial pretreatment. BIORESOURCE TECHNOLOGY 2017; 233:34-43. [PMID: 28258994 DOI: 10.1016/j.biortech.2017.02.081] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/15/2017] [Accepted: 02/17/2017] [Indexed: 06/06/2023]
Abstract
Generation of bioenergy from microalgal biomass has been a focus of interest in recent years. The recalcitrant nature of microalgal biomass owing to its high cellulose content limits methane generation. Thus, the present study investigates the effect of bacterial-based biological pretreatment on liquefaction of the microalga Chlorella vulgaris prior to anaerobic biodegradation to gain insights into energy efficient biomethanation. Liquefaction of microalgae resulted in a higher biomass stress index of about 18% in the experimental (pretreated with cellulose-secreting bacteria) vs. 11.8% in the control (non-pretreated) group. Mathematical modelling of the biomethanation studies implied that bacterial pretreatment had a greater influence on sustainable methane recovery, with a methane yield of about 0.08 (g Chemical Oxygen Demand/g Chemical Oxygen Demand), than did control pretreatment, with a yield of 0.04 (g Chemical Oxygen Demand/g Chemical Oxygen Demand). Energetic analysis of the proposed method of pretreatment showed a positive energy ratio of 1.04.
Collapse
Affiliation(s)
- S Kavitha
- Department of Civil Engineering, Regional Campus, Anna University, Tirunelveli, India
| | - P Subbulakshmi
- Department of Civil Engineering, Regional Campus, Anna University, Tirunelveli, India
| | - J Rajesh Banu
- Department of Civil Engineering, Regional Campus, Anna University, Tirunelveli, India.
| | - Muthukaruppan Gobi
- Department of Biotechnology, School of Bioengineering, SRM University, Potheri, Chennai, India
| | - Ick Tae Yeom
- Graduate School of Water Resource, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
44
|
Tamilarasan K, Kavitha S, Rajesh Banu J, Arulazhagan P, Yeom IT. Energy-efficient methane production from macroalgal biomass through chemo disperser liquefaction. BIORESOURCE TECHNOLOGY 2017; 228:156-163. [PMID: 28064132 DOI: 10.1016/j.biortech.2016.12.102] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/23/2016] [Accepted: 12/27/2016] [Indexed: 06/06/2023]
Abstract
In this study, an effort has been made to reduce the energy cost of liquefaction by coupling a mechanical disperser with a chemical (sodium tripolyphosphate). In terms of the cost and specific energy demand of liquefaction, the algal biomass disintegrated at 12,000rpm for 30min, and an STPP dosage of about 0.04g/gCOD was chosen as an optimal parameter. Chemo disperser liquefaction (CDL) was found to be energetically and economically sustainable in terms of liquefaction, methane production, and net profit (15%, 0.14gCOD/gCOD, and 4 USD/Ton of algal biomass) and preferable to disperser liquefaction (DL) (10%, 0.11 gCOD/gCOD, and -475 USD/Ton of algal biomass).
Collapse
Affiliation(s)
- K Tamilarasan
- Department of Civil Engineering, Regional Centre of Anna University, Tirunelveli, India
| | - S Kavitha
- Department of Civil Engineering, Regional Centre of Anna University, Tirunelveli, India
| | - J Rajesh Banu
- Department of Civil Engineering, Regional Centre of Anna University, Tirunelveli, India.
| | - P Arulazhagan
- Centre of Excellence in Environmental Studies, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ick Tae Yeom
- Graduate School of Water Resource, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
45
|
Pengyu D, Lianhua L, Feng Z, Xiaoying K, Yongming S, Yi Z. Comparison of dry and wet milling pre-treatment methods for improving the anaerobic digestion performance of the Pennisetum hybrid. RSC Adv 2017. [DOI: 10.1039/c6ra27822a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A planetary ball mill increased the specific methane yield of thePennisetumhybrid by 42%.
Collapse
Affiliation(s)
- Dong Pengyu
- Guangzhou Institute of Energy Conversion
- CAS Key Laboratory of Renewable Energy
- Chinese Academy of Sciences
- Guangzhou 510640
- China
| | - Li Lianhua
- Guangzhou Institute of Energy Conversion
- CAS Key Laboratory of Renewable Energy
- Chinese Academy of Sciences
- Guangzhou 510640
- China
| | - Zhen Feng
- Guangzhou Institute of Energy Conversion
- CAS Key Laboratory of Renewable Energy
- Chinese Academy of Sciences
- Guangzhou 510640
- China
| | - Kong Xiaoying
- Guangzhou Institute of Energy Conversion
- CAS Key Laboratory of Renewable Energy
- Chinese Academy of Sciences
- Guangzhou 510640
- China
| | - Sun Yongming
- Guangzhou Institute of Energy Conversion
- CAS Key Laboratory of Renewable Energy
- Chinese Academy of Sciences
- Guangzhou 510640
- China
| | - Zhang Yi
- Guangzhou Institute of Energy Conversion
- CAS Key Laboratory of Renewable Energy
- Chinese Academy of Sciences
- Guangzhou 510640
- China
| |
Collapse
|
46
|
Ushani U, Kavitha S, Johnson M, Yeom IT, Banu JR. Upgrading the hydrolytic potential of immobilized bacterial pretreatment to boost biogas production. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:813-826. [PMID: 27757748 DOI: 10.1007/s11356-016-7819-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/03/2016] [Indexed: 06/06/2023]
Abstract
In this study, surfactant dioctyl sodium sulphosuccinate (DOSS)-mediated immobilized bacterial pretreatment of waste activated sludge (WAS) was experimentally proved to be an efficient and economically feasible process for enhancing the biodegradability of WAS. The maximal floc disruption with negligible cell cleavage was achieved at surfactant dosage of 0.009 g/g SS. Results of the outcome of bacterial pretreatment of sludge biomass revealed that chemical oxygen demand (COD) solubilization for deflocculated (EPS removed-bacterially pretreated) sludge was 20 %, which was higher than that of flocculated (14 %) or control (5 %). The pretreatment was swift in deflocculated sludge with a rate constant of about 0.064 h-1. Biochemical methane potential (BMP) assay resulted in significant methane yield at 0.24 gCOD/gCOD for deflocculated sludge. Economic assessment of the proposed method showed a net profit of about 57.39 USD/ton of sludge.
Collapse
Affiliation(s)
- U Ushani
- Department of Civil Engineering, Regional Centre of Anna University, Tirunelveli, 627007, India
| | - S Kavitha
- Department of Civil Engineering, Regional Centre of Anna University, Tirunelveli, 627007, India
| | - M Johnson
- St. Xavier College, Palayamkottai, Tirunelveli, India
| | - Ick Tae Yeom
- Department of Civil and Environment Engineering, Sungkyunkwan University, Seoul, South Korea
| | - J Rajesh Banu
- Department of Civil Engineering, Regional Centre of Anna University, Tirunelveli, 627007, India.
| |
Collapse
|
47
|
Kavitha S, Rajesh Banu J, IvinShaju CD, Kaliappan S, Yeom IT. Fenton mediated ultrasonic disintegration of sludge biomass: Biodegradability studies, energetic assessment, and its economic viability. BIORESOURCE TECHNOLOGY 2016; 221:1-8. [PMID: 27631887 DOI: 10.1016/j.biortech.2016.09.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/02/2016] [Accepted: 09/03/2016] [Indexed: 05/25/2023]
Abstract
Mechanical disintegration of sludge through ultrasonication demands high energy and cost. Therefore, in the present study, a comprehensive investigation was performed to analyze the potential of a novel method, fenton mediated sonic disintegration (FSD). In FSD process, extracellular polymeric substance (EPS) of sludge was first removed via fenton treatment. It was subsequently disintegrated via ultrasonication. Energetic assessment and economic analysis were then performed using net energy and cost gain (spent) as key factor to evaluate the practical viability of the FSD process. FSD was found to be superior over sonic disintegration based on its higher sludge solubilization (34.4% vs. 23.2%) and methane production potential (0.3gCOD/gCOD vs. 0.2gCOD/gCOD). Both energy analysis and cost assessment of the present study revealed that FSD could reduce the energy demand of ultrasonication considerably with a positive net profit of about 44.93USD/Ton of sludge.
Collapse
Affiliation(s)
- S Kavitha
- Department of Civil Engineering, Regional Centre of Anna University, Tirunelveli, India
| | - J Rajesh Banu
- Department of Civil Engineering, Regional Centre of Anna University, Tirunelveli, India.
| | - C D IvinShaju
- Department of Civil Engineering, Regional Centre of Anna University, Tirunelveli, India
| | - S Kaliappan
- Department of Civil Engineering, Ponjesly College of Engineering, Nagercoil, India
| | - Ick Tae Yeom
- Department of Civil and Environmental Engineering, Sungkyunkwan University, Seoul, South Korea
| |
Collapse
|
48
|
Li X, Zhang W, Ma L, Lai S, Zhao S, Chen Y, Liu Y. Improved production of propionic acid driven by hydrolyzed liquid containing high concentration of l-lactic acid from co-fermentation of food waste and sludge. BIORESOURCE TECHNOLOGY 2016; 220:523-529. [PMID: 27614154 DOI: 10.1016/j.biortech.2016.08.066] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 08/13/2016] [Accepted: 08/16/2016] [Indexed: 06/06/2023]
Abstract
This study investigated the feasibility of improved production propionic acid-enriched volatile fatty acid (VFA) from high concentration (Cs) of food waste and waste activated sludge (WAS) via lactic acid pathway by using of Propionibacterium acidipropionici. It was observed that production of l-lactate overwhelmed to d-lactate at first stage, which improved from 3.21 to 35.45gCOD/L with increase of substrate Cs. However, kinetic model analysis indicated that P. acidipropionici growth rate μmax was decreased with increase of l-lactate concentration, which explained second stage free cell fermentation of propionic acid was inhibited when fed by first stage liquid from R-40, R-55 and R-70. Then, the fibrous bed bioreactor was employed to eliminate the feed inhibition. The maximal percentage of propionic acid (68.3%) and production (16.31gCOD/L) was obtained by feeding liquid of R-55, which was improved by 3.33 folds compared to the free cell fermentation.
Collapse
Affiliation(s)
- Xiang Li
- State Environmental Protection Engineering Centre for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; Jiangsu Tongyan Environm Prod Sci & Technol Co Lt, Yancheng 224000, China
| | - Wenjuan Zhang
- State Environmental Protection Engineering Centre for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Li Ma
- State Environmental Protection Engineering Centre for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Sizhou Lai
- State Environmental Protection Engineering Centre for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Shu Zhao
- AgroParis Tech, Paris Institute of Technology For Life, Food & Environmental Science, F-75231 Paris Cedex 05, France
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yanan Liu
- State Environmental Protection Engineering Centre for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China.
| |
Collapse
|
49
|
Ye C, Yuan H, Dai X, Lou Z, Zhu N. Electrochemical pretreatment of waste activated sludge: effect of process conditions on sludge disintegration degree and methane production. ENVIRONMENTAL TECHNOLOGY 2016; 37:2935-2944. [PMID: 27058022 DOI: 10.1080/09593330.2016.1170209] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 03/20/2016] [Indexed: 06/05/2023]
Abstract
Waste activated sludge (WAS) requires a long digestion time because of a rate-limiting hydrolysis step - the first phase of anaerobic digestion (AD). Pretreatment can be used prior to AD to facilitate the hydrolysis step and improve the efficiency of WAS digestion. This study evaluated a novel application of electrochemical (EC) technology employed as the pretreatment method prior to AD of WAS, focusing on the effect of process conditions on sludge disintegration and subsequent AD process. A superior process condition of EC pretreatment was obtained by reaction time of 30 min, electrolysis voltage of 20 V, and electrode distance of 5 cm, under which the disintegration degree of WAS ranged between 9.02% and 9.72%. In the subsequent batch AD tests, 206 mL/g volatile solid (VS) methane production in EC pretreated sludge was obtained, which was 20.47% higher than that of unpretreated sludge. The AD time was 19 days shorter for EC pretreated sludge compared to the unpretreated sludge. Additionally, the EC + AD reactor achieved 41.84% of VS removal at the end of AD. The analysis of energy consumption showed that EC pretreatment could be effective in enhancing sludge AD with reduced energy consumption when compared to other pretreatment methods.
Collapse
Affiliation(s)
- Caihong Ye
- a School of Environmental Science and Engineering , Shanghai Jiao Tong University , Shanghai , People's Republic of China
| | - Haiping Yuan
- a School of Environmental Science and Engineering , Shanghai Jiao Tong University , Shanghai , People's Republic of China
| | - Xiaohu Dai
- b National Engineering Research Center for Urban Pollution Control, School of Environmental Science and Engineering , Tongji University , Shanghai , People's Republic of China
| | - Ziyang Lou
- a School of Environmental Science and Engineering , Shanghai Jiao Tong University , Shanghai , People's Republic of China
| | - Nanwen Zhu
- a School of Environmental Science and Engineering , Shanghai Jiao Tong University , Shanghai , People's Republic of China
| |
Collapse
|
50
|
Kavitha S, Rajesh Banu J, Subitha G, Ushani U, Yeom IT. Impact of thermo-chemo-sonic pretreatment in solubilizing waste activated sludge for biogas production: Energetic analysis and economic assessment. BIORESOURCE TECHNOLOGY 2016; 219:479-486. [PMID: 27521784 DOI: 10.1016/j.biortech.2016.07.115] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 07/26/2016] [Accepted: 07/27/2016] [Indexed: 06/06/2023]
Abstract
The objective of this study was to determine the impact of solubilization during thermo-chemo-sonic pretreatment of waste activated sludge (WAS) on anaerobic biodegradability and cost for biogas production. The results revealed that it was possible to achieve 40-50% of solubilization of WAS when ultrasonic energy input was doubled (11,520-27,000kJ/kgTS). The cost to achieve 30-35% of solubilization of WAS was calculated to be 0.22-0.24USD/L, which was relatively lower than the cost of 0.53-0.8USD/L when 40-50% of solubilisation of WAS was achieved. There was no significant difference in biodegradability (0.60-0.64gCOD/gCOD) for samples with solubilization efficiency of 35-50%. Comparing energetic balance and economic assessment of samples with different solubilization percentages, the results showed that samples with 30-35% of solubilization had lower net cost (7.98-2.33USD/Ton of sludge) and negative energy balance compared to samples with other percentages of solubilization.
Collapse
Affiliation(s)
- S Kavitha
- Department of Civil Engineering, Regional Centre of Anna University, Tirunelveli, India
| | - J Rajesh Banu
- Department of Civil Engineering, Regional Centre of Anna University, Tirunelveli, India.
| | - G Subitha
- Department of Civil Engineering, Regional Centre of Anna University, Tirunelveli, India
| | - U Ushani
- Department of Civil Engineering, Regional Centre of Anna University, Tirunelveli, India
| | - Ick Tae Yeom
- Graduate School of Water Resource, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|