1
|
Yang Y, Guo W, Zhang J, Liang S, Liu Q, Liu J, Ngo HH, Zhang H. Applicability analysis of algae biochar for anaerobic membrane bioreactors in wastewater treatment: A review from a sustainability assessment perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177609. [PMID: 39577581 DOI: 10.1016/j.scitotenv.2024.177609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024]
Abstract
The incorporation of biochar can significantly enhance the performance of anaerobic membrane bioreactors (AnMBRs), achieving up to a 95 % increase in pollutant removal efficiency and an 86 % improvement in methane production. Algae biochar, in particular, shows great promise as an effective additive in AnMBR systems because of its low cost (approximately $0.470/kg) and the abundance of raw material sources. This paper presents a comprehensive applicability analysis of algae biochar-AnMBRs from a sustainability assessment perspective, addressing technical, environmental, economic, and social dimensions. Key technical benefits include a reduction in membrane fouling by 92.1 % and an enhancement of energy recovery by 58.7 % compared to conventional AnMBRs. Following this, the paper evaluates algae biochar-AnMBRs from environmental, economic, and social viewpoints to emphasize the practical applicability and potential of this process. Finally, this review addresses the limitations related to the full-scale implementation of this technology and proposes strategic approaches to overcome these challenges. Overall, the review provides valuable insights into the practical application of algae biochar-AnMBR systems, with a strong focus on sustainability.
Collapse
Affiliation(s)
- Yuanying Yang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Technology, Shandong University, Qingdao 266237, China
| | - Shuang Liang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Technology, Shandong University, Qingdao 266237, China
| | - Qiang Liu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Jianyong Liu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Huiying Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
2
|
Han J, Jia J, Hu X, Sun L, Ulbricht M, Lv L, Ren Z. Effect of magnetic field coupled magnetic biochar on membrane bioreactor efficiency, membrane fouling mitigation and microbial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172549. [PMID: 38643881 DOI: 10.1016/j.scitotenv.2024.172549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/23/2024]
Abstract
The excitation by magnetic field was established to mitigate the membrane fouling of magnetic biochar (MB)-supplemented membrane bioreactor (MBR) in this study. The results showed that the transmembrane pressure (TMP) increase rates decreased by about 8 % after introducing the magnetic field compared with the magnetic biochar-MBR (MB-MBR). Membrane characterization suggested that the flocs in the magnetic field-magnetic biochar-MBR (MF-MB-MBR) formed a highly permeable developed cake layer, and a fluffier and more porous deposited layer on membrane surface, which minimized fouling clogging of the membrane pores. Further mechanistic investigation revealed that the decrease in contact angle of fouled membrane surface in MF-MB-MBR, i.e. an enhanced membrane hydrophilicity, is considered important for forming highly permeable layers. Additionally, the magnetic field was demonstrated to have a positive effect on the improvement of the magneto-biological effect, the enhancement of charge neutralization and adsorption bridging between sludge and magnetic biochar, and the reduction of formation of extracellular polymeric substances (EPSs), which all yielded sludge flocs with a large pore structure conducive to form a fluffy and porous deposited layer in the membrane surface. Furthermore, high-throughput sequencing analysis revealed that the magnetic field also led to a reduction in microbial diversity, and that it promoted the enrichment of specific functional microbial communities (e.g. Bacteroidetes and Firmicutes) playing an important role in mitigating membrane fouling. Taken together, this study of magnetic field-enhanced magnetic biochar for MBR membrane fouling mitigation provides insights important new ideas for more effective and sustainable operation strategies.
Collapse
Affiliation(s)
- Jinlong Han
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Jianna Jia
- Tianjin Research Institute for Water Transport Engineering, M.O.T., China
| | - Xiangjia Hu
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China; Wuqing District Environmental Protection Bureau, Tianjin, 301700, China
| | - Li Sun
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China.
| | - Mathias Ulbricht
- Lehrstuhl für Technische Chemie II and Center for Envirommental Research (ZWU), Universität Duisburg-Essen, 45117 Essen, Germany
| | - Longyi Lv
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Zhijun Ren
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China.
| |
Collapse
|
3
|
Paritosh K, Kesharwani N. Biochar mediated high-rate anaerobic bioreactors: A critical review on high-strength wastewater treatment and management. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 355:120348. [PMID: 38457889 DOI: 10.1016/j.jenvman.2024.120348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/16/2024] [Accepted: 02/08/2024] [Indexed: 03/10/2024]
Abstract
Treatment of high-strength wastewater is critical for the aquatic environment and receiving water bodies around the globe. Untreated or partially treated high-strength wastewater may cause severe damage to the existing water bodies. Various high-rate anaerobic bioreactors have been developed in the last decades for treating high-strength wastewater. High-rate anaerobic bioreactors are effective in treating industrial wastewater and provide energy in the form of methane as well. However, the physical or chemical properties of high-strength industrial wastewater, sometimes, disrupt the functioning of a high-rate anaerobic bioreactor. For example, the disintegration of granular sludge in up flow anaerobic sludge blanket reactor or membrane blocking in an anaerobic membrane bioreactor are the results of a high-strength wastewater treatment which hamper the proper functioning and may harm the wastewater treatment plant economically. Biochar, if added to these bioreactors, may help to alleviate the ill-functioning of high-rate anaerobic bioreactors. The primary mechanisms by biochar work in these bioreactors are direct interspecies electron transfer, microbial immobilization, or gene level alternations in microbial structure. The present article explores and reviews the recent application of biochar in a high-rate anaerobic bioreactor treating high-strength industrial wastewater.
Collapse
Affiliation(s)
- Kunwar Paritosh
- MaREI Centre, Environmental Research Institute, University College Cork, Cork, Ireland; Civil, Structural and Environmental Engineering, School of Engineering and Architecture, University College Cork, Cork, Ireland.
| | - Nupur Kesharwani
- Department of Civil Engineering, Government Engineering College, Bilaspur, Chhattisgarh, India
| |
Collapse
|
4
|
Wang G, Liu G, Yao G, Fu P, Sun C, Li Y, Li Q, Li YY, Chen R. Biochar-assisted anaerobic membrane bioreactor towards high-efficient energy recovery from swine wastewater: Performances and the potential mechanisms. BIORESOURCE TECHNOLOGY 2023; 369:128480. [PMID: 36513307 DOI: 10.1016/j.biortech.2022.128480] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
A high-efficient energy recovery system of biochar-assisted anaerobic membrane bioreactor (BC-AnMBR) was established for swine wastewater treatment. Comparing with a conventional AnMBR, biochar addition accelerated volatile fatty acids (VFA) degradation during start-up stage, thereby shortened start-up duration by 44.0 %. Under a high organic loading rate (OLR) of 21.1 gCOD/L/d, BC-AnMBR promoted COD removal efficiency from 90.1 % to 95.2 %, and maintained a high methane production rate of 4.8L CH4/L/d. The relative abundance of Methanosaeta declined from 53.9 % in conventional AnMBR to 21.0 % in BC-AnMBR, whereas that of Methanobrevibacter dramatically increased from 10.3 % to 70.9 %, respectively. Metabolic pathway analysis revealed that biochar not only strengthened hydrogenotrophic methanogenesis pathway, but also upregulated the genes encoding electron transfer carriers and riboflavin metabolism, suggesting the role of biochar facilitating direct interspecies electron transfer for syntrophic methanogenesis. The excellent energy yield performances under high OLR confirmed BC-AnMBR as an advanced system for high-strength swine wastewater treatment.
Collapse
Affiliation(s)
- Gaojun Wang
- Key Lab of Environmental Engineering (Shaanxi Province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology (Ministry of Education), Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Guohao Liu
- Key Lab of Environmental Engineering (Shaanxi Province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Gaofei Yao
- Key Lab of Environmental Engineering (Shaanxi Province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Peng Fu
- Key Lab of Environmental Engineering (Shaanxi Province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Changxi Sun
- Key Lab of Environmental Engineering (Shaanxi Province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Yu Li
- Key Lab of Environmental Engineering (Shaanxi Province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Qian Li
- Key Lab of Environmental Engineering (Shaanxi Province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology (Ministry of Education), Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Rong Chen
- Key Lab of Environmental Engineering (Shaanxi Province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology (Ministry of Education), Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China.
| |
Collapse
|
5
|
Sahreen S, Mukhtar H, Imre K, Morar A, Herman V, Sharif S. Exploring the Function of Quorum Sensing Regulated Biofilms in Biological Wastewater Treatment: A Review. Int J Mol Sci 2022; 23:ijms23179751. [PMID: 36077148 PMCID: PMC9456111 DOI: 10.3390/ijms23179751] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 11/26/2022] Open
Abstract
Quorum sensing (QS), a type of bacterial cell–cell communication, produces autoinducers which help in biofilm formation in response to cell population density. In this review, biofilm formation, the role of QS in biofilm formation and development with reference to biological wastewater treatment are discussed. Autoinducers, for example, acyl-homoserine lactones (AHLs), auto-inducing oligo-peptides (AIPs) and autoinducer 2, present in both Gram-negative and Gram-positive bacteria, with their mechanism, are also explained. Over the years, wastewater treatment (WWT) by QS-regulated biofilms and their optimization for WWT have gained much attention. This article gives a comprehensive review of QS regulation methods, QS enrichment methods and QS inhibition methods in biological waste treatment systems. Typical QS enrichment methods comprise adding QS molecules, adding QS accelerants and cultivating QS bacteria, while typical QS inhibition methods consist of additions of quorum quenching (QQ) bacteria, QS-degrading enzymes, QS-degrading oxidants, and QS inhibitors. Potential applications of QS regulated biofilms for WWT have also been summarized. At last, the knowledge gaps present in current researches are analyzed, and future study requirements are proposed.
Collapse
Affiliation(s)
- Sania Sahreen
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Hamid Mukhtar
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
- Correspondence: (H.M.); (K.I.); Tel.: +92-3334245581 (H.M.); +40-256277186 (K.I.)
| | - Kálmán Imre
- Department of Animal Production and Veterinary Public Health, Faculty of Veterinary Medicine, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania”, 300645 Timisoara, Romania
- Correspondence: (H.M.); (K.I.); Tel.: +92-3334245581 (H.M.); +40-256277186 (K.I.)
| | - Adriana Morar
- Department of Animal Production and Veterinary Public Health, Faculty of Veterinary Medicine, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania”, 300645 Timisoara, Romania
| | - Viorel Herman
- Department of Infectious Diseases and Preventive Medicine, Faculty of Veterinary Medicine, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania”, 300645 Timisoara, Romania
| | - Sundas Sharif
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| |
Collapse
|
6
|
Ni J, Ji J, Kubota K, Li YY. Sodium hypochlorite induced inhibition in anaerobic digestion and possible approach to maintain methane fermentation performance. BIORESOURCE TECHNOLOGY 2022; 352:127096. [PMID: 35367600 DOI: 10.1016/j.biortech.2022.127096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Since sodium hypochlorite (NaClO), a commonly used chemical to deal with membrane fouling, is toxic to microorganisms, it is a major concern in the membrane cleaning process. In this study, the concentration-dependent effects of NaClO (0-9 g/L) on the biodegradation performance and microbial activity were investigated via batch experiments. The methane production (obtained approximately 140 mL) and microbial community revealed by principal coordinates analysis were almost unaffected when the NaClO concentration ranged between 0 and 3 g/L. A follow-up batch experiment was conducted and revealed that the microbial products could help protect or recover the activity of anaerobic microorganisms at a high NaClO concentration of 10 g/L. Additionally, correlation analysis was used to investigate the associations between the 15 major bacterial genera. Moreover, the microbial analysis results indicated that the top 10 operational taxonomic units most affected by NaClO were primarily coryneform and filamentous bacteria.
Collapse
Affiliation(s)
- Jialing Ni
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan; Department of Chemical Engineering, Graduate School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan.
| | - Jiayuan Ji
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan; Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan.
| | - Kengo Kubota
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan; Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan; Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| |
Collapse
|
7
|
Guo M, Jiang Y, Xie J, Cao Q, Zhang Q, Mabruk A, Chen C. Bamboo charcoal addition enhanced the nitrogen removal of anammox granular sludge with COD: Performance, physicochemical characteristics and microbial community. J Environ Sci (China) 2022; 115:55-64. [PMID: 34969477 DOI: 10.1016/j.jes.2021.07.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/08/2021] [Accepted: 07/08/2021] [Indexed: 06/14/2023]
Abstract
The effects of different chemical oxygen demand (COD) concentrations on the anammox granular sludge with Bamboo Charcoal (BC) addition were evaluated in UASB reactor. The results showed that the average total nitrogen (TN) removal efficiency was reduced from 85.9% to 81.4% when COD concentration was increased from 50 to 150 mg/L. However, the TN removal efficiency of BC addition reactors was dramatically 3.1%-6.4% higher than that without BC under different COD concentrations. The average diameter of granular sludge was 0.13 mm higher than that without BC. The settling velocity was increased by elevated COD concentration, while the EPS and VSS/SS were increased with BC addition. The high-throughput Miseq sequencing analyses revealed that the bacterial diversity and richness were decreased under COD addition, and the Planctomycetes related to anammox bacteria were Candidatus Brocadia and Candidatus Kuenenia. The Metagenomic sequencing indicated that the abundance of denitrification related functional genes all increased with elevated COD, while the abundance of anammox related functional genes of decreased. The functional genes related to anammox was hydrazine synthase encoding genes (hzsA, hzsB and hzsB). The average relative abundance of hzs genes in the reactor with BC addition was higher than the control at COD concentrations of 50 mg/L and 150 mg/L. The functional genes of denitrification mediated by BC were higher than those without BC throughout the operation phase. It is interesting to note that BC addition greatly enriched the related functional genes of denitrification and anammox.
Collapse
Affiliation(s)
- Menglei Guo
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Ying Jiang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Junxiang Xie
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Qianfei Cao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Qun Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Adams Mabruk
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Chongjun Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, China; Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
8
|
Deng L, Guo W, Ngo HH, Zhang X, Chen C, Chen Z, Cheng D, Ni SQ, Wang Q. Recent advances in attached growth membrane bioreactor systems for wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152123. [PMID: 34864031 DOI: 10.1016/j.scitotenv.2021.152123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/28/2021] [Accepted: 11/28/2021] [Indexed: 06/13/2023]
Abstract
To tackle membrane fouling and limited removals of pollutants (nutrients and emerging pollutants) that hinder the wide applications of membrane bioreactor (MBR), attached growth MBR (AGMBR) combining MBR and attached growth process has been developed. This review comprehensively presents the up-to-date developments of media used in both aerobic and anaerobic AGMBRs for treating wastewaters containing conventional and emerging pollutants. It also elaborates the properties of different media, characteristics of attached biomass, and their contributions to AGMBR performance. Conventional media, such as biological activated carbon and polymeric carriers, induce formation of aerobic, anoxic and/or anaerobic microenvironment, increase specific surface area or porous space for biomass retention, improve microbial activities, and enrich diverse microorganisms, thereby enhancing pollutants removal. Meanwhile, new media (i.e. biochar, bioaugmented carriers with selected strain/mixed cultures) do not only eliminate conventional pollutants (i.e. high concentration of nitrogen, etc.), but also effectively remove emerging pollutants (i.e. micropollutants, nonylphenol, adsorbable organic halogens, etc.) by forming thick and dense biofilm, creating anoxic/anaerobic microenvironments inside the media, enriching special functional microorganisms and increasing activity of microorganisms. Additionally, media can improve sludge characteristics (i.e. less extracellular polymeric substances and soluble microbial products, larger floc size, better sludge settleability, etc.), alleviating membrane fouling. Future studies need to focus on the development and applications of more new functional media in removing wider spectrum of emerging pollutants and enhancing biogas generation, as well as scale-up of lab-scale AGMBRs to pilot or full-scale AGMBRs.
Collapse
Affiliation(s)
- Lijuan Deng
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, University of Technology Sydney and Tianjin Chengjian University,.
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, University of Technology Sydney and Tianjin Chengjian University,.
| | - Xinbo Zhang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, University of Technology Sydney and Tianjin Chengjian University,; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Cheng Chen
- Infinite Water Holdings Pty Ltd., Unit 17/809 Botany Road, Rosebery, Sydney, NSW 2018, Australia
| | - Zhuo Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Dongle Cheng
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Shou-Qing Ni
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Quan Wang
- Department of Environment Science & Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
9
|
Hollow-Fiber Membrane Contactor for Biogas Recovery from Real Anaerobic Membrane Bioreactor Permeate. MEMBRANES 2022; 12:membranes12020112. [PMID: 35207034 PMCID: PMC8877462 DOI: 10.3390/membranes12020112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/12/2022] [Accepted: 01/16/2022] [Indexed: 01/19/2023]
Abstract
This study demonstrates the application of hollow-fiber membrane contactors (HFMCs) for the recovery of biogas from the ultrafiltration permeate of an anaerobic membrane bioreactor (AnMBR) and synthetic effluents of pure and mixed CH4 and CO2. The developed membrane degassing setup was coupled with a pilot-scale AnMBR fed with synthetic domestic effluent working at 25 °C. The membrane degassing unit was able to recover 93% of the total dissolved CH4 and 83% of the dissolved CO2 in the first two hours of permeate recirculation. The initial recovery rates were very high (0.21 mg CH4 L−1 min−1 and 8.43 mg CO2 L−1 min−1) and the membrane was able to achieve a degassing efficiency of 95.7% for CH4 and 76.2% for CO2, at a gas to liquid ratio of 1. A higher mass transfer coefficient of CH4 was found in all experimental and theoretical evaluations compared to CO2. This could also be confirmed from the higher transmembrane mass transport resistance to CO2 rather than CH4 found in this work. A strong dependency of the selective gas transport on the gas and liquid side hydrodynamics was observed. An increase in the liquid flow rate and gas flow rate favored CH4 transport and CO2 transport, respectively, over each component. The results confirmed the effectiveness of the collective AnMBR and membrane degassing setup for biogas recovery. Still, additional work is required to improve the membrane contactor’s performance for biogas recovery during long-term operation.
Collapse
|
10
|
An Q, Zhang C, Zhao B, Li Z, Deng S, Wang T, Jin L. Insight into synergies between Acinetobacter sp. AL-6 and pomelo peel biochar in a hybrid process for highly efficient manganese removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148609. [PMID: 34182459 DOI: 10.1016/j.scitotenv.2021.148609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/07/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
The manganese contamination of groundwater is a global issue that needs to be solved urgently. In this study, a hybrid process between pomelo peel biochar(BC) and Acinetobacter sp. AL-6 (strain AL-6) was established to remove manganese from water. The results showed that microbe-biochar composite had removed 98.19% of manganese (800 mg L-1) within 48 h. Compared with two separate systems (biochar, strain AL-6), the co-system (strain AL-6 and BC composite) had an excellent synergy effect on manganese removal. The average removal rate of manganese in the synergistic system was 14.08 mg L-1 h-1, which was 6.41 times higher than strain AL-6, 3.45 times higher than biochar, and even at 2.24 times their sum. In addition, the scanning electron microscope (SEM) and the bioassay indicated that many strains were attached to biochar and had vigorous biological activity. The FTIR results showed that the functional groups of OH, CO, CO, CH2, and CH played a vital role in removing manganese. And the correlation analysis shows that biochar with strains AL-6 has a highly synergistic effect on manganese removal. Meanwhile, the composite material can maintain excellent manganese removal efficiency under different pH conditions. Besides, in the sequence batch reactor (SBR) inoculating with the microbe-biochar composite, more than 96% of manganese was removed, which far exceeded the treatment efficiency of free bacteria in the SBR. Hence, biochar-immobilized AL-6 has great potential and can be applied to degrade manganese polluted wastewater.
Collapse
Affiliation(s)
- Qiang An
- College of Environment and Ecology, Chongqing University, Chongqing 400045, People's Republic of China; The Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Chongqing University, Chongqing 400045, People's Republic of China.
| | - Chenyi Zhang
- College of Environment and Ecology, Chongqing University, Chongqing 400045, People's Republic of China
| | - Bin Zhao
- College of Environment and Ecology, Chongqing University, Chongqing 400045, People's Republic of China
| | - Zheng Li
- College of Environment and Ecology, Chongqing University, Chongqing 400045, People's Republic of China
| | - Shuman Deng
- College of Environment and Ecology, Chongqing University, Chongqing 400045, People's Republic of China
| | - Tuo Wang
- College of Environment and Ecology, Chongqing University, Chongqing 400045, People's Republic of China
| | - Lin Jin
- College of Environment and Ecology, Chongqing University, Chongqing 400045, People's Republic of China
| |
Collapse
|
11
|
Chen Y, Wu H, Sun P, Liu J, Qiao S, Zhang D, Zhang Z. Remediation of Chromium-Contaminated Soil Based on Bacillus cereus WHX-1 Immobilized on Biochar: Cr(VI) Transformation and Functional Microbial Enrichment. Front Microbiol 2021; 12:641913. [PMID: 33841363 PMCID: PMC8027096 DOI: 10.3389/fmicb.2021.641913] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/10/2021] [Indexed: 11/14/2022] Open
Abstract
Microorganisms are applied to remediate chromium (Cr)-contaminated soil extensively. Nevertheless, the microbial loss and growth inhibition in the soil environment restrain the application of this technology. In this study, a Cr(VI)-reducing strain named Bacillus cereus WHX-1 was screened, and the microbial aggregates system was established via immobilizing the strain on Enteromorpha prolifera biochar to enhance the Cr(VI)-reducing activity of this strain. The mechanism of the system on Cr(VI) transformation in Cr-contaminated soil was illuminated. Pot experiments indicated that the microbial aggregates system improved the physicochemical characteristics of Cr-contaminated soil obviously by increasing organic carbon content and cation exchange capacity, as well as decreasing redox potential and bulk density of soil. Moreover, 94.22% of Cr(VI) was transformed into Cr(III) in the pot, and the content of residue fraction Cr increased by 63.38% compared with control check (CK). Correspondingly, the physiological property of Ryegrass planted on the Cr-contaminated soil was improved markedly and the main Cr(VI)-reducing microbes, Bacillus spp., were enriched in the soil with a relative abundance of 28.43% in the microbial aggregates system. Considering more active sites of biochar for microbial aggregation, it was inferred that B. cereus WHX-1 could be immobilized by E. prolifera biochar, and more Cr(VI) was transformed into residue fraction. Cr stress was decreased and the growth of plants was enhanced. This study would provide a new perspective for Cr-contaminated soil remediation.
Collapse
Affiliation(s)
- Youyuan Chen
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China.,Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, China.,Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao, China
| | - Haixia Wu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Ping Sun
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Jiaxin Liu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Shixuan Qiao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Dakuan Zhang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Zhiming Zhang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China.,Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, China.,Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
12
|
Ji J, Kakade A, Yu Z, Khan A, Liu P, Li X. Anaerobic membrane bioreactors for treatment of emerging contaminants: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 270:110913. [PMID: 32721347 DOI: 10.1016/j.jenvman.2020.110913] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/15/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Emerging contaminants (ECs) are synthetic organic chemicals that released into the environment, which pose a serious threat to the ecosystem and human health. Due to the high costs of physicochemical methods and the possibility of secondary pollution, and conventional biological treatment techniques are not efficient to remove ECs. Thus, there is a need to develop novel technologies to treat ECs. Anaerobic digestion (AD) is reported to degrade most ECs. Anaerobic membrane bioreactor (AnMBR) is an upgraded AD technology that has high system stability and microbial community abundance. The biogas production and EC biodegradation efficiency in the AnMBR system are markedly higher than those in the traditional AD system. In recent years, AnMBR is widely used to remove environmental ECs. This review analyzes the feasibility and challenges of AnMBR in the treatment of ECs and provides useful insights for improving the performance and efficiency of AnMBR to treat ECs.
Collapse
Affiliation(s)
- Jing Ji
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Apurva Kakade
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Zhengsheng Yu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Aman Khan
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Pu Liu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Xiangkai Li
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, PR China; Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou, 730020, Gansu, PR China.
| |
Collapse
|
13
|
Inaba T, Su T, Aoyagi T, Aizawa H, Sato Y, Suh C, Lee JH, Hori T, Ogata A, Habe H. Microbial community in an anaerobic membrane bioreactor and its performance in treating organic solid waste under controlled and deteriorated conditions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 269:110786. [PMID: 32425174 DOI: 10.1016/j.jenvman.2020.110786] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/18/2020] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
The adoption of anaerobic membrane bioreactors (AnMBRs) for organic solid waste management is important for the recovery of energy and high-quality treated water. However, few studies have focused on AnMBR treatment of high-strength organic solid waste and the microorganisms involved under deteriorated operating conditions. In the present study, a 15-L bench-scale AnMBR was operated using a model slurry of high-strength organic solid waste with the organic loading rate (OLR) increasing from 2.3 g chemical oxygen demand (COD) L-1 day-1 (represented as a controlled condition) to 11.6 g COD L-1 day-1 (represented as a deteriorated condition), and microbial community dynamics over 120 days of operation were analyzed. The abundances of methanogens and bacteria that were dominant under the controlled condition decreased as a result of both high organic loading and sludge withdrawal under the deteriorated condition and did not recover thereafter. Instead, numbers of putative volatile fatty acid (VFA)-producing bacterial operational taxonomic units (OTUs) related to the genus Prevotella increased rapidly, reaching a relative abundance of 43.2%, leading to the deterioration of methanogenic AnMBR operation. Considering that the sequences of these OTUs exhibited relatively low sequence identity (91-95%) to those of identified Prevotella species, the results strongly suggest that the accumulation of VFAs by novel VFA-producing bacteria in the digestion sludge promotes the disruption of the methanogen community under deteriorated conditions.
Collapse
Affiliation(s)
- Tomohiro Inaba
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan
| | - Tao Su
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan
| | - Tomo Aoyagi
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan
| | - Hidenobu Aizawa
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan
| | - Yuya Sato
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan
| | - Changwon Suh
- Institute of Environmental Technology, LG-Hitachi Water Solutions, Gasan R&D Campus, 51, Gasan Digital 1-ro, Geumcheon-gu, Seoul, 08592, South Korea
| | - Jong Hoon Lee
- Institute of Environmental Technology, LG-Hitachi Water Solutions, Gasan R&D Campus, 51, Gasan Digital 1-ro, Geumcheon-gu, Seoul, 08592, South Korea
| | - Tomoyuki Hori
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan
| | - Atsushi Ogata
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan
| | - Hiroshi Habe
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan.
| |
Collapse
|
14
|
Effects of Solids Retention Time on the Anaerobic Membrane Bioreactor with Yttria-Based Ceramic Membrane Treating Domestic Wastewater at Ambient Temperature. MEMBRANES 2020; 10:membranes10090196. [PMID: 32825741 PMCID: PMC7559899 DOI: 10.3390/membranes10090196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 11/16/2022]
Abstract
The effects of solid retention times (SRTs) (100 days, 50 days, 25 days) on the performance, microbial community, and membrane fouling of a lab-scale anaerobic yttria-based ceramic membrane bioreactor (AnCMBR) treating synthetic domestic wastewater at ambient temperature (31.2 ± 2.7 °C) were examined. The soluble chemical oxygen demand (SCOD) removal was higher (89.6%) at 25 days SRT compared with 50 days (39.61%) and 100 days (34.3%) SRT. At 100 days SRT, more Bacteroidetes, Firmicutes, and Proteobacteria were present in the microbial community. At 25 days SRT, more Chloroflexi, Synergistetes, and Pastescibacteria emerged, contributing to the stable performance. The SRT of 25 days has resulted in a more stable microbial community compared with 50 days and 100 days SRT. Both bacterial and archaeal community diversities were higher at 25 days SRT, and the specific production of soluble microbial by-products (SMPs) and extracellular polymeric substances (EPSs) were higher at 25 days SRT as well. Consequently, the membrane flux was lower at 25 days SRT with the increased particle size and the enhanced SMPs and EPSs production. Fourier transform infrared spectroscopy analysis (FTIR) and three-dimensional excitation and emission matrix (3D-EEM) analysis showed that protein and SMPs were the major membrane foulants at all SRT stages. In this study, SRT at 25 days was favorable for the stable operation of an AnCMBR treating domestic wastewater at ambient temperature.
Collapse
|
15
|
Sanchis-Perucho P, Robles Á, Durán F, Ferrer J, Seco A. PDMS membranes for feasible recovery of dissolved methane from AnMBR effluents. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118070] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Liu W, Bin L, Tang B, Li P, Huang S, Fu F, Huang Z, Guan G. Operational and fouling characteristics of the combined oxidation ditch—membrane bioreactor under a continuous-flow mode. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Li L, Kong Z, Xue Y, Wang T, Kato H, Li YY. A comparative long-term operation using up-flow anaerobic sludge blanket (UASB) and anaerobic membrane bioreactor (AnMBR) for the upgrading of anaerobic treatment of N, N-dimethylformamide-containing wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 699:134370. [PMID: 31678883 DOI: 10.1016/j.scitotenv.2019.134370] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/01/2019] [Accepted: 09/07/2019] [Indexed: 06/10/2023]
Abstract
Synthetic industrial wastewater containing approximately 2000 mg/L N, N-dimethylformamide (DMF) was treated using a lab-scale anaerobic sludge blanket (UASB) and an anaerobic membrane bioreactor (AnMBR) in this study. The inoculum consisted of two sources of sludge: Co-culture of anaerobic digested sludge (ADS) with DMF-hydrolyzing activated sludge (DAS) for the AnMBR, and co-culture of anaerobic granular sludge (AGS) with DAS for the UASB. Effective DMF methanogenic degradation of nearly 100% removal was achieved in both reactors on the first day. Both reactors obtained excellent DMF removal efficiency and high methane production under a low organic loading rate (OLR) of around 3-4 g COD/L/d. However, excessive elevation of OLR significantly limited DMF hydrolysis. When OLR exceeded 6 g COD/L/d, the removal efficiency and methane production in both reactors dramatically dropped. Despite their different forms and shapes, the ADS and AGS both provide methanogens which are responsible for methanogenesis. The UASB tolerated a higher OLR while the AnMBR was limited by membrane fouling due to the increased sludge concentration. However, the AnMBR obtained high-quality effluent without suspended solid. Whether DMF can be effectively degraded depends on DAS, in which abundant DMF-hydrolyzing bacteria (DHB) provide sufficient quantities of the hydrolytic enzyme for effective hydrolysis of DMF. However, these DHB were facultative and were also identified as denitrifying bacteria which require nitrate as the electron acceptor or otherwise survive under the aerobic condition. They gradually decayed rather than proliferated and were outcompeted by methanogens. Therefore, it is conceivable that a slight dosage of nitrate would enrich the abundance of DHB in both the UASB and the AnMBR, and provide a sufficient quantity of enzymes for the DMF hydrolysis. The cultivation of the anaerobic DMF-degrading granular sludge using the UASB is considered an upgraded solution to the effective treatment of DMF-containing wastewater.
Collapse
Affiliation(s)
- Lu Li
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Zhe Kong
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Yi Xue
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Tianjie Wang
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Hiroyuki Kato
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Yu-You Li
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
18
|
Berkessa YW, Yan B, Li T, Jegatheesan V, Zhang Y. Treatment of anthraquinone dye textile wastewater using anaerobic dynamic membrane bioreactor: Performance and microbial dynamics. CHEMOSPHERE 2020; 238:124539. [PMID: 31470310 DOI: 10.1016/j.chemosphere.2019.124539] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 08/01/2019] [Accepted: 08/06/2019] [Indexed: 06/10/2023]
Abstract
The performance and microbial community structure of anaerobic dynamic membrane bioreactor (AnDMBR) treating textile wastewater was investigated. The reactor showed excellent soluble COD and color removal of 98.5% and >97.5%, respectively. Dynamic membrane layer grown over the 3D printed dynamic membrane support showed decent rejection for high molecular weight compounds (>20 kDa); and the total suspended solid rejection by the dynamic layer was >98.8%. Gel permeation chromatography analysis of extracellular polymeric substance (EPS) and effluent samples revealed EPS accounted for more than 76.7% of low molecular weight fractions (<20 kDa) that end up in the effluent. Higher applied flux facilitated the rapid formation dynamic layer which enabled a satisfactory effluent quality. Microbial community analysis revealed that during the operation the archaeal community was relatively stable while obvious changes took place in the bacterial community. Introduction of dye Remazol Brilliant Blue R (RBBR) to the AnDMBR increased the abundances of phyla of Proteobacteria and Spirochaetae whereas fractions of Firmicutes and Euryarchaeota decreased obviously. Furthermore, relative stable abundances of phyla Aminicenantes, Bacteroidetes, Thermotogae and Chloroflexi among the top six phyla detected in the system ensured a healthy anaerobic degradation environment for RBBR wastewater treatment.
Collapse
Affiliation(s)
- Yifru Waktole Berkessa
- Lab of Waste Valorization and Water Reuse, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Laoshan District, Qingdao, 266101, PR China; State Key Laboratory of Petroleum Pollution Control, Beijing, 102206, PR China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, PR China
| | - Binghua Yan
- Lab of Waste Valorization and Water Reuse, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Laoshan District, Qingdao, 266101, PR China; Qingdao Key Laboratory of Functional Membrane Material and Membrane Technology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
| | - Tengfei Li
- Lab of Waste Valorization and Water Reuse, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Laoshan District, Qingdao, 266101, PR China
| | | | - Yang Zhang
- Lab of Waste Valorization and Water Reuse, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Laoshan District, Qingdao, 266101, PR China; Qingdao Key Laboratory of Functional Membrane Material and Membrane Technology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| |
Collapse
|
19
|
Song W, Lee LY, You H, Shi X, Ng HY. Microbial community succession and its correlation with reactor performance in a sponge membrane bioreactor coupled with fiber-bundle anoxic bio-filter for treating saline mariculture wastewater. BIORESOURCE TECHNOLOGY 2020; 295:122284. [PMID: 31669869 DOI: 10.1016/j.biortech.2019.122284] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/13/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
The application of MBR in high saline wastewater treatment is mainly constrained by poor nitrogen removal and severe membrane fouling caused by high salinity stress. A novel carriers-enhanced MBR system was successfully developed for treating saline mariculture wastewater, which showed efficient TN removal (93.2%) and fouling control. High-throughput sequencing revealed the enhancement mechanism of bio-carriers under high saline condition. Bio-carriers substantially improved the community structure, representatively, nitrifiers abundance (Nitrosomonas, Nitrospira) increased from 2.18% to 9.57%, abundance of denitrifiers (Sulfurimonas, Thermogutta, etc.) also rose from 3.81% to 14.82%. Thereby, the nitrogen removal process was enhanced. Noteworthy, ammonia oxidizer (Nitrosomonas, 8.26%) was the absolute dominant nitrifiers compared with nitrite oxidizer (Nitrospira, 1.13%). This supported the finding of shortcut nitrification-denitrification process in hybrid system. Moreover, a series of biomacromolecule degraders (Lutibacterium, Cycloclasticus, etc.) were detected in bio-carriers, which could account for the mitigation of membrane fouling as result of EPS and SMP degradation.
Collapse
Affiliation(s)
- Weilong Song
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore; State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, PR China
| | - Lai Yoke Lee
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore
| | - Hong You
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xueqing Shi
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore; School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao 266033, PR China
| | - How Yong Ng
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore; NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, 117411, Singapore.
| |
Collapse
|
20
|
Yang S, Zhang Q, Lei Z, Wen W, Huang X, Chen R. Comparing powdered and granular activated carbon addition on membrane fouling control through evaluating the impacts on mixed liquor and cake layer properties in anaerobic membrane bioreactors. BIORESOURCE TECHNOLOGY 2019; 294:122137. [PMID: 31536858 DOI: 10.1016/j.biortech.2019.122137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/05/2019] [Accepted: 09/08/2019] [Indexed: 06/10/2023]
Abstract
Concerning the lack of comprehensive study on the impact of powdered and granular activated carbon (PAC and GAC) on AnMBR, their impact on treatment performance, mixed liquor and cake layer properties and membrane fouling behaviors were further investigated. High COD removal efficiencies (>90%) and COD converting to CH4 rates (>70%) were achieved. GAC greatly increased extracellular polymeric substances (EPS) production in mixed liquor, but significantly reduced biosolids deposited on membrane surface; while PAC largely increased proteins and polysaccharides on membrane surface. In addition, PAC decreased, whereas GAC increased particle sizes. Fouling rates showed PAC and GAC addition effectively alleviated membrane fouling at HRT 8 h, and GAC remarkably postponed the occurrence of the transmembrane pressure jump and extended membrane service time. This study clarified the roles of GAC and PAC on membrane fouling control over long-term operation, which provides the basis for decision-making in practical application.
Collapse
Affiliation(s)
- Shuming Yang
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Qian Zhang
- Architecture Design and Research Institute, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Zhen Lei
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Wen Wen
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Xingyuan Huang
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Rong Chen
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China.
| |
Collapse
|
21
|
Seo H, Cho K, Shin J, Lee M, Park J, Lee BC, Song KG. Linking process performances and core microbial community structures in anaerobic membrane bioreactor with rotatory disk (ARMBR) system fed with high-strength food waste recycling wastewater. BIORESOURCE TECHNOLOGY 2019; 291:121918. [PMID: 31394487 DOI: 10.1016/j.biortech.2019.121918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 06/10/2023]
Abstract
This study first evaluated the process performances and microbial community structures of anaerobic rotary membrane bioreactor (ARMBR) fed with food waste recycling wastewater (FRW). Three identical ARMBRs were operated under different organic loading rate (OLR) conditions (1.5, 3.0, and 6.0 kg COD m-3 d-1) after the same start-up periods. The start-up performances and archaeal community structures differed among the ARMBRs, probably due to the sudden OLR shock. After the start-up, bio-methane was stably produced until the end of the operational period, with all of the ARMBRs showing >95% COD removal efficiency. Methanosaeta spp. was the predominant methanogen; diverse hydrogenotrophic methanogens co-existed. Bacteroidetes-like bacteria and Candidatus Cloacamonas acted as major fermentative bacteria producing acetate or hydrogen for the growth of methanogens. The results suggest that our ARMBR system can be a promising option to manage high-strength organic wastewater such as FRW.
Collapse
Affiliation(s)
- Hyunduk Seo
- Water Cycle Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Civil and Environmental Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-Gu, Seoul 03722, Republic of Korea
| | - Kyungjin Cho
- Water Cycle Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Jaewon Shin
- Water Cycle Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; School of Civil, Environmental & Architectural Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Minjoo Lee
- Department of Civil and Environmental Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-Gu, Seoul 03722, Republic of Korea
| | - Joonhong Park
- Department of Civil and Environmental Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-Gu, Seoul 03722, Republic of Korea
| | - Byung Chan Lee
- Department of Civil Engineering and Landscape Architecture, Suncheon Jeil College, 17 Jeildaehak-gil, Suncheon, Cheonnam 57997, Republic of Korea
| | - Kyung Guen Song
- Water Cycle Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.
| |
Collapse
|
22
|
Lee E, Rout PR, Shin C, Bae J. Effects of sodium hypochlorite concentration on the methanogenic activity in an anaerobic fluidized membrane bioreactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 678:85-93. [PMID: 31075606 DOI: 10.1016/j.scitotenv.2019.04.396] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/10/2019] [Accepted: 04/26/2019] [Indexed: 05/25/2023]
Abstract
The effect of membrane cleaning chemical, NaOCl on specific acetoclastic methanogenic activity (SAMA) of biomass in the anaerobic fluidized membrane bioreactors (AFMBRs) was assessed. Granular activated carbon (GAC) was used as a fluidizing media in the AFMBR to provide membrane scouring effect and surface for biofilm attachment. Effect of NaOCl on methane production was negligible for GAC with biofilm (bGAC) samples up to 150 mg NaOCl/g VSS, but was significant for the bulk liquid samples with noticeable lag period over 300 h even at the dosage of 50 mg NaOCl/g VSS. The toxicity of NaOCl on methane production was reduced in samples with virgin GAC (vGAC) by allowing 14 days of biomass buildup period prior to NaOCl addition, although the vGAC alone did not alleviate the toxicity. The results revealed that NaOCl concentrations beyond 100 mg/L within the reactor inhibited methanogenic activity and the effects were more pronounced on suspended biomass than the immobilized biomass on GAC.
Collapse
Affiliation(s)
- Eunseok Lee
- Department of Environmental Engineering, Inha University, Michuhol-gu, Inharo 100, Incheon, Republic of Korea
| | - Prangya Ranjan Rout
- Department of Environmental Engineering, Inha University, Michuhol-gu, Inharo 100, Incheon, Republic of Korea
| | - Chungheon Shin
- Department of Environmental Engineering, Inha University, Michuhol-gu, Inharo 100, Incheon, Republic of Korea
| | - Jaeho Bae
- Department of Environmental Engineering, Inha University, Michuhol-gu, Inharo 100, Incheon, Republic of Korea.
| |
Collapse
|
23
|
Yu Y, An Q, Zhou Y, Deng S, Miao Y, Zhao B, Yang L. Highly synergistic effects on ammonium removal by the co-system of Pseudomonas stutzeri XL-2 and modified walnut shell biochar. BIORESOURCE TECHNOLOGY 2019; 280:239-246. [PMID: 30772636 DOI: 10.1016/j.biortech.2019.02.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/05/2019] [Accepted: 02/06/2019] [Indexed: 06/09/2023]
Abstract
Pseudomonas stutzeri strain XL-2 presented efficient ammonium removal due to heterotrophic nitrification-aerobic denitrification. The modified walnut shell biochar also showed ammonium adsorption due to chemical interaction. The complex of modified biochar and strain XL-2 exhibited excellent synergistic effects on ammonium removal, especially in unfavorable environment. The maximum average ammonium removal rate of the complex was 4.40 mg·L-1·h-1, which was 3.01 times higher than that of pure bacteria and 5.57 times higher than that of biochar. A large number of irregular pores and hydrophilic functional groups promoted the immobilization of strain XL-2 on biochar. Adsorption of ammonium, high specific surface area and release of Mg2+ by biochar enhanced biodegradation of strain XL-2. Approximately 96.34%-98.73% of ammonium was removed in a sequencing batch reactor (SBR) inoculating with the complex of strain XL-2 and biochar, which was much higher than the treatment efficiency of free bacteria in SBR.
Collapse
Affiliation(s)
- Yang Yu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Qiang An
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400045, PR China.
| | - Ying Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Shuman Deng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Yue Miao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China.
| | - Bin Zhao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400045, PR China.
| | - Li Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| |
Collapse
|
24
|
Kong Z, Li L, Kurihara R, Zhang T, Li YY. Anaerobic treatment of N,N-dimethylformamide-containing high-strength wastewater by submerged anaerobic membrane bioreactor with a co-cultured inoculum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 663:696-708. [PMID: 30731415 DOI: 10.1016/j.scitotenv.2019.01.358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 01/27/2019] [Accepted: 01/27/2019] [Indexed: 06/09/2023]
Abstract
The anaerobic treatment of wastewater containing approximately 2000 mg L-1N,N-dimethylformamide (DMF) was conducted by a lab-scale submerged anaerobic membrane bioreactor (SAnMBR). The inoculum consisted of aerobic DMF-hydrolyzing activated sludge (DAS) and anaerobic digested sludge (ADS). A rapid start-up was achieved with thorough DMF methanogenic degradation on the first day. The results of a 250-day long-term experiment demonstrated that under a low organic loading rate (OLR) of 3.14-4.16 g COD L-1 d-1, SAnMBR maintained excellent DMF removal efficiency along with high methane conversion. However, the elevation of OLR significantly limited DMF hydrolysis. When OLR exceeded 6.54 g COD L-1 d-1, both removal efficiency and methane production dramatically dropped. The DMF-hydrolyzing bacteria originating from the DAS gradually decayed under the anaerobic condition, resulting in the weak hydrolysis of DMF. The shortening of hydraulic retention time (HRT) is not recommended for the SAnMBR because severe membrane fouling occurred when HRT was shortened to 8 h. To handle high OLRs, an appropriate solution is to maintain a low F/M ratio by increasing both the influent DMF concentration and sludge concentration. The high CH4 content in the biogas, exceeding 85%, was shown to be the reason for the suitability of anaerobic treatment to DMF. Some improvements which would help to maintain the effective hydrolysis are proposed: a side-stream system to replenish DAS to the SAnMBR is helpful; slight dosage of nitrate could also help to enrich the DMF-hydrolyzing bacteria; and the co-digestion of DMF and other organics might be convenient to establish a stable DMF-degrading consortium.
Collapse
Affiliation(s)
- Zhe Kong
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Lu Li
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Rei Kurihara
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Tao Zhang
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Yu-You Li
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
25
|
Performance Evaluation of a Thermophilic Anaerobic Membrane Bioreactor for Palm Oil Wastewater Treatment. MEMBRANES 2019; 9:membranes9040055. [PMID: 31003466 PMCID: PMC6523901 DOI: 10.3390/membranes9040055] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/05/2019] [Accepted: 04/12/2019] [Indexed: 11/17/2022]
Abstract
Anaerobic treatment processes have achieved popularity in treating palm oil mill effluent due to its high treatability and biogas generation. The use of externally submerged membranes with anaerobic reactors promotes the retention of the biomass in the reactor. This study was conducted in thermophilic conditions with the Polytetrafluoroethylene hollow fiber (PTFE-HF) membrane which was operated at 55 °C. The reactor was operated at Organic Loading Rates (OLR) of 2, 3, 4, 6, 8, and 10 kg Chemical Oxygen Demand (COD)/m3·d to investigate the treatment performance and the membrane operation. The efficiency of the COD removal achieved by the system was between 93-98%. The highest methane yield achieved was 0.56 m3 CH4/kg CODr. The reactor mixed liquor volatile suspended solids (MLVSS) was maintained between 11.1 g/L to 20.9 g/L. A dead-end mode PTFE hollow fiber microfiltration was operated with the constant flux of 3 LMH (L/m2·h) in permeate recirculation mode to separate the clear final effluent and retain the biomass in the reactor. Membrane fouling was one of the limiting factors in the membrane bioreactor application. In this study, organic fouling was observed to be 93% of the total membrane fouling.
Collapse
|
26
|
Nayak A, Bhushan B. An overview of the recent trends on the waste valorization techniques for food wastes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 233:352-370. [PMID: 30590265 DOI: 10.1016/j.jenvman.2018.12.041] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 12/09/2018] [Accepted: 12/14/2018] [Indexed: 05/05/2023]
Abstract
A critical and up-to-date review has been conducted on the latest individual valorization technologies aimed at the generation of value-added by-products from food wastes in the form of bio-fuels, bio-materials, value added components and bio-based adsorbents. The aim is to examine the associated advantages and drawbacks of each technique separately along with the assessment of process parameters affecting the efficiency of the generation of the bio-based products. Challenges faced during the processing of the wastes to each of the bio-products have been explained and future scopes stated. Among the many hurdles encountered in the successful and high yield generation of the bio-products is the complexity and variability in the composition of the food wastes along with the high inherent moisture content. Also, individual technologies have their own process configurations and operating parameters which may affect the yield and composition of the desired end product. All these require extensive study of the composition of the food wastes followed by their effective pre-treatments, judicial selection of the technological parameters and finally optimization of not only the process configurations but also in relation to the input food waste material. Attempt has also been made to address the hurdles faced during the implementation of such technologies on an industrial scale.
Collapse
Affiliation(s)
- A Nayak
- Innovació i Recerca Industrial I Sostenible, S.L., 08860, Spain; Graphic Era University, Dehradun, 248002, India.
| | - Brij Bhushan
- Graphic Era University, Dehradun, 248002, India; Chemical Engineering Department, Universitat Politechnica Catalunya, UPC-BarcelonaTECH, Barcelona, 08860, Spain
| |
Collapse
|
27
|
Performance and dynamic characteristics of microbial communities in multi-stage anaerobic reactors treating gibberellin wastewater. J Biosci Bioeng 2019; 127:318-325. [DOI: 10.1016/j.jbiosc.2018.05.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 11/28/2017] [Accepted: 05/24/2018] [Indexed: 01/19/2023]
|
28
|
Yao M, Woo YC, Ren J, Tijing LD, Choi JS, Kim SH, Shon HK. Volatile fatty acids and biogas recovery using thermophilic anaerobic membrane distillation bioreactor for wastewater reclamation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 231:833-842. [PMID: 30419439 DOI: 10.1016/j.jenvman.2018.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/16/2018] [Accepted: 11/01/2018] [Indexed: 06/09/2023]
Abstract
The effects of bioreactor temperatures and salinities of an anaerobic membrane distillation bioreactor (anMDBR) on the permeation performance and their potential recovery of bioresources were fully examined in this study. To the best of our knowledge, this is the first study of a lab-scale anMDBR process utilizing sub-merged hollow fiber membranes. The hybrid system utilizing both membrane distillation (MD) and anaerobic bioreactors achieved 99.99% inorganic salt rejection regardless the operation temperatures and high initial flux from (2-4 L m-2 h-1) at 45-65 °C. However, after 7-day operation, the flux dropped by 16-50% proportional to the bioreactor temperatures. It was found that the effects of bioreactor temperatures had strong impacts on both the permeation performance and fouling behavior while salinity had insignificant effect. A compact non-porous fouling layer was observed on the membrane surface from the bioreactor operated at 65 °C while only a few depositions was found on the membrane from 45 °C bioreactor. In the present study, the optimal anMDBR temperature was found to be 45 °C, showing a balanced biogas production and membrane permeation performance including less fouling formation. At this bioreactor temperature (45 °C), the biogas yield was 0.14 L/g CODremoval, while maintaining a methane recovery of 42% in the biogas, similar recovery to those at bioreactor temperatures of 55 and 65 °C. The potential recovery of volatile fatty acids made anMDBR a more economically efficient system, in addition to its lower operation cost and smaller footprint compared with most other technologies for on-site wastewater treatment.
Collapse
Affiliation(s)
- Minwei Yao
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney (UTS), P. O. Box 123, 15, Broadway, NSW, 2007, Australia
| | - Yun Chul Woo
- Department of Land, Water and Environment Research, Korea Institute of Civil Engineering and Building Technology, 283 Goyang-Daero, Ilsanseo-Gu, Goyang-Si, Gyeonggi-Do, 10223, Republic of Korea
| | - Jiawei Ren
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney (UTS), P. O. Box 123, 15, Broadway, NSW, 2007, Australia
| | - Leonard D Tijing
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney (UTS), P. O. Box 123, 15, Broadway, NSW, 2007, Australia
| | - June-Seok Choi
- Department of Land, Water and Environment Research, Korea Institute of Civil Engineering and Building Technology, 283 Goyang-Daero, Ilsanseo-Gu, Goyang-Si, Gyeonggi-Do, 10223, Republic of Korea
| | - Seung-Hyun Kim
- Civil Engineering Department, Kyungnam University, Wolyoung-dong, Changwon, 631-701, Republic of Korea
| | - Ho Kyong Shon
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney (UTS), P. O. Box 123, 15, Broadway, NSW, 2007, Australia.
| |
Collapse
|
29
|
Li J, Jiang C, Shi W, Song F, He D, Miao H, Wang T, Deng J, Ruan W. Polytetrafluoroethylene (PTFE) hollow fiber AnMBR performance in the treatment of organic wastewater with varying salinity and membrane cleaning behavior. BIORESOURCE TECHNOLOGY 2018; 267:363-370. [PMID: 30031274 DOI: 10.1016/j.biortech.2018.07.063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/11/2018] [Accepted: 07/12/2018] [Indexed: 06/08/2023]
Abstract
PTFE hollow fiber anaerobic membrane bio-reactor (AnMBR) performance was investigated in the treatment of organic wastewater, with varying salinity and PTFE membrane cleaning behavior. The AnMBR was operated for 226 days, with a total and biological COD removal efficiency of 97.2% and 89.9% respectively, at a NaCl concentration of 35 g L-1. A high number of Proteobacteria (38.2%) and Bacteroidetes (25.9%) were present in the system, with an increase in membrane fouling rate from 1.88 × 1011 to 2.63 × 1011 m-1 d-1 with higher salinity. The effects of soluble microbial products (SMP), extracellular polymeric substances (EPS), low molecular-weight (LMW) carbohydrates, sludge particle size and inorganic element accumulation, were evaluated on membrane fouling. Flux recovery of fouled PTFE membranes reached 91.6% with offline cleaning. Overall, results indicate that PTFE hollow fiber AnMBR provides a promising method for the treatment of saline organic wastewater.
Collapse
Affiliation(s)
- Jing Li
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Changwang Jiang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Wansheng Shi
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Feiyue Song
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Di He
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Hengfeng Miao
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Tao Wang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jingxuan Deng
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Wenquan Ruan
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, China.
| |
Collapse
|
30
|
Wastewater Treatment and Biogas Recovery Using Anaerobic Membrane Bioreactors (AnMBRs): Strategies and Achievements. ENERGIES 2018. [DOI: 10.3390/en11071675] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
31
|
Liu Y, Liu Q, Li J, Ngo HH, Guo W, Hu J, Gao MT, Wang Q, Hou Y. Effect of magnetic powder on membrane fouling mitigation and microbial community/composition in membrane bioreactors (MBRs) for municipal wastewater treatment. BIORESOURCE TECHNOLOGY 2018; 249:377-385. [PMID: 29055214 DOI: 10.1016/j.biortech.2017.10.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/05/2017] [Accepted: 10/06/2017] [Indexed: 06/07/2023]
Abstract
This study aims to investigate the usefulness of magnetic powder addition in membrane bioreactors (MBRs) for membrane fouling mitigation and its effect on microbial community and composition. The comparison between the two MBRs (one with magnetic powder (MAS-MBR) and one without magnetic powder (C-MBR)) was carried out to treat synthetic municipal wastewater. Results showed that bioflocculation and adsorption of magnetic powder contributed only minimally to membrane fouling mitigation while the slower fouling rate might be ascribed to magnetic bio-effect. The macromolecules (larger than 500 kDa and 300-500 kDa) of soluble microbial product from the MAS-MBR were reduced by 24.06% and 11.11%, respectively. High-throughput sequencing demonstrated the most abundant genera of biofilm sludge indicated lower abundance in bulk sludge from the MAS-MBR compared to the C-MBR. It is possible that less membrane fouling is connected to reductions in large molecules and pioneer bacteria from bulk sludge.
Collapse
Affiliation(s)
- Yi Liu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; Shanghai University, Shanghai 200444, China
| | - Qiang Liu
- Shanghai University, Shanghai 200444, China
| | - Jixiang Li
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Jiajun Hu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Min-Tian Gao
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Qiyuan Wang
- FuXing Senior High School, Shanghai 200434, China
| | - Yuansheng Hou
- QingHai Salt Lake Industry Company Limited, Geermu 816000, China
| |
Collapse
|
32
|
Charfi A, Thongmak N, Benyahia B, Aslam M, Harmand J, Amar NB, Lesage G, Sridang P, Kim J, Heran M. A modelling approach to study the fouling of an anaerobic membrane bioreactor for industrial wastewater treatment. BIORESOURCE TECHNOLOGY 2017; 245:207-215. [PMID: 28892693 DOI: 10.1016/j.biortech.2017.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/31/2017] [Accepted: 08/02/2017] [Indexed: 06/07/2023]
Abstract
An Anaerobic Membrane BioReactors (AnMBR) model is presented in this paper based on the combination of a simple fouling model and the Anaerobic Model 2b (AM2b) to describe biological and membrane dynamic responses in an AnMBR. In order to enhance the model calibration and validation, Trans-Membrane Pressure (TMP), Total Suspended Solid (TSS), COD, Volatile Fatty Acid (VFA) and methane production were measured. The model shows a satisfactory description of the experimental data with R2≈0.9 for TMP data and R2≈0.99 for biological parameters. This new model is also proposed as a numerical tool to predict the deposit mass composition of suspended solid and Soluble Microbial Products (SMP) on the membrane surface. The effect of SMP deposit on the TMP jump phenomenon is highlighted. This new approach offers interesting perspectives for fouling prediction and the on-line control of an AnMBR process.
Collapse
Affiliation(s)
- Amine Charfi
- Department of Environmental Engineering, Inha University, Namgu Yonghyun dong 253, Incheon, Republic of Korea.
| | - Narumol Thongmak
- Environmental Science Program, Faculty of Science Technology and Agriculture, Yala Rajabhat University, Yala 95000, Thailand; Center of Excellence on Hazardous Substance Management (HSM), Bangkok 10330, Thailand
| | - Boumediene Benyahia
- Control Laboratory of Tlemcen, University of Tlemcen, B.P. 230, Tlemcen 13000, Algeria
| | - Muhammad Aslam
- Department of Environmental Engineering, Inha University, Namgu Yonghyun dong 253, Incheon, Republic of Korea
| | | | - Nihel Ben Amar
- Université de Tunis El Manar, Ecole Nationale des Ingénieurs de Tunis, ENIT Laboratoire de Modélisation Mathématique et Numérique dans les Sciences de L'Ingénieur, LAMSIN, Tunisia
| | - Geoffroy Lesage
- Institut Européen des Membranes, IEM, UMR-5635, Université de Montpellier, ENSCM, CNRS, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Porntip Sridang
- Department of Environmental Science, Faculty of Science, Silpakorn University, Muang, Nakhonpathom 73000, Thailand; Center of Excellence on Hazardous Substance Management (HSM), Bangkok 10330, Thailand
| | - Jeonghwan Kim
- Department of Environmental Engineering, Inha University, Namgu Yonghyun dong 253, Incheon, Republic of Korea
| | - Marc Heran
- Institut Européen des Membranes, IEM, UMR-5635, Université de Montpellier, ENSCM, CNRS, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| |
Collapse
|
33
|
Zhang W, Liu X, Wang D, Jin Y. Effects of bamboo charcoal on fouling and microbial diversity in a flat-sheet ceramic membrane bioreactor. BIORESOURCE TECHNOLOGY 2017; 243:1020-1026. [PMID: 28764112 DOI: 10.1016/j.biortech.2017.07.084] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/14/2017] [Accepted: 07/17/2017] [Indexed: 06/07/2023]
Abstract
Membrane fouling is a problem in full-scale membrane bioreactors. In this study, bamboo charcoal (BC) was evaluated for its efficacy in alleviating membrane fouling in flat-sheet membrane bioreactors treating municipal wastewater. The results showed that BC addition markedly improved treatment performance based on COD, NH4+-N, total nitrogen, and total phosphorus levels. Adding BC slowed the increase in the trans-membrane pressure rate and resulted in lower levels of soluble microbial products and extracellular polymeric substances detected in the flat-sheet membrane bioreactor. BC has a porous structure, and a large quantity of biomass was detected using scanning electron microscopy. The microbial community analysis results indicated that BC increased the microbial diversity and Aminomonas, Anaerofustis, uncultured Anaerolineaceae, Anaerolinea, and Anaerotruncus were found in higher abundances in the reactor with BC. BC addition is an effective method for reducing membrane fouling, and can be applied to full-scale flat-sheet membrane bioreactors to improve their function.
Collapse
Affiliation(s)
- Wenjie Zhang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, PR China.
| | - Xiaoning Liu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, PR China
| | - Dunqiu Wang
- Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, PR China
| | - Yue Jin
- Guangxi Key Laboratory of New Energy and Building Energy Saving, College of Civil Engineering and Architecture, Guilin University of Technology, Guilin 541004, PR China
| |
Collapse
|
34
|
Lv L, Li W, Wu C, Meng L, Qin W. Microbial community composition and function in a pilot-scale anaerobic-anoxic-aerobic combined process for the treatment of traditional Chinese medicine wastewater. BIORESOURCE TECHNOLOGY 2017; 240:84-93. [PMID: 28188105 DOI: 10.1016/j.biortech.2017.01.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/25/2017] [Accepted: 01/27/2017] [Indexed: 06/06/2023]
Abstract
Biodegradation of traditional Chinese medicine (TCM) wastewater was investigated in a pilot-scale anaerobic-anoxic-aerobic combined process, which was composed of an expanded granular sludge blanket (EGSB) reactor, a hydrolysis acidification (HA) reactor and a biological contact oxidation (BCO) reactor. In stable stage, the average values of COD and color in the combined process effluent were 45.7mgL-1 and 13 times, respectively. Excellent linear relations (R2>0.915) were achieved between color and UV254 at three color levels. Comprehensive community structures of the combined process were analysed by Illumina MiSeq Sequencing, which revealed that microbial community in the aerobic reactor had the greatest diversity and richness. Bacteroidetes, Firmicutes and Proteobacteria were dominant phyla in the three reactors, and Bacteroidales, Geobacter, ZB2 were the predominant functional microorganisms in the anaerobic, anoxic and aerobic reactors, respectively. Good removal efficiencies and presence of core microorganisms confirmed that the combined process was feasible for treating TCM wastewater.
Collapse
Affiliation(s)
- Longyi Lv
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, PR China
| | - Weiguang Li
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin 150090, PR China.
| | - Chuandong Wu
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, PR China
| | - Liqiang Meng
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, PR China
| | - Wen Qin
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
35
|
Tan S, Cui C, Chen X, Li W. Effect of bioflocculation on fouling-related biofoulants in a membrane bioreactor during saline wastewater treatments. BIORESOURCE TECHNOLOGY 2017; 224:285-291. [PMID: 27839681 DOI: 10.1016/j.biortech.2016.10.066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 10/20/2016] [Accepted: 10/23/2016] [Indexed: 06/06/2023]
Abstract
A membrane bioreactor (MBR) was operated in two modes; with and without the inoculation of marine Arthrobacter cells, to investigate the effect of bioflocculation on membrane biofouling during saline wastewater treatments. The MBR-Arthrobacter system showed a higher resistance to membrane fouling than the normal MBR system. Lower concentrations of the fouling-related components and higher removal efficiencies of COD and NH3-N were observed in the MBR-Arthrobacter system. The bioflocculation of Arthrobacter preferred to settle down the humic acid-like, fulvic acid-like and aromatic proteins components (larger biomolecules) rather than the soluble microbial by-product-like components (smaller biomolecules).
Collapse
Affiliation(s)
- Songwen Tan
- Department of Environmental Engineering, Harbin Institute of Technology (Weihai), Weihai 264209, China
| | - Chunzhi Cui
- Department of Chemistry, Yanbian University, Yanji 133002, China
| | - Xuncai Chen
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney 2006, Australia
| | - Weiguo Li
- Department of Environmental Engineering, Harbin Institute of Technology (Weihai), Weihai 264209, China.
| |
Collapse
|