1
|
Wang L, Xue M, Yan R, Xue J, Lu Z, Wen C. Insights into Chitin-Degradation Potential of Shewanella khirikhana JW44 with Emphasis on Characterization and Function of a Chitinase Gene SkChi65. Microorganisms 2024; 12:774. [PMID: 38674717 PMCID: PMC11052142 DOI: 10.3390/microorganisms12040774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/05/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
Chitin, a polymer of β-1,4-linked N-acetylglucosamine (GlcNAc), can be degraded into valuable oligosaccharides by various chitinases. In this study, the genome of Shewanella khirikhana JW44, displaying remarkable chitinolytic activity, was investigated to understand its chitin-degradation potential. A chitinase gene SkChi65 from this strain was then cloned, expressed, and purified to characterize its enzymatic properties and substrate hydrolysis. Genome analysis showed that, of the 14 genes related to chitin utilization in JW44, six belonged to glycoside hydrolase (GH) families because of their functional domains for chitin binding and catalysis. The recombinant chitinase SkChi65, consisting of 1129 amino acids, was identified as a member of the GH18 family and possessed two chitin-binding domains with a typical motif of [A/N]KWWT[N/S/Q] and one catalytic domain with motifs of DxxDxDxE, SxGG, YxR, and [E/D]xx[V/I]. SkChi65 was heterologously expressed as an active protein of 139.95 kDa best at 37 °C with 1.0 mM isopropyl-β-d-thiogalactopyranoside induction for 6 h. Purified SkChi65 displayed high stability over the ranges of 30-50 °C and pH 5.5-8.0 with optima at 40 °C and pH 7.0. The kinetic parameters Km, Vmax, and kcat of SkChi65 towards colloidal chitin were 27.2 μM, 299.2 μMs-1, and 10,203 s-1, respectively. In addition to colloidal chitin, SkChi65 showed high activity towards glycol chitosan and crystalline chitin. After analysis by thin-layer chromatography, the main products were N,N'-diacetylchitobiose, and GlcNAc with (GlcNAc)2-6 used as substrates. Collectively, SkChi65 could exhibit both exo- and endochitinase activities towards diverse substrates, and strain JW44 has a high potential for industrial application with an excellent capacity for chitin bioconversion.
Collapse
Affiliation(s)
- Ling Wang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ming Xue
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, China
| | - Rui Yan
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jiawei Xue
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhipeng Lu
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chongqing Wen
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, China
| |
Collapse
|
2
|
Yan B, Yang H, Zhang N, Cheng J, Huang J, Zhao J, Zhang H, Chen W, Fan D. Microwave-assisted depolymerization of chitin and chitosan extracted from crayfish shells waste: A sustainable approach based on graphene oxide catalysis. Int J Biol Macromol 2023; 251:126296. [PMID: 37573908 DOI: 10.1016/j.ijbiomac.2023.126296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/12/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
This study targeted the sustainable utilization of chitin and chitosan from crayfish shell waste, and further depolymerization of the recovered products in one step through synergy between microwaves and graphene oxide, aiming for the monosaccharides, 5-hydroxymethylfurfural and other high-value products. The results indicated that graphene oxide was more effective than graphene in enhancing the microwave absorption properties of the system, which is contrary to the parameters of their dielectric properties. The heating rate was increased by 0.37 K/s and 0.26 K/s when graphene oxide was introduced into the chitin and chitosan depolymerization systems, respectively, at a microwave power of 5 W/g. The mechanism underlying the impact of graphene oxide on chitin and chitosan under a microwave field was proposed by analyzing the variations in the depolymerization products of chitin and chitosan systems under different reaction conditions, including holding time, catalyst content, solvent content, and reaction temperature. Furthermore, the recovered graphene oxide exhibited delamination upon redispersion in water, which was not observed in the initial samples. The infrared spectra and scanning electron microscopy results suggest that the catalytic reaction is associated with oxygen-containing functional groups. This study demonstrated the synergistic effect of microwaves and graphene oxide on the depolymerization of chitin and chitosan, and the ability to achieve rapid one-step depolymerization in an acid/alkali-free solvent, which provides a green and promising development for the degradation of carbohydrate macromolecules in crustacean solid waste.
Collapse
Affiliation(s)
- Bowen Yan
- Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing, Ministry of Agriculture and Rural Affairs, Xiamen 361022, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Huayu Yang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Nana Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Jiaqi Cheng
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Jianlian Huang
- Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing, Ministry of Agriculture and Rural Affairs, Xiamen 361022, China; Anjoy Foods Group Co. Ltd., Xiamen 361022, China; Fujian Provincial Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing, Xiamen 361022, China
| | - Jianxin Zhao
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Wei Chen
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Daming Fan
- Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing, Ministry of Agriculture and Rural Affairs, Xiamen 361022, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
3
|
Shikov AE, Merkushova AV, Savina IA, Nizhnikov AA, Antonets KS. The man, the plant, and the insect: shooting host specificity determinants in Serratia marcescens pangenome. Front Microbiol 2023; 14:1211999. [PMID: 38029097 PMCID: PMC10656689 DOI: 10.3389/fmicb.2023.1211999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/21/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Serratia marcescens is most commonly known as an opportunistic pathogen causing nosocomial infections. It, however, was shown to infect a wide range of hosts apart from vertebrates such as insects or plants as well, being either pathogenic or growth-promoting for the latter. Despite being extensively studied in terms of virulence mechanisms during human infections, there has been little evidence of which factors determine S. marcescens host specificity. On that account, we analyzed S. marcescens pangenome to reveal possible specificity factors. Methods We selected 73 high-quality genome assemblies of complete level and reconstructed the respective pangenome and reference phylogeny based on core genes alignment. To find an optimal pipeline, we tested current pangenomic tools and obtained several phylogenetic inferences. The pangenome was rich in its accessory component and was considered open according to the Heaps' law. We then applied the pangenome-wide associating method (pan-GWAS) and predicted positively associated gene clusters attributed to three host groups, namely, humans, insects, and plants. Results According to the results, significant factors relating to human infections included transcriptional regulators, lipoproteins, ABC transporters, and membrane proteins. Host preference toward insects, in its turn, was associated with diverse enzymes, such as hydrolases, isochorismatase, and N-acetyltransferase with the latter possibly exerting a neurotoxic effect. Finally, plant infection may be conducted through type VI secretion systems and modulation of plant cell wall synthesis. Interestingly, factors associated with plants also included putative growth-promoting proteins like enzymes performing xenobiotic degradation and releasing ammonium irons. We also identified overrepresented functional annotations within the sets of specificity factors and found that their functional characteristics fell into separate clusters, thus, implying that host adaptation is represented by diverse functional pathways. Finally, we found that mobile genetic elements bore specificity determinants. In particular, prophages were mainly associated with factors related to humans, while genetic islands-with insects and plants, respectively. Discussion In summary, functional enrichments coupled with pangenomic inferences allowed us to hypothesize that the respective host preference is carried out through distinct molecular mechanisms of virulence. To the best of our knowledge, the presented research is the first to identify specific genomic features of S. marcescens assemblies isolated from different hosts at the pangenomic level.
Collapse
Affiliation(s)
- Anton E. Shikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, St. Petersburg, Russia
- Faculty of Biology, St. Petersburg State University, St. Petersburg, Russia
| | - Anastasiya V. Merkushova
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, St. Petersburg, Russia
| | - Iuliia A. Savina
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, St. Petersburg, Russia
| | - Anton A. Nizhnikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, St. Petersburg, Russia
- Faculty of Biology, St. Petersburg State University, St. Petersburg, Russia
| | - Kirill S. Antonets
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, St. Petersburg, Russia
- Faculty of Biology, St. Petersburg State University, St. Petersburg, Russia
| |
Collapse
|
4
|
Arnold ND, Garbe D, Brück TB. Isolation, biochemical characterization, and genome sequencing of two high-quality genomes of a novel chitinolytic Jeongeupia species. Microbiologyopen 2023; 12:e1372. [PMID: 37642486 PMCID: PMC10404844 DOI: 10.1002/mbo3.1372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023] Open
Abstract
Chitin is the second most abundant polysaccharide worldwide as part of arthropods' exoskeletons and fungal cell walls. Low concentrations in soils and sediments indicate rapid decomposition through chitinolytic organisms in terrestrial and aquatic ecosystems. The enacting enzymes, so-called chitinases, and their products, chitooligosaccharides, exhibit promising characteristics with applications ranging from crop protection to cosmetics, medical, textile, and wastewater industries. Exploring novel chitinolytic organisms is crucial to expand the enzymatical toolkit for biotechnological chitin utilization and to deepen our understanding of diverse catalytic mechanisms. In this study, we present two long-read sequencing-based genomes of highly similar Jeongeupia species, which have been screened, isolated, and biochemically characterized from chitin-amended soil samples. Through metabolic characterization, whole-genome alignments, and phylogenetic analysis, we could demonstrate how the investigated strains differ from the taxonomically closest strain Jeongeupia naejangsanensis BIO-TAS4-2T (DSM 24253). In silico analysis and sequence alignment revealed a multitude of highly conserved chitinolytic enzymes in the investigated Jeongeupia genomes. Based on these results, we suggest that the two strains represent a novel species within the genus of Jeongeupia, which may be useful for environmentally friendly N-acetylglucosamine production from crustacean shell or fungal biomass waste or as a crop protection agent.
Collapse
Affiliation(s)
- Nathanael D. Arnold
- Department of ChemistryWerner‐Siemens Chair for Synthetic Biotechnology (WSSB), TUM School of Natural Sciences, Technical University of MunichGarchingGermany
| | - Daniel Garbe
- Department of ChemistryWerner‐Siemens Chair for Synthetic Biotechnology (WSSB), TUM School of Natural Sciences, Technical University of MunichGarchingGermany
| | - Thomas B. Brück
- Department of ChemistryWerner‐Siemens Chair for Synthetic Biotechnology (WSSB), TUM School of Natural Sciences, Technical University of MunichGarchingGermany
| |
Collapse
|
5
|
Sun W, Shahrajabian MH, Petropoulos SA, Shahrajabian N. Developing Sustainable Agriculture Systems in Medicinal and Aromatic Plant Production by Using Chitosan and Chitin-Based Biostimulants. PLANTS (BASEL, SWITZERLAND) 2023; 12:2469. [PMID: 37447031 DOI: 10.3390/plants12132469] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023]
Abstract
Chitosan is illustrated in research as a stimulant of plant tolerance and resistance that promotes natural defense mechanisms against biotic and abiotic stressors, and its use may lessen the amount of agrochemicals utilized in agriculture. Recent literature reports indicate the high efficacy of soil or foliar usage of chitin and chitosan in the promotion of plant growth and the induction of secondary metabolites biosynthesis in various species, such as Artemisia annua, Curcuma longa, Dracocephalum kotschyi, Catharanthus roseus, Fragaria × ananassa, Ginkgo biloba, Iberis amara, Isatis tinctoria, Melissa officinalis, Mentha piperita, Ocimum basilicum, Origanum vulgare ssp. Hirtum, Psammosilene tunicoides, Salvia officinalis, Satureja isophylla, Stevia rebaudiana, and Sylibum marianum, among others. This work focuses on the outstanding scientific contributions to the field of the production and quality of aromatic and medicinal plants, based on the different functions of chitosan and chitin in sustainable crop production. The application of chitosan can lead to increased medicinal plant production and protects plants against harmful microorganisms. The effectiveness of chitin and chitosan is also due to the low concentration required, low cost, and environmental safety. On the basis of showing such considerable characteristics, there is increasing attention on the application of chitin and chitosan biopolymers in horticulture and agriculture productions.
Collapse
Affiliation(s)
- Wenli Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | | | - Spyridon A Petropoulos
- Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, 38446 Volos, Greece
| | - Nazanin Shahrajabian
- Department of Economics, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 81595-158, Iran
| |
Collapse
|
6
|
Taokaew S, Kriangkrai W. Chitinase-Assisted Bioconversion of Chitinous Waste for Development of Value-Added Chito-Oligosaccharides Products. BIOLOGY 2023; 12:87. [PMID: 36671779 PMCID: PMC9855443 DOI: 10.3390/biology12010087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/25/2022] [Accepted: 12/29/2022] [Indexed: 01/07/2023]
Abstract
Chito-oligosaccharides (COSs) are the partially hydrolyzed products of chitin, which is abundant in the shells of crustaceans, the cuticles of insects, and the cell walls of fungi. These oligosaccharides have received immense interest in the last few decades due to their highly promising bioactivities, such as their anti-microbial, anti-tumor, and anti-inflammatory properties. Regarding environmental concerns, COSs are obtained by enzymatic hydrolysis by chitinase under milder conditions compared to the typical chemical degradation. This review provides updated information about research on new chitinase derived from various sources, including bacteria, fungi, plants, and animals, employed for the efficient production of COSs. The route to industrialization of these chitinases and COS products is also described.
Collapse
Affiliation(s)
- Siriporn Taokaew
- Department of Materials Science and Bioengineering, School of Engineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Worawut Kriangkrai
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
7
|
Bacterial chitinases: genetics, engineering and applications. World J Microbiol Biotechnol 2022; 38:252. [DOI: 10.1007/s11274-022-03444-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022]
|
8
|
Nilpa P, Chintan K, Sayyed RZ, El Enshasy H, El Adawi H, Alhazmi A, Almalki AH, Haque S. Formation of recombinant bifunctional fusion protein: A newer approach to combine the activities of two enzymes in a single protein. PLoS One 2022; 17:e0265969. [PMID: 35363796 PMCID: PMC8975109 DOI: 10.1371/journal.pone.0265969] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/10/2022] [Indexed: 02/01/2023] Open
Abstract
The tissue of insects, pests, and fungi has a chitin layer followed by protein in the cell membrane. The complete biodegradation of chitin and protein-present in the waste requires the action of two enzymes, namely chitinase, and protease. Combining chitinase and protease in a single protein/enzyme will serve as a bifunctional enzyme that can efficiently degrade the chitin and protein-rich biomass. The present study was aimed to fuse these two enzymes to produce a single protein and study the kinetics of the recombinant fusion protein. A chitinase and alkaline protease genes were isolated, cloned, and expressed successfully as a fusion product in heterologous host Escherichia coli. The two native genes were successfully fused in E.coli by using flexible glycine–serine (G4S)2 linker (GGGGS, GS linker). The recombinant fusion protein in E.coli showed hydrolyzed chitin and protein on chitin and bovine serum albumin agar plates confirming the successful cloning and expression of chitinase and protease enzymes in a single fusion protein. The common pUC18-T7 mini vector with the ompA signal sequence helps the extracellular expression of fusion protein efficiently. The native gel electrophoresis revealed a molecular mass of purified protein as 92.0 kDa. The fusion protein’s maximal chitinase and protease activity occurred at pH 5.0 and 8.0 and 30 0C, respectively resembling the individual enzymes’. In the kinetic studies of the fusion protein, it was observed that the presence of metal ions such as Cu2+, Na2+, and Ca2+; significantly enhanced the enzyme activities while organic solvents oxidants and chemicals have drastically affected the activities of both the enzymes in the fusion protein. No such fusion protein has been produced in a heterologous host yet. The reports on fusion protein with biomass-degrading capacity are also scarce. This is probably the first report of a bifunctional chitinase/protease expressed in E. coli.
Collapse
Affiliation(s)
- Patel Nilpa
- Department of Plant Molecular Biology and Biotechnology, ASPEE College of Horticulture and Forestry, Navsari Agricultural University, Navsari, Gujarat, India
| | - Kapadia Chintan
- Department of Plant Molecular Biology and Biotechnology, ASPEE College of Horticulture and Forestry, Navsari Agricultural University, Navsari, Gujarat, India
- * E-mail: (KC); (RZS)
| | - R. Z. Sayyed
- Department of Microbiology, PSGVP Mandal’s S. I. Patil Arts, G B Patel Science & STKVS Commerce College, Shahada, Maharashtra, India
- Department of Entomology, Asian PGPR Society for Sustainable Agriculture, Auburn University, Auburn, AL, United States of America
- * E-mail: (KC); (RZS)
| | - Hesham El Enshasy
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), Skudai, Johor Bahru, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Skudai, Johor Bahru, Malaysia
- City of Scientific Research and Technology Applications (SRTA), New Burg Al Arab, Alexandria, Egypt
| | - Hala El Adawi
- City of Scientific Research and Technology Applications (SRTA), New Burg Al Arab, Alexandria, Egypt
| | - Alaa Alhazmi
- Medical Laboratory Technology Department, Jazan University, Jazan, Saudi Arabia
- SMIRES for Consultation in Specialized Medical Laboratories, Jazan University, Jazan, Saudi Arabia
| | - Atiah H. Almalki
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif, Saudi Arabia
- Addiction and Neuroscience Research Unit, College of Pharmacy, Taif University, Al-Hawiah, Taif, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
- Bursa Uludağ University Faculty of Medicine, Görükle Campus, Nilüfer,Bursa, Turkey
| |
Collapse
|
9
|
Goughenour KD, Whalin J, Slot JC, Rappleye CA. Diversification of Fungal Chitinases and Their Functional Differentiation in Histoplasma capsulatum. Mol Biol Evol 2021; 38:1339-1355. [PMID: 33185664 PMCID: PMC8042737 DOI: 10.1093/molbev/msaa293] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Chitinases enzymatically hydrolyze chitin, a highly abundant and utilized polymer of N-acetyl-glucosamine. Fungi are a rich source of chitinases; however, the phylogenetic and functional diversity of fungal chitinases are not well understood. We surveyed fungal chitinases from 373 publicly available genomes, characterized domain architecture, and conducted phylogenetic analyses of the glycoside hydrolase (GH18) domain. This large-scale analysis does not support the previous division of fungal chitinases into three major clades (A, B, C) as chitinases previously assigned to the “C” clade are not resolved as distinct from the “A” clade. Fungal chitinase diversity was partly shaped by horizontal gene transfer, and at least one clade of bacterial origin occurs among chitinases previously assigned to the “B” clade. Furthermore, chitin-binding domains (including the LysM domain) do not define specific clades, but instead are found more broadly across clades of chitinases. To gain insight into biological function diversity, we characterized all eight chitinases (Cts) from the thermally dimorphic fungus, Histoplasma capsulatum: six A clade, one B clade, and one formerly classified C clade chitinases. Expression analyses showed variable induction of chitinase genes in the presence of chitin but preferential expression of CTS3 in the mycelial stage. Activity assays demonstrated that Cts1 (B-I), Cts2 (A-V), Cts3 (A-V), Cts4 (A-V) have endochitinase activities with varying degrees of chitobiosidase function. Cts6 (C-I) has activity consistent with N-acetyl-glucosaminidase exochitinase function and Cts8 (A-II) has chitobiase activity. These results suggest chitinase activity is variable even within subclades and that predictions of functionality require more sophisticated models.
Collapse
Affiliation(s)
| | - Janice Whalin
- Department of Microbiology, Ohio State University, Columbus, OH
| | - Jason C Slot
- Department of Plant Pathology, Ohio State University, Columbus, OH
| | - Chad A Rappleye
- Department of Microbiology, Ohio State University, Columbus, OH
| |
Collapse
|
10
|
Harvey DJ. ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2015-2016. MASS SPECTROMETRY REVIEWS 2021; 40:408-565. [PMID: 33725404 DOI: 10.1002/mas.21651] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/24/2020] [Indexed: 06/12/2023]
Abstract
This review is the ninth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2016. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented over 30 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show no sign of deminishing. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
11
|
Mukherjee S, Behera PK, Madhuprakash J. Efficient conversion of crystalline chitin to N-acetylglucosamine and N,N'-diacetylchitobiose by the enzyme cocktail produced by Paenibacillus sp. LS1. Carbohydr Polym 2020; 250:116889. [DOI: 10.1016/j.carbpol.2020.116889] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/20/2022]
|
12
|
Mallakuntla MK, Podile AR. Catalytic efficiency of a multi-domain transglycosylating chitinase from Enterobacter cloacae subsp. cloacae (EcChi2) is influenced by polycystic kidney disease domains. Enzyme Microb Technol 2020; 143:109702. [PMID: 33375970 DOI: 10.1016/j.enzmictec.2020.109702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/30/2020] [Accepted: 11/05/2020] [Indexed: 11/24/2022]
Abstract
Bacterial chitinases recruited multiple accessory domains for the conversion of recalcitrant polysaccharides to simple soluble sugars/amino sugars. Here, we report detailed properties of a multi-domain GH18 chitinase from Enterobacter cloacae subsp. cloacae (EcChi2) that preferred β-chitin as substrate. EcChi2 exhibited transglycosylation (TG) activity on oligomeric substrates from DP4-DP6. The high amount of DP2 is indicative of exo mode activity of EcChi2. We generated EcChi2 variants (truncated and fusion chimeras) and elucidated the role of catalytic and accessory domains. The catalytic efficiency of truncated GH18 and fusion chimera of GH18+ChBD1-ChBD2 decreased to 22 and 17-fold, respectively, than EcChi2, and lost the hydrolytic activity on polymeric substrates, except colloidal chitin. On the other hand, the catalytic activity of truncated PKD1-GH18-PKD2 on polymeric and oligomeric substrates was similar to EcChi2, suggesting that PKD domains are essential for increasing the rate of hydrolysis. Moreover, the truncated ChBD1-ChBD2 and fusion PKD1 + PKD2 participated in chitin-binding.
Collapse
Affiliation(s)
- Mohan Krishna Mallakuntla
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 50046, Telangana, India
| | - Appa Rao Podile
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 50046, Telangana, India.
| |
Collapse
|
13
|
Rani TS, Madhuprakash J, Podile AR. Chitinase-E from Chitiniphilus shinanonensis generates chitobiose from chitin flakes. Int J Biol Macromol 2020; 163:1037-1043. [DOI: 10.1016/j.ijbiomac.2020.07.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 10/23/2022]
|
14
|
Obi LU, Tekere M, Roopnarain A, Sanko T, Maguvu TE, Bezuidenhout CC, Adeleke RA. Whole genome sequence of Serratia marcescens 39_H1, a potential hydrolytic and acidogenic strain. ACTA ACUST UNITED AC 2020; 28:e00542. [PMID: 33102161 PMCID: PMC7569290 DOI: 10.1016/j.btre.2020.e00542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/27/2020] [Accepted: 10/09/2020] [Indexed: 11/28/2022]
Abstract
Serratia marcescens 39_H1 could enhance the hydrolysis of lignocellulosic biomass. Serratia marcescens 39_H1 is a plant growth promoting organism. Genome analysis showed diverse potential biotechnological application of organism. This is an original report on the hydrolytic and acidogenic attributes ofSerratia marcescens 39_H1 for biogas production.
Here, we report a high quality annotated draft genome of Serratia marcescens 39_H1, a Gram-negative facultative anaerobe that was isolated from an anaerobic digester. The strain exhibited hydrolytic/acidogenic properties by significantly improving methane production when used as a single isolate inoculum during anaerobic digestion of water hyacinth and cow dung. The total genome size of the isolate was 5,106,712 bp which corresponds to an N50 of 267,528 and G + C content of 59.7 %. Genome annotation with the NCBI Prokaryotic Genome Annotation Pipeline (PGAP) predicted a total of 4,908 genes of which 4,755 were protein coding genes; there were no plasmids detected. A number of genes associated with hydrolytic/acidogenic activities as well as other metabolic activities were identified and discussed.
Collapse
Affiliation(s)
- Linda U Obi
- Department of Environmental Sciences, University of South Africa, Johannesburg, South Africa.,Microbiology and Environmental Biotechnology Research Group, Institute for Soil, Climate and Water, Agricultural Research Council, Arcadia, 0083, Pretoria, South Africa
| | - Memory Tekere
- Department of Environmental Sciences, University of South Africa, Johannesburg, South Africa
| | - Ashira Roopnarain
- Microbiology and Environmental Biotechnology Research Group, Institute for Soil, Climate and Water, Agricultural Research Council, Arcadia, 0083, Pretoria, South Africa
| | - Tomasz Sanko
- Unit for Environment Sciences and Management, North-West University (Potchefstroom Campus), Potchefstroom, South Africa
| | - Tawanda E Maguvu
- Unit for Environment Sciences and Management, North-West University (Potchefstroom Campus), Potchefstroom, South Africa
| | - Cornelius C Bezuidenhout
- Unit for Environment Sciences and Management, North-West University (Potchefstroom Campus), Potchefstroom, South Africa
| | - Rasheed A Adeleke
- Microbiology and Environmental Biotechnology Research Group, Institute for Soil, Climate and Water, Agricultural Research Council, Arcadia, 0083, Pretoria, South Africa.,Unit for Environment Sciences and Management, North-West University (Potchefstroom Campus), Potchefstroom, South Africa
| |
Collapse
|
15
|
Sun S, Li F, Xu X, Liu Y, Kong X, Chen J, Liu T, Chen L. Study on the community structure and function of symbiotic bacteria from different growth and developmental stages of Hypsizygus marmoreus. BMC Microbiol 2020; 20:311. [PMID: 33054730 PMCID: PMC7557082 DOI: 10.1186/s12866-020-01998-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The symbiotic bacteria associated with edible fungi are valuable microbial resources worthy of in-depth exploration. It is important to analyze the community structure and succession of symbiotic bacteria in mushrooms. This can assist in the isolation of growth-promoting strains that have an essential relationship with the cultivation cycle as well as the agronomic traits and yields of fruiting bodies. RESULTS In all of the samples from cultivation bags of Hypsizygus marmoreus, 34 bacterial phyla were detected. Firmicutes was the most abundant bacterial phylum (78.85%). The genus Serratia showed an exponential increase in abundance in samples collected from the cultivation bags in the mature period, reaching a peak abundance of 55.74% and the dominant symbiotic flora. The most predominant strain was Serratia odorifera HZSO-1, and its abundance increased with the amount of hyphae of H. marmoreus. Serratia odorifera HZSO-1 could reside in the hyphae of H. marmoreus, promote growth and development, shorten the fruiting cycle by 3-4 days, and further increase the fruiting body yield by 12%. CONCLUSIONS This study is a pioneering demonstration of the community structure of the symbiotic microbiota and bacteria-mushroom interaction in the growth and development of edible fungi. This work lays a theoretical foundation to improve the industrial production of mushrooms with symbiotic bacteria as assisting agents.
Collapse
Affiliation(s)
- Shujing Sun
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.
| | - Fan Li
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Xin Xu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Yunchao Liu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Xuqiang Kong
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Jianqiu Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Ting Liu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Liding Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| |
Collapse
|
16
|
Liu C, Shen N, Wu J, Jiang M, Shi S, Wang J, Wei Y, Yang L. Cloning, expression and characterization of a chitinase from Paenibacillus chitinolyticus strain UMBR 0002. PeerJ 2020; 8:e8964. [PMID: 32411515 PMCID: PMC7207210 DOI: 10.7717/peerj.8964] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/23/2020] [Indexed: 12/22/2022] Open
Abstract
Background Chitinases are enzymes which degrade β-1,4-glycosidid linkages in chitin. The enzymatic degradation of shellfish waste (containing chitin) to chitooligosaccharides is used in industrial applications to generate high-value-added products from such waste. However, chitinases are currently produced with low efficiency and poor tolerance, limiting the industrial utility. Therefore, identifying chitinases with higher enzymatic activity and tolerance is of great importance. Methods Primers were designed using the genomic database of Paenibacillus chitinolyticus NBRC 15660. An exochitinase (CHI) was cloned into the recombinant plasmid pET-22b (+) to form pET-22b (+)-CHI, which was transformed into Escherichia coli TOP10 to construct a genomic library. Transformation was confirmed by colony-polymerase chain reaction and electrophoresis. The target sequence was verified by sequencing. Recombinant pET-22b (+)-CHI was transformed into E. coli Rosetta-gami B (DE3) for expression of chitinase. Recombinant protein was purified by Ni-NTA affinity chromatography and enzymatic analysis was carried out. Results The exochitinase CHI from P. chitinolyticus strain UMBR 0002 was successfully cloned and heterologously expressed in E. coli Rosetta-gami B (DE3). Purification yielded a 13.36-fold enrichment and recovery yield of 72.20%. The purified enzyme had a specific activity of 750.64 mU mg-1. The optimum pH and temperature for degradation of colloidal chitin were 5.0 and 45 °C, respectively. The enzyme showed high stability, retaining >70% activity at pH 4.0-10.0 and 25-45 °C (maximum of 90 min). The activity of CHI strongly increased with the addition of Ca2+, Mn2+, Tween 80 and urea. Conversely, Cu2+, Fe3+, acetic acid, isoamyl alcohol, sodium dodecyl sulfate and β-mercaptoethanol significantly inhibited enzyme activity. The oligosaccharides produced by CHI from colloidal chitin exhibited a degree of polymerization, forming N-acetylglucosamine (GlcNAc) and (GlcNAc)2 as products. Conclusions This is the first report of the cloning, heterologous expression and purification of a chitinase from P. chitinolyticus strain UMBR 0002. The results highlight CHI as a good candidate enzyme for green degradation of chitinous waste.
Collapse
Affiliation(s)
- Cong Liu
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, China
| | - Naikun Shen
- School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, China
| | - Jiafa Wu
- School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, China
| | - Mingguo Jiang
- School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, China
| | - Songbiao Shi
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, China
| | - Jinzi Wang
- School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, China
| | - Yanye Wei
- School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, China
| | - Lifang Yang
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, China
| |
Collapse
|
17
|
Drewnowska J, Fiodor A, Barboza-Corona J, Swiecicka I. Chitinolytic activity of phylogenetically diverse Bacillus cereus sensu lato from natural environments. Syst Appl Microbiol 2020; 43:126075. [DOI: 10.1016/j.syapm.2020.126075] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 01/29/2023]
|
18
|
Le B, Yang SH. Microbial chitinases: properties, current state and biotechnological applications. World J Microbiol Biotechnol 2019; 35:144. [PMID: 31493195 DOI: 10.1007/s11274-019-2721-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 08/29/2019] [Indexed: 02/07/2023]
Abstract
Chitinases are a group of hydrolytic enzymes that catalyze chitin, nd are synthesized by a wide variety of organisms. In nature, microbial chitinases are primarily responsible for chitin decomposition. Several chitinases have been reported and characterized, and they are garnering increasing attention for their uses in a wide range of applications. In the food industry, the direct fermentation of seafood, such as crab and shrimp shells, using chitinolytic microorganisms has contributed to increased nutritional benefits through the enhancement of chitin degradation into chitooligosaccharides. These compounds have been demonstrated to improve human health through their antitumor, antimicrobial, immunomodulatory, antioxidant, and anti-inflammatory properties. Moreover, chitinase and chitinous materials are used in the food industry for other purposes, such as the production of single-cell proteins, chitooligosaccharides, N-acetyl D-glucosamines, biocontrol, functional foods, and various medicines. The functional properties and hydrolyzed products of chitinase, however, depend upon its source and physicochemical characteristics. The present review strives to clarify these perspectives and critically discusses the advances and limitations of microbial chitinase in the further production of functional foods.
Collapse
Affiliation(s)
- Bao Le
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam, 59626, Republic of Korea
| | - Seung Hwan Yang
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam, 59626, Republic of Korea.
| |
Collapse
|
19
|
Schmitz C, Auza LG, Koberidze D, Rasche S, Fischer R, Bortesi L. Conversion of Chitin to Defined Chitosan Oligomers: Current Status and Future Prospects. Mar Drugs 2019; 17:E452. [PMID: 31374920 PMCID: PMC6723438 DOI: 10.3390/md17080452] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 02/07/2023] Open
Abstract
Chitin is an abundant polysaccharide primarily produced as an industrial waste stream during the processing of crustaceans. Despite the limited applications of chitin, there is interest from the medical, agrochemical, food and cosmetic industries because it can be converted into chitosan and partially acetylated chitosan oligomers (COS). These molecules have various useful properties, including antimicrobial and anti-inflammatory activities. The chemical production of COS is environmentally hazardous and it is difficult to control the degree of polymerization and acetylation. These issues can be addressed by using specific enzymes, particularly chitinases, chitosanases and chitin deacetylases, which yield better-defined chitosan and COS mixtures. In this review, we summarize recent chemical and enzymatic approaches for the production of chitosan and COS. We also discuss a design-of-experiments approach for process optimization that could help to enhance enzymatic processes in terms of product yield and product characteristics. This may allow the production of novel COS structures with unique functional properties to further expand the applications of these diverse bioactive molecules.
Collapse
Affiliation(s)
- Christian Schmitz
- Aachen-Maastricht Institute for Biobased Materials, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands.
| | - Lilian González Auza
- Aachen-Maastricht Institute for Biobased Materials, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - David Koberidze
- Aachen-Maastricht Institute for Biobased Materials, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - Stefan Rasche
- Aachen-Maastricht Institute for Biobased Materials, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
- Department Plant Biotechnology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074 Aachen, Germany
| | - Rainer Fischer
- Aachen-Maastricht Institute for Biobased Materials, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
- Indiana Bioscience Research Institute, 1345 W 16th St #300, Indianapolis, IN 46202, USA
| | - Luisa Bortesi
- Aachen-Maastricht Institute for Biobased Materials, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| |
Collapse
|
20
|
Yuan X, Zheng J, Jiao S, Cheng G, Feng C, Du Y, Liu H. A review on the preparation of chitosan oligosaccharides and application to human health, animal husbandry and agricultural production. Carbohydr Polym 2019; 220:60-70. [PMID: 31196551 DOI: 10.1016/j.carbpol.2019.05.050] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 05/14/2019] [Accepted: 05/14/2019] [Indexed: 12/12/2022]
Abstract
Chitosan oligosaccharides (COS) are the degraded products of chitin or chitosan prepared by chemical or enzymatic hydrolysis. As compared to chitosan, COS not only exhibit some specific physicochemical properties such as excellent water solubility, biodegradability and biocompatibility, but also have a variety of functionally biological activities including anti-inflammation, anti-bacteria, immunomodulation, neuroprotection and so on. This review aims to summarize the preparation and structural characterization methods of COS, and will discuss the application of COS or their derivatives to human health, animal husbandry and agricultural production. COS have been demonstrated to prevent the occurrence of human health-related diseases, enhance the resistance to diseases of livestock and poultry, and improve the growth and quality of crops in plant cultivation. Overall, COS have presented a broad developmental potential and application prospect in the healthy field that deserves further exploration.
Collapse
Affiliation(s)
- Xubing Yuan
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Junping Zheng
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Siming Jiao
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Gong Cheng
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Cui Feng
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Yuguang Du
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Hongtao Liu
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| |
Collapse
|
21
|
Yan Q, Robert S, Brooks JP, Fong SS. Metabolic characterization of the chitinolytic bacterium Serratia marcescens using a genome-scale metabolic model. BMC Bioinformatics 2019; 20:227. [PMID: 31060515 PMCID: PMC6501404 DOI: 10.1186/s12859-019-2826-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 04/17/2019] [Indexed: 12/31/2022] Open
Abstract
Background Serratia marcescens is a chitinolytic bacterium that can potentially be used for consolidated bioprocessing to convert chitin to value-added chemicals. Currently, S. marcescens is poorly characterized and studies on intracellular metabolic and regulatory mechanisms would expedite development of bioprocessing applications. Results In this study, our goal was to characterize the metabolic profile of S. marcescens to provide insight for metabolic engineering applications and fundamental biological studies. Hereby, we constructed a constraint-based genome-scale metabolic model (iSR929) including 929 genes, 1185 reactions and 1164 metabolites based on genomic annotation of S. marcescens Db11. The model was tested by comparing model predictions with experimental data and analyzed to identify essential aspects of the metabolic network (e.g. 138 essential genes predicted). The model iSR929 was refined by integrating RNAseq data of S. marcescens growth on three different carbon sources (glucose, N-acetylglucosamine, and glycerol). Significant differences in TCA cycle utilization were found for growth on the different carbon substrates, For example, for growth on N-acetylglucosamine, S. marcescens exhibits high pentose phosphate pathway activity and nucleotide synthesis but low activity of the TCA cycle. Conclusions Our results show that S. marcescens model iSR929 can provide reasonable predictions and can be constrained to fit with experimental values. Thus, our model may be used to guide strain designs for metabolic engineering to produce chemicals such as 2,3-butanediol, N-acetylneuraminic acid, and n-butanol using S. marcescens. Electronic supplementary material The online version of this article (10.1186/s12859-019-2826-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qiang Yan
- Department of Chemical and Life Science Engineering, School of Engineering, Virginia Commonwealth University, West Hall, Room 422, 601 West Main Street, P.O. Box 843028, Richmond, VA, 23284-3028, USA.
| | - Seth Robert
- Department of Chemical and Life Science Engineering, School of Engineering, Virginia Commonwealth University, West Hall, Room 422, 601 West Main Street, P.O. Box 843028, Richmond, VA, 23284-3028, USA
| | - J Paul Brooks
- Department of Statistical Sciences and Operations Research, Virginia Commonwealth University, P.O. Box 843083, Richmond, VA, 23284, USA.,Center for the study of Biological Complexity, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Stephen S Fong
- Department of Chemical and Life Science Engineering, School of Engineering, Virginia Commonwealth University, West Hall, Room 422, 601 West Main Street, P.O. Box 843028, Richmond, VA, 23284-3028, USA. .,Center for the study of Biological Complexity, Virginia Commonwealth University, Richmond, VA, 23284, USA.
| |
Collapse
|
22
|
Zhou J, Chen L, Kang L, Liu Z, Bai Y, Yang Y, Yuan S. ChiE1 from Coprinopsis cinerea is Characterized as a Processive Exochitinase and Revealed to Have a Significant Synergistic Action with Endochitinase ChiIII on Chitin Degradation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12773-12782. [PMID: 30404442 DOI: 10.1021/acs.jafc.8b04261] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Fruiting bodies that exhibit strong autolysis of Coprinopsis cinerea are a good resource for the chitinolytic system. In this study, a new Chitinase ChiE1 from C. cinerea was cloned, heterologously expressed, and characterized. Biochemical analysis demonstrated that ChiE1 is an exochitinase with a processive mode of action. Although ChiE1 contains only a single catalytic domain without a binding domain, it can bind to and degrade insoluble chitin powder and colloidal chitin. The combination of ChiE1 and C. cinerea endochitinase ChiIII could increase the amount of reducing sugar released from chitin powder by approximately 120% compared to using ChiE1 and ChiIII alone. The synergistic action of ChiE1 and ChiIII on degradation of chitin powder is higher than all previously reported synergism of chitinases. The recombinant Chitinase ChiE1 expressed in Pichia pastoris may be used as a synergistic chitinase for a reconstituted chitinolytic system for agricultural, biological, and environmental applications.
Collapse
Affiliation(s)
- Jiangsheng Zhou
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science , Nanjing Normal University , 1 Wenyuan Road , Nanjing 210023 , PR China
| | - Lingling Chen
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science , Nanjing Normal University , 1 Wenyuan Road , Nanjing 210023 , PR China
| | - Liqin Kang
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science , Nanjing Normal University , 1 Wenyuan Road , Nanjing 210023 , PR China
| | - Zhonghua Liu
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science , Nanjing Normal University , 1 Wenyuan Road , Nanjing 210023 , PR China
| | - Yang Bai
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science , Nanjing Normal University , 1 Wenyuan Road , Nanjing 210023 , PR China
| | - Yao Yang
- Ginling College , Nanjing Normal University , 122 Ninghai Road , Nanjing 210097 , PR China
| | - Sheng Yuan
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science , Nanjing Normal University , 1 Wenyuan Road , Nanjing 210023 , PR China
| |
Collapse
|
23
|
Lee HJ, Lee YS, Choi YL. Cloning, purification, and characterization of an organic solvent-tolerant chitinase, MtCh509, from Microbulbifer thermotolerans DAU221. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:303. [PMID: 30455732 PMCID: PMC6222997 DOI: 10.1186/s13068-018-1299-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/24/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND The ability to use organic solvents in enzyme reactions offers a number of industrially useful advantages. However, most enzymes are almost completely inactive in the presence of organic solvents. Thus, organic solvent-tolerant enzymes have potential applications in industrial processes. RESULTS A chitinase gene from Microbulbifer thermotolerans DAU221 (mtch509) was cloned and expressed in Escherichia coli BL21 (DE3). The molecular weight of the expressed MtCh509 protein was approximately 60 kDa, and it was purified by His-tag affinity chromatography. Enzymatic assays showed that the optimum temperature for MtCh509 chitinase activity was 55 °C, and the enzyme was stable for 2 h at up to 50 °C. The optimum pH for MtCh509 activity was in the sub-acidic range, at pH 4.6 and 5.0. The activity of MtCh509 was maintained in presence of 1 M salt, gradually decreasing at higher concentrations, with residual activity (20%) detected after incubation in 5 M salt. Some organic solvents (benzene, DMSO, hexane, isoamyl alcohol, isopropyl alcohol, and toluene; 10-20%, v/v) increased the reactivity of MtCh509 relative to the aqueous system. When using NAG3, as a substrate, MtCh509 produced NAG2 as the major product, as well as NAG4, demonstrating that MtCh509 has transglycosylation activity. The K m and V max values for MtCh509 using colloidal chitin as a substrate were 9.275 mg/mL and 20.4 U/mg, respectively. Thus, MtCh509 could be used in extreme industrial conditions. CONCLUSION The results of the hydrolysate analysis and the observed increase in enzyme activity in the presence of organic solvents show that MtCh509 has industrially attractive advantages. This is the first report on an organic solvent-tolerant and transglycosylating chitinase from Microbulbifer species.
Collapse
Affiliation(s)
- Hyo-Jung Lee
- Department of Biotechnology, Dong-A University, Busan, 49315 Republic of Korea
| | - Yong-Suk Lee
- Department of Biotechnology, Dong-A University, Busan, 49315 Republic of Korea
| | - Yong-Lark Choi
- Department of Biotechnology, Dong-A University, Busan, 49315 Republic of Korea
| |
Collapse
|
24
|
Matteoli FP, Passarelli-Araujo H, Reis RJA, da Rocha LO, de Souza EM, Aravind L, Olivares FL, Venancio TM. Genome sequencing and assessment of plant growth-promoting properties of a Serratia marcescens strain isolated from vermicompost. BMC Genomics 2018; 19:750. [PMID: 30326830 PMCID: PMC6192313 DOI: 10.1186/s12864-018-5130-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 09/27/2018] [Indexed: 01/11/2023] Open
Abstract
Background Plant-bacteria associations have been extensively studied for their potential in increasing crop productivity in a sustainable manner. Serratia marcescens is a species of Enterobacteriaceae found in a wide range of environments, including soil. Results Here we describe the genome sequencing and assessment of plant growth-promoting abilities of S. marcescens UENF-22GI, a strain isolated from mature cattle manure vermicompost. In vitro, S. marcescens UENF-22GI is able to solubilize P and Zn, to produce indole compounds (likely IAA), to colonize hyphae and counter the growth of two phytopathogenic fungi. Inoculation of maize with this strain remarkably increased seedling growth and biomass under greenhouse conditions. The S. marcescens UENF-22GI genome has 5 Mb, assembled in 17 scaffolds comprising 4662 genes (4528 are protein-coding). No plasmids were identified. S. marcescens UENF-22GI is phylogenetically placed within a clade comprised almost exclusively of non-clinical strains. We identified genes and operons that are likely responsible for the interesting plant-growth promoting features that were experimentally described. The S. marcescens UENF-22GI genome harbors a horizontally-transferred genomic island involved in antibiotic production, antibiotic resistance, and anti-phage defense via a novel ADP-ribosyltransferase-like protein and possible modification of DNA by a deazapurine base, which likely contributes to its competitiveness against other bacteria. Conclusions Collectively, our results suggest that S. marcescens UENF-22GI is a strong candidate to be used in the enrichment of substrates for plant growth promotion or as part of bioinoculants for agriculture. Electronic supplementary material The online version of this article (10.1186/s12864-018-5130-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Filipe P Matteoli
- Laboratório de Química e Função de Proteínas e Peptídeos, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Rio de Janeiro, Brazil
| | - Hemanoel Passarelli-Araujo
- Laboratório de Química e Função de Proteínas e Peptídeos, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Rio de Janeiro, Brazil
| | - Régis Josué A Reis
- Núcleo de Desenvolvimento de Insumos Biológicos para a Agricultura (NUDIBA), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Rio de Janeiro, Brazil
| | - Letícia O da Rocha
- Núcleo de Desenvolvimento de Insumos Biológicos para a Agricultura (NUDIBA), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Rio de Janeiro, Brazil
| | - Emanuel M de Souza
- Departamento de Bioquímica e Biologia Molecular, Núcleo de Fixação Biológica de Nitrogênio, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Fabio L Olivares
- Núcleo de Desenvolvimento de Insumos Biológicos para a Agricultura (NUDIBA), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Rio de Janeiro, Brazil.
| | - Thiago M Venancio
- Laboratório de Química e Função de Proteínas e Peptídeos, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Rio de Janeiro, Brazil.
| |
Collapse
|
25
|
Vaikuntapu PR, Mallakuntla MK, Das SN, Bhuvanachandra B, Ramakrishna B, Nadendla SR, Podile AR. Applicability of endochitinase of Flavobacterium johnsoniae with transglycosylation activity in generating long-chain chitooligosaccharides. Int J Biol Macromol 2018; 117:62-71. [DOI: 10.1016/j.ijbiomac.2018.05.129] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 05/17/2018] [Accepted: 05/18/2018] [Indexed: 01/08/2023]
|
26
|
Wang D, Li A, Han H, Liu T, Yang Q. A potent chitinase from Bacillus subtilis for the efficient bioconversion of chitin-containing wastes. Int J Biol Macromol 2018; 116:863-868. [DOI: 10.1016/j.ijbiomac.2018.05.122] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/04/2018] [Accepted: 05/17/2018] [Indexed: 01/04/2023]
|
27
|
Ramakrishna B, Vaikuntapu P, Mallakuntla MK, Bhuvanachandra B, Sivaramakrishna D, Uikey S, Podile AR. Carboxy-terminal glycosyl hydrolase 18 domain of a carbohydrate active protein of Chitinophaga pinensis is a non-processive exochitinase. Int J Biol Macromol 2018; 115:1225-1232. [DOI: 10.1016/j.ijbiomac.2018.04.159] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 03/07/2018] [Accepted: 04/29/2018] [Indexed: 01/12/2023]
|
28
|
Antifungal activity and patterns of N -acetyl-chitooligosaccharide degradation via chitinase produced from Serratia marcescens PRNK-1. Microb Pathog 2017; 113:218-224. [DOI: 10.1016/j.micpath.2017.10.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/20/2017] [Accepted: 10/20/2017] [Indexed: 11/20/2022]
|
29
|
Zhang Y, Zhou X, Ji L, Du X, Sang Q, Chen F. Enzymatic single-step preparation and antioxidant activity of hetero-chitooligosaccharides using non-pretreated housefly larvae powder. Carbohydr Polym 2017; 172:113-119. [DOI: 10.1016/j.carbpol.2017.05.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 05/10/2017] [Accepted: 05/12/2017] [Indexed: 12/30/2022]
|
30
|
Genomic, proteomic and biochemical analysis of the chitinolytic machinery of Serratia marcescens BJL200. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:414-421. [DOI: 10.1016/j.bbapap.2017.01.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/10/2017] [Accepted: 01/23/2017] [Indexed: 11/23/2022]
|