1
|
Gaudin K. Potential of green solvents as mobile phases in liquid chromatography. J Chromatogr A 2025; 1750:465810. [PMID: 40179669 DOI: 10.1016/j.chroma.2025.465810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 04/05/2025]
Abstract
This review summarizes the key points and focuses on the use of green solvents in reversed-phase high-performance liquid chromatography. Ethanol, acetone, ethyl lactate, propylene carbonate, dimethyl carbonate, methyl acetate, Cyrene, and glycerol are examined as green solvents, with an emphasis on their properties related to HPLC applications. A total of 135 articles published between 1990 and the present, which utilize ethanol-water mobile phases in RP-HPLC, highlight the established use of ethanol as a green solvent for RP-HPLC. Although ethanol is often characterized by its high viscosity and UV absorbance, it remains one of the most commonly used green solvents. This study shows that approximately 30 % of the ethanol-based methods developed employed columns with reduced particle diameters, without the need for column heating. In 26 % of cases, UV detection was used, even at wavelengths egal to or below 220 nm. However, ethanol's volatility and flammability pose risks of operator exposure and fire hazards. Consequently, alternative solvents have been explored to mitigate these issues. Acetone, with over 20 years of use, presents similar safety concerns, compounded by its high UV absorbance. Recent advances in greener solvents, such as Cyrene, glycerol, and natural deep eutectic solvents, have been investigated to address VOC concerns in HPLC. However, these solvents still face challenges, including UV absorption, immiscibility with water, high viscosity, and limited availability in HPLC-grade quality. Therefore, additional research is needed to facilitate their broader application.
Collapse
Affiliation(s)
- Karen Gaudin
- Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d'Ornon, France.
| |
Collapse
|
2
|
Zhou Z, Ding H, Shi C, Peng S, Zhu B, An X, Li H. Enhanced butanol tolerance and production from puerariae slag hydrolysate by Clostridium beijerinckii through metabolic engineering and process regulation strategies. BIORESOURCE TECHNOLOGY 2025; 419:132035. [PMID: 39755159 DOI: 10.1016/j.biortech.2025.132035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/21/2024] [Accepted: 01/01/2025] [Indexed: 01/06/2025]
Abstract
Butanol is a more desirable second-generation biomass energy source. Acetone-butanol-ethanol (ABE) fermentation using Clostridium spp. is a promising method for butanol production. However, the toxicity of butanol to the producing strains leading to its low yield and the high cost of feedstock are the main obstacles limiting the ABE fermentation industry. In this study, to enhance the butanol tolerance and production in Clostridium beijerinckii D9, the strategies of metabolic engineering and process regulation were employed. With this effort, a recombinant strain D9/pykA was successfully developed. Furthermore, the effect of exogenous fermentation waste streams and their two-stage addition strategy on ABE fermentation was also investigated. Under the optimal condition, the highest butanol and total solvent production of 11.20 ± 0.58 g/L and 13.65 ± 0.51 g/L was achieved in C. beijerinckii D9/pykA, representing increases of 40.70 % and 37.05 %, respectively, compared to the original strain D9. Additionally, the results of the physiological mechanism revealed that the two-stage fermentation waste stream addition improved NADH synthesis and upregulated key genes involved in butanol biosynthesis, and thus enhancing the production. These insights could provide a foundation for further optimization of ABE fermentation processes and offer promising avenues for improving other similar research.
Collapse
Affiliation(s)
- Zhiyou Zhou
- College of Bioscience and Bioengineering, Institute of Applied Microbiology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China; State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Huanhuan Ding
- College of Bioscience and Bioengineering, Institute of Applied Microbiology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Chaoyue Shi
- College of Bioscience and Bioengineering, Institute of Applied Microbiology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Shuaiyin Peng
- College of Bioscience and Bioengineering, Institute of Applied Microbiology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Biao Zhu
- College of Bioscience and Bioengineering, Institute of Applied Microbiology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Xuejiao An
- College of Bioscience and Bioengineering, Institute of Applied Microbiology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Hanguang Li
- College of Bioscience and Bioengineering, Institute of Applied Microbiology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China.
| |
Collapse
|
3
|
Bai X, Xu K, Zhao Z, Qin H, Nam KH, Quan C, Ha NC, Xu Y. Structural and Biochemical Analysis of Butanol Dehydrogenase From Thermotoga maritima. Proteins 2024; 92:1357-1365. [PMID: 39023292 DOI: 10.1002/prot.26731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/10/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024]
Abstract
Butanol dehydrogenase (BDH) plays a crucial role in butanol biosynthesis by catalyzing the conversion of butanal to butanol using the coenzyme NAD(P)H. In this study, we observed that BDH from Thermotoga maritima (TmBDH) exhibits dual coenzyme specificity and catalytic activity with NADPH as the coenzyme under highly alkaline conditions. Additionally, a thermal stability analysis on TmBDH demonstrated its excellent activity retention even at elevated temperatures of 80°C. These findings demonstrate the superior thermal stability of TmBDH and suggest that it is a promising candidate for large-scale industrial butanol production. Furthermore, we discovered that TmBDH effectively catalyzes the conversion of aldehydes to alcohols and exhibits a wide range of substrate specificities toward aldehydes, while excluding alcohols. The dimeric state of TmBDH was observed using rapid online buffer exchange native mass spectrometry. Additionally, we analyzed the coenzyme-binding sites and inferred the possible locations of the substrate-binding sites. These results provide insights that improve our understanding of BDHs.
Collapse
Affiliation(s)
- Xue Bai
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, Liaoning, China
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, China
| | - Ke Xu
- Department of Ophthalmology, The Fourth People's Hospital of Shenyang, Shenyang, China
| | - Zhidan Zhao
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, Liaoning, China
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, China
| | - Huiwen Qin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
| | - Ki Hyun Nam
- College of General Education, Kookmin University, Seoul, South Korea
| | - Chunshan Quan
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, Liaoning, China
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, China
| | - Nam-Chul Ha
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Yongbin Xu
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, Liaoning, China
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, China
| |
Collapse
|
4
|
Saravanan P, Rajeswari S, Divyabaskaran, López-Maldonado EA, Rajeshkannan R, Viswanathan S. Recent developments on sustainable biobutanol production: a novel integrative review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:46858-46876. [PMID: 38981967 DOI: 10.1007/s11356-024-34230-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 06/30/2024] [Indexed: 07/11/2024]
Abstract
Renewable and sustainable biofuel production, such as biobutanol, is becoming increasingly popular as a substitute for non-renewable and depleted petrol fuel. Many researchers have studied how to produce butanol cheaply by considering appropriate feedstock materials and bioprocess technologies. The production of biobutanol through acetone-butanol-ethanol (ABE) is highly sought after around the world because of its sustainable supply and lack of competition with food. The purpose of this study is to present the current biobutanol production research and to analyse the biobutanol research conducted during 2006 to 2023. The keyword used in this study is "Biobutanol," and the relevant data was extracted from the Web of Science database (WoS). According to the results, institutions and scholars from the People's Republic of China, the USA, and India have the highest number of cited papers across a broad spectrum of topics including acetone-butanol-ethanol (ABE) fermentation, biobutanol, various pretreatment techniques, and pervaporation. The success of biobutanol fermentation from biomass depends on the ability of the fermentation operation to match the microbial behaviour along with the appropriate bioprocessing strategies to improve the entire process to be suitable for industrial scale. Based on the review data, we will look at the biobutanol technologies and appropriate strategies that have been developed to improve biobutanol production from renewable biomass.
Collapse
Affiliation(s)
- Panchamoorthy Saravanan
- Department of Petrochemical Technology, Anna University, UCE-BIT Campus, Tiruchirappalli, Tamil Nadu, India
| | - Shanmugam Rajeswari
- Department in the Library, Anna University, Tamil Nadu, UCE-BIT Campus, Tiruchirappalli, 620024, India
| | - Divyabaskaran
- Department of Biomaterials, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, India
- Department of Chemical and Biomolecular Engineering, Chonnam National University, Yeosu, 59626, South Korea
| | - Eduardo Alberto López-Maldonado
- Faculty of Chemical Sciences and Engineering, Autonomous University of Baja California, 22424, Tijuana, Baja California, Mexico.
| | - Rajan Rajeshkannan
- Department of Chemical Engineering, Annamalai University, Chidambaram, 608001, Tamil Nadu, India
| | - Saravanan Viswanathan
- Department of Chemical Engineering, Annamalai University, Chidambaram, 608001, Tamil Nadu, India
| |
Collapse
|
5
|
Zhang X, Wang Y, Jiao P, Zhang M, Deng Y, Jiang C, Liu XW, Lou L, Li Y, Zhang XX, Ma L. Microbiome-functionality in anaerobic digesters: A critical review. WATER RESEARCH 2024; 249:120891. [PMID: 38016221 DOI: 10.1016/j.watres.2023.120891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 11/08/2023] [Accepted: 11/16/2023] [Indexed: 11/30/2023]
Abstract
Microbially driven anaerobic digestion (AD) processes are of immense interest due to their role in the biovalorization of biowastes into renewable energy resources. The function-versatile microbiome, interspecies syntrophic interactions, and trophic-level metabolic pathways are important microbial components of AD. However, the lack of a comprehensive understanding of the process hampers efforts to improve AD efficiency. This study presents a holistic review of research on the microbial and metabolic "black box" of AD processes. Recent research on microbiology, functional traits, and metabolic pathways in AD, as well as the responses of functional microbiota and metabolic capabilities to optimization strategies are reviewed. The diverse ecophysiological traits and cooperation/competition interactions of the functional guilds and the biomanipulation of microbial ecology to generate valuable products other than methane during AD are outlined. The results show that AD communities prioritize cooperation to improve functional redundancy, and the dominance of specific microbes can be explained by thermodynamics, resource allocation models, and metabolic division of labor during cross-feeding. In addition, the multi-omics approaches used to decipher the ecological principles of AD consortia are summarized in detail. Lastly, future microbial research and engineering applications of AD are proposed. This review presents an in-depth understanding of microbiome-functionality mechanisms of AD and provides critical guidance for the directional and efficient bioconversion of biowastes into methane and other valuable products.
Collapse
Affiliation(s)
- Xingxing Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Yiwei Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Pengbo Jiao
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Ming Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Ye Deng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Chengying Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing 100101, PR China
| | - Xian-Wei Liu
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Liping Lou
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, PR China
| | - Yongmei Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Liping Ma
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, Shanghai 200062, PR China.
| |
Collapse
|
6
|
Jawad M, Wang H, Wu Y, Rehman O, Song Y, Xu R, Zhang Q, Gao H, Xue C. Lignocellulosic ethanol and butanol production by Saccharomyces cerevisiae and Clostridium beijerinckii co-culture using non-detoxified corn stover hydrolysate. J Biotechnol 2024; 379:1-5. [PMID: 37944902 DOI: 10.1016/j.jbiotec.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Considering global economic and environmental -benefits, green renewable biofuels such as ethanol and butanol are considered as sustainable alternatives to fossil fuels. Thus, developing a co-culture strategy for ethanol and butanol production by Saccharomyces cerevisiae and Clostridium beijerinckii has emerged as a promising approach for biofuel production from lignocellulosic biomass. This study developed a co-culture of S. cerevisiae and C. beijerinckii for ethanol and butanol production from non-detoxified corn stover hydrolysate. By firstly inoculating 3 % S. cerevisiae and then 7 % C. beijerinckii with 8-10 h time intervals, the optimized co-culture process gave 24.0 g/L ABE (20.8 g/L ethanol and 2.4 g/L butanol), obtaining ABE yield and productivity of 0.421 g/g and 0.55 g/L/h. The demonstrated co-culture strategy made full use of hexose and pentose in hydrolysate and contributed to total yield and efficiency compared to conventional ethanol or ABE fermentation, indicating its great potential for developing economically feasible and sustainable bioalcohols production.
Collapse
Affiliation(s)
- Muhammad Jawad
- MOE Key Laboratory of Bio-Intelligent Manufacturing, Engineering Research Center of Application and Transformation for Synthetic Biology, School of Bioengineering, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Huan Wang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, Engineering Research Center of Application and Transformation for Synthetic Biology, School of Bioengineering, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Youduo Wu
- MOE Key Laboratory of Bio-Intelligent Manufacturing, Engineering Research Center of Application and Transformation for Synthetic Biology, School of Bioengineering, Dalian University of Technology, Dalian 116024, Liaoning, China; Ningbo Institute of Dalian University of Technology, Ningbo 315016, China.
| | - Omama Rehman
- MOE Key Laboratory of Bio-Intelligent Manufacturing, Engineering Research Center of Application and Transformation for Synthetic Biology, School of Bioengineering, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Yongxiu Song
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
| | - Rui Xu
- Yunnan Provincial Rural Energy Engineering Key Laboratory, Kunming 650600, China
| | - Quan Zhang
- SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd., Dalian 116041, China
| | - Huipeng Gao
- SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd., Dalian 116041, China
| | - Chuang Xue
- MOE Key Laboratory of Bio-Intelligent Manufacturing, Engineering Research Center of Application and Transformation for Synthetic Biology, School of Bioengineering, Dalian University of Technology, Dalian 116024, Liaoning, China; Ningbo Institute of Dalian University of Technology, Ningbo 315016, China.
| |
Collapse
|
7
|
Huffman J, Drouin P, Renaud JB, Dunière L, LaPointe G. Farm management practices and season dependent factors affect the microbial community and chemical profile of corn and grass-legume silages of farms in Ontario, Québec, and Northern New York. Front Microbiol 2023; 14:1214915. [PMID: 37538849 PMCID: PMC10394519 DOI: 10.3389/fmicb.2023.1214915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/26/2023] [Indexed: 08/05/2023] Open
Abstract
The effects of farm management practices and seasonal variation on the microbial community and chemical composition of corn and grass-legume silage are largely understudied due to the advantages of controlled mini-silo experiments. This study aims to investigate the effects that some key farm factors (use of an inoculant, farm region, and bunker or tower silo) and seasonal variations have on corn and grass-legume silage from farms across Ontario, Quebec, and New York. The silage was either treated with a commercial inoculant (Lallemand Biotal Buchneri 500® or Chr Hansen SiloSolve FC®) or left untreated. The bacterial communities of silage were compared to those of raw bulk tank milk from the same farm to determine if they were similarly affected by management practices or seasonal variations. Family level analysis of the 16S rRNA V3-V4 gene amplicon bacterial community, the ITS1 amplicon fungal community, NMR water soluble metabolome, and mycotoxin LC-MS were performed on silage over a two-year period. Chemical compounds associated with the use of inoculants in corn and grass-legume silage were higher in inoculated corn (acetate, propane-1,2-diol, γ-aminobutyrate; p < 0.001) and grass-legume (propionate; p = 0.011). However, there was no significant difference in the relative abundance (RA) of Lactobacillaceae in either silage type. Leuconostocaceae was higher in non-inoculated corn (p < 0.001) and grass-legume (p < 0.001) silage than in inoculated silage. Tower silos had higher RA of Leuconostocaceae (p < 0.001) and higher pH (p < 0.001) in corn and grass-legume silage. The one farm that used liquid manure with no other fertilizer type had higher RA of Clostridiaceae (p = 0.045) and other rumen/fecal (p < 0.006) bacteria in grass-legume silage than all other farms. Seasonal variation affected most of the key silage microbial families, however the trends were rarely visible across both years. Few trends in microbial variation could be observed in both silage and bulk tank milk: two farms had higher Moraxellaceae (p < 0.001) in milk and either corn or grass-legume silage. In farms using an inoculant, lower Staphylococcaceae was observed in the raw bulk tank milk.
Collapse
Affiliation(s)
- Jesse Huffman
- Department of Food Science, Dairy at Guelph, Ontario Agricultural College, University of Guelph, Guelph, ON, Canada
| | - Pascal Drouin
- Independent Researcher, Saint-Jean-sur-Richelieu, QC, Canada
| | - Justin B. Renaud
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Center, Ottawa, ON, Canada
| | | | - Gisèle LaPointe
- Department of Food Science, Dairy at Guelph, Ontario Agricultural College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
8
|
Mao B, Zhang B. Combining ABE fermentation and anaerobic digestion to treat with lipid extracted algae for enhanced bioenergy production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162691. [PMID: 36898333 DOI: 10.1016/j.scitotenv.2023.162691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
As a downstream process output, biobutanol can be produced via acetone, butanol, and ethanol (ABE) fermentation from lipid-extracted algae (LEA), but the leftover residue has not been treated for additional value. In current study, LEA were acid hydrolyzed to extract glucose into the hydrolysate, which was then used for ABE fermentation to produce butanol. In the meantime, anaerobic digestion was performed on the hydrolysis residue to produce methane and release nutrients for algae recultivation. To optimize butanol and methane production, several carbon or nitrogen supplements were applied. The results showed that the hydrolysate produced a high butanol concentration of 8.5 g/L with bean cake supplemented, and the residue co-digested with wastepaper had a higher methane production compared to the direct anaerobic digestion of LEA. The causes of the enhanced performances were discussed. The digestates were reused for algae recultivation and were proved to be effective for algae and oil reproduction. The combined process of ABE fermentation and anaerobic digestion was thus proved a promising technique to treat LEA for economic benefit.
Collapse
Affiliation(s)
- Bifei Mao
- Department of Chemistry, Biology and Materials, East China University of Technology, Guanglan Blvd 418, Nanchang, Jiangxi 330013, China
| | - Bingcong Zhang
- Department of Water Resource and Environmental Engineering, East China University of Technology, Guanglan Blvd 418, Nanchang, Jiangxi 330013, China.
| |
Collapse
|
9
|
Zhang Y, Li J, Yong YC, Fang Z, Yan H, Li J, Meng J. Highly selective butanol production by manipulating electron flow via cathodic electro-fermentation. BIORESOURCE TECHNOLOGY 2023; 374:128770. [PMID: 36822560 DOI: 10.1016/j.biortech.2023.128770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/13/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Butanol production by solventogenic Clostridia shows great potential to combat the energy crisis, but is still challenged by low butanol selectivity and high downstream cost. In this study, a novel cathodic electro-fermentation (CEF) system mediated by methyl viologen (MV) was proposed and sequentially optimized to obtain highly selective butanol production. Under the optimal conditions (-0.60 V cathode potential, 0.50 mM MV, 30 g/L glucose), 7.17 ± 0.55 g/L butanol production were achieved with the yield of 0.32 ± 0.02 g/g. With the supplement of 4 g/L butyric acid as co-substrate, butanol production further improved to 13.14 ± 1.14 g/L with butanol yield and selectivity as high as 0.43 ± 0.01 g/g and 90.44 ± 1.66%, respectively. The polarized electrode enabled the unbalanced fermentation towards butanol formation and MV further inhibited hydrogen production, both of which contributed to the high-level butanol production and selectivity. The MV-mediated CEF system is a promising approach for cost-effective bio-butanol production.
Collapse
Affiliation(s)
- Yafei Zhang
- National Engineering Research Center for Safe Sludge Disposal and Resource Recovery, School of Environment, Harbin Institute of Technology, Harbin 150090, China; Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianzheng Li
- National Engineering Research Center for Safe Sludge Disposal and Resource Recovery, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yang-Chun Yong
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhen Fang
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Han Yan
- National Engineering Research Center for Safe Sludge Disposal and Resource Recovery, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jiuling Li
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Jia Meng
- National Engineering Research Center for Safe Sludge Disposal and Resource Recovery, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
10
|
Ohno R, Sugane K, Shibata M. Thermal and mechanical properties of polymer networks prepared by the thiol-ene reaction of a vanillin/acetone condensate and its related compounds. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Peculiar Response in the Co-Culture Fermentation of Leuconostoc mesenteroides and Lactobacillus plantarum for the Production of ABE Solvents. FERMENTATION 2021. [DOI: 10.3390/fermentation7040212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Two bacterial strains (CL11A and CL11D) that are capable of ABE fermentation, identified as Leuconostoc mesenteroides and Weissella cibari, were isolated from the soil surrounding the roots of bean plants. Another strain (ZM 3A), identified as Lactobacillus plantarum, which is capable of purely ethanolic fermentation was isolated from sugarcane. Glucose was used as a standard substrate to investigate the performance of these strains in mono—and co-culture fermentation for ABE production. The performance parameters employed in this study were substrate degradation rates, product and metabolite yields, pH changes and microbial growth rates. Both ABE isolates were capable of producing the three solvents but Leuconostoc mesenteroides had a higher specificity for ethanol than Weissella cibari. The co-culturing of Leuconostoc mesenteroides and Lactobacillus plantarum enhanced ethanol production at the expense of both acetone and butanol, and also influenced the final substrate consumption rate and product yield. The experiments indicated the potential of these niche environments for the isolation of ABE-producing microorganisms. This study contributes to the formulation of ideal microbial co-culture and consortia fermentation, which seeks to maximize the yield and production rates of favored products.
Collapse
|
12
|
Zhang C, Zhou X, Tong T, Ge J. Acetic acid acting as a signaling molecule in the quorum sensing system increases 2,3-butanediol production in Saccharomyces cerevisiae. Prep Biochem Biotechnol 2021; 52:487-497. [PMID: 34431753 DOI: 10.1080/10826068.2021.1966800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
2,3-Butanediol (2,3-BD) has been extensively used in chemical syntheses. This study aimed to explore acetic acid as a signaling molecule that activates a quorum sensing (QS) system to promote the production of 2,3-BD. The yield of 2,3-BD is proportional to the cell density. Saccharomyces cerevisiae W141 does not produce 2,3-BD when the cell density is lower than the threshold concentration (OD600 nm = 10 or cell density 4.4 × 108 CFU/mL). When 1.5 g/L acetic acid is added, the yield of 2,3-BD is 3.01 ± 0.04 g/L. Subsequently, S. cerevisiae W141 was cocultured with Acetobacter pasteurianus Huniang 1.01 under the optimal conditions, the acetic acid production was increased by 76.7% and 30.6% compared with the original strain and the strain cultivated with 1.5 g/L acetic acid, and the yield of 2,3-BD was increased by 81.9% and 3.3%, respectively. This difference is due to the activity of acetyl lactic acid synthase (ILV2) and 2,3-BD dehydrogenase (BDH1), as the relative expression of the ilv2 and bdh1 genes is increased. The results showed that the biosynthesis of 2,3-BD was regulated by acetic acid as a signaling molecule. S. cerevisiae is a promising host for producing 2,3-BD for industrial applications.
Collapse
Affiliation(s)
- Chi Zhang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Xiaohang Zhou
- College of Basic Medicine, Mudanjiang Medical University, Mudanjiang, China
| | - Tianqi Tong
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Jingping Ge
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, China
| |
Collapse
|
13
|
Kato J, Takemura K, Kato S, Fujii T, Wada K, Iwasaki Y, Aoi Y, Matsushika A, Murakami K, Nakashimada Y. Metabolic engineering of Moorella thermoacetica for thermophilic bioconversion of gaseous substrates to a volatile chemical. AMB Express 2021; 11:59. [PMID: 33891189 PMCID: PMC8065083 DOI: 10.1186/s13568-021-01220-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 04/09/2021] [Indexed: 11/26/2022] Open
Abstract
Gas fermentation is one of the promising bioprocesses to convert CO2 or syngas to important chemicals. Thermophilic gas fermentation of volatile chemicals has the potential for the development of consolidated bioprocesses that can simultaneously separate products during fermentation. This study reports the production of acetone from CO2 and H2, CO, or syngas by introducing the acetone production pathway using acetyl–coenzyme A (Ac-CoA) and acetate produced via the Wood–Ljungdahl pathway in Moorella thermoacetica. Reducing the carbon flux from Ac-CoA to acetate through genetic engineering successfully enhanced acetone productivity, which varied on the basis of the gas composition. The highest acetone productivity was obtained with CO–H2, while autotrophic growth collapsed with CO2–H2. By adding H2 to CO, the acetone productivity from the same amount of carbon source increased compared to CO gas only, and the maximum specific acetone production rate also increased from 0.04 to 0.09 g-acetone/g-dry cell/h. Our development of the engineered thermophilic acetogen M. thermoacetica, which grows at a temperature higher than the boiling point of acetone (58 °C), would pave the way for developing a consolidated process with simplified and cost-effective recovery via condensation following gas fermentation.
Collapse
|
14
|
Muldoon JA, Harvey BG. Bio-Based Cycloalkanes: The Missing Link to High-Performance Sustainable Jet Fuels. CHEMSUSCHEM 2020; 13:5777-5807. [PMID: 32810345 DOI: 10.1002/cssc.202001641] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/14/2020] [Indexed: 05/12/2023]
Abstract
The development of sustainable energy solutions that reduce global carbon emissions, while maintaining high living standards, is one of the grand challenges of the current century. Transportation fuels are critical to economic development, globalization, and the advancement of society. Although ground vehicles and small aircraft are beginning a slow transition toward electric propulsion with energy sourced from solar radiation or wind, the extreme power requirements of jet aircraft require a more concentrated source of energy that is conveniently provided by liquid hydrocarbon fuels. This Review describes recent efforts to develop efficient routes for the conversion of crude biomass sources (e. g., lignocellulose) to cycloalkanes. These cycloalkanes impart advantageous properties to jet fuels, including increased density, higher volumetric heat of combustion, and enhanced operability. The combination of bio-based cycloalkanes and synthetic paraffinic kerosenes allows for the preparation of 100 % bio-based fuels that can outperform conventional petroleum-based fuels. In this Review methods are described that convert biomass-derived small molecules, including furfural, furfuryl alcohol, 5-hydroxymethylfurfural, cyclic ketones, phenolics, acyclic ketones, cyclic alcohols, furans, esters, and alkenes to high-density cycloalkanes. In addition to describing the chemical transformations and catalysts that have been developed to efficiently produce various cycloalkanes, this Review includes summaries of key fuel properties, which highlight the ability to generate fuels with customized performance metrics. This work is intended to inspire other researchers to study the conversion of sustainable feedstocks to full-performance aviation fuels. An acceleration of this research is critical to reducing the carbon footprint of commercial and military aviation on a timescale that will help blunt the impacts of global warming.
Collapse
Affiliation(s)
- Jake A Muldoon
- US NAVY, NAWCWD, Research Department, Chemistry Branch, China Lake, California, 93555, USA
| | - Benjamin G Harvey
- US NAVY, NAWCWD, Research Department, Chemistry Branch, China Lake, California, 93555, USA
| |
Collapse
|
15
|
Du Y, Zou W, Zhang K, Ye G, Yang J. Advances and Applications of Clostridium Co-culture Systems in Biotechnology. Front Microbiol 2020; 11:560223. [PMID: 33312166 PMCID: PMC7701477 DOI: 10.3389/fmicb.2020.560223] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/20/2020] [Indexed: 01/09/2023] Open
Abstract
Clostridium spp. are important microorganisms that can degrade complex biomasses such as lignocellulose, which is a widespread and renewable natural resource. Co-culturing Clostridium spp. and other microorganisms is considered to be a promising strategy for utilizing renewable feed stocks and has been widely used in biotechnology to produce bio-fuels and bio-solvents. In this review, we summarize recent progress on the Clostridium co-culture system, including system unique advantages, composition, products, and interaction mechanisms. In addition, biochemical regulation and genetic modifications used to improve the Clostridium co-culture system are also summarized. Finally, future prospects for Clostridium co-culture systems are discussed in light of recent progress, challenges, and trends.
Collapse
Affiliation(s)
- Yuanfen Du
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, China.,Research Laboratory of Baijiu Resource Microorgannisms and Big Data, Sichuan University of Science and Engineering, Yibin, China
| | - Wei Zou
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, China.,Research Laboratory of Baijiu Resource Microorgannisms and Big Data, Sichuan University of Science and Engineering, Yibin, China
| | - Kaizheng Zhang
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, China
| | - Guangbin Ye
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, China
| | - Jiangang Yang
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, China
| |
Collapse
|
16
|
Luo H, Zheng P, Bilal M, Xie F, Zeng Q, Zhu C, Yang R, Wang Z. Efficient bio-butanol production from lignocellulosic waste by elucidating the mechanisms of Clostridium acetobutylicum response to phenolic inhibitors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 710:136399. [PMID: 31923698 DOI: 10.1016/j.scitotenv.2019.136399] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/24/2019] [Accepted: 12/27/2019] [Indexed: 05/12/2023]
Abstract
Lignocellulosic biomass is considered abundant renewable feedstock to constitute a green and environmentally friendly approach for biofuels (bio-butanol) production as an effective substitute for fossil resources. However, a variety of fermentable inhibitors can be generated in hydrolysates during the biomass pretreatment process. Among them, phenolics including phenolic acids and phenolic aldehydes are the most toxic inhibitors to solventogenic clostridia for bio-butanol production. This study elucidates the physiological mechanism of Clostridium acetobutylicum ATCC 824 response to phenolic inhibitors by the integration of kinetics and transcriptional analysis. Butanol fermentations were stressed by 0.4 g/L phenolic acids or 0.4 g/L phenolic aldehydes at 12 h at the beginning of solventogenesis. With post-stress for 12 h, butanol titer was 7.01 g/L in fermentation with phenolic acid stress, while only 5.82 g/L butanol was produced in the case of phenolic aldehydes stress. Reductions in the two fermentations were 27.6% and 40.0% in comparison with the control (without stress), indicated that phenolic aldehydes had a stronger inhibitory effect on solvents synthesis in C. acetobutylicum than phenolic acids. Additionally, the transcriptional analysis revealed that phenolics altered the gene expression profiles related to membrane transporters such as ATP-binding cassette (ABC)-transporter and phosphotransferase system (PTS), glycolysis, and heat shock proteins. The lower expression levels of PTS-related genes might result in reduced glucose consumption and finally inhibited solvents synthesis under phenolic aldehydes stress. Some genes encoding histidine kinase (CA_C0323, CA_C0903, and CA_C3319) were also affected by phenolics, which might inhibit sporulation. In conclusion, our results provide valuable guidance for the construction of robust strain to efficiently produce bio-butanol from lignocellulosic biomass.
Collapse
Affiliation(s)
- Hongzhen Luo
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Panli Zheng
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Fang Xie
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Qingwei Zeng
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Chun Zhu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Rongling Yang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Zhaoyu Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| |
Collapse
|
17
|
Ebrahimi E, Amiri H, Asadollahi MA, Shojaosadati SA. Efficient butanol production under aerobic conditions by coculture of
Clostridium acetobutylicum
and
Nesterenkonia
sp. strain F. Biotechnol Bioeng 2019; 117:392-405. [DOI: 10.1002/bit.27221] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/23/2019] [Accepted: 11/03/2019] [Indexed: 01/11/2023]
Affiliation(s)
- Ehsan Ebrahimi
- Department of Biotechnology, Faculty of Biological Science and TechnologyUniversity of IsfahanIsfahan Iran
| | - Hamid Amiri
- Department of Biotechnology, Faculty of Biological Science and TechnologyUniversity of IsfahanIsfahan Iran
- Environmental Research Institute, Department of Environmental BiotechnologyUniversity of IsfahanIsfahan Iran
| | - Mohammad A. Asadollahi
- Department of Biotechnology, Faculty of Biological Science and TechnologyUniversity of IsfahanIsfahan Iran
- Environmental Research Institute, Department of Environmental BiotechnologyUniversity of IsfahanIsfahan Iran
| | | |
Collapse
|
18
|
Clostridium sp. as Bio-Catalyst for Fuels and Chemicals Production in a Biorefinery Context. Catalysts 2019. [DOI: 10.3390/catal9110962] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Clostridium sp. is a genus of anaerobic bacteria capable of metabolizing several substrates (monoglycerides, diglycerides, glycerol, carbon monoxide, cellulose, and more), into valuable products. Biofuels, such as ethanol and butanol, and several chemicals, such as acetone, 1,3-propanediol, and butyric acid, can be produced by these organisms through fermentation processes. Among the most well-known species, Clostridium carboxidivorans, C. ragsdalei, and C. ljungdahlii can be highlighted for their ability to use gaseous feedstocks (as syngas), obtained from the gasification or pyrolysis of waste material, to produce ethanol and butanol. C. beijerinckii is an important species for the production of isopropanol and butanol, with the advantage of using hydrolysate lignocellulosic material, which is produced in large amounts by first-generation ethanol industries. High yields of 1,3 propanediol by C. butyricum are reported with the use of another by-product from fuel industries, glycerol. In this context, several Clostridium wild species are good candidates to be used as biocatalysts in biochemical or hybrid processes. In this review, literature data showing the technical viability of these processes are presented, evidencing the opportunity to investigate them in a biorefinery context.
Collapse
|
19
|
Vasylkivska M, Jureckova K, Branska B, Sedlar K, Kolek J, Provaznik I, Patakova P. Transcriptional analysis of amino acid, metal ion, vitamin and carbohydrate uptake in butanol-producing Clostridium beijerinckii NRRL B-598. PLoS One 2019; 14:e0224560. [PMID: 31697692 PMCID: PMC6837493 DOI: 10.1371/journal.pone.0224560] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/16/2019] [Indexed: 11/19/2022] Open
Abstract
In-depth knowledge of cell metabolism and nutrient uptake mechanisms can lead to the development of a tool for improving acetone-butanol-ethanol (ABE) fermentation performance and help to overcome bottlenecks in the process, such as the high cost of substrates and low production rates. Over 300 genes potentially encoding transport of amino acids, metal ions, vitamins and carbohydrates were identified in the genome of the butanol-producing strain Clostridium beijerinckii NRRL B-598, based on similarity searches in protein function databases. Transcriptomic data of the genes were obtained during ABE fermentation by RNA-Seq experiments and covered acidogenesis, solventogenesis and sporulation. The physiological roles of the selected 81 actively expressed transport genes were established on the basis of their expression profiles at particular stages of ABE fermentation. This article describes how genes encoding the uptake of glucose, iron, riboflavin, glutamine, methionine and other nutrients take part in growth, production and stress responses of C. beijerinckii NRRL B-598. These data increase our knowledge of transport mechanisms in solventogenic Clostridium and may be used in the selection of individual genes for further research.
Collapse
Affiliation(s)
- Maryna Vasylkivska
- Department of Biotechnology, University of Chemistry and Technology Prague, Prague, Czech Republic
- * E-mail:
| | - Katerina Jureckova
- Department of Biomedical Engineering, Brno University of Technology, Brno, Czech Republic
| | - Barbora Branska
- Department of Biotechnology, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Karel Sedlar
- Department of Biomedical Engineering, Brno University of Technology, Brno, Czech Republic
| | - Jan Kolek
- Department of Biotechnology, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Ivo Provaznik
- Department of Biomedical Engineering, Brno University of Technology, Brno, Czech Republic
| | - Petra Patakova
- Department of Biotechnology, University of Chemistry and Technology Prague, Prague, Czech Republic
| |
Collapse
|
20
|
Nimbalkar PR, Khedkar MA, Kulkarni RK, Chavan PV, Bankar SB. Strategic intensification in butanol production by exogenous amino acid supplementation: Fermentation kinetics and thermodynamic studies. BIORESOURCE TECHNOLOGY 2019; 288:121521. [PMID: 31154278 DOI: 10.1016/j.biortech.2019.121521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 05/17/2019] [Accepted: 05/18/2019] [Indexed: 06/09/2023]
Abstract
Amino acids are vital precursors in many biochemical production pathways in addition to efficient nitrogen source which could enhance microbial growth yields. Therefore, in present study, the effect of amino acids from aliphatic and aromatic family was comprehensively evaluated in batch and integrated fed batch fermentation system. Clostridium acetobutylicum NRRL B-527 was able to utilize 54.15 ± 1.0 g/L glucose to produce 12.43 ± 0.10 g/L butanol under batch cultivation. Interestingly, a significant step up in butanol titer (20.82 ± 0.33 g/L) was achieved by using fed-batch fermentation process integrated with liquid-liquid extraction module. Besides, mathematical modeling studies demonstrated the best fitting of experimental data with first order reaction kinetics. Overall, an enhancement in solvent titer by induction of essential cellular components coupled with advance bioprocess strategy was successfully utilized in this study for its further applications.
Collapse
Affiliation(s)
- Pranhita R Nimbalkar
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland; Department of Chemical Engineering, Bharati Vidyapeeth Deemed University College of Engineering, Pune 411043, India
| | - Manisha A Khedkar
- Department of Chemical Engineering, Bharati Vidyapeeth Deemed University College of Engineering, Pune 411043, India
| | - Rahul K Kulkarni
- Department of Chemical Engineering, Bharati Vidyapeeth Deemed University College of Engineering, Pune 411043, India
| | - Prakash V Chavan
- Department of Chemical Engineering, Bharati Vidyapeeth Deemed University College of Engineering, Pune 411043, India
| | - Sandip B Bankar
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland.
| |
Collapse
|
21
|
Ding M, Chen B, Ji X, Zhou J, Wang H, Tian X, Feng X, Yue H, Zhou Y, Wang H, Wu J, Yang P, Jiang Y, Mao X, Xiao G, Zhong C, Xiao W, Li B, Qin L, Cheng J, Yao M, Wang Y, Liu H, Zhang L, Yu L, Chen T, Dong X, Jia X, Zhang S, Liu Y, Chen Y, Chen K, Wu J, Zhu C, Zhuang W, Xu S, Jiao P, Zhang L, Song H, Yang S, Xiong Y, Li Y, Zhang Y, Zhuang Y, Su H, Fu W, Huang Y, Li C, Zhao ZK, Sun Y, Chen GQ, Zhao X, Huang H, Zheng Y, Yang L, Su Z, Ma G, Ying H, Chen J, Tan T, Yuan Y. Biochemical engineering in China. REV CHEM ENG 2019. [DOI: 10.1515/revce-2017-0035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Abstract
Chinese biochemical engineering is committed to supporting the chemical and food industries, to advance science and technology frontiers, and to meet major demands of Chinese society and national economic development. This paper reviews the development of biochemical engineering, strategic deployment of these technologies by the government, industrial demand, research progress, and breakthroughs in key technologies in China. Furthermore, the outlook for future developments in biochemical engineering in China is also discussed.
Collapse
Affiliation(s)
- Mingzhu Ding
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072 , China
| | - Biqiang Chen
- Beijing University of Chemical Technology , Beijing 100029 , China
| | - Xiaojun Ji
- College of Pharmaceutical Sciences, Nanjing Tech University , Nanjing 211816 , China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 210009 , China
- Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University , Nanjing 210009 , China
| | - Jingwen Zhou
- School of Biotechnology, Jiangnan University , Wuxi 214122 , China
| | - Huiyuan Wang
- Shanghai Information Center of Life Sciences (SICLS), Shanghai Institute of Biology Sciences (SIBS), Chinese Academy of Sciences , Shanghai 200031 , China
| | - Xiwei Tian
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology , Shanghai 200237 , China
| | - Xudong Feng
- School of Life Science, Beijing Institute of Technology , Beijing 100081 , China
| | - Hua Yue
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , China
| | - Yongjin Zhou
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China
| | - Hailong Wang
- Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University , Jinan 250100 , China
| | - Jianping Wu
- Institute of Biology Engineering, College of Chemical and Biological Engineering, Zhejiang University , Hangzhou 310027 , China
| | - Pengpeng Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 210009 , China
- National Engineering Technique Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , Nanjing 210009 , China
| | - Yu Jiang
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai 200032 , China
| | - Xuming Mao
- Institute of Pharmaceutical Biotechnology, Zhejiang University , Hangzhou 310058 , China
| | - Gang Xiao
- Beijing University of Chemical Technology , Beijing 100029 , China
| | - Cheng Zhong
- Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science and Technology , Tianjin 300457 , China
| | - Wenhai Xiao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072 , China
| | - Bingzhi Li
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072 , China
| | - Lei Qin
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072 , China
| | - Jingsheng Cheng
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072 , China
| | - Mingdong Yao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072 , China
| | - Ying Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072 , China
| | - Hong Liu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072 , China
| | - Lin Zhang
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
| | - Linling Yu
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
| | - Tao Chen
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
| | - Xiaoyan Dong
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
| | - Xiaoqiang Jia
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
| | - Songping Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , China
| | - Yanfeng Liu
- School of Biotechnology, Jiangnan University , Wuxi 214122 , China
| | - Yong Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 210009 , China
- National Engineering Technique Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , Nanjing 210009 , China
| | - Kequan Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 210009 , China
- National Engineering Technique Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , Nanjing 210009 , China
| | - Jinglan Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 210009 , China
- National Engineering Technique Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , Nanjing 210009 , China
| | - Chenjie Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 210009 , China
- National Engineering Technique Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , Nanjing 210009 , China
| | - Wei Zhuang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 210009 , China
- National Engineering Technique Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , Nanjing 210009 , China
| | - Sheng Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 210009 , China
- National Engineering Technique Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , Nanjing 210009 , China
| | - Pengfei Jiao
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 210009 , China
- National Engineering Technique Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , Nanjing 210009 , China
| | - Lei Zhang
- Tianjin Ltd. of BoyaLife Inc. , Tianjin 300457 , China
| | - Hao Song
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072 , China
| | - Sheng Yang
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai 200032 , China
| | - Yan Xiong
- Shanghai Information Center of Life Sciences (SICLS), Shanghai Institute of Biology Sciences (SIBS), Chinese Academy of Sciences , Shanghai 200031 , China
| | - Yongquan Li
- Institute of Pharmaceutical Biotechnology, Zhejiang University , Hangzhou 310058 , China
| | - Youming Zhang
- Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University , Jinan 250100 , China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology , Shanghai 200237 , China
| | - Haijia Su
- Beijing University of Chemical Technology , Beijing 100029 , China
| | - Weiping Fu
- China National Center of Biotechnology Development , Beijing , China
| | - Yingming Huang
- China National Center of Biotechnology Development , Beijing , China
| | - Chun Li
- School of Life Science, Beijing Institute of Technology , Beijing 100081 , China
| | - Zongbao K. Zhao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China
| | - Yan Sun
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
| | - Guo-Qiang Chen
- Center of Synthetic and Systems Biology, School of Life Sciences, Tsinghua University , Beijing 100084 , China
| | - Xueming Zhao
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
| | - He Huang
- College of Pharmaceutical Sciences, Nanjing Tech University , Nanjing 211816 , China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 210009 , China
- Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University , Nanjing 210009 , China
| | - Yuguo Zheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology , Hangzhou 310014 , China
| | - Lirong Yang
- Institute of Biology Engineering, College of Chemical and Biological Engineering, Zhejiang University , Hangzhou 310027 , China
| | - Zhiguo Su
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , China
| | - Hanjie Ying
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 210009 , China
- National Engineering Technique Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , Nanjing 210009 , China
| | - Jian Chen
- School of Biotechnology, Jiangnan University , Wuxi 214122 , China
| | - Tianwei Tan
- Beijing University of Chemical Technology , Beijing 100029 , China
| | - Yingjin Yuan
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072 , China
| |
Collapse
|
22
|
Oliva-Rodríguez AG, Quintero J, Medina-Morales MA, Morales-Martínez TK, Rodríguez-De la Garza JA, Moreno-Dávila M, Aroca G, Rios González LJ. Clostridium strain selection for co-culture with Bacillus subtilis for butanol production from agave hydrolysates. BIORESOURCE TECHNOLOGY 2019; 275:410-415. [PMID: 30605828 DOI: 10.1016/j.biortech.2018.12.085] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/22/2018] [Accepted: 12/24/2018] [Indexed: 06/09/2023]
Abstract
In this work, three Clostridium strains were tested for butanol production from Agave lechuguilla hydrolysates to select one for co-culturing. The agave hydrolysates medium was supplemented with nutrients and reducing agents to promote anaerobiosis. Clostridium acetobutylicum ATCC 824 had the highest butanol production (6.04 g/L) and was selected for further analyses. In the co-culture process, Bacillus subtilis CDBB 555 was used to deplete oxygen and achieve anaerobic conditions required for butanol production. The co-culture was prepared with C. acetobutylicum and B. subtilis without anaerobic pretreatment. Butanol production in co-culture from agave hydrolysates was compared with experiments using synthetic medium with glucose and a pure culture of C. acetobutylicum. The maximum butanol concentration obtained was 8.28 g/L in the co-cultured hydrolysate medium. Results obtained in the present work demonstrated that agave hydrolysates have the potential for butanol production using a co-culture of B. subtilis and C. acetobutylicum without anaerobic pretreatment.
Collapse
Affiliation(s)
| | - Julián Quintero
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Chile
| | - Miguel A Medina-Morales
- Departamento de Biotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Mexico
| | - Thelma K Morales-Martínez
- Departamento de Biotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Mexico
| | | | - Mayela Moreno-Dávila
- Departamento de Biotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Mexico
| | - Germán Aroca
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Chile
| | - Leopoldo J Rios González
- Departamento de Biotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Mexico.
| |
Collapse
|
23
|
Ding J, Xu M, Xie F, Chen C, Shi Z. Efficient butanol production using corn-starch and waste Pichia pastoris semi-solid mixture as the substrate. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2018.12.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
24
|
Luo H, Zheng P, Xie F, Yang R, Liu L, Han S, Zhao Y, Bilal M. Co-production of solvents and organic acids in butanol fermentation by Clostridium acetobutylicum in the presence of lignin-derived phenolics. RSC Adv 2019; 9:6919-6927. [PMID: 35518483 PMCID: PMC9061099 DOI: 10.1039/c9ra00325h] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 02/21/2019] [Indexed: 12/16/2022] Open
Abstract
Co-production of solvents (butanol, acetone, and ethanol) and organic acids (butyrate and acetate) by Clostridium acetobutylicum using lignocellulosic biomass as a substrate could further enlarge the application scope of butanol fermentation. This is mainly because solvents and organic acids could be used for production of fine chemicals such as butyl butyrate, butyl oleate, etc. However, many phenolic fermentation inhibitors are formed during the pretreatment process because of lignin degradation. The present study investigated the effects of five typical lignin-derived phenolics on the biosynthesis of solvents and organic acids in C. acetobutylicum ATCC 824. Results obtained in 100 mL anaerobic bottles indicated that butanol concentration was enhanced from 10.29 g L−1 to 11.36 g L−1 by the addition of 0.1 g L−1 vanillin. Subsequently, a pH-control strategy was proposed in a 5 L anaerobic fermenter to alleviate the “acid crash” phenomenon and improve butanol fermentation performance, simultaneously. Notably, organic acid concentration was enhanced from 6.38 g L−1 (control) to a high level of 9.21–12.57 g L−1 with vanillin or/and vanillic acid addition (0.2 g L−1) under the pH-control strategy. Furthermore, the butyrate/butanol ratio reached the highest level of 0.80 g g−1 with vanillin/vanillic acid co-addition, and solvent concentration reached 13.85 g L−1, a comparable level to the control (13.69 g L−1). The effectiveness and robustness of the strategy for solvent and organic acid co-production was also verified under five typical phenolic environments. In conclusion, these results suggest that the proposed process strategy would potentially promote butanol fermentative products from renewable biomass. Lignin-derived phenolics enhance solvent and organic acid biosynthesis in butanol fermentation by Clostridium acetobutylicum ATCC 824.![]()
Collapse
Affiliation(s)
- Hongzhen Luo
- School of Life Science and Food Engineering
- Huaiyin Institute of Technology
- Huaian 223003
- China
| | - Panli Zheng
- School of Life Science and Food Engineering
- Huaiyin Institute of Technology
- Huaian 223003
- China
| | - Fang Xie
- School of Life Science and Food Engineering
- Huaiyin Institute of Technology
- Huaian 223003
- China
| | - Rongling Yang
- School of Life Science and Food Engineering
- Huaiyin Institute of Technology
- Huaian 223003
- China
| | - Lina Liu
- School of Life Science and Food Engineering
- Huaiyin Institute of Technology
- Huaian 223003
- China
| | - Shuo Han
- Department of Chemistry
- Missouri University of Science and Technology
- Rolla
- USA
| | - Yuping Zhao
- School of Life Science and Food Engineering
- Huaiyin Institute of Technology
- Huaian 223003
- China
| | - Muhammad Bilal
- School of Life Science and Food Engineering
- Huaiyin Institute of Technology
- Huaian 223003
- China
| |
Collapse
|
25
|
Zeldes BM, Straub CT, Otten JK, Adams MW, Kelly RM. A synthetic enzymatic pathway for extremely thermophilic acetone production based on the unexpectedly thermostable acetoacetate decarboxylase from Clostridium acetobutylicum. Biotechnol Bioeng 2018; 115:2951-2961. [PMID: 30199090 PMCID: PMC6231964 DOI: 10.1002/bit.26829] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/25/2018] [Accepted: 09/05/2018] [Indexed: 01/02/2023]
Abstract
One potential advantage of an extremely thermophilic metabolic engineering host (T opt ≥ 70°C) is facilitated recovery of volatile chemicals from the vapor phase of an active fermenting culture. This process would reduce purification costs and concomitantly alleviate toxicity to the cells by continuously removing solvent fermentation products such as acetone or ethanol, a process we are calling "bio-reactive distillation." Although extremely thermophilic heterologous metabolic pathways can be inspired by existing mesophilic versions, they require thermostable homologs of the constituent enzymes if they are to be utilized in extremely thermophilic bacteria or archaea. Production of acetone from acetyl-CoA and acetate in the mesophilic bacterium Clostridium acetobutylicum utilizes three enzymes: thiolase, acetoacetyl-CoA: acetate CoA transferase (CtfAB), and acetoacetate decarboxylase (Adc). Previously reported biocatalytic pathways for acetone production were demonstrated only as high as 55°C. Here, we demonstrate a synthetic enzymatic pathway for acetone production that functions up to at least 70°C in vitro, made possible by the unusual thermostability of Adc from the mesophile C. acetobutylicum, and heteromultimeric acetoacetyl-CoA:acetate CoA-transferase (CtfAB) complexes from Thermosipho melanesiensis and Caldanaerobacter subterraneus, composed of a highly thermostable α-subunit and a thermally labile β-subunit. The three enzymes produce acetone in vitro at temperatures of at least 70°C, paving the way for bio-reactive distillation of acetone using a metabolically engineered extreme thermophile as a production host.
Collapse
Affiliation(s)
- Benjamin M. Zeldes
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695
| | - Christopher T. Straub
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695
| | - Jonathan K. Otten
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695
| | - Michael W.W. Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602
| | - Robert M. Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695
| |
Collapse
|
26
|
Luo H, Yang R, Zhao Y, Wang Z, Liu Z, Huang M, Zeng Q. Recent advances and strategies in process and strain engineering for the production of butyric acid by microbial fermentation. BIORESOURCE TECHNOLOGY 2018; 253:343-354. [PMID: 29329775 DOI: 10.1016/j.biortech.2018.01.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 12/28/2017] [Accepted: 01/01/2018] [Indexed: 06/07/2023]
Abstract
Butyric acid is an important platform chemical, which is widely used in the fields of food, pharmaceutical, energy, etc. Microbial fermentation as an alternative approach for butyric acid production is attracting great attention as it is an environmentally friendly bioprocessing. However, traditional fermentative butyric acid production is still not economically competitive compared to chemical synthesis route, due to the low titer, low productivity, and high production cost. Therefore, reduction of butyric acid production cost by utilization of alternative inexpensive feedstock, and improvement of butyric acid production and productivity has become an important target. Recently, several advanced strategies have been developed for enhanced butyric acid production, including bioprocess techniques and metabolic engineering methods. This review provides an overview of advances and strategies in process and strain engineering for butyric acid production by microbial fermentation. Additionally, future perspectives on improvement of butyric acid production are also proposed.
Collapse
Affiliation(s)
- Hongzhen Luo
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Rongling Yang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Yuping Zhao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Zhaoyu Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Zheng Liu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Mengyu Huang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Qingwei Zeng
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| |
Collapse
|
27
|
Ding J, Luo H, Xie F, Wang H, Xu M, Shi Z. Electron receptor addition enhances butanol synthesis in ABE fermentation by Clostridium acetobutylicum. BIORESOURCE TECHNOLOGY 2018; 247:1201-1205. [PMID: 28912077 DOI: 10.1016/j.biortech.2017.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 09/01/2017] [Accepted: 09/02/2017] [Indexed: 05/21/2023]
Abstract
The techniques for enhancing butanol production in ABE fermentation by Clostridium acetobutylicum generally focus on adding electron carrier to strengthen NADH synthesis, repressing hydrogenase by aerating CO, supplementing butyrate, etc. However, those methods suffer from the problems of total solvent decrease, high purification cost, using expensive supplemental substances, etc. In this study, we added small amount of electron receptors (Na2SO4/CaSO4, 2g/L) into ABE fermentation broth: to alter electron/proton distributions in the intracellular electron transport shuttle system, directing more electron/proton pairs into NADH synthesis route; to stimulate intracellular accumulation of those amino acids favorable for cells survival/butanol synthesis. In ABE fermentation in a 7L fermentor, adding 2g/L Na2SO4 could raise butanol concentration to a higher level of 12.96g/L, which was 34.8% higher than that of the control. Addition of tiny amount cheap electron receptor would provide a new way to enhance bio-butanol production.
Collapse
Affiliation(s)
- Jian Ding
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Hongzhen Luo
- School of Life Science & Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Fang Xie
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Hao Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Meng Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhongping Shi
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
28
|
Hu Y, Li N, Li G, Wang A, Cong Y, Wang X, Zhang T. Sustainable Production of o-Xylene from Biomass-Derived Pinacol and Acrolein. CHEMSUSCHEM 2017; 10:2880-2885. [PMID: 28621498 DOI: 10.1002/cssc.201700823] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/16/2017] [Indexed: 05/24/2023]
Abstract
o-Xylene (OX) is a large-volume commodity chemical that is conventionally produced from fossil fuels. In this study, an efficient and sustainable two-step route is used to produce OX from biomass-derived pinacol and acrolein. In the first step, the phosphotungstic acid (HPW)-catalyzed pinacol dehydration in 1-ethyl-3-methylimidazolium chloride ([emim]Cl) selectively affords 2,3-dimethylbutadiene. The high selectivity of this reaction can be ascribed to the H-bonding interaction between Cl- and the hydroxy group of pinacol. The stabilization of the carbocation intermediate by the surrounding anion Cl- may be another reason for the high selectivity. Notably, the good reusability of the HPW/[emim]Cl system can reduce the waste output and production cost. In the second step, OX is selectively produced by a Diels-Alder reaction of 2,3-dimethylbutadiene and acrolein, followed by a Pd/C-catalyzed decarbonylation/aromatization cascade in a one-pot fashion. The sustainable two-step process efficiently produces renewable OX in 79 % overall yield. Analogously, biomass-derived crotonaldehyde and pinacol can also serve as the feedstocks for the production of 1,2,4-trimethylbenzene.
Collapse
Affiliation(s)
- Yancheng Hu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China
| | - Ning Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China
- iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China
| | - Guangyi Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China
| | - Aiqin Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China
- iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China
| | - Yu Cong
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China
| | - Xiaodong Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China
| | - Tao Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China
- iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China
| |
Collapse
|
29
|
Sheng X, Li N, Li G, Wang W, Wang A, Cong Y, Wang X, Zhang T. Direct Synthesis of Renewable Dodecanol and Dodecane with Methyl Isobutyl Ketone over Dual-Bed Catalyst Systems. CHEMSUSCHEM 2017; 10:825-829. [PMID: 28032695 DOI: 10.1002/cssc.201601563] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/26/2016] [Indexed: 06/06/2023]
Abstract
For the first time, we demonstrated two integrated processes for the direct synthesis of dodecanol or 2,4,8-trimethylnonane (a jet fuel range C12 -branched alkane) using methyl isobutyl ketone (MIBK) that can be derived from lignocellulose. The reactions were carried out in dual-bed continuous flow reactors. In the first bed, MIBK was selectively converted to a mixture of C12 alcohol and ketone. Over the Pd-modified magnesium- aluminium hydrotalcite (Pd-MgAl-HT) catalyst, a high total carbon yield (73.0 %) of C12 oxygenates can be achieved under mild conditions. In the second bed, the C12 oxygenates generated in the first bed were hydrogenated to dodecanol over a Ru/C catalyst or hydrodeoxygenated to 2,4,8-trimethylnonane over a Cu/SiO2 catalyst. The as-obtained dodecanol can be used as feedstock in the production of sodium dodecylsulfate (SDS) and sodium dodecyl benzene sulfonate (SDBS), which are widely used as surfactants or detergents. The asobtained 2,4,8-trimethylnonane can be blended into conventional jet fuel without hydroisomerization.
Collapse
Affiliation(s)
- Xueru Sheng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
- University of Chinese Academy of Sciences, Beijing, 10049, P.R. China
| | - Ning Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
- iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Guangyi Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Wentao Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Aiqin Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
- iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Yu Cong
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Xiaodong Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Tao Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
- iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| |
Collapse
|
30
|
Sun T, Pei G, Wang J, Chen L, Zhang W. A novel small RNA CoaR regulates coenzyme A biosynthesis and tolerance of Synechocystis sp. PCC6803 to 1-butanol possibly via promoter-directed transcriptional silencing. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:42. [PMID: 28239414 PMCID: PMC5319066 DOI: 10.1186/s13068-017-0727-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 02/09/2017] [Indexed: 05/24/2023]
Abstract
BACKGROUND Microbial small RNAs (sRNAs) have been proposed as valuable regulatory elements for optimizing cellular metabolism for industrial purposes. However, little information is currently available on functional relevance of sRNAs to biofuels tolerance in cyanobacteria. RESULTS Here, we described the identification and functional characterization of a novel 124 nt sRNA Ncl1460 involved in tolerance to biofuel 1-butanol in Synechocystis sp. PCC 6803. The expression of Ncl1460 was verified by blotting assay and its length was determined through 3' RACE. Further analysis showed that Ncl1460 was a negative regulator of slr0847 (coaD) and slr0848 operon responsible for coenzyme A (CoA) synthesis possibly via promoter-directed transcriptional silencing mechanisms which has been widely discovered in eukaryote; thus Ncl1460 was designated as CoaR (CoA Biosynthesis Regulatory sRNA). The possible interaction between CoaR and target genes was suggested by CoA quantification and green fluorescent protein assays. Finally, a quantitative proteomics analysis showed that CoaR regulated tolerance to 1-butanol possibly by down-regulating CoA biosynthesis, resulting in a decrease of fatty acid metabolism and energy metabolism. CONCLUSIONS As the first reported sRNA involved CoA synthesis and 1-butanol tolerance in cyanobacteria, this study provides not only novel insights in regulating mechanisms of essential pathways in cyanobacteria, but also valuable target for biofuels tolerance and productivity modifications.
Collapse
Affiliation(s)
- Tao Sun
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072 People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072 People’s Republic of China
| | - Guangsheng Pei
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072 People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072 People’s Republic of China
| | - Jiangxin Wang
- Shenzhen Engineering Lab for Marine Algal Biotechnology, College of Life Science, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072 People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072 People’s Republic of China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072 People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072 People’s Republic of China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, People’s Republic of China
| |
Collapse
|
31
|
Effectively enhancing acetone concentration and acetone/butanol ratio in ABE fermentation by a glucose/acetate co-substrate system incorporating with glucose limitation and C. acetobutylicum/S. cerevisiae co-culturing. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2016.12.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
32
|
Li S, Li N, Wang W, Li L, Wang A, Wang X, Zhang T. Synthesis of jet fuel range branched cycloalkanes with mesityl oxide and 2-methylfuran from lignocellulose. Sci Rep 2016; 6:32379. [PMID: 27582417 PMCID: PMC5007666 DOI: 10.1038/srep32379] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 08/09/2016] [Indexed: 11/28/2022] Open
Abstract
Jet fuel range branched cycloalkanes with high density (0.82 g mL−1) and low freezing point (217–219 K) was first prepared by the solvent-free intramolecular aldol condensation of the trione from the hydrolysis of the alkylation product of mesityl oxide and 2-methylfuran (or the one-pot reaction of mesityl oxide, 2-methylfuran and water), followed by hydrodeoxygenation (HDO).
Collapse
Affiliation(s)
- Shanshan Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,Graduate University of Chinese Academy of Sciences, Beijing 10049, China
| | - Ning Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,iChEM (Collaborative Innovation Centre of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wentao Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Lin Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Aiqin Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,iChEM (Collaborative Innovation Centre of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiaodong Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Tao Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,iChEM (Collaborative Innovation Centre of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
33
|
An Experimental Study on the Potential Usage of Acetone as an Oxygenate Additive in PFI SI Engines. ENERGIES 2016. [DOI: 10.3390/en9040256] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|