1
|
Armenova N, Tsigoriyna L, Petrova P, Petrov K. Direct microbial production of 2,3-Butanediol from inulin by Bacillus velezensis R22 through the synergistic action of membrane and cytoplasmic inulinases. BIORESOURCE TECHNOLOGY 2025; 419:132057. [PMID: 39805475 DOI: 10.1016/j.biortech.2025.132057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/27/2024] [Accepted: 01/09/2025] [Indexed: 01/16/2025]
Abstract
The present study investigates the natural ability of Bacillus velezensis R22 to produce 2,3-BD from two inulin-rich substrates - insoluble and soluble chicory flour. After complex optimization of the media content and process parameters by consecutive application of Plackett-Burman design and response surface methodology, the strain R22 was capable of producing 71.2 g/L (95.5 % R,R-2,3-BD) and 96.4 g/L 2,3-BD (86.2 % R,R-2,3-BD) from insoluble and soluble chicory flour without preliminary hydrolysis. The optimal conditions were: K2HPO4 concentration of 3.43 g/L, pH 6.68, and agitation speed of 363 rpm. The total inulinase activity of R22 ranged between 85 and 94 U/mL and was provided by the synergistic action of two enzymes: cytoplasmic SacC and membrane-located LevB, which were purified and characterized. The ability to directly convert inulin, its non-pathogenic nature, and the formation of predominantly R,R-2,3-BD singled out B. velezensis R22 as a new promising industrial producer of 2,3-BD from inulin-rich plant biomass.
Collapse
Affiliation(s)
- Nadya Armenova
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, Acad. Georgi Bontchev str., bl. 103, 1113 Sofia, Bulgaria
| | - Lidia Tsigoriyna
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, Acad. Georgi Bontchev str., bl. 103, 1113 Sofia, Bulgaria
| | - Penka Petrova
- Institute of Microbiology, Bulgarian Academy of Sciences, Acad. Georgi Bontchev str. bl. 26, 1113 Sofia, Bulgaria
| | - Kaloyan Petrov
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, Acad. Georgi Bontchev str., bl. 103, 1113 Sofia, Bulgaria.
| |
Collapse
|
2
|
Gergov E, Petrova P, Arsov A, Ignatova I, Tsigoriyna L, Armenova N, Petrov K. Inactivation of sacB Gene Allows Higher 2,3-Butanediol Production by Bacillus licheniformis from Inulin. Int J Mol Sci 2024; 25:11983. [PMID: 39596053 PMCID: PMC11594243 DOI: 10.3390/ijms252211983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 10/31/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Bacillus licheniformis 24 (BL24) is an efficient, non-pathogenic producer of 2,3-butanediol (2,3-BD). However, during inulin fermentation, the strain produces large amounts of exopolysaccharides (EPS), which interfere with the process' performance. The present study aims to investigate the effect that inactivation of the sacB gene, encoding levansucrase in BL24, has on 2,3-BD production efficiency. Knockout of the sacB gene was accomplished via insertional inactivation. The sacB-knockout variant formed 0.57 g/L EPS from sucrose and 0.7-0.8 g/L EPS from glucose and fructose, a 15- and 2.5-fold reduction relative to the wild type, respectively. Likewise, during batch fermentation with soluble inulin Frutafit® CLR, the mutant BLΔsacB produced significantly less EPS than the wild type, allowing the maintenance of pH at values favoring 2,3-BD synthesis. At pH 6.50, BLΔsacB reached a record titer of 128.7 g/L 2,3-BD, with productivity of 1.65 g/L/h, and a yield of 85.8% of the theoretical maximum. The obtained concentration of 2,3-BD is two-fold higher compared to that of the wild type. Subsequent RT-qPCR assays confirmed a successful sacB knockout. Three of the genes involved in inulin hydrolysis (sacA, sacC, and fruA) maintained their expression levels compared to the wild type, while that of levB increased. Although total EPS accumulation could not be completely eliminated via sacB gene knockout alone, the overall reduction in EPS content has enabled the highest yield of 2,3-BD from inulin to date, a promising result for the industrial production from inulin-rich substrates.
Collapse
Affiliation(s)
- Emanoel Gergov
- Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (E.G.); (P.P.); (A.A.)
| | - Penka Petrova
- Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (E.G.); (P.P.); (A.A.)
| | - Alexander Arsov
- Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (E.G.); (P.P.); (A.A.)
| | - Ina Ignatova
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.I.); (L.T.); (N.A.)
| | - Lidia Tsigoriyna
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.I.); (L.T.); (N.A.)
| | - Nadya Armenova
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.I.); (L.T.); (N.A.)
| | - Kaloyan Petrov
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.I.); (L.T.); (N.A.)
| |
Collapse
|
3
|
Souza BCD, Folle AB, Carra S, Malvessi E. 2,3-Butanediol plus acetoin obtention by Enterobacter aerogenes ATCC 13048: inhibition by target products and cells reuse during fed-batch cultivation. Prep Biochem Biotechnol 2024; 55:318-330. [PMID: 39267306 DOI: 10.1080/10826068.2024.2402341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
2,3-Butanediol (2,3-BD) is a highly valued building block, and optimizing its production by fermentation, particularly with crude glycerol, is crucial. Enterobacter aerogenes is a key microorganism for this process; however, there are limited studies addressing the inhibition effects of products and by-products on 2,3-BD production. This study investigates these inhibition effects to maximize 2,3-BD production. Final concentrations of 2,3-BD plus acetoin reached 89.3, 92.7, and 71.1 g.L-1 with productivities of 1.22, 1.69, and 0.99 g.L-1.h-1 in pure glycerol, glucose, and crude glycerol media, respectively. Acetic acid was the main by-product, with concentrations ranging from 10 to 15 g.L-1. The reinoculation of E. aerogenes cells highlighted the strong effect of 2,3-BD and acetic acid on microbial growth and metabolism, with the cultivation environment exerting selective pressure. Notably, cells reuse enhanced performance in crude glycerol media, achieving a specific productivity in relation to biomass (YP/X) of 9.18 g.g-1; about 25% higher than in fed-batch without cells reuse. By combining results from two fed-batch cycles, the total final concentration of 2,3-BD plus acetoin reached 99.4 g.L-1, alongside a 33% reduction in total acetic acid production with reused cells.
Collapse
Affiliation(s)
- Bruna Campos de Souza
- Laboratório de Bioprocessos, Caxias do Sul, Universidade de Caxias do Sul (UCS), Instituto de Biotecnologia, Rio Grande do Sul, Brazil
| | - Analia Borges Folle
- Laboratório de Bioprocessos, Caxias do Sul, Universidade de Caxias do Sul (UCS), Instituto de Biotecnologia, Rio Grande do Sul, Brazil
| | - Sabrina Carra
- Laboratório de Bioprocessos, Caxias do Sul, Universidade de Caxias do Sul (UCS), Instituto de Biotecnologia, Rio Grande do Sul, Brazil
| | - Eloane Malvessi
- Laboratório de Bioprocessos, Caxias do Sul, Universidade de Caxias do Sul (UCS), Instituto de Biotecnologia, Rio Grande do Sul, Brazil
| |
Collapse
|
4
|
Ponsetto P, Sasal EM, Mazzoli R, Valetti F, Gilardi G. The potential of native and engineered Clostridia for biomass biorefining. Front Bioeng Biotechnol 2024; 12:1423935. [PMID: 39219620 PMCID: PMC11365079 DOI: 10.3389/fbioe.2024.1423935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Since their first industrial application in the acetone-butanol-ethanol (ABE) fermentation in the early 1900s, Clostridia have found large application in biomass biorefining. Overall, their fermentation products include organic acids (e.g., acetate, butyrate, lactate), short chain alcohols (e.g., ethanol, n-butanol, isobutanol), diols (e.g., 1,2-propanediol, 1,3-propanediol) and H2 which have several applications such as fuels, building block chemicals, solvents, food and cosmetic additives. Advantageously, several clostridial strains are able to use cheap feedstocks such as lignocellulosic biomass, food waste, glycerol or C1-gases (CO2, CO) which confer them additional potential as key players for the development of processes less dependent from fossil fuels and with reduced greenhouse gas emissions. The present review aims to provide a survey of research progress aimed at developing Clostridium-mediated biomass fermentation processes, especially as regards strain improvement by metabolic engineering.
Collapse
Affiliation(s)
| | | | - Roberto Mazzoli
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | | | | |
Collapse
|
5
|
Ponjavic M, Filipovic V, Topakas E, Karnaouri A, Zivkovic J, Krgovic N, Mudric J, Savikin K, Nikodinovic-Runic J. Two-Step Upcycling Process of Lignocellulose into Edible Bacterial Nanocellulose with Black Raspberry Extract as an Active Ingredient. Foods 2023; 12:2995. [PMID: 37627994 PMCID: PMC10453929 DOI: 10.3390/foods12162995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
(1) Background: Bacterial nanocellulose (BNC) has gained in popularity over the years due to its outstanding properties such as renewability, biocompatibility, and bioavailability, and its use as an eco-friendly material of the future for replacing petrochemical products. (2) Methods: This research refers to the utilization of lignocellulose coming from wood waste via enzymatic hydrolysis to produce biopolymer BNC with an accumulation rate of 0.09 mg/mL/day. Besides its significant contribution to the sustainability, circularity, and valorization of biomass products, the obtained BNC was functionalized through the adsorption of black raspberry extract (BR) by simple soaking. (3) Results: BR contained 77.25 ± 0.23 mg GAE/g of total phenolics and 27.42 ± 0.32 mg CGE/g of total anthocyanins. The antioxidant and antimicrobial activity of BR was evaluated by DPPH (60.51 ± 0.18 µg/mL) and FRAP (1.66 ± 0.03 mmol Fe2+/g) and using a standard disc diffusion assay, respectively. The successful synthesis and interactions between BNC and BR were confirmed by FTIR analysis, while the morphology of the new nutrient-enriched material was investigated by SEM analysis. Moreover, the in vitro release kinetics of a main active compound (cyanidin-3-O-rutinoside) was tested in different release media. (4) Conclusions: The upcycling process of lignocellulose into enriched BNC has been demonstrated. All findings emphasize the potential of BNC-BR as a sustainable food industry material.
Collapse
Affiliation(s)
- Marijana Ponjavic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia; (M.P.); (V.F.)
| | - Vuk Filipovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia; (M.P.); (V.F.)
| | - Evangelos Topakas
- Industrial Biotechnology and Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 5 Iroon Polytechniou Str., 15772 Athens, Greece;
| | - Anthi Karnaouri
- Laboratory of General and Agricultural Microbiology, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece;
| | - Jelena Zivkovic
- Institute for Medicinal Plants Research “Dr Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia; (J.Z.); (N.K.); (J.M.); (K.S.)
| | - Nemanja Krgovic
- Institute for Medicinal Plants Research “Dr Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia; (J.Z.); (N.K.); (J.M.); (K.S.)
| | - Jelena Mudric
- Institute for Medicinal Plants Research “Dr Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia; (J.Z.); (N.K.); (J.M.); (K.S.)
| | - Katarina Savikin
- Institute for Medicinal Plants Research “Dr Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia; (J.Z.); (N.K.); (J.M.); (K.S.)
| | - Jasmina Nikodinovic-Runic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia; (M.P.); (V.F.)
| |
Collapse
|
6
|
Gadkari S, Narisetty V, Maity SK, Manyar H, Mohanty K, Jeyakumar RB, Pant KK, Kumar V. Techno-Economic Analysis of 2,3-Butanediol Production from Sugarcane Bagasse. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:8337-8349. [PMID: 37292450 PMCID: PMC10245391 DOI: 10.1021/acssuschemeng.3c01221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/05/2023] [Indexed: 06/10/2023]
Abstract
Sugarcane bagasse (SCB) is a significant agricultural residue generated by sugar mills based on sugarcane crop. Valorizing carbohydrate-rich SCB provides an opportunity to improve the profitability of sugar mills with simultaneous production of value-added chemicals, such as 2,3-butanediol (BDO). BDO is a prospective platform chemical with multitude of applications and huge derivative potential. This work presents the techno-economic and profitability analysis for fermentative production of BDO utilizing 96 MT of SCB per day. The study considers plant operation in five scenarios representing the biorefinery annexed to a sugar mill, centralized and decentralized units, and conversion of only xylose or total carbohydrates of SCB. Based on the analysis, the net unit production cost of BDO in the different scenarios ranged from 1.13 to 2.28 US$/kg, while the minimum selling price varied from 1.86 to 3.99 US$/kg. Use of the hemicellulose fraction alone was shown to result in an economically viable plant; however, this was dependent on the condition that the plant would be annexed to a sugar mill which could supply utilities and the feedstock free of cost. A standalone facility where the feedstock and utilities were procured was predicted to be economically feasible with a net present value of about 72 million US$, when both hemicellulose and cellulose fractions of SCB were utilized for BDO production. Sensitivity analysis was also conducted to highlight some key parameters affecting plant economics.
Collapse
Affiliation(s)
- Siddharth Gadkari
- Department
of Chemical and Process Engineering, University
of Surrey, Guildford GU2 7XH, U.K.
| | - Vivek Narisetty
- School
of Water, Energy and Environment, Cranfield
University, Guildford MK43 0AL, U.K.
| | - Sunil K. Maity
- Department
of Chemical Engineering, Indian Institute
of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India
| | - Haresh Manyar
- School
of Chemistry and Chemical Engineering, Queen’s
University Belfast, Belfast, Northern Ireland BT9 5AG, U.K.
| | - Kaustubha Mohanty
- Department
of Chemical Engineering, Indian Institute
of Technology Guwahati, Guwahati, Assam 781039, India
| | - Rajesh Banu Jeyakumar
- Department
of Life Sciences, Central University of
Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu 610005, India
| | - Kamal Kishore Pant
- Department
of Chemical Engineering, Indian Institute
of Technology Delhi, New Delhi 110016, India
| | - Vinod Kumar
- School
of Water, Energy and Environment, Cranfield
University, Guildford MK43 0AL, U.K.
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| |
Collapse
|
7
|
From Agricultural Wastes to Fermentation Nutrients: A Case Study of 2,3-Butanediol Production. FERMENTATION 2022. [DOI: 10.3390/fermentation9010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The goal of this study was to improve resource use efficiency in agricultural systems and agro-based industries, reduce wastes that go to landfills and incinerators, and consequently, improve the economics of 2,3-butanediol (2,3-BD) production. This study evaluated the feasibility of 2,3-BD production by replacing the mineral nutrients, and buffers with anaerobic digestate (ADE), poultry-litter (PLBC)- and forage-sorghum (FSBC)-derived biochars. Fermentation media formulations with ADE and 5–20 g/L PLBC or FSBC were evaluated for 2,3-BD production using Paenibacillus polymyxa as a biocatalyst. An optimized medium containing nutrients and buffers served as control. While 2,3-BD production in the ADE cultures was 0.5-fold of the maximum generated in the control cultures, 2,3-BD produced in the PLBC and FSBC cultures were ~1.3-fold more than the control (33.6 g/L). Cost analysis showed that ADE and biochar can replace mineral nutrients and buffers in the medium with the potential to make bio-based 2,3-BD production profitably feasible.
Collapse
|
8
|
High production of acetoin from glycerol by Bacillus subtilis 35. Appl Microbiol Biotechnol 2022; 107:175-185. [DOI: 10.1007/s00253-022-12301-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 12/05/2022]
|
9
|
Rajendran N, Han J. Techno-economic analysis of food waste valorization for integrated production of polyhydroxyalkanoates and biofuels. BIORESOURCE TECHNOLOGY 2022; 348:126796. [PMID: 35121100 DOI: 10.1016/j.biortech.2022.126796] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
This study focused on the techno-economic analysis of integrated polyhydroxyalkanoates (PHAs) and biofuels such as biohydrogen, bioethanol, and 2,3-butanediol production from food waste (FW). Based on previous literature studies, the integrated process was developed. The process plan produced 2.01 MT of PHAs, 0.29 MT of biohydrogen, 4.79 MT of bioethanol, and 6.79 MT of 2,3-butanediol per day, from 50 MT of FW. The process plan has a positive net present value of 4.47 M$, a 13.68% return on investment, a payback period of 7.31 yr, and an internal rate of return of 11.95%. Sensitivity analysis was used to examine the economic feasibility. The actual minimum selling price (MSP) of PHAs was 4.83 $/kg, and the lowest achievable MSP with 30% solid loading is 2.41 $/kg. The solid loading in the hydrolysis stage and the price of byproducts have a major impact on the economic factors and MSP of PHAs.
Collapse
Affiliation(s)
- Naveenkumar Rajendran
- School of Chemical Engineering, Jeonbuk National University, 54896, Republic of Korea
| | - Jeehoon Han
- School of Chemical Engineering, Jeonbuk National University, 54896, Republic of Korea; School of Semiconductor and Chemical Engineering, Jeonbuk National University, 54896, Republic of Korea.
| |
Collapse
|
10
|
Ioannidou SM, Ladakis D, Moutousidi E, Dheskali E, Kookos IK, Câmara-Salim I, Moreira MT, Koutinas A. Techno-economic risk assessment, life cycle analysis and life cycle costing for poly(butylene succinate) and poly(lactic acid) production using renewable resources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150594. [PMID: 34610401 DOI: 10.1016/j.scitotenv.2021.150594] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/31/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
The sustainable production of poly(lactic acid) (PLA) or poly(butylene succinate) (PBS) from corn glucose syrup, corn stover and sugar beet pulp (SBP) have been assessed via process design, preliminary techno-economic evaluation, life cycle assessment and life cycle costing (LCC). Cost-competitive PLA and PBS production can be achieved in a SBP-based biorefinery, including separation of crude pectin-rich extract as co-product, leading to minimum selling prices of $1.14/kgPLA and $1.37/kgPBS. Acidification Potential, Eutrophication Potential and Human Toxicity Potential are lower when SBP is used. The LCC of PLA ($1.42/kgPLA) and PBS ($1.72/kgPBS) production from SBP are lower than biaxial oriented polypropylene (BOPP, $1.66/kg) and general purpose polystyrene (GPPS, $2.04/kg) at pectin-rich extract market prices of $3/kg and $4/kg, respectively. Techno-economic risk assessment via Monte-Carlo simulations showed that PLA and PBS could be produced from SBP at the market prices of BOPP ($1.4/kg) and GPPS ($1.72/kg) with 100% probability to achieve a positive Net Present Value at pectin-rich extract market prices of $3/kg and $4/kg, respectively. This study demonstrated that SBP-based biorefinery development ensures sustainable production of PLA and PBS as compared to fossil-derived counterparts and single product bioprocesses using glucose syrup and corn stover.
Collapse
Affiliation(s)
- Sofia Maria Ioannidou
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Dimitrios Ladakis
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Eleni Moutousidi
- Department of Chemical Engineering, University of Patras, Rio, 26504 Patras, Greece
| | - Endrit Dheskali
- Department of Chemical Engineering, University of Patras, Rio, 26504 Patras, Greece
| | - Ioannis K Kookos
- Department of Chemical Engineering, University of Patras, Rio, 26504 Patras, Greece
| | - Iana Câmara-Salim
- Department of Chemical Engineering, School of Engineering, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - María Teresa Moreira
- Department of Chemical Engineering, School of Engineering, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Apostolis Koutinas
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece.
| |
Collapse
|
11
|
Silva FL, Pinheiro JC, Leite MJL, Proner MC, da Silva AFV, Freire DMG, Treichel H, Ambrosi A, Di Luccio M. Influence of different PEG/salt aqueous two-phase system on the extraction of 2,3-butanediol. Prep Biochem Biotechnol 2022; 52:1051-1059. [PMID: 35100517 DOI: 10.1080/10826068.2022.2028635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The production of 2,3-butanediol (2,3-BDO), a dialcohol of great interest for the food, chemical, and pharmaceutical industry, through the fermentation of biomass, is a sustainable process strategic position for countries with abundant biomass generated by the agribusiness. However, the downstream process of 2,3-BDO is onerous due to the complexity of fermentation broth and the physical-chemical characteristics of the 2,3-BDO. This study investigated the feasibility of 2,3-BDO extraction from model aqueous solutions using aqueous two-phase systems (ATPS). A central composite rotational design (CCRD) was employed to evaluate different ATPS compositions and the influences on the 2,3-BDO recovery and partition coefficient. The polyethylene glycol (PEG) and different concentrations of sodium citrate, ammonium sulfate, and potassium phosphate were investigated. The concentration of salt and PEG in the ATPS was identified as the most significant factors influencing the recovery and partition coefficient of 2,3-BDO. The recovery of 2,3-BDO reached 94.5% and was obtained when the system was composed of 36.22% (w/w) of PEG 4000 and 4.47% (w/w) of potassium phosphate. The results indicate that ATPS based on PEG-salt has a high potential for industrial application, using mild conditions and a simple process for recovering and purifying the 2,3-BDO produced from microbiological synthesis.
Collapse
Affiliation(s)
- Fabiana Luisa Silva
- Laboratory of Membrane Processes, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Jádina Carina Pinheiro
- Laboratory of Membrane Processes, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Monique Juna Lopes Leite
- Laboratory of Membrane Processes, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Mariane Carolina Proner
- Laboratory of Membrane Processes, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Anderson Felipe Viana da Silva
- Laboratory of Membrane Processes, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | | | - Helen Treichel
- Laboratory of Microbiology and Bioprocess, Department of Environmental Science and Technology, Federal University of Fronteira Sul, Erechim, Brazil
| | - Alan Ambrosi
- Laboratory of Membrane Processes, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Marco Di Luccio
- Laboratory of Membrane Processes, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
12
|
Abstract
The growing need for industrial production of bio-based acetoin and 2,3-butanediol (2,3-BD) is due to both environmental concerns, and their widespread use in the food, pharmaceutical, and chemical industries. Acetoin is a common spice added to many foods, but also a valuable reagent in many chemical syntheses. Similarly, 2,3-BD is an indispensable chemical on the platform in the production of synthetic rubber, printing inks, perfumes, antifreeze, and fuel additives. This state-of-the-art review focuses on representatives of the genus Bacillus as prospective producers of acetoin and 2,3-BD. They have the following important advantages: non-pathogenic nature, unpretentiousness to growing conditions, and the ability to utilize a huge number of substrates (glucose, sucrose, starch, cellulose, and inulin hydrolysates), sugars from the composition of lignocellulose (cellobiose, mannose, galactose, xylose, and arabinose), as well as waste glycerol. In addition, these strains can be improved by genetic engineering, and are amenable to process optimization. Bacillus spp. are among the best acetoin producers. They also synthesize 2,3-BD in titer and yield comparable to those of the pathogenic producers. However, Bacillus spp. show relatively lower productivity, which can be increased in the course of challenging future research.
Collapse
|
13
|
Kruyer NS, Realff MJ, Sun W, Genzale CL, Peralta-Yahya P. Designing the bioproduction of Martian rocket propellant via a biotechnology-enabled in situ resource utilization strategy. Nat Commun 2021; 12:6166. [PMID: 34697313 PMCID: PMC8546151 DOI: 10.1038/s41467-021-26393-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 10/04/2021] [Indexed: 12/26/2022] Open
Abstract
Mars colonization demands technological advances to enable the return of humans to Earth. Shipping the propellant and oxygen for a return journey is not viable. Considering the gravitational and atmospheric differences between Mars and Earth, we propose bioproduction of a Mars-specific rocket propellant, 2,3-butanediol (2,3-BDO), from CO2, sunlight and water on Mars via a biotechnology-enabled in situ resource utilization (bio-ISRU) strategy. Photosynthetic cyanobacteria convert Martian CO2 into sugars that are upgraded by engineered Escherichia coli into 2,3-BDO. A state-of-the-art bio-ISRU for 2,3-BDO production uses 32% less power and requires a 2.8-fold higher payload mass than proposed chemical ISRU strategies, and generates 44 tons of excess oxygen to support colonization. Attainable, model-guided biological and materials optimizations result in an optimized bio-ISRU that uses 59% less power and has a 13% lower payload mass, while still generating 20 tons excess oxygen. Addressing the identified challenges will advance prospects for interplanetary space travel. Returning from Mars to Earth requires propellant. The authors propose a biotechnology-enabled in situ resource utilization (bioISRU) process to produce a Mars specific rocket propellant, 2,3-butanediol, using cyanobacteria and engineered E. coli, with lower payload mass and energy usage compared to chemical ISRU strategies.
Collapse
Affiliation(s)
- Nicholas S Kruyer
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Matthew J Realff
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Wenting Sun
- School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Caroline L Genzale
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Pamela Peralta-Yahya
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA. .,School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
14
|
Stylianou E, Pateraki C, Ladakis D, Damala C, Vlysidis A, Latorre-Sánchez M, Coll C, Lin CSK, Koutinas A. Bioprocess development using organic biowaste and sustainability assessment of succinic acid production with engineered Yarrowia lipolytica strain. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108099] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Enhanced Activity by Genetic Complementarity: Heterologous Secretion of Clostridial Cellulases by Bacillus licheniformis and Bacillus velezensis. Molecules 2021; 26:molecules26185625. [PMID: 34577096 PMCID: PMC8468253 DOI: 10.3390/molecules26185625] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 12/25/2022] Open
Abstract
To adapt to various ecological niches, the members of genus Bacillus display a wide spectrum of glycoside hydrolases (GH) responsible for the hydrolysis of cellulose and lignocellulose. Being abundant and renewable, cellulose-containing plant biomass may be applied as a substrate in second-generation biotechnologies for the production of platform chemicals. The present study aims to enhance the natural cellulase activity of two promising 2,3-butanediol (2,3-BD) producers, Bacillus licheniformis 24 and B. velezensis 5RB, by cloning and heterologous expression of cel8A and cel48S genes of Acetivibrio thermocellus. In B. licheniformis, the endocellulase Cel8A (GH8) was cloned to supplement the action of CelA (GH9), while in B. velezensis, the cellobiohydrolase Cel48S (GH48) successfully complemented the activity of endo-cellulase EglS (GH5). The expression of the natural and heterologous cellulase genes in both hosts was demonstrated by reverse-transcription PCR. The secretion of clostridial cellulases was additionally enhanced by enzyme fusion to the subtilisin-like signal peptide, reaching a significant increase in the cellulase activity of the cell-free supernatants. The results presented are the first to reveal the possibility of genetic complementation for enhancement of cellulase activity in bacilli, thus opening the prospect for genetic improvement of strains with an important biotechnological application.
Collapse
|
16
|
Ouranidis A, Davidopoulou C, Tashi RK, Kachrimanis K. Pharma 4.0 Continuous mRNA Drug Products Manufacturing. Pharmaceutics 2021; 13:1371. [PMID: 34575447 PMCID: PMC8466472 DOI: 10.3390/pharmaceutics13091371] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 01/13/2023] Open
Abstract
Continuous mRNA drugs manufacturing is perceived to nurture flow processes featuring quality by design, controlled automation, real time validation, robustness, and reproducibility, pertaining to regulatory harmonization. However, the actual adaptation of the latter remains elusive, hence batch-to-continuous transition would a priori necessitate holistic process understanding. In addition, the cost related to experimental, pilot manufacturing lines development and operations thereof renders such venture prohibitive. Systems-based Pharmaceutics 4.0 digital design enabling tools, i.e., converging mass and energy balance simulations, Monte-Carlo machine learning iterations, and spatial arrangement analysis were recruited herein to overcome the aforementioned barriers. The primary objective of this work is to hierarchically design the related bioprocesses, embedded in scalable devices, compatible with continuous operation. Our secondary objective is to harvest the obtained technological data and conduct resource commitment analysis. We herein demonstrate for first time the feasibility of the continuous, end-to-end production of sterile mRNA formulated into lipid nanocarriers, defining the equipment specifications and the desired operational space. Moreover, we find that the cell lysis modules and the linearization enzymes ascend as the principal resource-intensive model factors, accounting for 40% and 42% of the equipment and raw material, respectively. We calculate MSPD 1.30-1.45 €, demonstrating low margin lifecycle fluctuation.
Collapse
Affiliation(s)
- Andreas Ouranidis
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Christina Davidopoulou
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Reald-Konstantinos Tashi
- Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Kyriakos Kachrimanis
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
17
|
Highly Efficient 2,3-Butanediol Production by Bacillus licheniformis via Complex Optimization of Nutritional and Technological Parameters. FERMENTATION 2021. [DOI: 10.3390/fermentation7030118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
2,3-Butanediol (2,3-BD) is a reagent with remarkable commercial use as a platform chemical in numerous industries. The present study aims to determine the capabilities of non-pathogenic and cellulolytic Bacillus licheniformis 24 as a 2,3-BD producer. By applying the Plackett–Burman design and response surface methodology through central composite design (CCD), a complex optimization of medium and process parameters was conducted. Thus, among ten studied factors of medium content, four components were evaluated with a significant positive effect on 2,3-BD formation. Their optimal values for 2,3-BD production (yeast extract, 13.38 g/L; tryptone, 6.41 g/L; K2HPO4, 4.2 g/L; MgSO4, 0.32 g/L), as well as the optimal temperature (37.8 °C), pH (6.23) and aeration rate (3.68 vvm) were predicted by CCD experiments and validated in a series of batch processes. In optimized batch fermentation of 200 g/L of glucose 91.23 g/L of 2,3-BD was obtained, with the overall productivity of 1.94 g/L/h and yield of 0.488 g/g. To reveal the maximum 2,3-BD tolerance of B. licheniformis 24, fed-batch fermentation was carried out. The obtained 138.8 g/L of 2,3-BD with a yield of 0.479 g/g and productivity of 1.16 g/L/h ranks the strain among the best 2,3-BD producers.
Collapse
|
18
|
Maina S, Prabhu AA, Vivek N, Vlysidis A, Koutinas A, Kumar V. Prospects on bio-based 2,3-butanediol and acetoin production: Recent progress and advances. Biotechnol Adv 2021; 54:107783. [PMID: 34098005 DOI: 10.1016/j.biotechadv.2021.107783] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 11/19/2022]
Abstract
The bio-based platform chemicals 2,3-butanediol (BDO) and acetoin have various applications in chemical, cosmetics, food, agriculture, and pharmaceutical industries, whereas the derivatives of BDO could be used as fuel additives, polymer and synthetic rubber production. This review summarizes the novel technological developments in adapting genetic and metabolic engineering strategies for selection and construction of chassis strains for BDO and acetoin production. The valorization of renewable feedstocks and bioprocess development for the upstream and downstream stages of bio-based BDO and acetoin production are discussed. The techno-economic aspects evaluating the viability and industrial potential of bio-based BDO production are presented. The commercialization of bio-based BDO and acetoin production requires the utilization of crude renewable resources, the chassis strains with high fermentation production efficiencies and development of sustainable purification or conversion technologies.
Collapse
Affiliation(s)
- Sofia Maina
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos, 75, 11855 Athens, Greece
| | - Ashish A Prabhu
- Centre for Climate and Environmental Protection, School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Narisetty Vivek
- Centre for Climate and Environmental Protection, School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Anestis Vlysidis
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos, 75, 11855 Athens, Greece
| | - Apostolis Koutinas
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos, 75, 11855 Athens, Greece.
| | - Vinod Kumar
- Centre for Climate and Environmental Protection, School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK.
| |
Collapse
|
19
|
C4 Bacterial Volatiles Improve Plant Health. Pathogens 2021; 10:pathogens10060682. [PMID: 34072921 PMCID: PMC8227687 DOI: 10.3390/pathogens10060682] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/10/2021] [Accepted: 05/24/2021] [Indexed: 02/04/2023] Open
Abstract
Plant growth-promoting rhizobacteria (PGPR) associated with plant roots can trigger plant growth promotion and induced systemic resistance. Several bacterial determinants including cell-wall components and secreted compounds have been identified to date. Here, we review a group of low-molecular-weight volatile compounds released by PGPR, which improve plant health, mostly by protecting plants against pathogen attack under greenhouse and field conditions. We particularly focus on C4 bacterial volatile compounds (BVCs), such as 2,3-butanediol and acetoin, which have been shown to activate the plant immune response and to promote plant growth at the molecular level as well as in large-scale field applications. We also disc/ uss the potential applications, metabolic engineering, and large-scale fermentation of C4 BVCs. The C4 bacterial volatiles act as airborne signals and therefore represent a new type of biocontrol agent. Further advances in the encapsulation procedure, together with the development of standards and guidelines, will promote the application of C4 volatiles in the field.
Collapse
|
20
|
Kachrimanidou V, Ioannidou SM, Ladakis D, Papapostolou H, Kopsahelis N, Koutinas AA, Kookos IK. Techno-economic evaluation and life-cycle assessment of poly(3-hydroxybutyrate) production within a biorefinery concept using sunflower-based biodiesel industry by-products. BIORESOURCE TECHNOLOGY 2021; 326:124711. [PMID: 33550212 DOI: 10.1016/j.biortech.2021.124711] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
This study presents techno-economic evaluation of a biorefinery concept using biodiesel industry by-products (sunflower meal and crude glycerol) to produce poly(3-hydroxybutyrate) (PHB), crude phenolic extracts (CPE) and protein isolate (PI). The PHB production cost at two annual production capacities ($12.5/kg for 2,500 t PHB/year and $7.8/kg for 25,000 t PHB/year) was not cost-competitive to current PHB production processes when the revenues derived from co-products were not considered. Sensitivity analysis projected the economic viability of a biorefinery concept that could achieve a minimum selling price of $1.1/kg PHB similar to polypropylene. The annual PHB production capacity and the identification of marketable end-uses with respective market prices for the co-products CPE and PI were crucial in attaining process profitability. Greenhouse gas emissions (ca. 0.64 kg CO2-eq/kg PHB) and abiotic depletion potential (61.7 MJ/kg PHB) were lower than polypropylene. Biorefining of sunflower meal and crude glycerol could lead to sustainable PHB production.
Collapse
Affiliation(s)
- Vasiliki Kachrimanidou
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece; Department of Food Science and Technology, Ionian University, Argostoli 28100, Kefalonia, Greece
| | - Sofia Maria Ioannidou
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Dimitrios Ladakis
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Harris Papapostolou
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Nikolaos Kopsahelis
- Department of Food Science and Technology, Ionian University, Argostoli 28100, Kefalonia, Greece
| | - Apostolis A Koutinas
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece.
| | - Ioannis K Kookos
- Department of Chemical Engineering, University of Patras, Rio 26504, Patras, Greece
| |
Collapse
|
21
|
Wu Y, Chen W, Li R, Wu B, Ji L, Chen K. Measurement and thermodynamic modeling of ternary (liquid + liquid) equilibria for extraction of 2,3-butanediol from aqueous solution with different solvents at T = 298.2 K, T = 308.2 K, and T = 318.2 K. CHEM ENG COMMUN 2021. [DOI: 10.1080/00986445.2021.1884553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Yanyang Wu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, PR China
| | - Weipeng Chen
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, PR China
| | - Renlong Li
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, PR China
| | - Bin Wu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, PR China
| | - Lijun Ji
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, PR China
| | - Kui Chen
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, PR China
| |
Collapse
|
22
|
Tinôco D, Pateraki C, Koutinas AA, Freire DMG. Bioprocess Development for 2,3‐Butanediol Production by
Paenibacillus
Strains. CHEMBIOENG REVIEWS 2021. [DOI: 10.1002/cben.202000022] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Daniel Tinôco
- Federal University of Rio de Janeiro, Cidade Universitária, Centro de Tecnologia Chemical Engineering Program, PEQ/COPPE Bloco G 21941-909 Rio de Janeiro Brazil
| | - Chrysanthi Pateraki
- Agricultural University of Athens Department of Food Science and Human Nutrition Iera Odos 75 Athens Greece
| | - Apostolis A. Koutinas
- Agricultural University of Athens Department of Food Science and Human Nutrition Iera Odos 75 Athens Greece
| | - Denise M. G. Freire
- Federal University of Rio de Janeiro, Cidade Universitária, Centro de Tecnologia Biochemistry Department, Chemistry Institute Bloco A, Lab 549 21941-909 Rio de Janeiro Brazil
| |
Collapse
|
23
|
Aristizábal-Marulanda V, Cardona A. CA. Experimental production of ethanol, electricity, and furfural under the biorefinery concept. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2020.116047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
24
|
Plioni I, Bekatorou A, Mallouchos A, Kandylis P, Chiou A, Panagopoulou EA, Dede V, Styliara P. Corinthian currants finishing side-stream: Chemical characterization, volatilome, and valorisation through wine and baker's yeast production-technoeconomic evaluation. Food Chem 2020; 342:128161. [PMID: 33268171 DOI: 10.1016/j.foodchem.2020.128161] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 08/15/2020] [Accepted: 09/18/2020] [Indexed: 11/29/2022]
Abstract
The industrial currants finishing generates a considerable amount of side-stream (FSS) with great potential for biotechnological exploitation. The chemical composition of FSS generated from the premium quality Vostitsa currants was studied. Its use for wine making (at low temperatures, using both free and immobilized yeast) combined with baker's yeast production (with minor nutrient supplementation), is also proposed. Analysis showed that FSS has a rich volatilome (including Maillard reaction/lipid degradation products), increased antioxidant capacity, and total lipid and phenolic contents, compared to the marketable product (currants). However, acidity levels and the presence of specific volatiles (such as acetate esters and higher alcohols) may be indicative of microbial spoilage. The wines made from FSS were methanol free and contained higher levels of terpenes (indicating hydrolysis of bound forms) and fermentation-derived volatiles, compared to FSS. A preliminary technoeconomic analysis for integrated wine/baker's yeast industrial production, showed that the investment is realistic and worthwhile.
Collapse
Affiliation(s)
- Iris Plioni
- Department of Chemistry, University of Patras, Patras 26504, Greece
| | - Argyro Bekatorou
- Department of Chemistry, University of Patras, Patras 26504, Greece.
| | - Athanasios Mallouchos
- Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, Athens 11855, Greece
| | - Panagiotis Kandylis
- Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, P.O. Box 235, Thessaloniki 54124, Greece
| | - Antonia Chiou
- Department of Dietetics and Nutrition, Harokopio University, 70 El. Venizelou Ave., Kallithea, Athens 17671, Greece
| | - Eirini A Panagopoulou
- Department of Dietetics and Nutrition, Harokopio University, 70 El. Venizelou Ave., Kallithea, Athens 17671, Greece
| | - Vasiliki Dede
- Department of Chemical Engineering, University of Patras, Patras 26500, Greece
| | | |
Collapse
|
25
|
Conversion of Xylose from Birch Hemicellulose Hydrolysate to 2,3-Butanediol with Bacillus vallismortis. FERMENTATION-BASEL 2020. [DOI: 10.3390/fermentation6030086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Biotechnologically produced 2,3-butanediol (2,3-BDO) is a potential starting material for industrial bulk chemicals, such as butadiene or methyl ethyl ketone, which are currently produced from fossil feedstocks. So far, the highest 2,3-BDO concentrations have been obtained with risk class 2 microorganisms and pure glucose as substrate. However, as glucose stays in competition to food and feed industries, a lot of effort has been done in the last years finding efficient alternative substrates. Thereby xylose from hydrolysed wood hemicelluloses is a promising substrate for the production of 2,3-BDO. The risk class 1 microorganism Bacillus vallismortis strain was identified as a very promising 2,3-BDO producer. The strain is able to utilize xylose almost in the same manner as glucose. B. vallismortis is less prone to common inhibiting compounds in lignocellulosic extracts/hydrolysates. When using a concentrated hemicellulose fraction from birch wood hydrolysate, which was produced with ultrafiltration and after which the acetate concentration was reduced, a yield of 0.43 g g−1 was achieved and the xylose consumption and the 2,3-BDO production is basically the same as using pure xylose.
Collapse
|
26
|
Butanediol production from glycerol and glucose by Serratia marcescens isolated from tropical peat soil. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
27
|
Ioannidou SM, Pateraki C, Ladakis D, Papapostolou H, Tsakona M, Vlysidis A, Kookos IK, Koutinas A. Sustainable production of bio-based chemicals and polymers via integrated biomass refining and bioprocessing in a circular bioeconomy context. BIORESOURCE TECHNOLOGY 2020; 307:123093. [PMID: 32247685 DOI: 10.1016/j.biortech.2020.123093] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 06/11/2023]
Abstract
The sustainable production of bio-based chemicals and polymers is highly dependent on the development of viable biorefinery concepts using crude renewable resources for the production of diversified products. Within this concept, this critical review presents the availability of fractionated co-products and fermentable sugars that could be derived from major industrial and food supply chain side streams in EU countries. Fermentable sugars could be used for the production of bio-based chemicals and polymers. The implementation of biorefinery concepts in industry should depend on the evaluation of process efficiency and sustainability including techno-economic, environmental and social impact assessment following circular bioeconomy principles. Relevant sustainability indicators and End-of-Life scenarios have been presented. A case study on the techno-economic evaluation of bio-based succinic acid production from the organic fraction of municipal solid waste has been presented focusing on the evaluation of process profitability and feedstock requirements.
Collapse
Affiliation(s)
- Sofia Maria Ioannidou
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Chrysanthi Pateraki
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Dimitrios Ladakis
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Harris Papapostolou
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Maria Tsakona
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Anestis Vlysidis
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Ioannis K Kookos
- Department of Chemical Engineering, University of Patras, 26504 Patras, Rio, Greece
| | - Apostolis Koutinas
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece.
| |
Collapse
|
28
|
Petrova P, Petlichka S, Petrov K. New Bacillus spp. with potential for 2,3-butanediol production from biomass. J Biosci Bioeng 2020; 130:20-28. [PMID: 32169317 DOI: 10.1016/j.jbiosc.2020.02.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/06/2019] [Accepted: 02/07/2020] [Indexed: 10/24/2022]
|
29
|
Wang H, Tsang CW, To MH, Kaur G, Roelants SLKW, Stevens CV, Soetaert W, Lin CSK. Techno-economic evaluation of a biorefinery applying food waste for sophorolipid production - A case study for Hong Kong. BIORESOURCE TECHNOLOGY 2020; 303:122852. [PMID: 32036326 DOI: 10.1016/j.biortech.2020.122852] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/14/2020] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
This study evaluates the techno-economic feasibility of sophorolipid (SL) production process that co-utilizes food waste, glucose and oleic acid as substrates. Two variables are considered in terms of (a) Plant construction: Purchasing equipment either from the US or Mainland China and (b) Production: to produce SL crystals (about 97% active) or a concentrated SL liquid/syrup (about 78% active). Hence, four scenarios are generated: Scenario I: equipment made in the USA + SL crystals; Scenario II: equipment made in the USA + SL syrup; Scenario III: equipment made in China + SL crystals; Scenario IV: equipment made in China + SL syrup. It is found that all scenarios are economically feasible and Scenario I has the highest net profit. Scenario III has the highest internal rate of return, net present value and the shortest payback period at a 7% discount rate. Finally, comparison of food waste-related techno-economic studies was conducted.
Collapse
Affiliation(s)
- Huaimin Wang
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong
| | - Chi-Wing Tsang
- Faculty of Science and Technology, Technological and Higher Education Institute of Hong Kong, Tsing Yi, Hong Kong
| | - Ming Ho To
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong
| | - Guneet Kaur
- Department of Biology, Hong Kong Baptist University, Hong Kong; Sino-Forest Applied Research Centre for Pearl River Delta Environment, Hong Kong Baptist University, Hong Kong
| | - Sophie L K W Roelants
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium; Bio Base Europe Pilot Plant, Ghent, Belgium
| | - Christian V Stevens
- Department of Sustainable Organic Chemistry and Technology, Ghent University, Ghent, Belgium
| | - Wim Soetaert
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium; Bio Base Europe Pilot Plant, Ghent, Belgium
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong.
| |
Collapse
|
30
|
Bio-Based Solvents and Gasoline Components From Renewable 2,3-Butanediol and 1,2-Propanediol: Synthesis and Characterization. Molecules 2020; 25:molecules25071723. [PMID: 32283657 PMCID: PMC7180918 DOI: 10.3390/molecules25071723] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/26/2020] [Accepted: 04/01/2020] [Indexed: 11/17/2022] Open
Abstract
In this study approaches for chemical conversions of the renewable compounds 1,2-propanediol (1,2-PD) and 2,3-butanediol (2,3-BD) that yield the corresponding cyclic ketals and glycol ethers have been investigated experimentally. The characterization of the obtained products as potential green solvents and gasoline components is discussed. Cyclic ketals have been obtained by the direct reaction of the diols with lower aliphatic ketones (1,2-PD + acetone → 2,2,4-trimethyl-1,3-dioxolane (TMD) and 2,3-BD + butanone-2 → 2-ethyl-2,4,5-trimethyl-1,3-dioxolane (ETMD)), for which the ΔH0r, ΔS0r and ΔG0r values have been estimated experimentally. The monoethers of diols could be obtained through either hydrogenolysis of the pure ketals or from the ketone and the diol via reductive alkylation. In the both reactions, the cyclic ketals (TMD and ETMD) have been hydrogenated in nearly quantitative yields to the corresponding isopropoxypropanols (IPP) and 3-sec-butoxy-2-butanol (SBB) under mild conditions (T = 120-140 °C, p(H2) = 40 bar) with high selectivity (>93%). Four products (TMD, ETMD, IPP and SBB) have been characterized as far as their physical properties are concerned (density, melting/boiling points, viscosity, calorific value, evaporation rate, Antoine equation coefficients), as well as their solvent ones (Kamlet-Taft solvatochromic parameters, miscibility, and polymer solubilization). In the investigation of gasoline blending properties, TMD, ETMD, IPP and SBB have shown remarkable antiknock performance with blending antiknock indices of 95.2, 92.7, 99.2 and 99.7 points, respectively.
Collapse
|
31
|
Stylianou E, Pateraki C, Ladakis D, Cruz-Fernández M, Latorre-Sánchez M, Coll C, Koutinas A. Evaluation of organic fractions of municipal solid waste as renewable feedstock for succinic acid production. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:72. [PMID: 32322302 PMCID: PMC7160979 DOI: 10.1186/s13068-020-01708-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 04/02/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND Despite its high market potential, bio-based succinic acid production experienced recently a declining trend because the initial investments did not meet the expectations for rapid market growth. Thus, reducing the succinic acid production cost is imperative to ensure industrial implementation. RESULTS Succinic acid production has been evaluated using hydrolysates from the organic fraction of municipal solid waste (OFMSW) collected from MSW treatment plants. A tailor-made enzymatic cocktail was used for OFMSW hydrolysate production containing up to 107.3 g/L carbon sources and up to 638.7 mg/L free amino nitrogen. The bacterial strains Actinobacillus succinogenes and Basfia succiniciproducens were evaluated for succinic acid production with the latter strain being less efficient due to high lactic acid production. Batch A. succinogenes cultures supplemented with 5 g/L yeast extract and 5 g/L MgCO3 reached 29.4 g/L succinic acid with productivity of 0.89 g/L/h and yield of 0.56 g/g. Continuous cultures at dilution rate of 0.06 h-1 reached 21.2 g/L succinic acid with yield of 0.47 g/g and productivity of 1.27 g/L/h. Downstream separation and purification of succinic acid was achieved by centrifugation, treatment with activated carbon, acidification with cation exchange resins, evaporation and drying, reaching more than 99% purity. Preliminary techno-economic evaluation has been employed to evaluate the profitability potential of bio-based succinic acid production. CONCLUSIONS The use of OFMSW hydrolysate in continuous cultures could lead to a minimum selling price of 2.5 $/kg at annual production capacity of 40,000 t succinic acid and OFMSW hydrolysate production cost of 25 $/t sugars.
Collapse
Affiliation(s)
- Eleni Stylianou
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Chrysanthi Pateraki
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Dimitrios Ladakis
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | | | | | - Caterina Coll
- IMECAL SA, Carretera Carlet, 74, L’Alcudia, 46250 Valencia, Spain
| | - Apostolis Koutinas
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| |
Collapse
|
32
|
Hakizimana O, Matabaro E, Lee BH. The current strategies and parameters for the enhanced microbial production of 2,3-butanediol. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2019; 25:e00397. [PMID: 31853445 PMCID: PMC6911977 DOI: 10.1016/j.btre.2019.e00397] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 10/23/2019] [Accepted: 11/08/2019] [Indexed: 01/05/2023]
Abstract
2,3-Butanediol (2,3-BD) is a propitious compound with many industrial uses. 2,3-BD production has always been hampered by low fermentation yields and high production costs. 2,3-BD production may be enhanced by optimization of culture conditions and use of high-producing strains. TMetabolic engineering tools are currently used to generate high-yielding strains.
2,3-Butanediol (2,3-BD) is a propitious compound with many industrial uses ranging from rubber, fuels, and cosmetics to food additives. Its microbial production has especially attracted as an alternative way to the petroleum-based production. However, 2,3-BD production has always been hampered by low yields and high production costs. The enhanced production of 2,3-butanediol requires screening of the best strains and a systematic optimization of fermentation conditions. Moreover, the metabolic pathway engineering is essential to achieve the best results and minimize the production costs by rendering the strains to use efficiently low cost substrates. This review is to provide up-to-date information on the current strategies and parameters for the enhanced microbial production of 2,3-BD.
Collapse
Key Words
- 2, 3-Butanediol
- 2,3-BD, 2,3-Butanediol
- AlsD, α-acetolactate decarboxylase
- AlsS, α-acetolactate synthase
- Butanediol dehydrogenase
- Klebsiella
- MEK, methyl ethyl ketone
- Metabolic engineering
- PUMAs, polyurethane-melamides
- Species
- ackA, acetate kinase-phosphotransacetylase
- adhE, alcohol dehydrogenase
- gldA, glycerophosphate dehydrogenase gene
- ldhA, lactate dehydrogenase
Collapse
Affiliation(s)
- Olivier Hakizimana
- School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu Prov, China
| | - Emmanuel Matabaro
- Department of Biology, Institute of Microbiology, ETH Zürich, 8093 Zürich, Switzerland
| | - Byong H Lee
- Department of Microbiology and Immunology, McGill University, Montreal, QC, H3A2B4, Canada
| |
Collapse
|
33
|
Psaki O, Maina S, Vlysidis A, Papanikolaou S, de Castro AM, Freire DM, Dheskali E, Kookos I, Koutinas A. Optimisation of 2,3-butanediol production by Enterobacter ludwigii using sugarcane molasses. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.107370] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
34
|
Maina S, Stylianou E, Vogiatzi E, Vlysidis A, Mallouchos A, Nychas GJE, de Castro AM, Dheskali E, Kookos IK, Koutinas A. Improvement on bioprocess economics for 2,3-butanediol production from very high polarity cane sugar via optimisation of bioreactor operation. BIORESOURCE TECHNOLOGY 2019; 274:343-352. [PMID: 30529482 DOI: 10.1016/j.biortech.2018.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 06/09/2023]
Abstract
This study focuses on the optimisation of 2,3-butanediol (BDO) production in fed-batch cultures carried out with the bacterial strain Enterobacter ludwigii using very high polarity (VHP) sugar from sugarcane mills. Various kLa values were evaluated using either complex or synthetic fermentation media demonstrating that the latter enhance BDO production efficiency with low by-product formation. The pH (6.3) and temperature (33.9 °C) employed in fed-batch bioreactor cultures has been optimised via experimental design. Fed-batch cultures carried out at the optimum temperature and pH and varying kLa values resulted in BDO concentration, yield and productivity of 86.8 g/L, 0.37 g/g and 3.95 g L-1 h-1. Using this fermentation efficiency, the minimum selling price of BDO for annual production capacities of 10,000 t and 50,000 t was estimated at $3.12/kg and $2.67/kg, respectively, for a VHP cane sugar market price of $0.4/kg.
Collapse
Affiliation(s)
- Sofia Maina
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Athens, Greece
| | - Eleni Stylianou
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Athens, Greece
| | - Effrosyni Vogiatzi
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Athens, Greece
| | - Anestis Vlysidis
- School of Chemical Engineering, National Technical University of Athens, Iroon Polytechneiou 9, Zografou, Athens, Greece
| | - Athanasios Mallouchos
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Athens, Greece
| | - George-John E Nychas
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Athens, Greece
| | | | - Endrit Dheskali
- Department οf Chemical Engineering, University of Patras, Rio 26504, Patras, Greece
| | - Ioannis K Kookos
- Department οf Chemical Engineering, University of Patras, Rio 26504, Patras, Greece
| | - Apostolis Koutinas
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Athens, Greece.
| |
Collapse
|
35
|
Abstract
Raw glycerol is an industrial byproduct from biodiesel production and is one of the most promising substrates for 2,3-butanediol (2,3-BD) production; however, 2,3-BD is not yet produced by fermentation from glycerol on a commercial scale due to poor process economics. Class 1 microorganism collections were screened and Raoultella planticola strain CECT 843 proved to be the best 2,3-BD producer, achieving (23.3 ± 1.4) g 2,3-BD per L and a yield of 36% (g 2,3-BD per g glycerol). To further increase product concentration and yield, R. planticola CEC T843 was subjected to random mutagenesis using ultra-violet (UV) light and ethyl methane sulfonate (EMS). Two mutant strains were found to produce at least 30% more 2,3-BD than the wild type: R. planticola IA1 [(30.8 ± 3.9) g 2,3-BD per L and 49% yield] and R. planticola IIIA3 [(30.5 ± 0.4) g 2,3-BD per L and 49% yield].
Collapse
|
36
|
Palaiogeorgou AM, Papanikolaou S, de Castro AM, Freire DMG, Kookos IK, Koutinas AA. A newly isolatedEnterobactersp. strain produces 2,3-butanediol during its cultivation on low-cost carbohydrate-based substrates. FEMS Microbiol Lett 2018; 366:5210085. [DOI: 10.1093/femsle/fny280] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 11/24/2018] [Indexed: 11/14/2022] Open
Affiliation(s)
| | - Seraphim Papanikolaou
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece
| | - Aline Machado de Castro
- Renewable Energy Division, Research and Development Center, PETROBRAS, Avenue Horácio Macedo, 950 Ilha do Fundão, Rio de Janeiro 21941-915, Brazil
| | - Denise Maria Guimarães Freire
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | - Ioannis K Kookos
- Department of Chemical Engineering, University of Patras, 26504 Patras, Greece
| | - Apostolis A Koutinas
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece
| |
Collapse
|
37
|
Techno-economic evaluation of the 2,3-butanediol dehydration process using a hydroxyapatite-alumina catalyst. KOREAN J CHEM ENG 2018. [DOI: 10.1007/s11814-018-0161-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
38
|
|
39
|
Valorisation of fruit and vegetable waste from open markets for the production of 2,3-butanediol. FOOD AND BIOPRODUCTS PROCESSING 2018. [DOI: 10.1016/j.fbp.2017.10.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
40
|
Harvianto GR, Haider J, Hong J, Van Duc Long N, Shim JJ, Cho MH, Kim WK, Lee M. Purification of 2,3-butanediol from fermentation broth: process development and techno-economic analysis. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:18. [PMID: 29416563 PMCID: PMC5785907 DOI: 10.1186/s13068-018-1013-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 01/09/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND 2,3-Butanediol (2,3-BDO) is a synthetic chemical compound that also can be produced by biomass fermentation, which is gaining share in the global market as an intermediate product for numerous applications, i.e. as liquid fuel or fuel additive. Several metabolic engineering fermentation strategies to enhance the production of 2,3-BDO were developed. However, the recovery of 2,3-BDO from its fermentation broth remains a challenge due to its low concentration and its solubility in water and other components. Thus, a cost-effective recovery process is required to deliver the required purity of 2,3-BDO. This paper presents a new process development and techno-economic analysis for 2,3-BDO purification from a fermentation broth. RESULTS Conventional distillation and hybrid extraction-distillation (HED) processes are proposed in this study with detailed optimization and economic analysis. Particularly, a systematic solvent selection method was successfully implemented to determine a good solvent for the proposed HED configuration based on numerous experimental data obtained with each solvent candidate. NRTL and UNIQUAC property methods were evaluated to obtain binary interaction parameters of 2,3-BDO through rigorous Aspen Plus regression and validated using experimental data. Total annual cost (TAC)-based optimization was performed for each proposed configuration. Even though the HED configuration required 9.5% higher capital cost than conventional distillation, placing an extraction column before the distillation column was effective in removing water from the fermentation broth and significantly improved the overall process economics. CONCLUSIONS Oleyl alcohol was found to be the most suitable solvent for the HED of 2,3-BDO due to its high distribution coefficient and high selectivity. The proposed HED drastically reduced reboiler duty consumption and TAC by up to 54.8 and 25.8%, respectively. The proposed design is expected to be used for the commercial scale of 2,3-BDO production from fermentation process.
Collapse
Affiliation(s)
| | - Junaid Haider
- School of Chemical Engineering, Yeungnam University, Dae-dong 214-1, Gyeongsan, 38541 Republic of Korea
| | - Jimin Hong
- School of Chemical Engineering, Yeungnam University, Dae-dong 214-1, Gyeongsan, 38541 Republic of Korea
| | - Nguyen Van Duc Long
- School of Chemical Engineering, Yeungnam University, Dae-dong 214-1, Gyeongsan, 38541 Republic of Korea
| | - Jae-Jin Shim
- School of Chemical Engineering, Yeungnam University, Dae-dong 214-1, Gyeongsan, 38541 Republic of Korea
| | - Moo Hwan Cho
- School of Chemical Engineering, Yeungnam University, Dae-dong 214-1, Gyeongsan, 38541 Republic of Korea
| | - Woo Kyoung Kim
- School of Chemical Engineering, Yeungnam University, Dae-dong 214-1, Gyeongsan, 38541 Republic of Korea
| | - Moonyong Lee
- School of Chemical Engineering, Yeungnam University, Dae-dong 214-1, Gyeongsan, 38541 Republic of Korea
| |
Collapse
|
41
|
Um J, Kim DG, Jung MY, Saratale GD, Oh MK. Metabolic engineering of Enterobacter aerogenes for 2,3-butanediol production from sugarcane bagasse hydrolysate. BIORESOURCE TECHNOLOGY 2017; 245:1567-1574. [PMID: 28596073 DOI: 10.1016/j.biortech.2017.05.166] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/25/2017] [Accepted: 05/26/2017] [Indexed: 06/07/2023]
Abstract
The pathway engineering of Enterobacter aerogenes was attempted to improve its production capability of 2,3-butanediol from lignocellulosic biomass. In the medium containing glucose and xylose mixture as carbon sources, the gene deletion of pflB improved 2,3-butanediol carbon yield by 40%, while the deletion of ptsG increased xylose consumption rate significantly, improving the productivity at 12 hr by 70%. The constructed strain, EMY-22-galP, overexpressing glucose transporter (galP) in the triple gene knockout E. aerogenes, ldhA, pflB, and ptsG, provided the highest 2,3-butanediol titer and yield at 12 hr flask cultivation. Sugarcane bagasse was pretreated with green liquor, a solution containing Na2CO3 and Na2SO3 and was hydrolyzed by enzymes. The resulting hydrolysate was used as a carbon source for 2,3-butanediol production. After 72 hr in fermentation, the yield of 0.395g/g sugar was achieved, suggesting an economic production of 2,3-butanediol was possible from lignocellulosic biomass with the metabolically engineered strain.
Collapse
Affiliation(s)
- Jaeyong Um
- Department of Chemical and Biological Engineering, Korea University, Seongbuk-gu, Seoul 02841, South Korea
| | - Duck Gyun Kim
- Department of Chemical and Biological Engineering, Korea University, Seongbuk-gu, Seoul 02841, South Korea
| | - Moo-Young Jung
- CJ Research Institute of Biotechnology, Suwon, Gyeonggi 16495, South Korea
| | - Ganesh D Saratale
- Department of Food Science and Biotechnology, Dongguk University, Goyang, Gyeonggi 10326, South Korea
| | - Min-Kyu Oh
- Department of Chemical and Biological Engineering, Korea University, Seongbuk-gu, Seoul 02841, South Korea.
| |
Collapse
|
42
|
2,3-Butanediol production using Klebsiella oxytoca ATCC 8724: Evaluation of biomass derived sugars and fed-batch fermentation process. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
43
|
Guragain YN, Chitta D, Karanjikar M, Vadlani PV. Appropriate lignocellulosic biomass processing strategies for efficient 2,3-butanediol production from biomass-derived sugars using Bacillus licheniformis DSM 8785. FOOD AND BIOPRODUCTS PROCESSING 2017. [DOI: 10.1016/j.fbp.2017.05.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
44
|
Penner D, Redepenning C, Mitsos A, Viell J. Conceptual Design of Methyl Ethyl Ketone Production via 2,3-Butanediol for Fuels and Chemicals. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.6b03678] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Daniel Penner
- Aachener Verfahrenstechnik
- Process Systems Engineering, RWTH Aachen University, Forckenbeckstr.
51, 52074 Aachen, Germany
| | - Christian Redepenning
- Aachener Verfahrenstechnik
- Process Systems Engineering, RWTH Aachen University, Forckenbeckstr.
51, 52074 Aachen, Germany
| | - Alexander Mitsos
- Aachener Verfahrenstechnik
- Process Systems Engineering, RWTH Aachen University, Forckenbeckstr.
51, 52074 Aachen, Germany
| | - Jörn Viell
- Aachener Verfahrenstechnik
- Process Systems Engineering, RWTH Aachen University, Forckenbeckstr.
51, 52074 Aachen, Germany
| |
Collapse
|
45
|
Bonatsos N, Dheskali E, Freire DM, de Castro AM, Koutinas AA, Kookos IK. A mathematical programming formulation for biorefineries technology selection. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
46
|
Strategies for efficient and economical 2,3-butanediol production: new trends in this field. World J Microbiol Biotechnol 2016; 32:200. [DOI: 10.1007/s11274-016-2161-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 10/16/2016] [Indexed: 01/06/2023]
|