1
|
Li H, Wei Z, Wan J, Wei G, Zhang B, Guan X, Wei C, Zhu S, Wu H. A novel fluidized-bed reactor with multi-stage oxygen distribution: Application to toxic and recalcitrant wastewater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 369:125869. [PMID: 39956509 DOI: 10.1016/j.envpol.2025.125869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/19/2024] [Accepted: 02/14/2025] [Indexed: 02/18/2025]
Abstract
The development of efficient and low-energy consumption processes and reactors for the treatment of highly concentrated, recalcitrant, and toxic organic wastewater has been a significant challenge. This study presents a novel fluidized-bed reactor, equipped with multi-stage oxygen distribution zones, designed to enhance detoxification, carbon removal, and nitrogen removal. Experimental investigations using coking wastewater demonstrated that the multi-stage oxygen fluidized-bed reactor achieved COD and TN removal rates of 86.9 ± 1.2% and 93.1 ± 2.7% at a hydraulic retention time (HRT) of 70 h, significantly outperforming the traditional aerobic fluidized-bed reactor (84.4 ± 1.6% and 41.8 ± 2.2%). The multi-stage oxygen distribution in the reactor facilitated the enrichment of various functional microorganisms in activated sludge, leading to the formation of a highly diverse microbial community. This community simultaneously performed organic degradation, nitrification, and denitrification, enhancing the COD degradation and TN removal efficiency in coking wastewater. The fluidized-bed reactor with multi-stage oxygen distribution exhibited performance in treating coking wastewater, offering valuable insights for the design of reactors intended for bio-processing toxic, recalcitrant, and high-concentration industrial wastewater.
Collapse
Affiliation(s)
- Haoling Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, 510006, PR China
| | - Zhuocheng Wei
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, 510006, PR China
| | - Jia Wan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, 510006, PR China
| | - Gengrui Wei
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong, 510006, PR China
| | - Bin Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, 510006, PR China
| | - Xianghong Guan
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong, 510006, PR China
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong, 510006, PR China
| | - Shuang Zhu
- School of Biomedical and Pharmaceutical Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Haizhen Wu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, 510006, PR China.
| |
Collapse
|
2
|
Kedves A, Yavuz Ç, Kedves O, Haspel H, Kónya Z. The response to shock loads of Ni-MOF and NiO NPs on aerobic granular sludge and algal-bacterial aerobic granular sludge. Heliyon 2024; 10:e40796. [PMID: 39720072 PMCID: PMC11667604 DOI: 10.1016/j.heliyon.2024.e40796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/26/2024] Open
Abstract
Currently, the increasing use of nickel metal-organic frameworks (Ni-MOF) and nickel oxide nanoparticles (NiO NPs) has raised concerns regarding their potential environmental impact on wastewater treatment systems. Herein, the responses of aerobic granular sludge (AGS) and algal-bacterial aerobic granular sludge (AB-AGS) to Ni-MOF and NiO NPs were investigated. The results showed that Ni-MOF concentrations of 50, 100, and 200 mg/L significantly reduced nutrient removal in both systems, particularly affecting ammonia, nitrite, and phosphorus removal, while denitrification processes remained stable. AB-AGS exhibited greater tolerance to nickel than AGS, likely due to its higher content of extracellular polymeric substances (EPSs), in which the algae were embedded, indicating a robust bacterial-algal symbiotic system. Conversely, NiO NPs had no adverse effects on bioreactor performance, likely due to their insolubility and integration into the sludge matrix. This research provides valuable insights into the potential future applications of AGS and AB-AGS technologies for treating wastewater contaminated with nickel and other heavy metals, highlighting the superior resilience of AB-AGS to nickel exposure.
Collapse
Affiliation(s)
- Alfonz Kedves
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
| | - Çağdaş Yavuz
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
| | - Orsolya Kedves
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Henrik Haspel
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
- HUN-REN Reaction Kinetics and Surface Chemistry Research Group, Szeged, Hungary
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
- HUN-REN Reaction Kinetics and Surface Chemistry Research Group, Szeged, Hungary
| |
Collapse
|
3
|
Kedves A, Haspel H, Yavuz Ç, Kutus B, Kónya Z. A comparative study on the chronic responses of titanium dioxide nanoparticles on aerobic granular sludge and algal-bacterial granular sludge processes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-35581-z. [PMID: 39562434 DOI: 10.1007/s11356-024-35581-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 11/14/2024] [Indexed: 11/21/2024]
Abstract
The chronic effects of titanium dioxide nanoparticles (TiO2 NPs) on aerobic granular sludge (AGS) and algal-bacterial granular sludge (ABGS) was examined in this study. Sequencing batch bioreactors (SBRs) and photo sequencing batch bioreactors (PSBRs) were operated with synthetic wastewater containing 0, 1, 5, 10, 20, 30, and 50 mg L-1 TiO2 NPs for 10 days. Nanoparticles at concentrations of 1 and 5 mg L-1 did not impact nutrient removal but led to an increase in extracellular polymeric substances (EPSs), primarily in protein (PN). With increasing nanoparticle concentration, the negative effect became more pronounced, mainly in the AGS SBRs. At 50 mg L-1 TiO2, chemical oxygen demand (COD), ammonia-nitrogen (NH3-N), and phosphorus (PO43-) removal decreased by 20.9%, 12.2%, and 35.1% in AGS, respectively, while in ABGS, they reached only 13.4%, 5.7%, and 14.2%. ABGS exhibited steady-state nutrient removal at 30 and 50 mg L-1 TiO2 NPs after around 5 days. The higher microbial activity and EPS content in the sludge, coupled with the symbiotic relationship between algae and bacteria, contributed to the higher tolerance of ABGS to nanoparticles. Finally, although nanoparticles reduced biomass in both types of bioreactors, the accumulation of TiO2 NPs in the sludge, confirmed by Energy-dispersive X-ray spectroscopy analysis, and the absence of detectable titanium concentrations in the effluent wastewater, measured by Inductively-coupled plasma mass spectrometry, may be attributed to the specific operational conditions of this study, including the relatively short operation period (10 days) and high initial MLSS concentration (6 g L-1).
Collapse
Affiliation(s)
- Alfonz Kedves
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary.
| | - Henrik Haspel
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
- HUN-REN Reaction Kinetics and Surface Chemistry Research Group, Szeged, Hungary
| | - Çağdaş Yavuz
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
| | - Bence Kutus
- Department of Molecular and Analytical Chemistry, University of Szeged, Szeged, Hungary
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
- HUN-REN Reaction Kinetics and Surface Chemistry Research Group, Szeged, Hungary
| |
Collapse
|
4
|
Chu G, Qi W, Chen W, Zhang Y, Gao S, Wang Q, Gao C, Gao M. Metagenomic insights into the nitrogen metabolism, antioxidant pathway, and antibiotic resistance genes of activated sludge from a sequencing batch reactor under tetracycline stress. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132788. [PMID: 37856954 DOI: 10.1016/j.jhazmat.2023.132788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/21/2023]
Abstract
Tetracycline is prevalent in wastewater treatment plants and poses a potential threat to biological nitrogen removal under long-term exposure. In the present study, the influence of different tetracycline concentrations on the nitrogen removal, bioactivity response, and the spread of antibiotic resistance genes (ARGs) was assessed in sequencing batch reactor (SBR). The nitrogen removal efficiency, nitrification rate, and denitrification rate and their corresponding enzymatic activities gradually decreased with an increase in tetracycline concentration from 0.5 to 15 mg/L. The remarkable toxicity induced by tetracycline led to a significant increase in the peroxidation and the response of antioxidant system, as evidenced by strengthened antioxidant enzymatic activity and abundant genes (SOD12, katG, PXDN, gpx, and apx). Tetracycline addition significantly inhibited the ammonia-oxidizing bacterium Nitrosomonas and functional genes (amoA, amoB, and amoC). The presence of tetracycline decreased the abundance of citrate synthase and genes (CS, IDH3, and acnA) and interfered with carbon source metabolism, leading to impaired bioactivity and treatment performance. In addition, the presence of tetracycline induces diversity and differences in ARGs. The results provide reliable basic data for a deeper understanding of the effects of tetracycline on the nitrogen removal performance of bioreactors and provide a theoretical basis to build a promising strategy for relieving antibiotic-caused process fluctuations.
Collapse
Affiliation(s)
- Guangyu Chu
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao 266100, China
| | - Weiyi Qi
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Wenzheng Chen
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Yuqiao Zhang
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Shijiang Gao
- Logistics Support Division, Ocean University of China, Qingdao 266100, China.
| | - Qianzhi Wang
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Chang Gao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Mengchun Gao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
5
|
Ji J, Peng L, Gao T, Salama ES, Khan A, Liu P, Yun H, Li X. Microplastics enhanced the toxic effects of sulfamethoxazole on aerobic granular sludge and enriched antibiotic resistance genes. CHEMICAL ENGINEERING JOURNAL 2023; 464:142783. [DOI: 10.1016/j.cej.2023.142783] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
|
6
|
Wang Q, Zhang Y, Chen H, Chen S, Wang Y. Effects of humic acids on the adsorption of Pb(II) ions onto biofilm-developed microplastics in aqueous ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163466. [PMID: 37088385 DOI: 10.1016/j.scitotenv.2023.163466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/08/2023] [Accepted: 04/08/2023] [Indexed: 05/03/2023]
Abstract
Microplastics (MPs), as emerging contaminants can behave as carriers for heavy metals in the water environments. Although the adsorption performance of heavy metals on MPs has been widely investigated, the effects of humic acids (HA) on the adsorption have seldom been explored. The authors were compared the Pb(II) adsorption onto biofilm-developed polyvinyl chloride (Bio-PVC) MPs with Pb(II) adsorption onto virgin PVC MPs (V-PVC), and explored the relationship between surface characteristics and the adsorption properties in the coexistence of HA. Our results showed that due to a larger specific surface area and more oxygen containing groups, Bio-PVC had a larger adsorption capability with a value of 3.57 mg/g than original ones (1.85 mg/g) due to its huge specific surface area and more oxygen containing groups. Microbial community analysis showed that the predominate bacteria in biofilms as Proteobacteria, Acidobacteria, Cyanobacteria, Firmicutes, and Bacteroidetes. Notably, the Pb(II) adsorption onto the V-PVC surfaces was increased, but the adsorption capacities of Pb(II) on Bio-PVC were suppressed with increasing HA. With the co-existence of HA, the increasing complexation and electrostatic attraction had attributed to the increased Pb(II) adsorption ability on V-PVC. Except for its competitive ability, HA has a shield effect which decreases the sorption sites on Bio-PVC. Overall, our findings provide a better understanding of the HA effect on the adsorption mechanism of heavy metals onto MPs in aquatic ecosystems.
Collapse
Affiliation(s)
- Qiongjie Wang
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, China
| | - Yangyang Zhang
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, China
| | - Huijuan Chen
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, China
| | - Sulin Chen
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, China
| | - Yulai Wang
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, China.
| |
Collapse
|
7
|
Ye J, Gao H, Wu J, Zhan M, Yang G, Yu R. Transient disturbance of CeO2 nanoparticles enhances N2O emissions during biological wastewater treatment. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Sun C, Hu K, Mu D, Wang Z, Yu X. The Widespread Use of Nanomaterials: The Effects on the Function and Diversity of Environmental Microbial Communities. Microorganisms 2022; 10:microorganisms10102080. [PMID: 36296356 PMCID: PMC9609405 DOI: 10.3390/microorganisms10102080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/07/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022] Open
Abstract
In recent years, as an emerging material, nanomaterials have rapidly expanded from laboratories to large-scale industrial productions. Along with people's productive activities, these nanomaterials can enter the natural environment of soil, water and atmosphere through various ways. At present, a large number of reports have proved that nanomaterials have certain toxic effects on bacteria, algae, plants, invertebrates, mammalian cell lines and mammals in these environments, but people still know little about the ecotoxicology of nanomaterials. Most relevant studies focus on the responses of model strains to nanomaterials in pure culture conditions, but these results do not fully represent the response of microbial communities to nanomaterials in natural environments. Over the years, the effect of nanomaterials infiltrated into the natural environment on the microbial communities has become a popular topic in the field of nano-ecological environment research. It was found that under different environmental conditions, nanomaterials have various effects on the microbial communities. The medium; the coexisting pollutants in the environment and the structure, particle size and surface modification of nanomaterials may cause changes in the structure and function of microbial communities. This paper systematically summarizes the impacts of different nanomaterials on microbial communities in various environments, which can provide a reference for us to evaluate the impacts of nanomaterials released into the environment on the microecology and has certain guiding significance for strengthening the emission control of nanomaterials pollutants.
Collapse
Affiliation(s)
- Chunshui Sun
- College of Marine Science, Shandong University, Weihai 264209, China
| | - Ke Hu
- College of Marine Science, Shandong University, Weihai 264209, China
| | - Dashuai Mu
- College of Marine Science, Shandong University, Weihai 264209, China
| | - Zhijun Wang
- Institute for Advanced Study, Chengdu University, 2025 Chengluo Avenue, Chengdu 610106, China
| | - Xiuxia Yu
- College of Marine Science, Shandong University, Weihai 264209, China
- Correspondence:
| |
Collapse
|
9
|
Zhang J, Meng HS, Shang YM, Lead JR, Guo ZZ, Hong JP. Response of Soil Bacterial Diversity, Predicted Functions and Co-Occurrence Patterns to Nanoceria and Ionic Cerium Exposure. Microorganisms 2022; 10:1982. [PMID: 36296258 PMCID: PMC9607988 DOI: 10.3390/microorganisms10101982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/25/2022] [Accepted: 10/04/2022] [Indexed: 11/27/2022] Open
Abstract
Release of nanoceria (nCeO2) into the environment has caused much concern about its potential toxicity, which still remains poorly understood for soil microorganisms. In this study, nanoceria and cerium (III) nitrate at different doses (10, 100 and 500 mg/kg) were applied to bok choy (Brassica rapa subsp. chinensis), grown in potting soil, to investigate the responses of soil bacterial communities to nanoceria (NC) and ionic cerium (IC) applications. The results showed that bacterial richness was slightly increased in all cerium treatments relative to the negative control without cerium amendment (CK), but a significant increase was only found in IC500. The patterns of bacterial community composition, predicted functions and phenotypes of all NC treatments were significantly differentiated from IC and CK treatments, which was correlated with the contents of cerium, available potassium and phosphorus in soil. The co-occurrence network of bacterial taxa was more complex after exposure to ionic cerium than to nanoceria. The keystone taxa of the two networks were entirely different. Predicted functions analysis found that anaerobic and Gram-negative bacteria were enriched under nanoceria exposure. Our study implies that Proteobacteria and nitrifying bacteria were significantly enriched after exposure to nanoceria and could be potential biomarkers of soil environmental perturbation from nanoceria exposure.
Collapse
Affiliation(s)
- Jie Zhang
- College of Resources and Environment, Shanxi Agricultural University, Jinzhong 030801, China
| | - Hui-Sheng Meng
- College of Resources and Environment, Shanxi Agricultural University, Jinzhong 030801, China
| | - Yan-Meng Shang
- College of Resources and Environment, Shanxi Agricultural University, Jinzhong 030801, China
| | - Jamie R. Lead
- Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Zhang-Zhen Guo
- College of Resources and Environment, Shanxi Agricultural University, Jinzhong 030801, China
| | - Jian-Ping Hong
- College of Resources and Environment, Shanxi Agricultural University, Jinzhong 030801, China
| |
Collapse
|
10
|
Chen Y, Geng N, Hu T, Baeyens J, Wang S, Su H. Adaptive regulation of activated sludge's core functional flora based on granular internal spatial microenvironment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 319:115714. [PMID: 35839647 DOI: 10.1016/j.jenvman.2022.115714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
A great deal of efforts has been put into studying the influence of the external macroenvironment for activated sludge to survive on microbial community succession, while granular internal spatial microenvironment should be given equal attention, because it is more directly involved in the information exchange and material transfer among microorganisms. This study systematically investigated the effects of granular microenvironment on spatial colonization and composition of sludge's core functional flora, and the corresponding difference of biological treatment performance. High content of extracellular-proteins (67.53 mg/gVSS) or extracellular-polysaccharide (65.02 mg/gVSS) stimulated the microbial flocculation and aggregation of 0.5-1.5 mm granules (GS) or 1.5-3.0 mm granules (GM), respectively, which was resulted from excellent cell hydrophobicity (59.26%) or viscosity (3.47 mPa s), therefore, constituted relatively dense porous frame. More hollow space existed in 3.0-5.0 mm granules (GL), which formed loose skeleton with 0.213 mL/g of total pore volume and 17.21 nm of average pore size. Combining scanning electron microscope images and fluorescent in-situ hybridization based microbiological analysis, aerobic nitrifiers were observed to wrap or surround anaerobic bacteria, or facultative/anaerobic bacteria were self-encapsulated, which created granule's unique microenvironment with alternating aerobic and anaerobic zones. GS has the most rich organic matter degrading bacteria and anaerobic heterotrophic denitrifiers, while GM and GL presented the greatest relative abundance of facultative and aerobic denitrifiers, respectively. The activity of dehydrogenase and nitrogen invertase of GM showed be 1.32-3.09 times higher than those of GS and GL, contributing to its higher carbon and nitrogen removal. These findings highlight the importance of granular microenvironment to adaptive regulation of activated sludge's core functional flora and corresponding pollutant removal performance.
Collapse
Affiliation(s)
- Yingyun Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Nanfei Geng
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Tenghui Hu
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Jan Baeyens
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Shaojie Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| | - Haijia Su
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| |
Collapse
|
11
|
Jagaba AH, Kutty SRM, Isa MH, Ghaleb AAS, Lawal IM, Usman AK, Birniwa AH, Noor A, Abubakar S, Umaru I, Saeed AAH, Afolabi HK, Soja UB. Toxic Effects of Xenobiotic Compounds on the Microbial Community of Activated Sludge. CHEMBIOENG REVIEWS 2022. [DOI: 10.1002/cben.202100055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Ahmad Hussaini Jagaba
- Universiti Teknologi PETRONAS Department of Civil and Environmental Engineering 32610 Bandar Seri Iskandar Perak Darul Ridzuan Malaysia
- Abubakar Tafawa Balewa University Department of Civil Engineering Bauchi Nigeria
| | - Shamsul Rahman Mohamed Kutty
- Universiti Teknologi PETRONAS Department of Civil and Environmental Engineering 32610 Bandar Seri Iskandar Perak Darul Ridzuan Malaysia
- Universiti Teknologi PETRONAS Centre of Urban Resource Sustainability Institute of Self-Sustainable Building 32610 Bandar Seri Iskandar Perak Darul Ridzuan Malaysia
| | - Mohamed Hasnain Isa
- Universiti Teknologi Brunei Civil Engineering Programme Faculty of Engineering Tungku Highway BE1410 Gadong Brunei Darussalam
| | - Aiban Abdulhakim Saeed Ghaleb
- Universiti Teknologi PETRONAS Department of Civil and Environmental Engineering 32610 Bandar Seri Iskandar Perak Darul Ridzuan Malaysia
| | - Ibrahim Mohammed Lawal
- Abubakar Tafawa Balewa University Department of Civil Engineering Bauchi Nigeria
- University of Strathclyde Department of Civil and Environmental Engineering Glasgow United Kingdom
| | | | | | - Azmatullah Noor
- Universiti Teknologi PETRONAS Department of Civil and Environmental Engineering 32610 Bandar Seri Iskandar Perak Darul Ridzuan Malaysia
| | - Sule Abubakar
- Abubakar Tafawa Balewa University Department of Civil Engineering Bauchi Nigeria
| | - Ibrahim Umaru
- Abubakar Tafawa Balewa University Department of Civil Engineering Bauchi Nigeria
| | - Anwar Ameen Hezam Saeed
- Universiti Teknologi PETRONAS Department of Civil and Environmental Engineering 32610 Bandar Seri Iskandar Perak Darul Ridzuan Malaysia
| | - Haruna Kolawole Afolabi
- Universiti Teknologi PETRONAS Department of Civil and Environmental Engineering 32610 Bandar Seri Iskandar Perak Darul Ridzuan Malaysia
| | - Usman Bala Soja
- Federal University Dutsin-Ma Department of Civil Engineering P.M.B. 5001 Dutsin-Ma Katsina State Nigeria
| |
Collapse
|
12
|
Suzhen H, Xuhui H, Hongkuan C, Qixuan S, Xingzhang L, Zheng Z. Role of phosphorus in Vallisneria natans and biofilm exposure to Pb 2+ and Cd 2+ stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155235. [PMID: 35429560 DOI: 10.1016/j.scitotenv.2022.155235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Phosphorus (P) could improve the stress resistance and adaptability of submerged macrophytes. This study investigated the physiological and biochemical responses of plants exposed to different P and Pb, Cd concentrations. Alterations of protein synthesis, the DNA methylation (5-mC) level, and the microbial community of biofilm were also evaluated. Results indicated that lower P (0.5 mg·L-1) could promote plant growth and metal enrichment while mitigating the toxicity of metals. Higher P (5.0 mg·L-1) induced a degree of oxidative stress, as confirmed by increased activity of superoxide dismutase, peroxidase, and acid phosphatase, as well as increased malondialdehyde contents. While the variation of metallothionein synthesis and DNA methylation level of the plant was dependent on the level of P and metals in the water. These responses indicated potential mechanisms of P detoxification and intoxication. In addition, more abundant microbial communities were observed in biofilms exposed to P and metals. These findings provide theoretical support for the metal detoxification of P in submerged plants.
Collapse
Affiliation(s)
- Huang Suzhen
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Huang Xuhui
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Cheng Hongkuan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Song Qixuan
- School of Life Sciences, Nanjing University, No. 163 Xianlin Road, Nanjing 210023, China
| | - Luo Xingzhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Zheng Zheng
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| |
Collapse
|
13
|
Wang Z, Li G, Huang H, Zhang W, Wang J, Huang S, Zheng Z. Effects of Solar Radiation on the Cyanobacteria: Diversity, Molecular Phylogeny, and Metabolic Activity. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.928816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cyanobacteria bloom is a global aquatic ecological problem that seriously threatens human health and social development. The outbreak of cyanobacteria bloom is affected by various environmental factors, among which light dose is an essential factor. In this study, the growth changes of cyanobacteria under different amounts of natural light were studied by simulating different depths of Taihu Lake, and we used 16S rRNA and non-targeted metabolomics for sequencing to reveal the effects of light on the diversity of cyanobacteria and coexisting microorganisms, and to analyze the changes of related genes, functional structures and internal metabolism involved in nitrogen cycling. The result shows that excessive and insufficient light could limit the growth, photosynthesis, and EPS secretion of cyanobacteria, resulting in an antioxidant stress response. At the same time, the amount of natural light affects the vertical distribution of cyanobacteria, and under the condition of 1/3 natural light, cyanobacteria first appeared to float. In addition, the amount of natural light affects the diversity, abundance, and metabolites of cyanobacteria and coexisting microorganisms, and the expression of nifH, nirK, and nirS, three nitrogen-fixing genes, is significantly different in different genera. This study provides valuable information on the molecular mechanism of the effects of the amount of natural light on cyanobacteria bloom.
Collapse
|
14
|
Salama AM, Behaery MS, Elaal AEA, Abdelaal A. Influence of cerium oxide nanoparticles on dairy effluent nitrate and phosphate bioremediation. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:326. [PMID: 35381908 PMCID: PMC8983513 DOI: 10.1007/s10661-022-10003-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
This study investigated, for the first time, the role of cerium oxide nanoparticles (CeO2 NPs) on dairy effluent nitrate and phosphate bioremediation using different inoculum sources. Two inoculum sources (wastewater and sludge) were obtained from the dairy wastewater treatment plant unit. A culture was prepared to be tested in the treatment of nitrate and phosphate effluent, and the role of CeO2 NPs was checked to be completely efficient after 5 days of incubation. The reduction efficiency of nitrate using sludge as inoculum source was improved up to 89.01% and 68.12% for phosphate compared to control. In the case of using wastewater as an inoculum source, the nitrate reduction was improved up to 83.30% and 87.75% for phosphate compared to control. The bacterial richness showed a significant variance (higher richness) between control and other samples. The optimal concentration of CeO2 NPs for inoculum richness and nitrate and phosphate reduction was (sludge: 1 × 10-10 ppm) and (wastewater: 1 × 10-12 ppm). The results revealed that CeO2 NPs could enhance the microbial growth of different inoculum sources that have a key role in dairy effluent nitrate and phosphate bioremediation.
Collapse
Affiliation(s)
- Abeer M Salama
- Environmental Sciences Department, Faculty of Science, Port Said University, Port Said, 42526, Egypt
| | - Moktar S Behaery
- Environmental Sciences Department, Faculty of Science, Port Said University, Port Said, 42526, Egypt
| | - Amira E Abd Elaal
- Environmental Sciences Department, Faculty of Science, Port Said University, Port Said, 42526, Egypt
| | - Ahmed Abdelaal
- Environmental Sciences Department, Faculty of Science, Port Said University, Port Said, 42526, Egypt.
| |
Collapse
|
15
|
Dong X, Liu H, Long S, Xu S, Lichtfouse E. Weak electrical stimulation on biological denitrification: Insights from the denitrifying enzymes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150926. [PMID: 34655632 DOI: 10.1016/j.scitotenv.2021.150926] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
In order to improve the denitrification efficiency of low carbon to nitrogen ratio (C/N) wastewater, we conducted continuous flow experiments of weakly electrically stimulated denitrification using a direct current output voltage. The results showed that the best denitrification was achieved at a voltage of 0.2 V. The removal of nitrate and total nitrogen was increased by 20% and the production of intermediate greenhouse gas (N2O) was reduced by 62.6%. We explored the specific pathways involved in the weak electrical stimulated denitrification using enzyme activity as a cut-off point. The enzyme activity analysis and 3D fluorescence spectroscopy revealed that nitrate reductase (NAR) and nitrite reductase (NIR) activities were significantly enhanced by weak electrical stimulation, and the aromatic protein content in extracellular polymers substances (EPS) increased, accelerating electron transfer and promoting the conversion of loosely bound EPS (LB) to tightly bound EPS (TB). The accelerated electron transfer further increased enzyme activity and the metabolic rate of microorganisms. This study indicates that weak electrical stimulation could improve activities of biological enzymes to enhance denitrification efficiency.
Collapse
Affiliation(s)
- Xinyi Dong
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, 200093 Shanghai, China
| | - Hongbo Liu
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, 200093 Shanghai, China.
| | - Shiping Long
- Chongqing New World Environment Detection Technology Co. Ltd., 22 Jinyudadao, 401122 Chongqing, China
| | - Suyun Xu
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, 200093 Shanghai, China.
| | - Eric Lichtfouse
- Aix-Marseille Univ, CNRS, IRD, INRA, Coll France, CEREGE, 13100 Aix en Provence, France
| |
Collapse
|
16
|
Wang X, Han T, Sun Y, Geng H, Li B, Dai H. Effects of nano metal oxide particles on activated sludge system: Stress and performance recovery mechanism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117408. [PMID: 34049134 DOI: 10.1016/j.envpol.2021.117408] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/02/2021] [Accepted: 05/16/2021] [Indexed: 06/12/2023]
Abstract
Nano metal oxide particles (NMOPs) are widely used in daily life because of their superior performance, and inevitably enter the sewage treatment system. Pollutants in sewage are adsorbed and degraded in wastewater treatment plants (WWTPs) depending on the microbial aggregates of activated sludge system to achieve sewage purification. NMOPs may cause ecotoxicity to the microbial community and metabolism due to their complex chemical behavior, resulting in a potential threat to the safe and steady operation of activated sludge system. It is of great significance to clarify the influencing mechanism of NMOPs on activated sludge system and reduce the risk of WWTPs. Herein, we first introduce the physicochemical behavior of six typical engineering NMOPs including ZnO, TiO2, CuO, CeO2, MgO, and MnO2 in water environment, then highlight the principal mechanisms of NMOPs for activated sludge system. In particular, the performance recovery mechanisms of activated sludge systems in the presence of NMOPs and their future development trends are well documented and discussed extensively. This review can provide a theoretical guidance and technical support for predicting and evaluating the potential threat of NMOPs on activated sludge systems, and promoting the establishment of effective control strategies and performance recovery measures of biological wastewater treatment process under the stress of NMOPs.
Collapse
Affiliation(s)
- Xingang Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China.
| | - Ting Han
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China.
| | - Yang Sun
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China.
| | - Hongya Geng
- Department of Materials, Imperial College London, Prince Consort Road, London, SW7 2AZ, UK.
| | - Bing Li
- Jiangsu Zhongchuang Qingyuan Technology Co., Ltd., Yancheng, 224000, China.
| | - Hongliang Dai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China; School of Environmental and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
17
|
Xu J, Wang X, Zhang Z, Yan Z, Zhang Y. Effects of chronic exposure to different sizes and polymers of microplastics on the characteristics of activated sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:146954. [PMID: 33866171 DOI: 10.1016/j.scitotenv.2021.146954] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
Wastewater treatment plants (WWTPs) have become an important source of microplastics (MPs) contamination and most MPs remain in the sludge inducing potential impacts on sludge disposal. However, little is known about the influence of MPs on the characteristics of sludge, which is essential for sludge disposal. In this study, the dewaterability of activated sludge in response to chronic exposure (60 days) to MPs of different sizes (213.7 nm ~ 4.2 mm) and polymers (polystyrene, polyethylene, and polyvinyl chloride) were investigated. Overall, different particle sizes caused more evident effects on sludge dewatering than different polymer types did. Millimeter MPs (~4 mm) dramatically reduced the dewaterability of sludge by 29.6% ~ 47.7%. These effects were mainly caused by the physical crushing of MPs on sludge flocs, except polyvinyl chloride (PVC)-MPs, possibly containing additives, induced toxicity on sludge. Moreover, 100 mg/L nano-size MPs (213 nm) also reduced the dewatering performance of sludge. The potential mechanism is that nano-size MPs inhibited sludge activity and decreased the abundance of key microorganisms, which subsequently altered the composition and spatial distribution of extracellular polymeric substances (EPS), and finally impeded sludge dewatering. Our results highlight the impacts of different sizes of MPs on the characteristics of sludge, affecting the final disposal of sludge.
Collapse
Affiliation(s)
- Jiankang Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xinying Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Zhanao Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Zehua Yan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
18
|
Song Q, Huang S, Xu L, Li Q, Luo X, Zheng Z. Response of Magnetite/Lanthanum hydroxide composite on cyanobacterial bloom. CHEMOSPHERE 2021; 275:130017. [PMID: 33652276 DOI: 10.1016/j.chemosphere.2021.130017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 02/07/2021] [Accepted: 02/14/2021] [Indexed: 06/12/2023]
Abstract
Magnetite/lanthanum hydroxide composite (MLC-10) was applied in simulate natural water, sediment and cyanobacteria (WSC) system to evaluate its effect on cyanobacterial bloom in this study. According to the results, the addition of MLC-10 showed a good performance on inhibition of cyanobacterial bloom in systems. The cyanobacteria density of WSC-0.5 and WSC-1.0 (adding 0.5 g and 1.0 g MLC-10) at 30 day was 99.39% and 99.84% less than that in WSC-C (adding no MLC-10 in WSC system), respectively. The addition of MLC-10 could form a phosphorus-binding layer that adsorbed soluble reactive phosphate (SRP) in overlying water, improved the release of internal phosphorus (P) from sediment to pore water then blocked SRP release from pore water to overlying water, especially in WSC-0.5 and WSC-1.0. The results may be due to the high adsorption capacity of MLC-10 to phosphorus. Additionally, oxidative stress and oxidative damage of cyanobacteria were observed after exposing to MLC-10, and oxidative damage degree increased with the elevated amount of MLC-10. MLC-10 addition showed a slight effect on microbial community of surface sediment. Phosphorus limitation, cell damage and limited cells' floating performance were the possible mechanisms of cyanobacterial bloom controlling by MLC-10. Based on these results, MLC-10 could be used as a potential P-inactive material for cyanobacterial bloom controlling.
Collapse
Affiliation(s)
- Qixuan Song
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China
| | - Suzhen Huang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China
| | - Li Xu
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China
| | - Qi Li
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China
| | - Xingzhang Luo
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China
| | - Zheng Zheng
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China.
| |
Collapse
|
19
|
Chen J, Liu X, Pavlostathis SG. Long-term evaluation of the effect of peracetic acid on a mixed aerobic culture: Organic matter degradation, nitrification, and microbial community structure. WATER RESEARCH 2021; 190:116694. [PMID: 33316663 DOI: 10.1016/j.watres.2020.116694] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/03/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
Peracetic acid (PAA) has been widely used as a disinfectant in many industries; its use in poultry processing is steadily increasing. However, information related to the potential inhibitory effect of PAA solutions (PAA and H2O2) on biological wastewater treatment processes used by the poultry processing industry is extremely limited. The work reported here assessed the long-term effect of PAA solution on aerobic degradation and nitrification in three bioreactors fed with poultry processing wastewater by quantifying the extent of COD removal and nitrification rates. Changes in culture viability, intracellular reactive oxygen species (ROS), and microbial community structure were also evaluated. COD removal and nitrification were not affected by H2O2 and PAA solutions added to the wastewater before feeding (indirect addition). However, both processes were significantly affected by high levels of H2O2 (i.e., 27 mg/L) and PAA solution (i.e., 60/8.4 mg/L PAA/H2O2) directly added to the reactors. Directly added PAA/H2O2 at 40/5.6 mg/L was the lowest dose resulting in nitrification inhibition. Fast recovery of COD removal and nitrification was observed when direct addition of H2O2 and PAA solution ended. Cell viability measurements revealed that the negative impact on nitrification was predominantly attributed to enzyme inhibition rather than to loss of cell viability. The impact on nitrification was not related to intracellular ROS levels. Microbiome analysis showed major shifts in community composition during the long-term addition of H2O2 and even more with PAA addition. No significant time-trend change in the relative abundance of ammonia-oxidizing bacteria or nitrite-oxidizing bacteria was observed, further supporting the conclusion that the negative impact on nitrification was attributed mainly to enzyme inhibition.
Collapse
Affiliation(s)
- Jinchen Chen
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0512, USA
| | - Xiaoguang Liu
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0512, USA
| | - Spyros G Pavlostathis
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0512, USA.
| |
Collapse
|
20
|
Kedves A, Rónavári A, Kónya Z. Long-term effect of graphene oxide on the aerobic granular sludge wastewater treatment process. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2021; 9:104853. [DOI: 10.1016/j.jece.2020.104853] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Pan C, Bao Y, Guo A, Ma J. Environmentally Relevant-Level CeO 2 NP with Ferrous Amendment Alters Soil Bacterial Community Compositions and Metabolite Profiles in Rice-Planted Soils. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8172-8184. [PMID: 32663007 DOI: 10.1021/acs.jafc.0c03507] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The environmental risks and benefits associated with the introduction of CeO2 nanoparticle (NP) in agricultural soil must be carefully assessed. The ferrous ion is rich in rhizosphere soil of rice due to the reduction states underground. The aim of this study was to investigate the effects of environmentally relevant-level CeO2 NP (25 mg·kg-1) in the absence or presence of ferrous (30 mg·kg-1) amendment on soil bacterial communities and soil metabolomics in rice-planted soil over 150 days. Results showed that CeO2 NP exposure changed soil bacterial community compositions and soil metabolomics, and the above changes were further shifted with the ferrous amendment. Several functionally significant bacterial phyla containing Proteobacteria and Bacteroidetes abundances, which were associated with carbon and nitrogen cycling, were promoted after CeO2 NP exposure with ferrous amendment. However, CeO2 NP inhibited plant-growth-promoting rhizobacteria containing genera Bacillus and Arthrobacter irrespective of the presence or absence of ferrous. Among rhizosphere soil enzyme activities, cellulose activity was the most sensitive for CeO2 NP exposure. NP decreased Firmicutes and increased Chloroflexi, Rokubacteria, and Thaumarchaeota abundances at the phylum level, which contributed to reduce soil cellulose activity. Additionally, CeO2 NP positively or negatively affected soil pH, Ce accumulation in root, and rice physiological properties (root-POD, stem-POD). As a result, the above factors were related to the changes of Chloroflexi, Gemmatimonadetes, Rokubacteria, Thaumarchaeota, and Nitrospirae at the phylum level. After adding CeO2 NP with ferrous or not, the main metabolic changes were concentrated on fluctuations in starch and sucrose metabolism, nitrogen metabolism, sulfur metabolism, propanoate metabolism, fatty acid metabolism, and urea cycle. The eight changed metabolites containing glycerol monstearate, boric acid, monopalmitin, palmitic acid, alkane, ethanol, dicarboximide, and stearic acid accounted for the separation of different treatments with CeO2 NP exposure. Activities of soil enzymes (urease, invertase, and cellulose), pH, and soil organic matter affected dominant metabolites containing fatty acids, inorganic acid, and sugar. Network analysis showed that the influence of soil bacterial community on metabolites varied with metabolites and bacteria species. The presence of CeO2 NP mainly promoted fatty acids (hexanoic acid, nonanoic acid) and amino acid (oxoproline) and amine (diethanolamine) concentrations, which could be from the increased Proteobacteria abundance after CeO2 NP exposure. Phylum Proteobacteria had the most genus species containing 13 genera affecting soil metabolite profiles. These results provide valuable information for understanding the impact of environmentally relevant-level CeO2 NP exposure on soil microbial communities and metabolites with or without ferrous, which is needed to understand the ecological risk posed by long-term CeO2 NP exposure in rice-planted soil with rich ferrous.
Collapse
Affiliation(s)
- Chengrong Pan
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Yanyu Bao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Aiyun Guo
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Jinyu Ma
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| |
Collapse
|
22
|
Huang S, Song Q, Li Q, Zhang H, Luo X, Zheng Z. Damage of heavy metals to Vallisneria natans (V. natans) and characterization of microbial community in biofilm. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 225:105515. [PMID: 32516672 DOI: 10.1016/j.aquatox.2020.105515] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/01/2020] [Accepted: 05/03/2020] [Indexed: 06/11/2023]
Abstract
Heavy metals can cause a significant damage to submerged macrophytes and affect its periphyton biofilms in aquatic environments. This study investigated the effects of heavy metals such as copper (Cu), lead (Pb), cadmium (Cd) and their mixture on physiological and biochemical responses and ultrastructure characteristics of Vallisneria natans (V. natans). Furthermore, differences in structures of microbial communities were observed in biofilms. The results showed that Cu2+, Pb2+, Cd2+ and their mixture could destroy cell structure and photosynthetic system, and directly caused oxidative damage to submerged macrophyte and induced antioxidant enzyme system. In general, biomass and total chlorophyll content of V. natans noticeably decreased, while the activities of superoxide dismutase, peroxidase and catalase were enhanced by heavy metal stress inducement in restricted range, and the malondialdehyde content increased with the aggravation of the damage. The single heavy metal stress played a negative impact, however, the combined stress was not always synergistic effects on plants. High-throughput sequencing analysis suggested that heavy metals changed the abundance and structure of the microbial biofilm community. Proteobacteria and Bacteroidete were the dominant bacteria under heavy metal stress and other species and abundance of bacteria such as Firmicute, Cyanobacteria, Chloroflexi, Actinobacteria, Verrucomicrobia, Acidobacteria, Deinococcus-Thermus, Chlamydiae were also present. These findings provided useful information for further understanding about submerged macrophytes and periphyton biofilms responsed to heavy metal stress in aquatic environments in the future.
Collapse
Affiliation(s)
- Suzhen Huang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China
| | - Qixuan Song
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China
| | - Qi Li
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China
| | - Hao Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China
| | - Xingzhang Luo
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China
| | - Zheng Zheng
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China.
| |
Collapse
|
23
|
Li S, Wu S, Ma B, Gao M, Wu Y, She Z, Zhao Y, Guo L, Jin C, Ji J. Insights into the effects of single and combined divalent copper and humic acid on the performance, microbial community and enzymatic activity of activated sludge from sequencing batch reactor. CHEMOSPHERE 2020; 249:126165. [PMID: 32078852 DOI: 10.1016/j.chemosphere.2020.126165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/23/2020] [Accepted: 02/08/2020] [Indexed: 06/10/2023]
Abstract
The performance, microbial community and enzymatic activity of activated sludge from four identical sequencing batch reactors (SBRs) were compared by treating synthetic wastewater under the single and combined divalent copper (Cu2+) at 20 mg/L and humic acid (HA) at 20 mg/L. Compared with the absence of Cu2+ and HA, the single HA slightly enhanced the oxygen uptake rate (OUR), the nitrification and denitrification rates and the activities of dehydrogenase, nitrifying enzymes and denitrifying enzymes, whereas the single Cu2+ had the opposite results. The combined Cu2+ and HA inhibited the OUR, nitrogen removal rate and enzymatic activity of activated sludge almost the same as the single Cu2+. The single HA had no obvious effect on the balance between the microbial oxidative stress and antioxidant activity. However, the variations of microbial reactive oxygen species production, peroxidase activity, catalase activity, superoxide dismutase activity, and lactate dehydrogenase release demonstrated that the combined Cu2+ and HA and single Cu2+ produced obvious toxicity to microorganisms in activated sludge. The microbial richness and diversity had some obvious changes under the single and combined Cu2+ and HA. The relative abundances of Nitrosomonas, Nitrospira and some denitrifying genera (e.g. Zoogloea, Dokdonella, Denitratisoma, Flavobacterium and Thermomonas) under the combined Cu2+ and HA were less than those under the single Cu2+.
Collapse
Affiliation(s)
- Shanshan Li
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Shuyan Wu
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Bingrui Ma
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Mengchun Gao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.
| | - Yuanyuan Wu
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Zonglian She
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yangguo Zhao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Liang Guo
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Chunji Jin
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Junyuan Ji
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
24
|
Li S, Wu S, Ma B, Gao M, Wu Y, She Z, Zhao Y, Guo L, Jin C, Ji J. Single and combined effects of divalent copper and hexavalent chromium on the performance, microbial community and enzymatic activity of sequencing batch reactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 719:137289. [PMID: 32114224 DOI: 10.1016/j.scitotenv.2020.137289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/11/2020] [Accepted: 02/11/2020] [Indexed: 06/10/2023]
Abstract
Divalent copper (Cu2+) and hexavalent chromium (Cr6+) are often encountered in industrial wastewater and municipal wastewater, the effect of combined Cu2+ and Cr6+ on biological wastewater treatment systems has cause wide concern. In the present research, the performance, microbial community and enzymatic activity of sequencing batch reactors (SBRs) were compared under the single and combined Cu2+ at 20 mg/L and Cr6+ at 10 mg/L. The chemical oxygen demand (COD) and ammonia nitrogen (NH4+-N) removal efficiencies under the combined Cu2+ and Cr6+ were less than those under the single Cu2+ and Cr6+. The combined Cu2+ and Cr6+ displayed more inhibition effects on the oxygen uptake rate, nitrification rate and denitrification rate of activated sludge than the single Cu2+ and Cr6+. The inhibitory effects of the combined Cu2+ and Cr6+ on the activities of dehydrogenase, ammonia monooxygenase, nitrite oxidoreductase, nitrite reductase and nitrate reductase showed significant increases by comparison with the single Cr6+. However, the combined Cu2+ and Cr6+ had a little more inhibitory effects on the enzymatic activities than the single Cu2+. The microbial richness and diversity displayed some obvious changes under the single and combined Cu2+ and Cr6+ by comparison the absence of Cu2+ and Cr6+. The relative abundances of nitrifying genera (e.g. Nitrosomonas and Nitrospira) under the combined Cu2+ and Cr6+ was less than those under the single Cu2+ and Cr6+. These findings will be helpful to better understand the combined effects of multiple heavy metals on biological wastewater treatment systems.
Collapse
Affiliation(s)
- Shanshan Li
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Shuyan Wu
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Bingrui Ma
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Mengchun Gao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| | - Yuanyuan Wu
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Zonglian She
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yangguo Zhao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Liang Guo
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Chunji Jin
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Junyuan Ji
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
25
|
Li Q, Gu P, Zhang C, Luo X, Zhang H, Zhang J, Zheng Z. Combined toxic effects of anatoxin-a and microcystin-LR on submerged macrophytes and biofilms. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:122053. [PMID: 31978825 DOI: 10.1016/j.jhazmat.2020.122053] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/07/2020] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
Hazardous substances, such as anatoxin-a and microcystin-LR, are released into the aquatic environment during cyanobacterial blooms, causing significant ecological risk. To assess the toxic effects of anatoxin-a, microcystin-LR and their combined exposure on submerged macrophytes and biofilms, Vallisneria natans was exposed to solutions containing different concentrations of anatoxin-a and microcystin-LR (0.05-5.00 μg L-1). Results showed that Vallisneria natans was sensitive to anatoxin-a of 0.05 μg L-1, and antagonistic effects were induced at combined microcystin-LR and anatoxin-a exposure. Single and combined exposure effectively induced antioxidant responses such as promoted activities of superoxide dismutase, peroxidase and catalase, as well as increased glutathione S-transferase, glutathione and malondialdehyde content. In addition, anatoxin-a and microcystin-LR could also be absorbed by Vallisneria natans and trigger plant defense responses, generating increased concentrations of the phytohormones abscisic acid and strigolactones. Moreover, the abundances and structure of the microbial community in periphyton biofilms were altered by combined anatoxin-a and microcystin-LR exposure. The enhanced concentration of N-acylated-l-homoserine lactone indicated that the assessed cyanotoxins had a significant influence on quorum-sensing in biofilm microbial communities. These results demonstrated that anatoxin-a and microcystin-LR at environmentally relevant concentrations could disrupt homeostasis, induce effective defense mechanisms of Vallisneria natans and alter biofilms in aquatic ecosystems.
Collapse
Affiliation(s)
- Qi Li
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Peng Gu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Chen Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Xin Luo
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Hao Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Jibiao Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China.
| | - Zheng Zheng
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China.
| |
Collapse
|
26
|
Li Q, Gu P, Zhang H, Luo X, Zhang J, Zheng Z. Response of submerged macrophytes and leaf biofilms to the decline phase of Microcystis aeruginosa: Antioxidant response, ultrastructure, microbial properties, and potential mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 699:134325. [PMID: 31678882 DOI: 10.1016/j.scitotenv.2019.134325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/02/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
Decaying cyanobacterial blooms carry a potential risk for submerged macrophyte and periphyton biofilms in aquatic environments. This study comprehensively studied the responses in growth, oxidative response, detoxification pathway, and ultrastructure characteristics of aquatic plants to Microcystis aeruginosa (M. aeruginosa) exudates and extracts released during the decline phase. Particular emphasis was placed on the variation of extracellular polymeric substances (EPS) and quorum-sensing signaling molecules. The results showed that superoxide dismutase, peroxidase, and glutathione S-transferase were significantly induced as antioxidant response, and the malondialdehyde content increased. Increased content of MC-LR (1.129 μg L-1) and NH4+-N (1.35 mg L-1) were found in the decline phase of M. aeruginosa, which played a vital role in the damage to submerged plants. In addition, a change in the amount of osmiophilic granules and a variation of organelles and membranes was observed. A broad distribution of α-d-glucopyranose polysaccharides was dominant and aggregated into clusters in biofilm EPS in response to exposure to decaying M. aeruginosa. Furthermore, exposure to exudates and extracts changed the abundance and structure of the microbial biofilm community. Increased contents of N-acylated-L-homoserine lactone signal molecule might result in a variation of biofilm EPS production in response to decaying M. aeruginosa. These results expand the understanding of how submerged macrophyte and periphyton biofilms respond to environmental stress caused by exudates and extracts of decaying M. aeruginosa.
Collapse
Affiliation(s)
- Qi Li
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Peng Gu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Hao Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Xin Luo
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Jibiao Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China.
| | - Zheng Zheng
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China.
| |
Collapse
|
27
|
Li S, Ma B, Zhao C, She Z, Yu N, Pan Y, Gao M, Guo L, Jin C, Zhao Y. Long-term effect of different Cu(II) concentrations on the performance, microbial enzymatic activity and microbial community of sequencing batch reactor. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113216. [PMID: 31541835 DOI: 10.1016/j.envpol.2019.113216] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/07/2019] [Accepted: 09/07/2019] [Indexed: 06/10/2023]
Abstract
The performance, microbial community and enzymatic activity of sequencing batch reactors (SBRs) were investigated under 75-day exposure of different Cu(II) concentrations. Cu(II) at 0-5 mg/L had no distinct impact on the chemical oxygen demand (COD) and nitrogen removal, oxygen-uptake rate (OUR), nitrification and denitrification rate, and microbial enzymatic activity. The inhibitory effects of Cu(II) at 10 and 30 mg/L on the nitrogen removal rate, OUR, and microbial enzymatic activity of SBR increased with an increment in operation time due to the Cu(II) biotoxicity and the Cu(II) accumulation in activated sludge. The changes of microbial reactive oxygen species production, lactate dehydrogenase release, catalase activity and superoxide dismutase activity demonstrated that Cu(II) at 10 and 30 mg/L broke the equilibrium between the oxidation and antioxidation processes in microbial cells and also damaged the cytomembrance integrity, which could affect the COD and nitrogen removal performance and change normal microbial cell morphology. The Cu(II) in the influent could be removed by the microbial absorption and accumulated in the activated sludge under long-term exposure. The microbial community displayed some distinct changes from 0 to 30 mg/L Cu(II). In contrast with 0 mg/L Cu(II), Nitrosomonas, Nitrospira and some denitrifying bacteria obviously decreased in relative abundance under long-term exposure of 10 and 30 mg/L Cu(II).
Collapse
Affiliation(s)
- Shanshan Li
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Bingrui Ma
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Changkun Zhao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Zonglian She
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Naling Yu
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Yunhao Pan
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Mengchun Gao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Liang Guo
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Chunji Jin
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yangguo Zhao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
28
|
Gao M, Gao F, Ma B, Yu N, She Z, Zhao C, Guo L, Zhao Y, Li S, Jin C. Insights into long-term effects of amino-functionalized multi-walled carbon nanotubes (MWCNTs-NH 2) on the performance, enzymatic activity and microbial community of sequencing batch reactor. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:113118. [PMID: 31476674 DOI: 10.1016/j.envpol.2019.113118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 08/10/2019] [Accepted: 08/24/2019] [Indexed: 06/10/2023]
Abstract
Carbon nanotubes (CNTs) inevitably enter domestic sewage and industrial wastewater with the continuous increase of their production and application field. The potential effect of CNTs on biological wastewater treatment processes has raised wide concerns due to their biotoxicity. In the present study, the performance, microbial community and enzymatic activity of sequencing batch reactors (SBRs) were evaluated under 148-day exposure of amino-functionalized multi-walled CNTs (MWCNTs-NH2) at 10 and 30 mg/L. The COD removal efficiency at 10 and 30 mg/L MWCNTs-NH2 gradually reduced from 91.03% and 90.43% on day to 89.11% and 86.70% on day 148, respectively. The NH4+-N removal efficiency at 10 and 30 mg/L MWCNTs-NH2 gradually reduced from 98.98% and 98.46% on day 1 to 96.65% and 63.39% on day 148, respectively. Compared to 0 mg/L MWCNTs-NH2, the oxygen-utilizing rate, ammonia-oxidizing rate, nitrite-oxidizing rate, nitrite-reducing rate and nitrate-reducing rate at 30 mg/L MWCNTs-NH2 were decreased by 52.35%, 60.58%, 55.12%, 56.56% and 57.42% on day 148, respectively. The microbial reactive oxygen species and lactate dehydrogenase release on day 148 was increased by 59.71% and 55.28% at 30 mg/L MWCNTs-NH2, respectively. The key microbial enzymatic activity related to nitrogen removal decreased with the increase of operation time under MWCNTs-NH2 stress. The relative abundances of Nitrosomonas, Nitrosospira, Nitrospira and some denitrifying bacteria at 10 mg/L MWCNTs-NH2 gradually reduced with an increment in operation time. The changes of nitrogen removal rate, microbial community and enzymatic activity of SBR were related to the time-cumulative nonlinear inhibition effect under long-term exposure.
Collapse
Affiliation(s)
- Mengchun Gao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Qingdao 266100, China
| | - Feng Gao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Bingrui Ma
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Qingdao 266100, China
| | - Naling Yu
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Zonglian She
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Changkun Zhao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Liang Guo
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Yangguo Zhao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Shanshan Li
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Chunji Jin
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Qingdao 266100, China.
| |
Collapse
|
29
|
Physicochemical and Biological Effects on Activated Sludge Performance and Activity Recovery of Damaged Sludge by Exposure to CeO 2 Nanoparticles in Sequencing Batch Reactors. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16204029. [PMID: 31640233 PMCID: PMC6843984 DOI: 10.3390/ijerph16204029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/19/2019] [Accepted: 10/02/2019] [Indexed: 12/19/2022]
Abstract
Recently, the growing release of CeO2 nanoparticles (CeO2 NPs) into sewage systems has attracted great concern. Several studies have extensively explored CeO2 NPs' potential adverse impacts on wastewater treatment plants; however, the impaired activated sludge recovery potentials have seldom been addressed to date. To explore the physicochemical and biological effects on the activated sludge performance and activity recovery of damaged sludge by exposure to CeO2 NPs in sequencing batch reactors (SBRs), four reactors and multiple indicators including water quality, key enzymes, microbial metabolites, the microbial community structure and toxicity were used. Results showed that 10-week exposure to higher CeO2 NP concentration (1, 10 mg/L) resulted in a sharp decrease in nitrogen and phosphorus removal efficiencies, which were consistent with the tendencies of key enzymes. Meanwhile, CeO2 NPs at concentrations of 0.1, 1, and 10 mg/L decreased the secretion of tightly bound extracellular polymeric substances to 0.13%, 3.14%, and 28.60%, respectively, compared to the control. In addition, two-week recovery period assays revealed that the functional bacteria Proteobacteria, Nitrospirae and Planctomycetes recovered slightly at the phyla level, as analyzed through high-throughput sequencing, which was consistent with the small amount of improvement of the effluent performance of the system. This reflected the small possibility of the activity recovery of damaged sludge.
Collapse
|
30
|
Zheng X, Zhang Y, Chen W, Wang W, Xu H, Shao X, Yang M, Xu Z, Zhu L. Effect of Increased Influent COD on Relieving the Toxicity of CeO 2 NPs on Aerobic Granular Sludge. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16193609. [PMID: 31561526 PMCID: PMC6801698 DOI: 10.3390/ijerph16193609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/15/2019] [Accepted: 09/24/2019] [Indexed: 11/16/2022]
Abstract
Due to the increased use of cerium oxide nanoparticles (CeO2 NPs), their potential environmental risks have caused concern. However, their effects on the aerobic granular sludge (AGS) process and the later recovery of AGS are still unclear. In this study, we comprehensively determined the changes in pollutant removal and the levels of extracellular polymeric substances (EPS) in AGS that were exposed to CeO2 NP treatments (0 (the control, R0), 1 (R1), and 5 (R5) mg/L), following an increase in the influent chemical oxygen demand (COD). An increase in the CeO2 NP concentration enhanced their inhibitory effect on the removal of total nitrogen (TN) and total phosphorus (TP), and promoted the production of polysaccharides (PS) and proteins (PN) in loosely bound EPS (LB-EPS) or tightly bound EPS (TB-EPS), as well as the dissolved organic carbon (DOC) components in EPS, but had no long-term effects on the removal of organic matter. When the addition of CeO2 NPs was stopped and the concentration of influent COD increased, the TN and TP removal efficiencies in R1 and R5 slowly increased and recovered. In R1, they were only 4.55 ± 0.55% and 2.71 ± 0.58% lower than in R0, respectively, while the corresponding values for R5 were 5.06 ± 0.46% and 6.20 ± 0.63%. Despite the LB-EPS and TB-EPS concentrations in the R1 and R5 treatments recovering and being similar to the levels in the control when no CeO2 NPs were added, they were still slightly higher than in the R0, which indicating that the negative effects of CeO2 NPs could not be completely eliminated due to the residual CeO2 NP levels in AGS.
Collapse
Affiliation(s)
- Xiaoying Zheng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Yuan Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Wei Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Weihong Wang
- College of Hydraulic and Civil Engineering, Xinjiang Agricultural University, Nongda East Road No. 311, Sayibak District, Urumqi 830052, China.
| | - Hang Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Xiaoyao Shao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Mengmeng Yang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Zhi Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Linghua Zhu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| |
Collapse
|
31
|
Ma B, Li Z, Wang S, Liu Z, Li S, She Z, Yu N, Zhao C, Jin C, Zhao Y, Guo L, Gao M. Insights into the effect of nickel (Ni(II)) on the performance, microbial enzymatic activity and extracellular polymeric substances of activated sludge. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:81-89. [PMID: 31071636 DOI: 10.1016/j.envpol.2019.04.094] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/15/2019] [Accepted: 04/18/2019] [Indexed: 05/27/2023]
Abstract
The performance, nitrogen removal rate, microbial enzymatic activity and extracellular polymeric substances (EPS) of activated sludge were assessed under nickel (Ni(II)) stress. The organic matter and NH4+-N removal efficiencies were stable at less than 10 mg/L Ni(II) and subsequently decreased with the increment of Ni(II) concentration from 10 to 30 mg/L. The specific oxygen uptake rate and dehydrogenase activity kept stable at less than 5 mg/L Ni(II) and then declined at 5-30 mg/L Ni(II). Both specific ammonia-oxidizing rate (SAOR) and specific nitrite-oxidizing rate (SNOR) decreased with the increment of Ni(II) concentration. The changing trends of ammonia monooxygenase and nitrite oxidoreductase activities were matched those of SAOR and SNOR, respectively. The nitrite-reducing rate and nitrate-reducing rate illustrated a similar variation tendency to the nitrite reductase activity and nitrate reductase activity, respectively. Ni(II) impacted on the production, chemical composition and functional group of EPS. The relation between the sludge volume index and the EPS production exhibited a better linear function with a negative slope, demonstrating that Ni(II) improved the sludge settleability despite of the increase of EPS production.
Collapse
Affiliation(s)
- Bingrui Ma
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Zhiwei Li
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Sen Wang
- School of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Zhaozhe Liu
- Qingjian International Group Co., Ltd, Qingdao, 266000, China
| | - Shanshan Li
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Zonglian She
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Naling Yu
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Changkun Zhao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Chunji Jin
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Yangguo Zhao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; School of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Liang Guo
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Mengchun Gao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
32
|
Zhang F, Shao J, Yang H, Guo D, Chen Z, Zhang S, Chen H. Effects of biomass pyrolysis derived wood vinegar on microbial activity and communities of activated sludge. BIORESOURCE TECHNOLOGY 2019; 279:252-261. [PMID: 30735935 DOI: 10.1016/j.biortech.2019.01.133] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 05/14/2023]
Abstract
The effects of wood vinegar (WVG) on microbial activity and communities of activated sludge were investigated in a sequencing batch reactor (SBR) process. Results showed that the optimal WVG concentration was 4 μL/L when the pollutants removal efficiency and microbial activity were promoted by a WVG dilution factor of 1000. WVG could reduce the increase in microbial species richness, which led to a more notable variety of microbial species diversity. The enhanced microbial activity and communities were addressed to the promotion of 7 main classes of microbes in Proteobacteria, Bacteroidetes, Acidobacteria, and Nitrospirae phyla. The growth of ammonia-oxidizing bacteria (AOB), nitrite-oxidizing bacteria (NOB), and main genera of denitrifying bacteria (DNB), phosphorus-accumulating organisms (PAOs), and glycogen-accumulating organisms (GAOs) could be promoted by WVG, which improved the sewage treatment effectiveness in a SBR.
Collapse
Affiliation(s)
- Fang Zhang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jingai Shao
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Department of New Energy Science and Technology, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Haiping Yang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Dabin Guo
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhihua Chen
- School of Environment, Henan Normal University, No. 46, Jianshe Road, Xinxiang 453007, Henan, China
| | - Shihong Zhang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hanping Chen
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Department of New Energy Science and Technology, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
33
|
Wu S, Wu H, Button M, Konnerup D, Brix H. Impact of engineered nanoparticles on microbial transformations of carbon, nitrogen, and phosphorus in wastewater treatment processes - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 660:1144-1154. [PMID: 30743910 DOI: 10.1016/j.scitotenv.2019.01.106] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/07/2019] [Accepted: 01/10/2019] [Indexed: 06/09/2023]
Abstract
Concern regarding the potential negative impacts of released engineered nanoparticles (ENPs) on pollutant removal performance of wastewater treatment systems has received booming attention in recent years. However, the conclusions drawn from different studies often lead to fragmented overall knowledge, some of which are even contradictory. This scenario shows the necessity for a comprehensive review of the interactions of ENPs in wastewater treatment systems, particularly on the impacts of ENPs on microbial processes of carbon (C), nitrogen (N), and phosphorus (P) removal in water treatment systems. This review introduced the impact of 6 often reported ENPs in 5 types of treatment systems. We found that exposure to most of the investigated ENPs at low concentrations doesn't adversely influence the growth of the heterotrophic microbes, which are responsible for organic matter removal. The impacts of ENPs on various microbial nitrogen transformation processes have been investigated. Dosing of ENPs often causes acute microbial nitrogen removal inhibition at various concentrations, but does not influence long-term operation due to microbial adaption. No significant negative effects on biological phosphorus removal in different wastewater treatment processes have been reported after both short-term and long-term exposure (except copper nanoparticles). Environmentally relevant concentrations of ENPs have been reported to enhance the photosynthetic capacity of wetland plants, whereas chronic inhibition to photosynthesis was found in exposure to high concentrations of ENPs. Inhibition effects are often overestimated in pure cultivated toxicity test assays compared to testing with artificially prepared wastewater containing various ingredients or with real wastewater. Potential ligands in real wastewater can bind with ENPs and lower their dissolution. Some challenges exist regarding detection and quantification techniques of ENPs at environmental concentrations, modeling of engineered nanomaterial release on a worldwide scale, and inhibitory mechanisms to microbial transformations.
Collapse
Affiliation(s)
- Shubiao Wu
- Aarhus Institute of Advanced Studies, Aarhus University, Aarhus 8000C, Denmark; Department of Bioscience, Aarhus University, Aarhus 8000C, Denmark.
| | - Haiming Wu
- College of Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Mark Button
- Department of Earth and Environmental Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| | - Dennis Konnerup
- Aarhus Institute of Advanced Studies, Aarhus University, Aarhus 8000C, Denmark; Department of Bioscience, Aarhus University, Aarhus 8000C, Denmark
| | - Hans Brix
- Department of Bioscience, Aarhus University, Aarhus 8000C, Denmark
| |
Collapse
|
34
|
Xu Y, Wang C, Hou J, Wang P, You G, Miao L. Effects of cerium oxide nanoparticles on bacterial growth and behaviors: induction of biofilm formation and stress response. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:9293-9304. [PMID: 30725258 DOI: 10.1007/s11356-019-04340-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 01/22/2019] [Indexed: 06/09/2023]
Abstract
In this paper, the effects of cerium oxide nanoparticles (CeO2 NPs) on the group bacterial behaviors were elaborated. After 36-h cultivation, the biofilm biomass was enhanced by the sub-lethal concentrations of 0.5 and 2 mg/L CeO2 NP exposure. Meanwhile, the promoted production of total amino acids in microbes further resulted in the increased surface hydrophobicity and percentage aggregation. To resist the CeO2 NPs stress, the biofilm exhibited a double-layer microstructure, with the protein (PRO) and living cells occupying the bottom, the polysaccharide (PS), and dead cells dominating the top. The bacterial diversity was highly suppressed and Citrobacter and Pseudomonas from the phylum of γ-Proteobacteria strongly dominated the biofilm, indicating the selective and enriched effects of CeO2 NPs on resistant bacteria. The stimulated inherent resistance of biofilm was reflected by the reduced adenosine triphosphate (ATP) content after 4 h exposure. The increased levels of reactive oxygen species (ROS) in the treatments of 8 h CeO2 NP exposure led to the upregulated quorum sensing signals of acylated homoserine lactone (AHL) and autoinducer 2 (AI-2), beneficial to mitigating the environmental disturbance of CeO2 NPs. These results provide evidences for the accelerating effects of CeO2 NPs on biofilm formation through oxidative stress, which expand the understanding of the ecological effects of CeO2 NPs.
Collapse
Affiliation(s)
- Yi Xu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, People's Republic of China
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, People's Republic of China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, People's Republic of China.
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, People's Republic of China
| | - Guoxiang You
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, People's Republic of China
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, People's Republic of China
| |
Collapse
|
35
|
Zhao L, Zhang C, Bao M, Lu J. Advanced treatment for actual hydrolyzed polyacrylamide-containing wastewater in a biofilm/activated sludge membrane bioreactor system: Biodegradation and interception. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2018.10.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
36
|
Ma B, Yu N, Han Y, Gao M, Wang S, Li S, Guo L, She Z, Zhao Y, Jin C, Gao F. Effect of magnesium oxide nanoparticles on microbial diversity and removal performance of sequencing batch reactor. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 222:475-482. [PMID: 29908478 DOI: 10.1016/j.jenvman.2018.05.089] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 04/18/2018] [Accepted: 05/27/2018] [Indexed: 06/08/2023]
Abstract
The performance, microbial enzymatic activity and microbial community of a sequencing batch reactor (SBR) have been explored under magnesium oxide nanoparticles (MgO NPs) stress. The NH4+-N removal efficiency kept relatively stable during the whole operational process. The MgO NPs at 30-60 mg/L slightly restrained the removal of chemical oxygen demand (COD), and the presence of MgO NPs also affected the denitrification and phosphorus removal. The specific oxygen uptake rate, nitrifying and denitrifying rates, phosphorus removal rate, and microbial enzymatic activities distinctly varied with the increase of MgO NPs concentration. The appearance of MgO NPs promoted more reactive oxygen species generation and lactate dehydrogenase leakage from activated sludge, suggesting that MgO NPs had obvious toxicity to activated sludge in the SBR. The protein and polysaccharide contents of extracellular polymeric substances from activated sludge increased with the increase of MgO NPs concentration. The microbial richness and diversity at different MgO NPs concentrations obviously varied at the phylum, class and genus levels due to the biological toxicity of MgO NPs.
Collapse
Affiliation(s)
- Bingrui Ma
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Qingdao, 266100, China
| | - Naling Yu
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Yuetong Han
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Mengchun Gao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.
| | - Sen Wang
- Shcool of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Shanshan Li
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Liang Guo
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Qingdao, 266100, China
| | - Zonglian She
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Yangguo Zhao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Qingdao, 266100, China
| | - Chunji Jin
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Feng Gao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
37
|
Chen D, Xiao Z, Wang H, Yang K. Toxic effects of vanadium (V) on a combined autotrophic denitrification system using sulfur and hydrogen as electron donors. BIORESOURCE TECHNOLOGY 2018; 264:319-326. [PMID: 29859503 DOI: 10.1016/j.biortech.2018.05.093] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/24/2018] [Accepted: 05/26/2018] [Indexed: 05/13/2023]
Abstract
Vanadium (V) is a common heavy metal and often co-occurs with nitrate in effluents from mining and metal finishing industry. In the present study, the toxic effects of V(V) were examined in a sulfur and hydrogen based autotrophic denitrification system. This combined system achieved simultaneously microbial denitrification and V(V) reduction. High concentration of V(V) (60 and 100 mg/L) inhibited the denitrification activities, while 30 mg/L V(V) had a very slight effect. V(V) induced increases of lactate dehydrogenase release and reactive oxygen species production, which may inhibit nitrate and nitrite reductases activities and abundances of denitrifying functional genes. Moreover, the extracellular polymeric substance production was also suppressed under V(V) stress, thereby decreasing the amount of biofilm biomass. Microbial community analyses suggesting the genus Bacillus may have higher tolerance to V(V). These findings can provide scientific basis for the optimized design of treatment system to remove nitrate and V(V) simultaneously.
Collapse
Affiliation(s)
- Dan Chen
- College of Urban Construction, Nanjing Tech University, Nanjing 211816, China
| | - Zhixing Xiao
- College of Urban Construction, Nanjing Tech University, Nanjing 211816, China.
| | - Hongyu Wang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Kai Yang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| |
Collapse
|
38
|
Wang X, Zhu M, Li N, Du S, Yang J, Li Y. Effects of CeO 2 nanoparticles on bacterial community and molecular ecological network in activated sludge system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 238:516-523. [PMID: 29605611 DOI: 10.1016/j.envpol.2018.03.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/01/2018] [Accepted: 03/12/2018] [Indexed: 06/08/2023]
Abstract
The increasing use of cerium oxide nanoparticles (CeO2 NPs) has caused concerns regarding their potential environmental risks. However, their effects on bacterial communities and network interactions in activated sludge process are still unclear. In this study, we carried out long-term exposure experiments (210 d) to investigate the influence of CeO2 NPs on wastewater treatment performance, bacterial community structure and network interactions in activated sludge systems. The results showed that long-term exposure to 1 mg/L CeO2 NPs induced the deterioration of denitrifying process, which was consistent with the inhibition of enzyme activities of nitrite oxidoreductase and nitrate reductase under CeO2 NPs. CeO2 NPs decreased the bacterial diversity and altered the overall bacterial community structure in activated sludge. Some dominant denitrifying bacteria, such as Flexibacter and Acinetobacter decreased significantly. Molecular ecological network analysis showed that CeO2 NPs decreased the network complexity of bacterial community, and probably promoted the competition in bacterial communities of activated sludge. These changes of denitrifying bacteria and the bacterial network may be relevant to the deterioration of denitrifying process. This study provides insights into how the bacteria community and their molecular ecological network respond to CeO2 NPs in activated sludge systems.
Collapse
Affiliation(s)
- Xiaohui Wang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Minghan Zhu
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Nankun Li
- Appraisal Center for Environment & Engineering, Ministry of Environmental Protection, Beijing, 100012, China
| | - Shuai Du
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jingdan Yang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yuan Li
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
39
|
Wang P, You G, Hou J, Wang C, Xu Y, Miao L, Feng T, Zhang F. Responses of wastewater biofilms to chronic CeO 2 nanoparticles exposure: Structural, physicochemical and microbial properties and potential mechanism. WATER RESEARCH 2018; 133:208-217. [PMID: 29407701 DOI: 10.1016/j.watres.2018.01.031] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/11/2018] [Accepted: 01/13/2018] [Indexed: 06/07/2023]
Abstract
With the accelerated application of CeO2 nanoparticles (NPs), wastewater treatment plants will increasingly receive CeO2 NPs, thus inevitably causing CeO2 NPs to encounter microaggregates. Here, we comprehensively elucidate the responses in the structural, physicochemical and microbial properties of wastewater biofilms to chronic exposure (75 days) to different CeO2 NPs concentrations, with a particular emphasis on the protective mechanisms of stratified extracellular polymeric substances (EPSs). Chronic exposure to 0.1 mg/L CeO2 NPs boosted the content and broadened the distribution of α-d-glucopyranose polysaccharides (PS), while the sharply increased production and breadth of β-d-glucopyranose PS, forming a formidable shield, was a response to 10 mg/L CeO2 NPs. After the bacteria were exposed to CeO2 NPs, loosely bound EPSs (LB-EPSs) aggregated into macromolecules (increasing in apparent molecular weight (AMW)) but at a lower abundance, whereas the average AMW in tightly bound EPSs (TB-EPSs) decreased. The acetyl content and (α-helix+3-turn helix)/β-sheet value of TB-EPSs increased to resist CeO2 NPs. Furthermore, long-term exposure to CeO2 NPs decreased cell viability, reduced microbial diversity and shifted the microbial composition. N-acylated-l-homoserine lactone concentrations increased with increased density of Pseudomonas, which was associated with PS-regulated control, thus promoting PS production in EPSs in response to CeO2 NPs. These results expand the understanding of how microaggregates resist environmental stress caused by NPs.
Collapse
Affiliation(s)
- Peifang Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Guoxiang You
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Yi Xu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Tao Feng
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Fei Zhang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
40
|
Xu Y, Wang C, Hou J, Wang P, Miao L, You G, Lv B, Yang Y, Zhang F. Long term effects of cerium dioxide nanoparticles on the nitrogen removal, micro-environment and community dynamics of a sequencing batch biofilm reactor. BIORESOURCE TECHNOLOGY 2017; 245:573-580. [PMID: 28910644 DOI: 10.1016/j.biortech.2017.08.201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 08/28/2017] [Accepted: 08/30/2017] [Indexed: 06/07/2023]
Abstract
The influences of cerium dioxide nanoparticles (CeO2 NPs) on nitrogen removal in biofilm were investigated. Prolonged exposure (75d) to 0.1mg/L CeO2 NPs caused no inhibitory effects on nitrogen removal, while continuous addition of 10mg/L CeO2 NPs decreased the treatment efficiency to 53%. With the progressive concentration of CeO2 NPs addition, the removal efficiency could nearly stabilize at 67% even with the continues spike of 10mg/L. The micro-profiles of dissolved oxygen, pH, and oxidation reduction potential suggested the developed protection mechanisms of microbes to progressive CeO2 NPs exposure led to the less influence of microenvironment, denitrification bacteria and enzyme activity than those with continuous ones. Furthermore, high throughput sequencing illustrated the drastic shifted communities with gradual CeO2 NPs spiking was responsible for the adaption and protective mechanisms. The present study demonstrated the acclimated microbial community was able to survive CeO2 NPs addition more readily than those non-acclimated.
Collapse
Affiliation(s)
- Yi Xu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Guoxiang You
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Bowen Lv
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Yangyang Yang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Fei Zhang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
41
|
Wang X, Zheng Q, Yuan Y, Hai R, Zou D. Bacterial community and molecular ecological network in response to Cr 2O 3 nanoparticles in activated sludge system. CHEMOSPHERE 2017; 188:10-17. [PMID: 28865788 DOI: 10.1016/j.chemosphere.2017.08.072] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 07/28/2017] [Accepted: 08/15/2017] [Indexed: 06/07/2023]
Abstract
The potential environmental risks of chromium oxide nanoparticles (Cr2O3 NPs) have caused great concerns. However, their possible impacts on activated sludge process are very limited. In this study, we carried out long-term exposure experiments to evaluate the influence of Cr2O3 NPs on wastewater nutrient removal, bacterial community and molecular ecological network (MEN) in the sequencing batch reactor (SBR). It was found that 1 mg/L Cr2O3 NPs increased the effluent concentrations of NO3--N and TP from 6.5 to 15.4 mg/L, and 0.6-2.7 mg/L, indicating the serious deterioration of denitrification and phosphorus removal. Cr2O3 NPs significantly decreased the bacterial richness in terms of the number of different OTUs (626 OTUs in Cr2O3 samples and 728 OTUs in controls). Detrended correspondence analysis (DCA) showed that the overall taxonomic structure of bacterial community was altered at Cr2O3 NPs in activated sludge systems. Further analysis revealed that three genera related to denitrification (Desulfovibrio, Pseudomonas and Hyphomicrobium) and two genera related to phosphorus removal (Accumulibacter and Rhodobacter) decreased significantly, which was consistent with the observed influences of Cr2O3 NPs on denitrification and phosphorus removal. MEN analysis showed that the overall architecture of the network under Cr2O3 NPs was substantially alerted. β-Proteobacteria, playing an important role in nutrients removal, had less complex interactions in the presence of Cr2O3 NPs, which may be associated with the deterioration of denitrification and phosphorus removal. This study provides insights into our understanding of shifts in the bacteria community and their MEN under Cr2O3 NPs in activated sludge systems.
Collapse
Affiliation(s)
- Xiaohui Wang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Quan Zheng
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yuan Yuan
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China; College of Forestry, Henan Agriculture University, ZhengZhou, 450002, China
| | - Reti Hai
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Dexun Zou
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
42
|
Zheng XY, Lu D, Chen W, Gao YJ, Zhou G, Zhang Y, Zhou X, Jin MQ. Response of Aerobic Granular Sludge to the Long-Term Presence of CuO NPs in A/O/A SBRs: Nitrogen and Phosphorus Removal, Enzymatic Activity, and the Microbial Community. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:10503-10510. [PMID: 28832135 DOI: 10.1021/acs.est.7b02768] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The increasing use of cupric oxide nanoparticles (CuO NPs) has raised concerns about their potential environmental toxicity. Aerobic granular sludge (AGS) is a special form of microbial aggregates. In this study, the removal efficiencies of nitrogen and phosphorus, enzyme activities and microbial community of AGS under long-term exposure to CuO NPs (at concentrations of 5, 20, 50 mg/L) in aerobic/oxic/anoxic (A/O/A) sequencing batch reactors (SBRs) were investigated. The results showed the chronic toxicity caused by different concentrations of CuO NPs (5, 20, 50 mg/L) resulted in increases in the production of ROS of 110.37%, 178.64%, and 188.93% and in the release of lactate dehydrogenase (LDH) of 108.33%, 297.05%, 335.94%, respectively, compared to the control. Besides, CuO NPs decreased the activities of polyphosphate kinase (PPK) and exophosphatase (PPX), leading to lower phosphorus removal efficiency. However, the NH4+-N removal rates remained stable, and the removal efficiencies of TN increased due to the synthesis of nitrite and nitrous oxide (N2O) reductases. In addition, CuO NPs at concentrations of 0, 5, 20 mg/L increased the secretion of protein (PN) to 90, 91, 105 mg/gVSS, respectively, which could alleviate the toxicity of CuO NPs. High-throughput sequencing showed that CuO NPs increased the abundance of nitrogen-removal bacteria and reduced the abundance of phosphorus-removal bacteria, which is consistent with the results of pollutant removal upon long-term exposure to CuO NPs.
Collapse
Affiliation(s)
- Xiao-Ying Zheng
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University , Nanjing 210098, PR China
- College of Environment, Hohai University , Nanjing 210098, PR China
| | - Dan Lu
- College of Environment, Hohai University , Nanjing 210098, PR China
| | - Wei Chen
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University , Nanjing 210098, PR China
- College of Environment, Hohai University , Nanjing 210098, PR China
| | - Ya-Jie Gao
- College of Environment, Hohai University , Nanjing 210098, PR China
| | - Gan Zhou
- College of Environment, Hohai University , Nanjing 210098, PR China
| | - Yuan Zhang
- College of Environment, Hohai University , Nanjing 210098, PR China
| | - Xiang Zhou
- College of Environment, Hohai University , Nanjing 210098, PR China
| | - Meng-Qi Jin
- College of Environment, Hohai University , Nanjing 210098, PR China
| |
Collapse
|
43
|
Wang S, Li Z, Gao M, She Z, Ma B, Guo L, Zheng D, Zhao Y, Jin C, Wang X, Gao F. Long-term effects of cupric oxide nanoparticles (CuO NPs) on the performance, microbial community and enzymatic activity of activated sludge in a sequencing batch reactor. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 187:330-339. [PMID: 27918973 DOI: 10.1016/j.jenvman.2016.11.071] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/19/2016] [Accepted: 11/26/2016] [Indexed: 06/06/2023]
Abstract
The long-term effects of cupric oxide nanoparticles (CuO NPs) on the performance, microbial activity and microbial community of activated sludge were investigated in a sequencing batch reactor (SBR). The SBR performance had no evident change at 0-10 mg/L CuO NPs, whereas the CuO NPs concentration at 30-60 mg/L affected the COD, NH4+-N and soluble orthophosphate (SOP) removal, nitrogen and phosphorus removal rate and microbial enzymatic activity of activated sludge. Some CuO NPs might be absorbed on the surface of activated sludge or penetrate the microbial cytomembrane into the microbial cell interior of activated sludge. Compared to 0 mg/L CuO NPs, the reactive oxygen species (ROS) production and lactate dehydrogenase (LDH) release increased by 43.6% and 56.4% at 60 mg/L CuO NPs, respectively. The variations of ROS production and LDH release demonstrated that CuO NPs could induce the toxicity towards the microorganisms and destroy the integrity of microbial cytomembrane in the activated sludge. High throughput sequencing of 16S rDNA indicated that CuO NPs could evidently impact on the microbial richness, diversity and composition of activated sludge in the SBR.
Collapse
Affiliation(s)
- Sen Wang
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao 266100, China; School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Zhiwei Li
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao 266100, China
| | - Mengchun Gao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao 266100, China.
| | - Zonglian She
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Bingrui Ma
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Liang Guo
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Dong Zheng
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Yangguo Zhao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Chunji Jin
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Xuejiao Wang
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Feng Gao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| |
Collapse
|