1
|
Yao L, Fu Z, Duan Q, Wu M, Song F, Wang H, Qin Y, Bai Y, Zhou C, Quan X, Lee J. An intelligent spectral identification approach for the simultaneous detection of endocrine-disrupting chemicals in aquatic environments. ENVIRONMENTAL RESEARCH 2025; 264:120368. [PMID: 39547564 DOI: 10.1016/j.envres.2024.120368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/17/2024]
Abstract
With the rapid progression of industrialization, the application and release of endocrine disruptors (EDCs), including bisphenol A (BPA), octylphenol and nonylphenol have significantly increased, presenting substantial health hazards. Conventional analytical techniques, such as high-performance liquid chromatography and gas chromatography-mass spectrometry, are highly sophisticated but suffer from complex procedures and high costs. To overcome these limitations, this study introduces an innovative spectral methodology for the simultaneous detection of multiple aquatic multicomponent EDCs. By leveraging chemical machine vision, specifically with convolutional neural network (CNN) models, we employed a long-path holographic spectrometer for rapid, cost-effective identification of BPA, 4-tert-octylphenol, and 4-nonylphenol in aqueous samples. The CNN, refined with the ResNet-50 architecture, demonstrated superior predictive performance, achieving detection limits as low as 3.34, 3.71 and 4.36 μg/L, respectively. The sensitivity and quantification capability of our approach were confirmed through the analysis of spectral image Euclidean distances, while its universality and resistance properties were validated by assessments of environmental samples. This technology offers significantly advantages over conventional techniques in terms of efficiency and cost, offering a novel solution for EDC monitoring in aquatic environments. The implications of this research extend beyond improved detection speed and cost reduction, presenting new methodologies for analyzing complex chemical systems and contributing to environmental protection and public health.
Collapse
Affiliation(s)
- Liulu Yao
- Laboratory of Environmental Aquatic Chemistry, Department of Environmental Science, Shaanxi Normal University, Xi'an, 710062, PR China
| | - Zhizhi Fu
- Laboratory of Environmental Aquatic Chemistry, Department of Environmental Science, Shaanxi Normal University, Xi'an, 710062, PR China
| | - Qiannan Duan
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity. College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, PR China
| | - Mingzhe Wu
- Laboratory of Environmental Aquatic Chemistry, Department of Environmental Science, Shaanxi Normal University, Xi'an, 710062, PR China
| | - Fan Song
- Laboratory of Environmental Aquatic Chemistry, Department of Environmental Science, Shaanxi Normal University, Xi'an, 710062, PR China
| | - Haoyu Wang
- Laboratory of Environmental Aquatic Chemistry, Department of Environmental Science, Shaanxi Normal University, Xi'an, 710062, PR China
| | - Yiheng Qin
- Laboratory of Environmental Aquatic Chemistry, Department of Environmental Science, Shaanxi Normal University, Xi'an, 710062, PR China
| | - Yonghui Bai
- Laboratory of Environmental Aquatic Chemistry, Department of Environmental Science, Shaanxi Normal University, Xi'an, 710062, PR China
| | - Chi Zhou
- Shaanxi Key Laboratory of Environmental Monitoring and Forewarning of Trace Pollutants, Shaanxi Provincial Environmental Monitoring Centre, Xi'an, 71005, PR China
| | - Xudong Quan
- Shaanxi Key Laboratory of Environmental Monitoring and Forewarning of Trace Pollutants, Shaanxi Provincial Environmental Monitoring Centre, Xi'an, 71005, PR China
| | - Jianchao Lee
- Laboratory of Environmental Aquatic Chemistry, Department of Environmental Science, Shaanxi Normal University, Xi'an, 710062, PR China.
| |
Collapse
|
2
|
Rodríguez EM. Endocrine disruption in crustaceans: New findings and perspectives. Mol Cell Endocrinol 2024; 585:112189. [PMID: 38365065 DOI: 10.1016/j.mce.2024.112189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/02/2024] [Accepted: 02/12/2024] [Indexed: 02/18/2024]
Abstract
A significant advance has been made, especially during the last two decades, in the knowledge of the effects on crustacean species of pollutants proven to be endocrine disruptors in vertebrates. Such effects have been also interpreted in the light of recent studies on crustacean endocrinology. Year after year, the increased number of reports refer to the effects of endocrine disruptors on several processes hormonally controlled. This review is aimed at summarizing and discussing the effects of several kinds of endocrine disruptors on the hormonal control of reproduction (including gonadal growth, sexual differentiation, and offspring development), molting, and intermediate metabolism of crustaceans. A final discussion about the state of the art, as well as the perspective of this toxicological research line is given.
Collapse
Affiliation(s)
- Enrique M Rodríguez
- Universidad de Buenos Aires. CONICET. Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA). Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental. Ciudad Universitaria, C1428EGA, Buenos Aires, Argentina.
| |
Collapse
|
3
|
Narindri Rara Winayu B, Chu FJ, Sutopo CCY, Chu H. Bioprospecting photosynthetic microorganisms for the removal of endocrine disruptor compounds. World J Microbiol Biotechnol 2024; 40:120. [PMID: 38433170 DOI: 10.1007/s11274-024-03910-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 01/26/2024] [Indexed: 03/05/2024]
Abstract
Endocrine disruption compounds can be found in various daily products, like pesticides, along with cosmetic and pharmaceutical commodities. Moreover, occurrence of EDCs in the wastewater alarms the urgency for their removal before discharge owing to the harmful effect for the environment and human health. Compared to implementation of physical and chemical strategies, cultivation of photosynthetic microorganisms has been acknowledged for their high efficiency and eco-friendly process in EDCs removal along with accumulation of valuable byproducts. During the process, photosynthetic microorganisms remove EDCs via photodegradation, bio-adsorption, -accumulation, and -degradation. Regarding their high tolerance in extreme environment, photosynthetic microorganisms have high feasibility for implementation in wastewater treatment plant. However, several considerations are critical for their scaling up process. This review discussed the potency of EDCs removal by photosynthetic microorganisms and focused on the efficiency, mechanism, challenge, along with the prospect. Details on the mechanism's pathway, accumulation of valuable byproducts, and recent progress in scaling up and application in real wastewater were also projected in this review.
Collapse
Affiliation(s)
| | - Feng-Jen Chu
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, Anhui, China
| | - Christoper Caesar Yudho Sutopo
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| | - Hsin Chu
- Department of Environmental Engineering, National Cheng Kung University, Tainan, 70101, Taiwan.
| |
Collapse
|
4
|
Kuzikova IL, Medvedeva NG. Long-Chain Alkylphenol Biodegradation Potential of Soil Ascomycota. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2023; 511:228-234. [PMID: 37833577 DOI: 10.1134/s0012496623700515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/20/2023] [Accepted: 04/23/2023] [Indexed: 10/15/2023]
Abstract
A total of 11 ascomycete strains destructing technical nonylphenol (NP) and 4-tert-octylphenol (4-t-OP) were isolated from NP-contaminated soddy-podzolic loamy soil (Leningrad Region, Russia). The isolates proved capable of degrading NP and 4-t-OP at a high load (300 mg/L). The most efficient Fusarium solani strain 8F degraded alkylphenols (APs) both in cometabolic conditions and in the absence of additional carbon and energy sources. A decrease in APs was due to biodegradation or biotransformation by the strain and, to a minor extent, absorption by fungal cells. NP and 4-t-OP half-lives were, respectively, 3.5 and 6.4 h in cometabolic conditions and 9 and 19.7 h in the absence of additional carbon and energy sources. Amounts of the lipid peroxidation product malondialdehyde (MDA) and reduced glutathione (GSH) increased during NP and 4-t-OP biodegradation in cometabolic conditions by 1.7 and 2 times, respectively, as compared with a control. A high GSH level in F. solani 8F cells potentially implicated the metabolite in both AP biodegradation and strain resistance to oxidative stress. The study is the first to report on the NP and 4-t-OP degradation by the ascomycete F. solani in cometabolic conditions and in the absence of additional carbon and energy sources. The high AP degradation potential of soil ascomycetes was assumed to provide a basis for new environmentally safe bioremediation technologies for purification of soils and natural and waste waters contaminated with endocrine disruptors.
Collapse
Affiliation(s)
- I L Kuzikova
- St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS), 199178, St. Petersburg, Russia.
| | - N G Medvedeva
- St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS), 199178, St. Petersburg, Russia.
| |
Collapse
|
5
|
Pérez H, Quintero García OJ, Amezcua-Allieri MA, Rodríguez Vázquez R. Nanotechnology as an efficient and effective alternative for wastewater treatment: an overview. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:2971-3001. [PMID: 37387425 PMCID: wst_2023_179 DOI: 10.2166/wst.2023.179] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
The increase in the surface and groundwater contamination due to global population growth, industrialization, proliferation of pathogens, emerging pollutants, heavy metals, and scarcity of drinking water represents a critical problem. Because of this problem, particular emphasis will be placed on wastewater recycling. Conventional wastewater treatment methods may be limited due to high investment costs or, in some cases, poor treatment efficiency. To address these issues, it is necessary to continuously evaluate novel technologies that complement and improve these traditional wastewater treatment processes. In this regard, technologies based on nanomaterials are also being studied. These technologies improve wastewater management and constitute one of the main focuses of nanotechnology. The following review describes wastewater's primary biological, organic, and inorganic contaminants. Subsequently, it focuses on the potential of different nanomaterials (metal oxides, carbon-based nanomaterials, cellulose-based nanomaterials), membrane, and nanobioremediation processes for wastewater treatment. The above is evident from the review of various publications. However, nanomaterials' cost, toxicity, and biodegradability need to be addressed before their commercial distribution and scale-up. The development of nanomaterials and nanoproducts must be sustainable and safe throughout the nanoproduct life cycle to meet the requirements of the circular economy.
Collapse
Affiliation(s)
- Heilyn Pérez
- Centro Nacional de Estudios Avanzados de Instituto Politécnico Nacional, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, Mexico City 07360, Mexico E-mail:
| | - Omar Jasiel Quintero García
- Centro Nacional de Estudios Avanzados de Instituto Politécnico Nacional, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, Mexico City 07360, Mexico
| | - Myriam Adela Amezcua-Allieri
- Gerencia de Transformación de Biomasa, Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas Norte 152, colonia San Bartolo Atepehuacan, Mexico City 07730, Mexico
| | - Refugio Rodríguez Vázquez
- Centro Nacional de Estudios Avanzados de Instituto Politécnico Nacional, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, Mexico City 07360, Mexico
| |
Collapse
|
6
|
Shumilov OI, Kasatkina EA, Kirtsideli IY, Makarov DV. Tolerance of Rare-Earth Elements in Extremophile Fungus Umbelopsis isabellina from Polar Loparite Ore Tailings in Northwestern Russia. J Fungi (Basel) 2023; 9:jof9050506. [PMID: 37233217 DOI: 10.3390/jof9050506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/11/2023] [Accepted: 04/23/2023] [Indexed: 05/27/2023] Open
Abstract
In this study, extremophile fungal species isolated from pure loparite-containing sands and their tolerance/resistance to the lanthanides Ce and Nd were investigated. The loparite-containing sands were collected at the tailing dumps of an enterprise developing a unique polar deposit of niobium, tantalum and rare-earth elements (REEs) of the cerium group: the Lovozersky Mining and Processing Plant (MPP), located in the center of the Kola Peninsula (northwestern Russia). From the 15 fungal species found at the site, one of the most dominant isolates was identified by molecular analysis as the zygomycete fungus Umbelopsis isabellina (GenBank accession no. OQ165236). Fungal tolerance/resistance was evaluated using different concentrations of CeCl3 and NdCl3. Umbelopsis isabellina exhibited a higher degree of tolerance/resistance to cerium and neodymium than did the other dominant isolates (Aspergillus niveoglaucus, Geomyces vinaceus and Penicillium simplicissimum). The fungus began to be inhibited only after being exposed to 100 mg L-1 of NdCl3. The toxic effects of Ce were not observed in fungus growth until it was subjected to 500 mg∙L-1 of CeCl3. Moreover, only U. isabellina started to grow after extreme treatment with 1000 mg∙L-1 of CeCl3 one month after inoculation. This work indicates, for the first time, the potential of Umbelopsis isabellina to remove REEs from the loparite ore tailings, making it a suitable candidate for the development of bioleaching methods.
Collapse
Affiliation(s)
- Oleg I Shumilov
- Institute of North Industrial Ecology Problems, Kola Science Centre, Russian Academy of Sciences, 184209 Apatity, Russia
| | - Elena A Kasatkina
- Institute of North Industrial Ecology Problems, Kola Science Centre, Russian Academy of Sciences, 184209 Apatity, Russia
| | - Irina Y Kirtsideli
- Komarov Botanical Institute, Russian Academy of Sciences, 197376 Saint Petersburg, Russia
| | - Dmitry V Makarov
- Institute of North Industrial Ecology Problems, Kola Science Centre, Russian Academy of Sciences, 184209 Apatity, Russia
| |
Collapse
|
7
|
Satyanarayana GNV, Kumar A, Pandey AK, Sharma MT, Natesan M, Mudiam MKR. Evaluating chemicals of emerging concern in the Ganga River at the two major cities Prayagraj and Varanasi through validated analytical approaches. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:1520-1539. [PMID: 35917068 DOI: 10.1007/s11356-022-22226-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Evaluating environmental water quality means to assess and protect the environment against unfriendly impacts from various organic impurities emerging from industrial emissions and those released during harvesting. Potential risks related with release of polycyclic aromatic hydrocarbons (PAHs), pesticides and pharmaceuticals (PhAcs), and personal care products (PCPs) into the environment have turned into an increasingly serious issue in ecological safety. Monitoring helps in control of chemicals and ecological status compliance to safeguard specific water uses, for example, drinking water abstraction. A longitudinal review was carried out for 55 different persistent organic pollutants (POPs) for the Ganga River which passes through the urban areas of Prayagraj and Varanasi, India, through validated analytical approaches and measurement uncertainty (MU) estimation to assess their potential use for routine analysis. Furthermore, environmental risk assessment (ERA) carried out in the present study has revealed risk quotient (RQ) higher than 1 in a portion of the aquatic bodies. Using a conservative RQ strategy, POPs were assessed for having extensive risks under acute and chronic exposure, proposing that there is currently critical ecological risk identified with these compounds present in the Ganga River. In general, these outcomes demonstrate a significant contribution for focusing on measures and feasible techniques to minimize the unfavorable effects of contaminants on the aquatic environment.
Collapse
Affiliation(s)
- G N V Satyanarayana
- Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, M.G. Marg, Uttar Pradesh, P.O. Box-80, Lucknow, 226001, India
- Department of Chemistry, School of Basic Sciences, Babu Banarasi Das University, Uttar Pradesh, Lucknow, 226028, India
| | - Anu Kumar
- CSIRO Land and Water, Urrbrae, SA, 5064, Australia
| | - Alok K Pandey
- Nanomaterial Toxicology Laboratory, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, M. G. Marg, Uttar Pradesh, P. O. Box-80, Lucknow, 226001, India
| | - Manisha T Sharma
- Department of Chemistry, School of Basic Sciences, Babu Banarasi Das University, Uttar Pradesh, Lucknow, 226028, India
| | - Manickam Natesan
- Department of Environmental Biotechnology, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, M. G. Marg, Uttar Pradesh, P. O. Box-80, Lucknow, 226001, India
| | - Mohana Krishna Reddy Mudiam
- Analytical and Structural Chemistry Department, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad, 500 007, Telangana, India.
| |
Collapse
|
8
|
González-González RB, Flores-Contreras EA, Parra-Saldívar R, Iqbal HMN. Bio-removal of emerging pollutants by advanced bioremediation techniques. ENVIRONMENTAL RESEARCH 2022; 214:113936. [PMID: 35932833 DOI: 10.1016/j.envres.2022.113936] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/05/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
This review highlights the relevance of bioremediation techniques for the removal of emerging pollutants (EPs). The EPs are chemical or biological pollutants that are not currently monitored or regulated by environmental authorities, but which can enter the environment and cause harmful effects to the environment and human health. In recent times, an ample range of EPs have been found in water bodies, where they can unbalance ecosystems and cause negative effects on non-target species. In addition, some EPs have shown high rates of bioaccumulation in aquatic species, thus affecting the safety and quality of seafood. The negative impacts of emerging pollutants, their wide distribution in the environment, their bioaccumulation rates, and their resistance to wastewater treatment plants processes have led to research on sustainable remediation. Remediation techniques have been recently directed to advanced biological remediation technologies. Such technologies have exhibited numerous advantages like in-situ remediation, low costs, eco-friendliness, high public acceptance, and so on. Thus, the present review has compiled the most recent studies on bioremediation techniques for water decontamination from emerging pollutants to extend the current knowledge on sustainable remediation technologies. Biological emerging contaminants, agrochemicals, endocrine-disrupting chemicals, and pharmaceutical and personal care products were considered for this review study, and their removal by bioremediation techniques involving plants, bacteria, microalgae, and fungi. Finally, further research opportunities are presented based on current challenges from an economic, biological, and operation perspective.
Collapse
Affiliation(s)
| | | | | | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
9
|
Ismanto A, Hadibarata T, Kristanti RA, Maslukah L, Safinatunnajah N, Kusumastuti W. Endocrine disrupting chemicals (EDCs) in environmental matrices: Occurrence, fate, health impact, physio-chemical and bioremediation technology. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 302:119061. [PMID: 35231541 DOI: 10.1016/j.envpol.2022.119061] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/09/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are an emerging category of toxicity that adversely impacts humans and the environment's well-being. Diseases like cancer, cardiovascular risk, behavioral disorders, autoimmune defects, and reproductive diseases are related to these endocrine disruptors. Because these chemicals exist in known sources such as pharmaceuticals and plasticizers, as well as non-point sources such as agricultural runoff and storm water infiltration, the interactive effects of EDCs are gaining attention. However, the efficiency of conventional treatment methods is not sufficient to fully remediate EDCs from aqueous environments as the occurrence of EDC bioremediation and biodegradation is detected in remediated drinking water. Incorporating modification into current remediation techniques has to overcome challenges such as high energy consumption and health risks resulting from conventional treatment. Hence, the use of advanced psychochemical and biological treatments such as carbon-based adsorption, membrane technology, nanostructured photocatalysts, microbial and enzyme technologies is crucial. Intensifying environmental and health concerns about these mixed contaminants are primarily due to the lack of laws about acute concentration limits of these EDCs in municipal wastewater, groundwater, surface water, and drinking water. This review article offers evidence of fragmentary available data for the source, fate, toxicity, ecological and human health impact, remediation techniques, and mechanisms during EDC removal, and supports the need for further data to address the risks associated with the presence of EDCs in the environment. The reviews also provide comprehensive data for biodegradation of EDCs by using microbes such as fungi, bacteria, yeast, filamentous fungi, and their extracellular enzymes.
Collapse
Affiliation(s)
- Aris Ismanto
- Department of Oceanography, Faculty of Fisheries and Marine Science, Universitas Diponegoro, Semarang, 50275, Indonesia; Center for Coastal Disaster Mitigation and Rehabilitation Studies, Universitas Diponegoro, Semarang, 50275, Indonesia; Center for Integrated Coastal Zone Management (ICZM Center), Universitas Diponegoro, 50275, Indonesia
| | - Tony Hadibarata
- Environmental Engineering Program, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, Miri, 98009, Malaysia.
| | - Risky Ayu Kristanti
- Research Center for Oceanography, National Research and Innovation Agency, Jakarta, 14430, Indonesia
| | - Lilik Maslukah
- Department of Oceanography, Faculty of Fisheries and Marine Science, Universitas Diponegoro, Semarang, 50275, Indonesia
| | - Novia Safinatunnajah
- Department of Oceanography, Faculty of Fisheries and Marine Science, Universitas Diponegoro, Semarang, 50275, Indonesia
| | - Wulan Kusumastuti
- Department of Health Administration and Policy, Faculty of Public Health, Universitas Diponegoro, 50275, Indonesia
| |
Collapse
|
10
|
Ecotoxicological Estimation of 4-Cumylphenol, 4- t-Octylphenol, Nonylphenol, and Volatile Leachate Phenol Degradation by the Microscopic Fungus Umbelopsis isabellina Using a Battery of Biotests. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19074093. [PMID: 35409777 PMCID: PMC8998573 DOI: 10.3390/ijerph19074093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023]
Abstract
The phenolic xenobiotics nonylphenol (NP), 4-tert-octylphenol (4-t-OP), and 4-cumylphenol (4-CP) have the potential to seriously disrupt the endocrine system. Volatile phenols (VPs), especially those present in landfill leachate, also adversely affect the health of numerous organisms. Microbial degradation of xenobiotics can result in the formation of intermediates with higher toxicity than the precursor substrates. Therefore, the main aim of this study was to assess the changes in environmental ecotoxicity during the biotransformation of nonylphenol, 4-tert-octylphenol, 4-cumylphenol and volatile phenols by Umbelopsis isabellina using a battery of biotests. The application of bioindicators belonging to different taxonomic groups and diverse trophic levels (producers, consumers, and reducers) indicated a significant reduction in toxicity during the cultivation of fungus cultures both for nonylphenol, 4-tert-octylphenol, 4-cumylphenol and volatile phenols. The rate of toxicity decline was correlated with the degree of xenobiotic biotransformation. Removal of 4-cumylphenol and 4-tert-octylphenol also led to a decrease in the anti-androgenic potential. Moreover, this is the first report demonstrating the anti-androgenic properties of 4-cumylphenol. The results showed that U. isabellina is an attractive tool for the bioremediation and detoxification of contaminated environments.
Collapse
|
11
|
Biodegradation of a Complex Phenolic Industrial Stream by Bacterial Strains Isolated from Industrial Wastewaters. Processes (Basel) 2021. [DOI: 10.3390/pr9111964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Molecular and metabolomic tools were used to design and understand the biodegradation of phenolic compounds in real industrial streams. Bacterial species were isolated from an industrial wastewater treatment plant of a phenol production factory and identified using molecular techniques. Next, the biodegradation potential of the most promising strains was analyzed in the presence of a phenolic industrial by-product containing phenol, alfa-methylstyrene, acetophenone, 2-cumylphenol, and 4-cumylphenol. A bacterial consortium comprising Pseudomonas and Alcaligenes species was assessed for its ability to degrade phenolic compounds from the phenolic industrial stream (PS). The consortium adapted itself to the increasing levels of phenolic compounds, roughly up to 1750 ppm of PS; thus, becoming resistant to them. In addition, the consortium exhibited the ability to grow in the presence of PS in repeated batch mode processes. Results from untargeted metabolomic analysis of the culture medium in the presence of PS suggested that bacteria transformed the toxic phenolic compounds into less harmful molecules as a survival mechanism. Overall, the study demonstrates the usefulness of massive sequencing and metabolomic tools in constructing bacterial consortia that can efficiently biodegrade complex PS. Furthermore, it improves our understanding of their biodegradation capabilities.
Collapse
|
12
|
The Research on the Construction and the Photocatalytic Performance of BiOI/NH2-MIL-125(Ti) Composite. Catalysts 2020. [DOI: 10.3390/catal11010024] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The BiOI/NH2-MIL-125(Ti) composite photocatalyst with excellent photocatalytic performance was prepared by the solvothermal method. For the BiOI/NH2-MIL-125(Ti) (BNMT) system, the contents of NH2-MIL-125(Ti) in BNMT-4, BNMT-5, BNMT-7, BNMT-9, and BNMT-10 were 4 wt %, 5 wt %, 7 wt %, 9 wt %, and 10 wt %, respectively. XRD, XPS, SEM, and TEM characterizations indicated that BiOI/NH2-MIL-125(Ti) was successfully prepared. Brunauer, Emmett, and Teller (BET) and UV–vis diffuse reflectance spectra photoelectrochemical analysis indicated that BNMT-9 can make the specific surface area and photo absorption region larger than BiOI. In addition, the separation efficiency of photogenerated carriers was improved, and the recombination efficiency was reduced. The degradation percentages of Rhodamine B (RhB) and p-chlorophenol (P-CP) reached 99% and 90% over BNMT-9 under visible light irradiation. Additionally, the catalysts had high stability. The results of the active spices trapping experiments test indicated that h+ was the main active species. The possible degradation mechanism was proposed.
Collapse
|
13
|
Environment-Friendly Removal Methods for Endocrine Disrupting Chemicals. SUSTAINABILITY 2020. [DOI: 10.3390/su12187615] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the past few decades, many emerging pollutants have been detected and monitored in different water sources because of their universal consumption and improper disposal. Among these, endocrine-disrupting chemicals (EDCs), a group of organic chemicals, have received global attention due to their estrogen effect, toxicity, persistence and bioaccumulation. For the removal of EDCs, conventional wastewater treatment methods include flocculation, precipitation, adsorption, etc. However, there are some limitations on these common methods. Herein, in order to enhance the public’s understanding of environmental EDCs, the definition of EDCs and the characteristics of several typical EDCs (physical and chemical properties, sources, usage, concentrations in the environment) are reviewed and summarized in this paper. In particular, the methods of EDC removal are reviewed, including the traditional methods of EDC removal, photocatalysis, biodegradation of EDCs and the latest research results of EDC removal. It is proposed that photocatalysis and biodegradation could be used as an environmentally friendly and efficient EDC removal technology. Photocatalytic technology could be one of the water treatment methods with the most potential, with great development prospects due to its high catalytic efficiency and low energy consumption. Biodegradation is expected to replace traditional water treatment methods and is also considered to be a highly promising method for efficient removal of EDCs. Besides, we summarize several photocatalysts with high catalytic activity and some fungi, bacteria and algae with strong biodegradability.
Collapse
|
14
|
Nowak M, Zawadzka K, Lisowska K. Occurrence of methylisothiazolinone in water and soil samples in Poland and its biodegradation by Phanerochaete chrysosporium. CHEMOSPHERE 2020; 254:126723. [PMID: 32334247 DOI: 10.1016/j.chemosphere.2020.126723] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 01/30/2020] [Accepted: 04/05/2020] [Indexed: 06/11/2023]
Abstract
Methylisothiazolinone is a commonly used biocide that is released into natural environments. In this work, the ability of the fungal strain Phanerochaete chrysosporium DSM 1556 to biotransform this compound was evaluated. The tested strain was able to remove MIT (at concentrations 50 μg L-1 and 30 mg L-1) from the growth medium with the efficiency 90% after the first 6 h and 100% after 12 h of incubation. Moreover, for the first time, qualitative LC-MS/MS and GC-MS analysis showed monohydroxylated and dihydroxylated methylisothiazolinone and N-methylmalonamic acid as the main products of fungal biodegradation. The ecological toxicity of the tested biocide and its derivatives was also evaluated by using an acute toxicity test with Daphnia magna. An approximately 90% decrease in the toxicity of metabolites formed in the P. chrysosporium culture was noticed. The concentration of MIT in soil and water samples collected in Poland was assessed for the first time. The analysis showed that the selected locations in Poland are contaminated by MIT in the range from 1.04-10.08 μg L-1.
Collapse
Affiliation(s)
- Marta Nowak
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-237, Lodz, Poland
| | - Katarzyna Zawadzka
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-237, Lodz, Poland
| | - Katarzyna Lisowska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-237, Lodz, Poland.
| |
Collapse
|
15
|
Kim HJ, Lee D, Won CH, Kim HW. Statistical correlation of ecotoxicity and water quality parameters in slaughterhouse wastewater. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:1671-1680. [PMID: 31087230 DOI: 10.1007/s10653-019-00314-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
The major causes of toxicity in slaughterhouse wastewater are identified by analyzing the relationship between representative pollutants and the acute toxicity of Daphnia magna. Experimental results demonstrate that organic matters are strongly associated with the acute toxicity. Among many organic pollutants, proteins and carbohydrates were found to be the main toxicity inducers that cause metabolic transformation of D. magna. Statistical correlation between biodegradable soluble organics and the acute toxicity further explains how principal pollutants play potential toxin roles. Also, this study verifies that the variations of biochemical oxygen demand over total chemical oxygen demand (BOD TCOD-1) as well as total organic carbon over total carbon (TOC TC-1) can be indirect indicators explaining the acute toxicity of D. magna because the removal of non-degradable and non-soluble organic matters is connected to the toxicity removal. Overall, these results provide how the acute toxicity of D. magna is attributed to pollutants and what is the potential source of threats to society in slaughterhouse wastewater.
Collapse
Affiliation(s)
- Hee-Jun Kim
- Division of Environmental Engineering, Soil Environment Research Center, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Korea
| | - Donggwan Lee
- Division of Environmental Engineering, Soil Environment Research Center, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Korea
| | - Chan-Hee Won
- Division of Environmental Engineering, Soil Environment Research Center, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Korea
| | - Hyun-Woo Kim
- Division of Environmental Engineering, Soil Environment Research Center, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Korea.
| |
Collapse
|
16
|
From Laboratory Tests to the Ecoremedial System: The Importance of Microorganisms in the Recovery of PPCPs-Disturbed Ecosystems. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10103391] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The presence of a wide variety of emerging pollutants in natural water resources is an important global water quality challenge. Pharmaceuticals and personal care products (PPCPs) are known as emerging contaminants, widely used by modern society. This objective ensures availability and sustainable management of water and sanitation for all, according to the 2030 Agenda. Wastewater treatment plants (WWTP) do not always mitigate the presence of these emerging contaminants in effluents discharged into the environment, although the removal efficiency of WWTP varies based on the techniques used. This main subject is framed within a broader environmental paradigm, such as the transition to a circular economy. The research and innovation within the WWTP will play a key role in improving the water resource management and its surrounding industrial and natural ecosystems. Even though bioremediation is a green technology, its integration into the bio-economy strategy, which improves the quality of the environment, is surprisingly rare if we compare to other corrective techniques (physical and chemical). This work carries out a bibliographic review, since the beginning of the 21st century, on the biological remediation of some PPCPs, focusing on organisms (or their by-products) used at the scale of laboratory or scale-up. PPCPs have been selected on the basics of their occurrence in water resources. The data reveal that, despite the advantages that are associated with bioremediation, it is not the first option in the case of the recovery of systems contaminated with PPCPs. The results also show that fungi and bacteria are the most frequently studied microorganisms, with the latter being more easily implanted in complex biotechnological systems (78% of bacterial manuscripts vs. 40% fungi). A total of 52 works has been published while using microalgae and only in 7% of them, these organisms were used on a large scale. Special emphasis is made on the advantages that are provided by biotechnological systems in series, as well as on the need for eco-toxicological control that is associated with any process of recovery of contaminated systems.
Collapse
|
17
|
Mtibaà R, Ezzanad A, Aranda E, Pozo C, Ghariani B, Moraga J, Nasri M, Manuel Cantoral J, Garrido C, Mechichi T. Biodegradation and toxicity reduction of nonylphenol, 4-tert-octylphenol and 2,4-dichlorophenol by the ascomycetous fungus Thielavia sp HJ22: Identification of fungal metabolites and proposal of a putative pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 708:135129. [PMID: 31806325 DOI: 10.1016/j.scitotenv.2019.135129] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 09/17/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Abstract
Research on the biodegradation of emerging pollutants is gained great focus regarding their detrimental effects on the environment and humans. The objective of the present study was to evaluate the ability of the ascomycetes Thielavia sp HJ22 to remove the phenolic xenobiotics nonylphenol (NP), 4-tert-octylphenol (4-tert-OP) and 2,4-dichlorophenol (2,4-DCP). The strain showed efficient degradation of NP and 4-tert-OP with 95% and 100% removal within 8 h of incubation, respectively. A removal rate of 80% was observed with 2,4-DCP within the same time. Under experimental conditions, the degradation of the tested pollutants concomitantly increased with the laccase production and cytochrome P450 monooxygenases inhibition. This study showed the involvement of laccase in pollutants removal together with biosorption mechanisms. Additionally, results demonstrated the participation of cytochrome P450 monooxygenase in the elimination of 2,4-DCP. Liquid chromatography-mass spectrometry analysis revealed several intermediates, mainly hydroxylated and oxidized compounds with less harmful effects compared to the parent compounds. A decrease in the toxicity of the identified metabolites was observed using Aliivibrio fischeri as bioindicator. The metabolic pathways of degradation were proposed based on the identified metabolites. The results point out the potential of Thielavia strains in the degradation and detoxification of phenolic xenobiotics.
Collapse
Affiliation(s)
- Rim Mtibaà
- Laboratory of Enzyme Engineering and Microbiology, Department of Biology, National School of Engineers of Sfax, University of Sfax, BP «1173», 3038 Sfax, Tunisia.
| | - Abdellah Ezzanad
- Department of Organic Chemistry, University of Sciences, University of Cádiz, Polígono Rio San Pedro 11510, Puerto Real, Cádiz, Spain
| | - Elisabet Aranda
- Institute of Water Research, Department of Microbiology, University of Granada, Ramón y Cajal 4, E-18071 Granada, Spain
| | - Clementina Pozo
- Institute of Water Research, Department of Microbiology, University of Granada, Ramón y Cajal 4, E-18071 Granada, Spain
| | - Bouthaina Ghariani
- Laboratory of Enzyme Engineering and Microbiology, Department of Biology, National School of Engineers of Sfax, University of Sfax, BP «1173», 3038 Sfax, Tunisia
| | - Javier Moraga
- Department of Organic Chemistry, University of Sciences, University of Cádiz, Polígono Rio San Pedro 11510, Puerto Real, Cádiz, Spain
| | - Moncef Nasri
- Laboratory of Enzyme Engineering and Microbiology, Department of Biology, National School of Engineers of Sfax, University of Sfax, BP «1173», 3038 Sfax, Tunisia
| | - Jesús Manuel Cantoral
- Department of Biomedicine, Biotechnology and Public Health, Facultad de Ciencias del Mar y Ambientales, University of Cádiz, Polígono Rio San Pedro 11510 Puerto Real, Cádiz, Spain
| | - Carlos Garrido
- Department of Biomedicine, Biotechnology and Public Health, Facultad de Ciencias del Mar y Ambientales, University of Cádiz, Polígono Rio San Pedro 11510 Puerto Real, Cádiz, Spain
| | - Tahar Mechichi
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, National School of Engineers of Sfax, University of Sfax, BP «1173», 3038 Sfax, Tunisia
| |
Collapse
|
18
|
Vargas-Berrones K, Díaz de León-Martínez L, Bernal-Jácome L, Rodriguez-Aguilar M, Ávila-Galarza A, Flores-Ramírez R. Rapid analysis of 4-nonylphenol by solid phase microextraction in water samples. Talanta 2020; 209:120546. [DOI: 10.1016/j.talanta.2019.120546] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 10/25/2022]
|
19
|
Rajendran RK, Lee YW, Chou PH, Huang SL, Kirschner R, Lin CC. Biodegradation of the endocrine disrupter 4-t-octylphenol by the non-ligninolytic fungus Fusarium falciforme RRK20: Process optimization, estrogenicity assessment, metabolite identification and proposed pathways. CHEMOSPHERE 2020; 240:124876. [PMID: 31542577 DOI: 10.1016/j.chemosphere.2019.124876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 08/24/2019] [Accepted: 09/14/2019] [Indexed: 06/10/2023]
Abstract
4-t-octylphenol (4-t-OP), a well-known endocrine disrupting compound, is frequently found in various environmental compartments at levels that may cause adverse effects to the ecosystem and public health. To date, most of the studies that investigate microbial transformations of 4-t-OP have focused on the process mediated by bacteria, ligninolytic fungi, or microbial consortia. There is no report on the complete degradation mechanism of 4-t-OP by non-ligninolytic fungi. In this study, we conducted laboratory experiments to explore and characterize the non-ligninolytic fungal strain Fusarium falciforme RRK20 to degrade 4-t-OP. Using the response surface methodology, the initial biomass concentration and temperature were the factors identified to be more influential on the efficiency of the biodegradation process as compared with pH. Under the optimized conditions (i.e., 28 °C, pH 6.5 with an initial inoculum density of 0.6 g L-1), 25 mg L-1 4-t-OP served as sole carbon source was completely depleted within a 14-d incubation; addition of low dosage of glucose was shown to significantly accelerate 4-t-OP degradation. The yeast estrogenic screening assay further confirmed the loss of estrogenic activity during the biodegradation process, though a longer incubation period was required for complete removal of estrogenicity. Metabolites identified by LC-MS/MS revealed that strain RRK20 might degrade 4-t-OP as sole energy source via alkyl chain oxidation and aromatic ring hydroxylation pathways. Together, these results not only suggest the potential use of non-ligninolytic fungi like strain RRK20 in remediation of 4-t-OP contaminated environments but may also improve our understanding of the environmental fate of 4-t-OP.
Collapse
Affiliation(s)
| | - Yi-Wen Lee
- Department of Environmental Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Pei-Hsin Chou
- Department of Environmental Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Shir-Ly Huang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 11221, Taiwan
| | - Roland Kirschner
- School of Forestry and Resource Conservation, National Taiwan University, Taipei 10617, Taiwan.
| | - Chu-Ching Lin
- Institute of Environmental Engineering, National Central University, Taoyuan 32001, Taiwan.
| |
Collapse
|
20
|
Olaniyan LWB, Okoh OO, Mkwetshana NT, Okoh AI. Environmental Water Pollution, Endocrine Interference and Ecotoxicity of 4-tert-Octylphenol: A Review. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 248:81-109. [PMID: 30460491 DOI: 10.1007/398_2018_20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
4-tert-Octylphenol is a degradation product of non-ionic surfactants alkylphenol polyethoxylates as well as raw material for a number of industrial applications. It is a multimedia compound having been detected in all environmental compartments such as indoor air and surface waters. The pollutant is biodegradable, but certain degradation products are more toxic than the parent compound. Newer removal techniques from environmental waters have been presented, but they still require development for large-scale applications. Wastewater treatment by plant enzymes such as peroxidases offers promise in total removal of 4-tert-octylphenol leaving less toxic degradation products. The pollutant's endocrine interference has been well reported but more in oestrogens than in any other signalling pathways through which it is believed to exert toxicity on human and wildlife. In this paper we carried out a review of the activities of this pollutant in environmental waters, endocrine interference and relevance to its toxicities and concluded that inadequate knowledge of its endocrine activities impedes understanding of its toxicity which may frustrate current efforts at ridding the compound from the environment.
Collapse
Affiliation(s)
- Lamidi W B Olaniyan
- South Africa Medical Research Council, Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa.
| | - Omobola O Okoh
- South Africa Medical Research Council, Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Department of Pure and Applied Chemistry, University of Fort Hare, Alice, South Africa
| | - Noxolo T Mkwetshana
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| | - Anthony I Okoh
- South Africa Medical Research Council, Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| |
Collapse
|
21
|
Du ZD, Cui YY, Yang CX, Yan XP. Synthesis of magnetic amino-functionalized microporous organic network composites for magnetic solid phase extraction of endocrine disrupting chemicals from water, beverage bottle and juice samples. Talanta 2020; 206:120179. [DOI: 10.1016/j.talanta.2019.120179] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/07/2019] [Accepted: 07/24/2019] [Indexed: 12/19/2022]
|
22
|
Jeong J, Kim H, Choi J. In Silico Molecular Docking and In Vivo Validation with Caenorhabditis elegans to Discover Molecular Initiating Events in Adverse Outcome Pathway Framework: Case Study on Endocrine-Disrupting Chemicals with Estrogen and Androgen Receptors. Int J Mol Sci 2019; 20:ijms20051209. [PMID: 30857347 PMCID: PMC6429066 DOI: 10.3390/ijms20051209] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 12/25/2022] Open
Abstract
Molecular docking is used to analyze structural complexes of a target with its ligand for understanding the chemical and structural basis of target specificity. This method has the potential to be applied for discovering molecular initiating events (MIEs) in the Adverse Outcome Pathway framework. In this study, we aimed to develop in silico–in vivo combined approach as a tool for identifying potential MIEs. We used environmental chemicals from Tox21 database to identify potential endocrine-disrupting chemicals (EDCs) through molecular docking simulation, using estrogen receptor (ER), androgen receptor (AR) and their homology models in the nematode Caenorhabditis elegans (NHR-14 and NHR-69, respectively). In vivo validation was conducted on the selected EDCs with C. elegans reproductive toxicity assay using wildtype N2, nhr-14, and nhr-69 loss-of-function mutant strains. The chemicals showed high binding affinity to tested receptors and showed the high in vivo reproductive toxicity, and this was further confirmed using the mutant strains. The present study demonstrates that the binding affinity from the molecular docking potentially correlates with in vivo toxicity. These results prove that our in silico–in vivo combined approach has the potential to be applied for identifying MIEs. This study also suggests the potential of C. elegans as useful in the in vivo model for validating the in silico approach.
Collapse
Affiliation(s)
- Jaeseong Jeong
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul 02504, Korea.
| | - Hunbeen Kim
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul 02504, Korea.
| | - Jinhee Choi
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul 02504, Korea.
| |
Collapse
|
23
|
Janicki T, Długoński J, Krupiński M. Detoxification and simultaneous removal of phenolic xenobiotics and heavy metals with endocrine-disrupting activity by the non-ligninolytic fungus Umbelopsis isabellina. JOURNAL OF HAZARDOUS MATERIALS 2018; 360:661-669. [PMID: 30219529 DOI: 10.1016/j.jhazmat.2018.08.047] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 07/21/2018] [Accepted: 08/14/2018] [Indexed: 06/08/2023]
Abstract
Organic and inorganic pollutants well known to interfere with the major functions of the endocrine system co-occur widely in contaminated ecosystems. The aim of the study was to evaluate the ability of Umbelopsis isabellina fungus to simultaneously remove and detoxify multiple environmentally significant endocrine disruptors: the heavy metals Cd(II), Zn(II), Mn(II), Pb(II) and Ni(II) and the phenolic xenobiotics nonylphenol (t-NP), 4-cumylphenol (CP) and 4-tert-octylphenol (4-t-OP). The effects of the metals on fungal growth and efficiency of single-metal uptake were also investigated. U. isabellina exhibited considerable tolerance to Zn(II), Mn(II), Pb(II) and Ni(II), with IC50/24 values ranging from 5.08 for Ni(II) to 13.1 mM for Zn(II). In the presence of CP, the maximum efficiency of Pb(II) removal increased 25% relative to that of the control. Supplementation with Mn(II) or Zn(II) enhanced the 4-t-OP degradation by 18 or 9%, respectively, after 6 h of cultivation. Ecotoxicological assays monitoring bioindicators from different aquatic ecosystems revealed detoxification coinciding with the removal of metals and organic xenobiotics from binary mixtures. This work indicates the potential of a single microorganism, U. isabellina, to remove both heavy metals and organic xenobiotics from co-contaminated sites, making it a suitable candidate for the development of bioremediation strategies.
Collapse
Affiliation(s)
- Tomasz Janicki
- Department of Industrial Microbiology and Biotechnology, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Jerzy Długoński
- Department of Industrial Microbiology and Biotechnology, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Mariusz Krupiński
- Department of Industrial Microbiology and Biotechnology, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland.
| |
Collapse
|
24
|
Wijayawardene NN, Pawłowska J, Letcher PM, Kirk PM, Humber RA, Schüßler A, Wrzosek M, Muszewska A, Okrasińska A, Istel Ł, Gęsiorska A, Mungai P, Lateef AA, Rajeshkumar KC, Singh RV, Radek R, Walther G, Wagner L, Walker C, Wijesundara DSA, Papizadeh M, Dolatabadi S, Shenoy BD, Tokarev YS, Lumyong S, Hyde KD. Notes for genera: basal clades of Fungi (including Aphelidiomycota, Basidiobolomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota). FUNGAL DIVERS 2018. [DOI: 10.1007/s13225-018-0409-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Wang S, Liu F, Wu W, Hu Y, Liao R, Chen G, Wang J, Li J. Migration and health risks of nonylphenol and bisphenol a in soil-winter wheat systems with long-term reclaimed water irrigation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 158:28-36. [PMID: 29656161 DOI: 10.1016/j.ecoenv.2018.03.082] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 03/28/2018] [Accepted: 03/28/2018] [Indexed: 06/08/2023]
Abstract
Reclaimed water reuse has become an important means of alleviating agricultural water shortage worldwide. However, the presence of endocrine disrupters has roused up considerable attention. Barrel test in farmland was conducted to investigate the migration of nonylphenol (NP) and bisphenol A (BPA) in soil-winter wheat system simulating reclaimed water irrigation. Additionally, the health risks on humans were assessed based on US EPA risk assessment model. The migration of NP and BPA decreased from the soil to the winter wheat; the biological concentration factors (BCFs) of NP and BPA in roots, stems, leaves, and grains all decreased with their added concentrations in soils. The BCFs of NP and BPA in roots were greatest (0.60-5.80 and 0.063-1.45, respectively). The average BCFs of NP and BPA in winter wheat showed negative exponential relations to their concentrations in soil. The amounts of NP and BPA in soil-winter wheat system accounted for 8.99-28.24% and 2.35-4.95%, respectively, of the initial amounts added into the soils. The hazard quotient (HQ) for children and adults ranged between 10-6 and 1, so carcinogenic risks could be induced by ingesting winter wheat grains under long-term reclaimed water irrigation.
Collapse
Affiliation(s)
- Shiyu Wang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China; State Key Laboratory of Simulation and Regulation of theWater Cycle in the River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100048, PR China
| | - Fei Liu
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Wenyong Wu
- State Key Laboratory of Simulation and Regulation of theWater Cycle in the River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100048, PR China.
| | - Yaqi Hu
- State Key Laboratory of Simulation and Regulation of theWater Cycle in the River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100048, PR China
| | - Renkuan Liao
- State Key Laboratory of Simulation and Regulation of theWater Cycle in the River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100048, PR China
| | - Gaoting Chen
- State Key Laboratory of Simulation and Regulation of theWater Cycle in the River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100048, PR China
| | - Jiulong Wang
- State Key Laboratory of Simulation and Regulation of theWater Cycle in the River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100048, PR China
| | - Jialin Li
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China
| |
Collapse
|
26
|
Bernat P, Nykiel-Szymańska J, Stolarek P, Słaba M, Szewczyk R, Różalska S. 2,4-dichlorophenoxyacetic acid-induced oxidative stress: Metabolome and membrane modifications in Umbelopsis isabellina, a herbicide degrader. PLoS One 2018; 13:e0199677. [PMID: 29933393 PMCID: PMC6014680 DOI: 10.1371/journal.pone.0199677] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 06/12/2018] [Indexed: 01/13/2023] Open
Abstract
The study reports the response to herbicide of the 2,4-dichlorophenoxyacetic acid (2,4-D)-degrading fungal strain Umbelopsis isabellina. A comparative analysis covered 41 free amino acids as well as 140 lipid species of fatty acids, phospholipids, acylglycerols, sphingolipids, and sterols. 2,4-D presence led to a decrease in fungal catalase activity, associated with a higher amount of thiobarbituric acid-reactive substances (TBARS). Damage to cells treated with the herbicide resulted in increased membrane permeability and decreased membrane fluidity. Detailed lipidomic profiling showed changes in the fatty acids composition such as an increase in the level of linoleic acid (C18:2). Moreover, an increase in the phosphatidylethanolamine/phosphatidylcholine ratio was observed. Analysis of fungal lipid profiles revealed that the presence of 2,4-D was accompanied by the accumulation of triacylglycerols, a decrease in ergosterol content, and a considerable rise in the level of sphingolipid ceramides. In the exponential phase of growth, increased levels of leucine, glycine, serine, asparagine, and hydroxyproline were found. The results obtained in our study confirmed that in the cultures of U. isabellina oxidative stress was caused by 2,4-D. The herbicide itself forced changes not only to membrane lipids but also to neutral lipids and amino acids, as the difference of tested compounds profiles between 2,4-D-containing and control samples was consequently lower as the pesticide degradation progressed. The presented findings may have a significant impact on the basic understanding of 2,4-D biodegradation and may be applied for process optimization on metabolomic and lipidomic levels.
Collapse
Affiliation(s)
- Przemysław Bernat
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
- * E-mail:
| | - Justyna Nykiel-Szymańska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Paulina Stolarek
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Mirosława Słaba
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Rafał Szewczyk
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Sylwia Różalska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
27
|
Koriem KMM, Arbid MSS, Gomaa NE. The Role of Chlorogenic Acid Supplementation in Anemia and Mineral Disturbances Induced by 4-Tert-Octylphenol Toxicity. J Diet Suppl 2018; 15:55-71. [PMID: 28489956 DOI: 10.1080/19390211.2017.1321079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
4-tert-octylphenol (OP) is an endocrine-disrupting chemical that causes harmful effects to human health. Chlorogenic acid is the major dietary polyphenol present in various foods and beverages. The aim of the present study was to evaluate the protective role of chlorogenic acid in anemia and mineral disturbance occurring in OP toxicity in rats. Thirty-two male albino rats were divided into four equal groups (8 rats/group) as follows. The first (control) group was treated daily with an oral dose of 1 ml saline for two weeks. The second group was treated daily with an oral dose of 60 mg chlorogenic acid/kg body weight for two weeks. The third and fourth groups received daily intraperitoneal (ip) injections with 100 mg OP/kg body weight for two weeks; the fourth group was treated daily with an oral dose of 60 mg chlorogenic acid/kg body weight for three weeks starting one week before OP injections. The results revealed that OP induced significant decreases in hemoglobin, hematocrit, red blood cells, mean cell volume, mean cell hemoglobin, mean cell hemoglobin concentration, platelet count, white blood cells, lymphocyte and neutrophil percent, transferrin receptor, serum calcium, phosphorous, sodium, potassium, chloride, glutathione-S-transferase, glutathione peroxidase, catalase, glutathione reductase, and superoxide dismutase. Moreover, significant increases in serum hepcidin, ferritin, transferrin, erythropoietin, aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, urea, creatinine, selenium, zinc, manganese, copper, iron, malondialdehyde, and protein carbonyl levels were found in OP groups. OP exposure also induced cell apoptosis. Chlorogenic acid pretreatment in OP-treated groups restored all the mentioned parameters to approach the normal values. In conclusion, chlorogenic acid protects from anemia and mineral disturbances in 4-tert-octylphenol toxicity by ameliorating oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Khaled M M Koriem
- a Department of Medical Physiology, Medical Research Division, National Research Centre , Dokki, Cairo , Egypt
| | - Mahmoud S S Arbid
- b Department of Pharmacology, Medical Research Division, National Research Centre , Dokki, Cairo , Egypt
| | - Nawal E Gomaa
- b Department of Pharmacology, Medical Research Division, National Research Centre , Dokki, Cairo , Egypt
| |
Collapse
|
28
|
Nykiel-Szymańska J, Stolarek P, Bernat P. Elimination and detoxification of 2,4-D by Umbelopsis isabellina with the involvement of cytochrome P450. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:2738-2743. [PMID: 29139072 PMCID: PMC5773638 DOI: 10.1007/s11356-017-0571-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 10/24/2017] [Indexed: 05/15/2023]
Abstract
The chemical 2,4-dichlorophenoxyacetic acid (2,4-D) is used in agriculture as a herbicide. Its intensive use has an adverse effect on the environment. This study involved examining the degradation of 2,4-D compound by the filamentous fungus Umbelopsis isabellina. After 5 days of incubation, 98% of the herbicide (added at 25 mg L-1) was found to be removed. The elimination of 2,4-D by U. isabellina was connected with the formation of 2,4-dichlorophenol (2,4-DCP), which resulted in a 60% decrease in the sample toxicity toward Artemia franciscana larvae. The metabolism of 2,4-D was inhibited by the addition of metyrapone, a known cytochrome P450 inhibitor. It provides evidence that cytochrome P450 system is involved in 2,4-D metabolism in U. isabellina.
Collapse
Affiliation(s)
- Justyna Nykiel-Szymańska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha Street 12/16, 90-237, Lodz, Poland
| | - Paulina Stolarek
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha Street 12/16, 90-237, Lodz, Poland
| | - Przemysław Bernat
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha Street 12/16, 90-237, Lodz, Poland.
| |
Collapse
|
29
|
Rajendran RK, Lin CC, Huang SL, Kirschner R. Enrichment, isolation, and biodegradation potential of long-branched chain alkylphenol degrading non-ligninolytic fungi from wastewater. MARINE POLLUTION BULLETIN 2017; 125:416-425. [PMID: 28964501 DOI: 10.1016/j.marpolbul.2017.09.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 06/07/2023]
Abstract
4-t-Octylphenol (4-t-OP) has become a serious environmental concern due to the endocrine disruption in animals and humans. The biodegradation of 4-t-OP by pure cultures has been extensively investigated only in bacteria and wood-decaying fungi. In this study we isolated and identified 14 filamentous fungal strains from wastewater samples in Taiwan using 4-t-OP as a sole carbon and energy source. The isolates were identified based on sequences from different DNA regions. Of 14 fungal isolates, 10 strains grew effectively on solid medium with a wide variety of endocrine disrupting chemicals as the sole carbon and energy source. As revealed by high-performance liquid chromatography analysis, the most effective 4-t-OP degradation (>70%) in liquid medium was observed in Fusarium falciforme after 15days. To our knowledge, this is the first report on the degradation of 4-t-OP as a sole carbon and energy source by non-ligninolytic fungi.
Collapse
Affiliation(s)
- Ranjith Kumar Rajendran
- Graduate Institute of Environmental Engineering, National Central University, No. 300, Zhongda Rd., Zhongli District, Taoyuan City 32001, Taiwan
| | - Chu-Ching Lin
- Graduate Institute of Environmental Engineering, National Central University, No. 300, Zhongda Rd., Zhongli District, Taoyuan City 32001, Taiwan
| | - Shir-Ly Huang
- Institute of Microbiology and Immunology, National Yang Ming University, Taipei, Taiwan
| | - Roland Kirschner
- Department of Biomedical Sciences and Engineering, No. 300, Zhongda Rd., Zhongli District, Taoyuan City 32001, Taiwan.
| |
Collapse
|
30
|
Rajendran RK, Huang SL, Lin CC, Kirschner R. Biodegradation of the endocrine disrupter 4-tert-octylphenol by the yeast strain Candida rugopelliculosa RRKY5 via phenolic ring hydroxylation and alkyl chain oxidation pathways. BIORESOURCE TECHNOLOGY 2017; 226:55-64. [PMID: 27987401 DOI: 10.1016/j.biortech.2016.11.129] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/28/2016] [Accepted: 11/30/2016] [Indexed: 06/06/2023]
Abstract
4-(1,1,3,3-tetramethylbutane)-phenol (4-tert-OP) is one of the most prevalent endocrine disrupting pollutants. Information about bioremediation of 4-tert-OP remains limited, and no study has been reported on the mechanism of 4-tert-OP degradation by yeasts. The yeast Candida rugopelliculosa RRKY5 was proved to be able to utilize 4-methylphenol, bisphenol A, 4-ethylphenol, 4-tert-butylphenol, 4-tert-OP, 4-tert-nonylphenol, isooctane, and phenol under aerobic conditions. The optimum conditions for 4-tert-OP degradation were 30°C, pH 5.0, and an initial 4-tert-OP concentration of 30mgL-1; the maximum biodegradation rate constant was 0.107d-1, equivalent to a minimum half-life of 9.6d. Scanning electron microscopy revealed formation of arthroconidia when cells were grown in the presence of 4-tert-OP, whereas the cells remained in the budding form without 4-tert-OP. Identification of the 4-tert-OP degradation metabolites using liquid chromatography-hybrid mass spectrometry revealed three different mechanisms via both branched alkyl side chain and aromatic ring cleavage pathways.
Collapse
Affiliation(s)
- Ranjith Kumar Rajendran
- Department of Life Sciences, National Central University, No. 300, Zhongda Rd., Zhongli District, Taoyuan City 32001, Taiwan
| | - Shir-Ly Huang
- Department of Life Sciences, National Central University, No. 300, Zhongda Rd., Zhongli District, Taoyuan City 32001, Taiwan
| | - Chu-Ching Lin
- Graduate Institute of Environmental Engineering, National Central University, No. 300, Zhongda Rd., Zhongli District, Taoyuan City 32001, Taiwan
| | - Roland Kirschner
- Department of Life Sciences, National Central University, No. 300, Zhongda Rd., Zhongli District, Taoyuan City 32001, Taiwan.
| |
Collapse
|
31
|
Bai N, Abuduaini R, Wang S, Zhang M, Zhu X, Zhao Y. Nonylphenol biodegradation characterizations and bacterial composition analysis of an effective consortium NP-M2. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 220:95-104. [PMID: 27638455 DOI: 10.1016/j.envpol.2016.09.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 09/08/2016] [Accepted: 09/11/2016] [Indexed: 06/06/2023]
Abstract
Nonylphenol (NP), ubiquitously detected as the degradation product of nonionic surfactants nonylphenol polyethoxylates, has been reported as an endocrine disrupter. However, most pure microorganisms can degrade only limited species of NP with low degradation efficiencies. To establish a microbial consortium that can effectively degrade different forms of NP, in this study, we isolated a facultative microbial consortium NP-M2 and characterized the biodegradation of NP by it. NP-M2 could degrade 75.61% and 89.75% of 1000 mg/L NP within 48 h and 8 days, respectively; an efficiency higher than that of any other consortium or pure microorganism reported so far. The addition of yeast extract promoted the biodegradation more significantly than that of glucose. Moreover, surface-active compounds secreted into the extracellular environment were hypothesized to promote high-efficiency metabolism of NP. The detoxification of NP by this consortium was determined. The degradation pathway was hypothesized to be initiated by oxidization of the benzene ring, followed by step-wise side-chain biodegradation. The bacterial composition of NP-M2 was determined using 16S rDNA library, and the consortium was found to mainly comprise members of the Sphingomonas, Pseudomonas, Alicycliphilus, and Acidovorax genera, with the former two accounting for 86.86% of the consortium. The high degradation efficiency of NP-M2 indicated that it could be a promising candidate for NP bioremediation in situ.
Collapse
Affiliation(s)
- Naling Bai
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Rexiding Abuduaini
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Sheng Wang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Meinan Zhang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xufen Zhu
- Institute of Genetics, College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yuhua Zhao
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
32
|
Yu J, Luo Y, Yang XF, Yang MX, Yang J, Yang XS, Zhou J, Gao F, He LT, Xu J. Effects of perinatal exposure to nonylphenol on delivery outcomes of pregnant rats and inflammatory hepatic injury in newborn rats. ACTA ACUST UNITED AC 2016; 49:e5647. [PMID: 27982282 PMCID: PMC5188856 DOI: 10.1590/1414-431x20165647] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/21/2016] [Indexed: 11/29/2022]
Abstract
The current study aimed to investigate the effects of perinatal exposure to
nonylphenol (NP) on delivery outcome of pregnant rats and subsequent inflammatory
hepatic injury in newborn rats. The pregnant rats were divided into 2 groups: control
group (corn oil) and NP exposure group. Thirty-four pregnant rats were administered
NP or corn oil by gavage from the sixth day of pregnancy to 21 days postpartum, with
blood samples collected at 12 and 21 days of pregnancy and 60 days after delivery.
The NP concentration was measured by HPLC, with chemiluminescence used for detection
of estrogen and progesterone levels. Maternal delivery parameters were also observed.
Liver and blood of the newborn rats were collected and subjected to automatic
biochemical detection of liver function and blood lipid analyzer
(immunoturbidimetry), and ultrastructural observation of the hepatic microstructure,
with the TNF-α and IL-1β hepatic tissue levels evaluated by immunohistochemistry.
Compared with the control group, the pregnant and postpartum serum NP and estradiol
levels of the mother rats in the NP group were significantly increased, together with
lowered progesterone level, increased number of threatened abortion and dystocia, and
fewer newborn rats and lower litter weight. Serum and hepatic NP levels of the
newborn rats measured 60 days after birth were significantly higher than those of the
control group, as well as lower testosterone levels and increased estradiol levels.
When observed under electron microscope, the hepatocyte nuclei of the control group
were large and round, with evenly distributed chromatin. The chromatin of hepatocytes
in the NP group presented deep staining of the nuclei, significant lipid decrease in
the cytoplasm, and the majority of cells bonded with lysate. The results of
immunohistochemistry showed that there was almost no TNF-α or IL-1β expression in the
hepatocytes of the control group, while the number of TNF-α-, PCNA-, and
IL-1β-positive cells in the NP group was increased, with higher integral optical
density than the control group. Compared to the control group, the serum levels of
alanine aminotransferase, aspartate aminotransferase, triglyceride and low-density
lipoprotein in the newborn rats of the NP group were significantly increased. There
was no significant difference in the serum level of high-density lipoprotein or
cholesterol between the groups. Perinatal exposure to NP can interfere with the
in vivo estrogen and progesterone levels of pregnant rats,
resulting in threatened abortion, dystocia and other adverse delivery outcomes. High
liver and serum NP levels of the newborn rats led to alteration of liver tissue
structure and function. The NP-induced hepatotoxicity is probably mediated by
inflammatory cytokines TNF-α and IL-1α.
Collapse
Affiliation(s)
- J Yu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| | - Y Luo
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| | - X F Yang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - M X Yang
- Department of Endocrinology, The First Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - J Yang
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| | - X S Yang
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| | - J Zhou
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| | - F Gao
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| | - L T He
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| | - J Xu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
33
|
Huang D, Qin X, Xu P, Zeng G, Peng Z, Wang R, Wan J, Gong X, Xue W. Composting of 4-nonylphenol-contaminated river sediment with inocula of Phanerochaete chrysosporium. BIORESOURCE TECHNOLOGY 2016; 221:47-54. [PMID: 27639223 DOI: 10.1016/j.biortech.2016.08.104] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/24/2016] [Accepted: 08/29/2016] [Indexed: 06/06/2023]
Abstract
A composting study was performed to investigate the degradation of 4-nonylphenol (4-NP) in river sediment by inoculating Phanerochaete chrysosporium (Pc). Pc was inoculated into composting Reactor A, C and D, while Reactor B without inocula was used as control. The results showed that composting with Pc accelerated the degradation of 4-NP, increased the catalase and polyphenol oxidase enzyme activities in contaminated sediment. The dissipation half-life (t1/2) of 4-NP in Reactor A, C and D with inocula of Pc were 2.079, 2.558, 2.424days, while in Reactor B without inocula of Pc it was 3.239days, respectively. Correlation analysis showed that the contents of 4-NP in sediment in Reactor A and D were negatively correlated with the actives of laccase, whereas no obvious correlation was observed in Reactor B and C. All these findings also indicated that Pc enhanced the maturity of compost, and the best composting C/N ratio was 25.46:1.
Collapse
Affiliation(s)
- Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, Hunan, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, PR China.
| | - Xingmeng Qin
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, Hunan, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, PR China
| | - Piao Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, Hunan, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, Hunan, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, PR China
| | - Zhiwei Peng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, Hunan, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, PR China
| | - Rongzhong Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, Hunan, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, PR China
| | - Jia Wan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, Hunan, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, PR China
| | - Xiaomin Gong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, Hunan, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, PR China
| | - Wenjing Xue
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, Hunan, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, PR China
| |
Collapse
|
34
|
Cobas M, Danko AS, Pazos M, Sanromán MA. Removal of metal and organic pollutants from wastewater by a sequential selective technique. BIORESOURCE TECHNOLOGY 2016; 213:2-10. [PMID: 26897470 DOI: 10.1016/j.biortech.2016.02.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/08/2016] [Accepted: 02/09/2016] [Indexed: 06/05/2023]
Abstract
In this study the application of a sequential selective system that combined biosorption with biodegradation was evaluated as a feasible process for the removal of Cr(VI) and m-cresol from effluents. Cr(VI) biosorption on pretreated chestnut shells showed 100% metal removal and modelling efforts demonstrated that the pseudo-second order kinetic model and Langmuir isotherm fit well the process behaviour. Thus, the treated stream was an appropriate environment for the biodegradation of m-cresol using a laccase-producer fungus, Phlebia radiata. Two bioreactor configurations, rotating drum and modified-airlift, were studied using the fungus grown on chestnut shells, which act as support-substrate as well as oxidative enzyme inductor increasing the laccase activity up to 1000UL(-1). The best bioreactor, rotating drum, reached 100% removal in 7days. Finally, the best configuration for the sequential selective system was modelled operating in continuous mode by the breakthrough curves generated using FASTv2.0 and the design bioreactor flow model.
Collapse
Affiliation(s)
- M Cobas
- Department of Chemical Engineering, University of Vigo, Vigo 36310, Spain
| | - A S Danko
- CERENA (Centre for National Resources and the Environment), Department of Mining Engineering, University of Porto, Rua Dr. Roberto Frias, s/n 4200-465, Porto, Portugal
| | - M Pazos
- Department of Chemical Engineering, University of Vigo, Vigo 36310, Spain
| | - M A Sanromán
- Department of Chemical Engineering, University of Vigo, Vigo 36310, Spain.
| |
Collapse
|
35
|
Pawłowska J, Aleksandrzak-Piekarczyk T, Banach A, Kiersztyn B, Muszewska A, Serewa L, Szatraj K, Wrzosek M. Preliminary studies on the evolution of carbon assimilation abilities within Mucorales. Fungal Biol 2016; 120:752-63. [DOI: 10.1016/j.funbio.2016.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 02/05/2016] [Accepted: 02/06/2016] [Indexed: 12/01/2022]
|
36
|
Rajendran RK, Huang SL, Lin CC, Kirschner R. Aerobic degradation of estrogenic alkylphenols by yeasts isolated from a sewage treatment plant. RSC Adv 2016. [DOI: 10.1039/c6ra08839b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Long-chain alkylphenols including octylphenol (OP) are well-known toxic pollutants prevailing in the environment due to the massive demand of these chemicals in industry and have been identified as endocrine disrupting chemicals (EDCs).
Collapse
Affiliation(s)
| | - Shir-Ly Huang
- Department of Life Science
- National Central University
- Taoyuan City 32001
- Taiwan
- Graduate Institute of Environmental Engineering
| | - Chu-Ching Lin
- Graduate Institute of Environmental Engineering
- National Central University
- Taoyuan City 32001
- Taiwan
| | - Roland Kirschner
- Department of Life Science
- National Central University
- Taoyuan City 32001
- Taiwan
| |
Collapse
|