1
|
Liang P, Wang H, Hu X, Elshobary M, Cui Y, Zou B, Zhu F, Schagerl M, El-Sheekh M, Huo S. Impact of the NH4+/NO3− ratio on growth of oil-rich filamentous microalgae Tribonema minus in simulated nitrogen-rich wastewater. JOURNAL OF WATER PROCESS ENGINEERING 2024; 68:106378. [DOI: 10.1016/j.jwpe.2024.106378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
|
2
|
Gao B, Hong J, Deng Q, Han B, Kong J, Zhang C. A novel sulfur supply strategy for maximizing lipid production in Tribonema minus (Xanthophyceae). BIORESOURCE TECHNOLOGY 2024; 394:130205. [PMID: 38104661 DOI: 10.1016/j.biortech.2023.130205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
Tribonema minus, a promising filamentous oleaginous microalga, was cultured under different nutrient concentrations and different culture modes (fed-batch culture, two-step culture) to study the method of rapid regulation of its lipid metabolism. In contrast to many other oleaginous microalgae, T. minus did not show that nitrogen stress promoted lipid accumulation; however, sulfur deficiency promoted rapid lipid accumulation with a maximum lipid content of 54% of dry weight. Increasing the MgSO4 concentration significantly increased nitrogen uptake and biomass (10.09 g/L). Lipid productivity was significantly increased by the two-step culture using a medium with a high concentration of MgSO4 in the first step and a sulfur-free medium in the second step. In addition, it was found that the lipid content of T. minus was negatively correlated with the intracellular sulfur content when the intracellular sulfur content was below 0.6%. This study provides a new approach for industrial lipid production in T. minus.
Collapse
Affiliation(s)
- Baoyan Gao
- Department of Ecology, Research Center for Hydrobiology, Jinan University, Guangzhou 510632, People's Republic of China
| | - Jian Hong
- Department of Ecology, Research Center for Hydrobiology, Jinan University, Guangzhou 510632, People's Republic of China
| | - Qian Deng
- Department of Ecology, Research Center for Hydrobiology, Jinan University, Guangzhou 510632, People's Republic of China
| | - Baoye Han
- Department of Ecology, Research Center for Hydrobiology, Jinan University, Guangzhou 510632, People's Republic of China
| | - Jielin Kong
- Department of Ecology, Research Center for Hydrobiology, Jinan University, Guangzhou 510632, People's Republic of China
| | - Chengwu Zhang
- Department of Ecology, Research Center for Hydrobiology, Jinan University, Guangzhou 510632, People's Republic of China.
| |
Collapse
|
3
|
Nagabalaji V, Maharaja P, Nishanthi R, Sathish G, Suthanthararajan R, Srinivasan SV. Effect of co-culturing bacteria and microalgae and influence of inoculum ratio during the biological treatment of tannery wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 341:118008. [PMID: 37146488 DOI: 10.1016/j.jenvman.2023.118008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/12/2023] [Accepted: 04/22/2023] [Indexed: 05/07/2023]
Abstract
This present investigation is carried out to study the effect of algal and bacterial inoculum concentrations on the removal of organic pollutants and nutrients from the tannery effluent by the combined symbiotic treatment process. The bacterial and microalgal consortia was developed in laboratory setup and mixed together to perform this study. The Influence of algae and bacteria inoculum concentrations on the removal of pollutants such as Chemical Oxygen Demand (COD) and Total Kjeldahl Nitrogen (TKN) were studied using statistical optimization through Response surface methodology. For the design of experimental set up and optimization, full factorial Central composite design was used. The profiles of pH, Dissolved Oxygen (DO) and nitrate were also monitored and studied. The inoculum concentrations of microalgae and bacteria showed significant effect on Co-culturing on COD, TKN and nitrate removals as major response. The linear effect of bacterial inoculum has positive dominant influence on COD and TKN removal efficiencies. Nitrate utilization by microalgae increases with the increase in microalgal inoculum concentration. The maximum removal efficiencies of COD and TKN with 89.9% and 80.9% were obtained at optimum bacterial and algal inoculum concentrations of 6.7 g/L and 8.0 g/L respectively. These outcomes of this study are immensely favorable for maximizing the COD and nitrogen (nutrients) removal capabilities of microalgae-bacterial consortia in tannery effluent.
Collapse
Affiliation(s)
- Velmurugan Nagabalaji
- Environmental Engineering Department, CSIR-Central Leather Research Institute, Chennai, 600 020, India; Academy of Scientific and Industrial Research (AcSIR), Ghaziabad, 201002, India.
| | - Pounsamy Maharaja
- Environmental Engineering Department, CSIR-Central Leather Research Institute, Chennai, 600 020, India
| | - Rajendiran Nishanthi
- Environmental Engineering Department, CSIR-Central Leather Research Institute, Chennai, 600 020, India
| | - Ganesan Sathish
- Environmental Engineering Department, CSIR-Central Leather Research Institute, Chennai, 600 020, India
| | | | - Shanmugham Venkatachalam Srinivasan
- Environmental Engineering Department, CSIR-Central Leather Research Institute, Chennai, 600 020, India; Academy of Scientific and Industrial Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
4
|
Karimi Z, Blersch DM, Davis VA. Design and analysis of a flow way photobioreactor for substrate assessment in attached cultivation of filamentous green algae. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
5
|
Evaluation of a novel oleaginous filamentous green alga, Barranca yajiagengensis (Chlorophyta, Chaetophorales) for biomass, lipids and pigments production. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Dang BT, Bui XT, Tran DPH, Hao Ngo H, Nghiem LD, Hoang TKD, Nguyen PT, Nguyen HH, Vo TKQ, Lin C, Yi Andrew Lin K, Varjani S. Current application of algae derivatives for bioplastic production: A review. BIORESOURCE TECHNOLOGY 2022; 347:126698. [PMID: 35026424 DOI: 10.1016/j.biortech.2022.126698] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/31/2021] [Accepted: 01/06/2022] [Indexed: 05/18/2023]
Abstract
Improper use of conventional plastics poses challenges for sustainable energy and environmental protection. Algal derivatives have been considered as a potential renewable biomass source for bioplastic production. Algae derivatives include a multitude of valuable substances, especially starch from microalgae, short-chain length polyhydroxyalkanoates (PHAs) from cyanobacteria, polysaccharides from marine and freshwater macroalgae. The algae derivatives have the potential to be used as key ingredients for bioplastic production, such as starch and PHAs or only as an additive such as sulfated polysaccharides. The presence of distinctive functional groups in algae, such as carboxyl, hydroxyl, and sulfate, can be manipulated or tailored to provide desirable bioplastic quality, especially for food, pharmaceutical, and medical packaging. Standardizing strains, growing conditions, harvesting and extracting algae in an environmentally friendly manner would be a promising strategy for pollution control and bioplastic production.
Collapse
Affiliation(s)
- Bao-Trong Dang
- HUTECH University, 475A, Dien Bien Phu, Ward 25, Binh Thanh District, Ho Chi Minh City, Vietnam
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), Viet Nam National University Ho Chi Minh (VNUHCM), Thu Duc city, Ho Chi Minh City 700000, Viet Nam; Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet street, district 10, Ho Chi Minh City 700000, Viet Nam.
| | - Duyen P H Tran
- Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), Viet Nam National University Ho Chi Minh (VNUHCM), Thu Duc city, Ho Chi Minh City 700000, Viet Nam
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Long D Nghiem
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Thi-Khanh-Dieu Hoang
- Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), Viet Nam National University Ho Chi Minh (VNUHCM), Thu Duc city, Ho Chi Minh City 700000, Viet Nam
| | - Phuong-Thao Nguyen
- Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), Viet Nam National University Ho Chi Minh (VNUHCM), Thu Duc city, Ho Chi Minh City 700000, Viet Nam; Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet street, district 10, Ho Chi Minh City 700000, Viet Nam
| | - Hai H Nguyen
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Thi-Kim-Quyen Vo
- Faculty of Environment - Natural Resources and Climate Change, Ho Chi Minh City University of Food Industry (HUFI), 140 Le Trong Tan street, Tay Thanh ward, Tan Phu district, Ho Chi Minh city 700000, Vietnam
| | - Chitsan Lin
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Kun Yi Andrew Lin
- Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382010, Gujarat, India
| |
Collapse
|
7
|
Kant Mehta S. Assessing the prospects of Zygnema heydrichii, a filamentous Chlorophyte, as a biodiesel feedstock. BIORESOURCE TECHNOLOGY 2022; 345:126487. [PMID: 34871720 DOI: 10.1016/j.biortech.2021.126487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 06/13/2023]
Abstract
This research aimed to investigate the suitability of the filamentous microalga Zygnema heydrichii as a biodiesel feedstock. Under ambient culture conditions, biomass yield, lipid content, and fatty acid composition were measured. The effects of nutrient deprivation, pH, and salinity on biomass and lipid production were also investigated. Z. heydrichii under nutrient-enriched medium showed specific growth rate (µ) 0.31 day-1 and lipid content 14.75% DW. The most abundant fatty acids were C16:0, C18:1, C18:2 and C18:3, all of which are considered appropriate for biodiesel production. Nitrogen and phosphorus depletion from the growth medium further increased lipid content to 21.45% and 15.35% DW, respectively. The N depletion of the medium remarkably increased TAG content of the culture. Z. heydrichii possess great ability to grow in salty water (40 Mm NaCl). A low-cost, semi-continuous outdoor culture yielded biomass and lipid productivity of 0.208 g day-1and 0.038 g L-1 day-1, respectively.
Collapse
|
8
|
Rearte T, Rodriguez N, Sabatté F, Fabrizio de Iorio A. Unicellular microalgae vs. filamentous algae for wastewater treatment and nutrient recovery. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
9
|
Nguyen ST, Le TM, Nguyen HV. Iron-catalyzed fast hydrothermal liquefaction of Cladophora socialis macroalgae into high quality fuel precursor. BIORESOURCE TECHNOLOGY 2021; 337:125445. [PMID: 34186329 DOI: 10.1016/j.biortech.2021.125445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
Fast hydrothermal liquefaction of acid-washed Cladophora socialis macroalgae has been studied over homogeneous (KOH, K2CO3, H3PO4, HCOOH) and heterogeneous (H-ZSM-5, Raney Ni, Ru/C, Fe metal) catalysts in a batch reactor at 350 °C. Biocrude with maximum yield (36.2%) and energy density (37.1 MJ kg-1) and minimum heteroatom contents (3.8% N and 10.1% O) were achieved with metallic Fe. GC-MS indicates reduction in content of carbonyls, acids and N-containing substances and increase in levels of phenols and hydrocarbons in biocrude while 1H NMR suggests the enhanced formation of oxygenated/nitrogenous compounds in aqueous phase over Fe catalyst compared to non-catalytic test. Such carbonyls and acids removal was proposed to occur via hydride reduction and decarboxylation pathways, respectively. GPC and TAN confirm vast improvement in stability and corrosiveness properties of Fe-catalyzed biocrude. Regeneration of used catalyst has been conducted and the regenerated catalyst exhibited slight deactivation, likely due to sintering of Fe particles.
Collapse
Affiliation(s)
- Son Tang Nguyen
- Faculty of Biotechnology, Chemistry and Environmental Engineering, Phenikaa University, Yen Nghia, Ha-Dong district, Hanoi 12116, Viet Nam.
| | - Tu Manh Le
- Faculty of Materials Science and Engineering, Phenikaa University, Yen Nghia, Ha-Dong district, Hanoi 12116, Viet Nam
| | - Hieu Van Nguyen
- Faculty of Electrical and Electronic Engineering, Phenikaa University, Yen Nghia, Ha-Dong district, Hanoi 12116, Viet Nam
| |
Collapse
|
10
|
Nutrient deficiency and an algicidal bacterium improved the lipid profiles of a novel promising oleaginous dinoflagellate, Prorocentrum donghaiense, for biodiesel production. Appl Environ Microbiol 2021; 87:e0115921. [PMID: 34319787 PMCID: PMC8436737 DOI: 10.1128/aem.01159-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The lipid production potential of 8 microalgae species was investigated. Among these eight species, the best strain was a dominant bloom-causing dinoflagellate, Prorocentrum donghaiense; this species had a lipid content of 49.32±1.99% and exhibited a lipid productivity of 95.47±0.99 mg L-1 d-1, which was 2-fold higher than the corresponding values obtained for the oleaginous microalgae Nannochloropsis gaditana and Phaeodactylum tricornutum. P. donghaiense, which is enriched in C16:0 and C22:6, is appropriate for commercial DHA production. Nitrogen or phosphorus stress markedly induced lipid accumulation to levels surpassing 75% of the dry weight, increased the C18:0 and C17:1 contents, and decreased the C18:5 and C22:6 contents, and these effects resulted in decreases in the unsaturated fatty-acid levels and changes in the lipid properties of P. donghaiense such that the species met the biodiesel specification standards. Compared with the results obtained under N-deficient conditions, the enhancement in the activity of alkaline phosphatase of P. donghaiense observed under P-deficient conditions could partly alleviate the adverse effects on the photosynthetic system exerted by P deficiency to induce the production of more carbohydrates for lipogenesis. The supernatant of the algicidal bacterium Paracoccus sp. Y42 culture lysed P. donghaiense without decreasing its lipid content, which resulted in facilitation of the downstream oil extraction process and energy savings through the lysis of algal cells. The Y42 supernatant treatment improved the lipid profiles of algal cells by increasing their C16:0, C18:0 and C18:1 contents and decreasing their C18:5 and C22:6 contents, which is favourable for biodiesel production. IMPORTANCE This study demonstrates the high potential of P. donghaiense, a dominant bloom-causing dinoflagellate, for lipid production. Compared with previously studied oleaginous microalgae, P. donghaiense exhibit greater potential for practical application due to its higher biomass and lipid contents. Nutrient deficiency and the algicidal bacterium Paracoccus sp. Y42 could improve the suitability of the lipid profile of P. donghaiense for biodiesel production. Furthermore, Paracoccus sp. Y42 effectively lyse algal cells, which facilitates the downstream oil extraction process for biodiesel production and results in energy savings through the lysing of algal cells. This study provides a more promising candidate for the production of DHA for human nutritional products and of microalgal biofuel, as well as a more cost-effective method for breaking algal cells. The high lipid productivity of P. donghaiense and algal cell lysis by algicidal bacteria contribute to reductions in the production cost of microalgal oil.
Collapse
|
11
|
Wang F, Cao Y, Zhu Z, Gao B, Zhang C. Physicochemical Characteristics of Cellulose Nanocrystals Derived from the Residue of Filamentous Microalga Tribonema utriculosum. Appl Biochem Biotechnol 2021; 193:2430-2442. [PMID: 33710521 DOI: 10.1007/s12010-021-03495-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/07/2021] [Indexed: 10/21/2022]
Abstract
Tribonema biomass is considered promising biorefinery feedstock for the co-production of biodiesel and valuable bioproducts; however, the extraction of these useful compounds produces large amounts of algal residues, which produce increased environmental concerns. Herein, cellulose was extracted from the waste residue of T. utriculosum via alkalization and bleaching, followed by the production of high-value-added cellulose nanocrystals (CNCs) via acid hydrolysis. The hydrolysis was performed with 60% (wt%) H2SO4 at a yield of 13.31%, resulting in the generation of rod-shaped nanoparticles averaging 39.5 nm in diameter and 239.2 nm in length. The structural characterization analysis revealed that the prepared CNCs had high crystallinity (73.0%) due to the removal of non-cellulose components and amorphous regions by chemical treatment, as well as possessing good aqueous suspension stability (zeta potential = - 40.1 mV). Although the CNCs showed lower thermal stability than extracted cellulose, they spanned a broader temperature range due to two-stage degradation behaviour, with higher residue weight (16.7%). This work represents the first report on the preparation of a high-value-added industrial product, CNCs, from the filamentous microalga T. utriculosum, aiming to maximize benefits from waste algal residue reutilization.
Collapse
Affiliation(s)
- Feifei Wang
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Yan Cao
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China
| | - Zhenzhou Zhu
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China
| | - Baoyan Gao
- Institute of Hydrobiology, Department of Ecology, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Chengwu Zhang
- Institute of Hydrobiology, Department of Ecology, Jinan University, Guangzhou, 510632, People's Republic of China.
| |
Collapse
|
12
|
Substrate properties as controlling parameters in attached algal cultivation. Appl Microbiol Biotechnol 2021; 105:1823-1835. [PMID: 33564919 DOI: 10.1007/s00253-021-11127-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/06/2021] [Accepted: 01/19/2021] [Indexed: 10/22/2022]
Abstract
There is growing interest in attached algae cultivation systems because they could provide a more cost- and energy-efficient alternative to planktonic (suspended algae) cultivation systems for many applications. However, attached growth systems have been far less studied than planktonic systems and have largely emphasized algae strains of most interest for biofuels. New algal biorefinery pathways have assessed the commercial potentials of algal biomass beyond biofuel production and placed more emphasis on value-added products from that biomass. Therefore, algal strain selection criteria and biomass cultivation methods need to be updated to include additional strains for improved efficiency. One possible way of improving attached cultivation systems is through engineering substrate surface characteristics to boost algal adhesion and enable strain selective algal colonization and growth. This review explores the effect of substrate chemical and topographical characteristics on the cultivation of attached algae. It also highlights the importance of considering algal community structure and attachment mechanisms in investigating attached algae systems using the example of filamentous algae found in algal turf scrubber (ATS™) systems. KEY POINTS : • Attached algal cultivation is a promising alternative to planktonic cultivation. • Performance increase results from tuning surface qualities of attachment substrates. • Attachment adaptation of periphytic algae has innate potential for cultivation.
Collapse
|
13
|
Feedstocks, environmental effects and development suggestions for biodiesel in China. JOURNAL OF TRAFFIC AND TRANSPORTATION ENGINEERING (ENGLISH ED. ONLINE) 2020. [DOI: 10.1016/j.jtte.2020.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Light-Emitting Diode Power Conversion Capability and CO2 Fixation Rate of Microalgae Biofilm Cultured Under Different Light Spectra. ENERGIES 2020. [DOI: 10.3390/en13071536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Microalgae biofilm-based culture has attracted much interest due to its high harvest efficiency and low energy requirements. Using light-emitting diodes (LEDs) as light source for microalgae culture has been considered as a promising choice to enhance the economic feasibility of microalgae-based commodities. In this work, the LED power conversion capability and CO2 fixation rate of microalgae biofilms (Chlorella ellipsoidea and Chlorella pyrenoidosa) cultured under different light spectra (white, blue, green and red) were studied. The results indicated that the power-to-biomass conversion capabilities of these two microalgae biofilms cultured under blue and white LEDs were much higher than those under green and red LEDs (C. ellipsoidea: 32%–33% higher, C. pyrenoidosa: 34%–46% higher), and their power-to-lipid conversion capabilities cultured under blue LEDs were 61%–66% higher than those under green LEDs. The CO2 fixation rates of these two biofilms cultured under blue LEDs were 13% and 31% higher, respectively, than those under green LEDs. The results of this study have important implications for selecting the optimal energy-efficient LEDs using in microalgae biofilm-based culture systems.
Collapse
|
15
|
Lu Y, Zhuo C, Li Y, Li H, Yang M, Xu D, He H. Evaluation of filamentous heterocystous cyanobacteria for integrated pig-farm biogas slurry treatment and bioenergy production. BIORESOURCE TECHNOLOGY 2020; 297:122418. [PMID: 31761632 DOI: 10.1016/j.biortech.2019.122418] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/10/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
The study evaluates 36 filamentous heterocystous cyanobacteria for the treatment of biogas slurry from pig farm and the accumulation of biomass for bioenergy production. The results showed that only the strains B, J, and L were able to adapt to a 10% biogas slurry. The removal rates of ammonia nitrogen, total nitrogen, and total phosphorus for strains J and L were 92.46%-97.97%, 73.79%-79.90%, and 97.14%-98.46%, respectively, higher than that of strain B. Strain J had the highest biomass productivity and lipid productivity. Based on the biodiesel prediction results, it was concluded that strains J and L are more suitable for biodiesel production. The estimation of theoretical methane potential suggests that the algal biomass of strain J also have the desirable possibility of biogas generation. In summary, algal strain J (Nostoc sp.) offers great potential for biogas slurry treatment and for the production of bioenergy.
Collapse
Affiliation(s)
- Yuzhen Lu
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Chen Zhuo
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Yongjun Li
- Qingyuan Polytechnic, Qingyuan 511510, China
| | - Huashou Li
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Mengying Yang
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Danni Xu
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Hongzhi He
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
16
|
Yatirajula SK, Shrivastava A, Saxena VK, Kodavaty J. Flow behavior analysis of Chlorella Vulgaris microalgal biomass. Heliyon 2019; 5:e01845. [PMID: 31211258 PMCID: PMC6562143 DOI: 10.1016/j.heliyon.2019.e01845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 03/13/2019] [Accepted: 05/24/2019] [Indexed: 11/06/2022] Open
Abstract
The processing volume of bioengineering operations requires flow properties of algal mass for effective processing techniques. Chlorella Vulgaris microalgae cultured at 25 °C in Tap media under continuous illumination was considered. It showed an exponential phase of growth up to 8 days and then a stationary phase of growth from 8 days to 15 days. The rheological properties of microalgae biomass during the growth represented power law model. Microscopic analysis showed the influence of shearing on variation of algal structure from clusters to complete cell separation. The flow properties supported the microscopy analysis showing the shear thickening property at high shear rates and shear thinning nature at low shear regime. Optimal power required for the agitation of biomass based on the variations of non-Newtonian viscosity were predicted by considering the vessel geometry.
Collapse
Affiliation(s)
- Suresh Kumar Yatirajula
- Department of Chemical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, 826004, India
| | - Anuj Shrivastava
- Department of Chemical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, 826004, India
| | - Vinod Kumar Saxena
- Department of Fuel and Mineral Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, 826004, India
| | - Jagadeeshwar Kodavaty
- Department of Chemical Engineering, UPES, Bidoli, Dehradun, 248007, India
- Corresponding author.
| |
Collapse
|
17
|
Fawaz EG, Kamareddine LA, Salam DA. Effect of algal surface area and species interactions in toxicity testing bioassays. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 174:584-591. [PMID: 30870659 DOI: 10.1016/j.ecoenv.2019.03.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 03/04/2019] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
Single and multispecies algal bioassays were assessed using copper toxicity with three green algae (Scenedesmus subspicatus, Scenedesmus quadricauda and Ankistrodesmus angustus) and one blue-green algae species (Oscillatoria prolifera). Single and multispecies toxicity tests were conducted based on cell density as per standard toxicity testing, and on equivalent surface area. A higher copper sulfate toxicity was registered for O. prolifera, followed by S. subspicatus, S. quadricauda, and A. angustus in single-species toxicity tests based on cell density. Single species toxicity tests based on surface area showed increased copper toxicity with increasing algal surface area except for A. angustus. In multispecies control bioassays, the growth of A. angustus was inhibited in the presence of other species in surface area-based tests. As compared to single species bioassays, O. prolifera, and S. quadricauda showed a decreased sensitivity to copper sulfate in both cell density and surface area based multispecies tests. However, for the algae species with the smallest surface area, S. subspicatus, 96h-EC50 value decreased in multispecies bioassays based on surface area as compared to the single species test, while it increased in multispecies bioassays based on cell density. The difference in S. subspicatus sensitivity to copper between tests based on cell density and surface area supports the need to adopt multispecies toxicity testing based on surface area to avoid the confounding effect on copper toxicity of increased biomass for metal binding. 96h-EC50 values for all species combined in the multispecies test based on cell density and on surface area were significantly different from 96h-EC50 values obtained in single species bioassays. These results demonstrate that single-species bioassays may over- or underestimate metal toxicity in natural waters.
Collapse
Affiliation(s)
- Elyssa G Fawaz
- Department of Civil and Environmental Engineering, American University of Beirut, Beirut 11-0236, Lebanon
| | - Lina A Kamareddine
- Department of Civil and Environmental Engineering, American University of Beirut, Beirut 11-0236, Lebanon
| | - Darine A Salam
- Department of Civil and Environmental Engineering, American University of Beirut, Beirut 11-0236, Lebanon.
| |
Collapse
|
18
|
Vo HNP, Ngo HH, Guo W, Nguyen TMH, Liu Y, Liu Y, Nguyen DD, Chang SW. A critical review on designs and applications of microalgae-based photobioreactors for pollutants treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:1549-1568. [PMID: 30360283 DOI: 10.1016/j.scitotenv.2018.09.282] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/21/2018] [Accepted: 09/21/2018] [Indexed: 06/08/2023]
Abstract
The development of the photobioreactors (PBs) is recently noticeable as cutting-edge technology while the correlation of PBs' engineered elements such as modellings, configurations, biomass yields, operating conditions and pollutants removal efficiency still remains complex and unclear. A systematic understanding of PBs is therefore essential. This critical review study is to: (1) describe the modelling approaches and differentiate the outcomes; (2) review and update the novel technical issues of PBs' types; (3) study microalgae growth and control determined by PBs types with comparison made; (4) progress and compare the efficiencies of contaminants removal given by PBs' types and (5) identify the future perspectives of PBs. It is found that Monod model's shortcoming in internal substrate utilization is well fixed by modified Droop model. The corroborated data also remarks an array of PBs' types consisting of flat plate, column, tubular, soft-frame and hybrid configuration in which soft-frame and hybrid are the latest versions with higher flexibility, performance and smaller foot-print. Flat plate PBs is observed with biomass yield being 5 to 20 times higher than other PBs types while soft-frame and membrane PBs can also remove pharmaceutical and personal care products (PPCPs) up to 100%. Looking at an opportunity for PBs in sustainable development, the flat plate PBs are applicable in PB-based architectures and infrastructures indicating an encouraging revenue-raising potential.
Collapse
Affiliation(s)
- Hoang Nhat Phong Vo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Thi Minh Hong Nguyen
- School of Environment, Resources and Development, Asian Institute of Technology, P.O. Box 4, Klong Luang, Pathumthani 12120, Thailand
| | - Yiwen Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Yi Liu
- Shanghai Advanced Research Institute, Chinese Academy of Science, Zhangjiang Hi-Tech Park, Pudong, Shanghai, China
| | - Dinh Duc Nguyen
- Department of Environmental Energy Engineering, Kyonggi University, 442-760, Republic of Korea
| | - Soon Woong Chang
- Department of Environmental Energy Engineering, Kyonggi University, 442-760, Republic of Korea.
| |
Collapse
|
19
|
Srimongkol P, Thongchul N, Phunpruch S, Karnchanatat A. Optimization of Synechococcus sp. VDW Cultivation with Artificially Prepared Shrimp Wastewater for Ammonium Removal and Its Potential for Use As a Biofuel Feedstock. J Oleo Sci 2019; 68:233-243. [PMID: 30760668 DOI: 10.5650/jos.ess18203] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To investigate the potential of application of marine cyanobacterium for concurrent biomass production and ammonium removal, Synechococcus sp. VDW was cultured under different conditions in medium containing varying concentrations of NH4Cl. Response surface methodology (RSM) was then used to build a predictive model of the combined effects of independent variables (pH, inoculum size, ammonium concentration). At the optimum conditions of initial pH 7.4, inoculum size 0.17 (OD730) and ammonium concentration 10.5 mg L-1, the maximum ammonium removal and biomass productivity were about 95% and 34 mg L-1d-1, respectively, after seven days of cultivation. The result of fatty acid methyl ester (FAME) analysis showed that the major fatty acids were palmitic acid (C16:0), linoleic acid (C18:2 n6 cis), palmitoleic acid (C16:1) and oleic acid (C18:1 n9 cis), which accounted for more than 80% weight of total fatty acids. Further, analysis of neutral lipid accumulation using flow cytometry revealed that the mean of the fluorescence intensity increased under optimal conditions. These results indicate that Synechococcus sp. VDW has the potential for use for concurrent water treatment and production of biomass that can be applied as biofuel feedstock.
Collapse
Affiliation(s)
| | - Nuttha Thongchul
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University.,Research Unit in Bioconversion/Bioseparation for Value-Added Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University
| | - Saranya Phunpruch
- Department of Biology, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang.,Bioenergy Research Unit, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang
| | - Aphichart Karnchanatat
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University.,Research Unit in Bioconversion/Bioseparation for Value-Added Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University
| |
Collapse
|
20
|
Determination of Microalgal Lipid Content and Fatty Acid for Biofuel Production. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1503126. [PMID: 29951526 PMCID: PMC5987307 DOI: 10.1155/2018/1503126] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/12/2018] [Accepted: 04/04/2018] [Indexed: 02/02/2023]
Abstract
Biofuels produced from microalgal biomass have received growing worldwide recognition as promising alternatives to conventional petroleum-derived fuels. Among the processes involved, the downstream refinement process for the extraction of lipids from biomass greatly influences the sustainability and efficiency of the entire biofuel system. This review summarizes and compares the current techniques for the extraction and measurement of microalgal lipids, including the gravimetric methods using organic solvents, CO2-based solvents, ionic liquids and switchable solvents, Nile red lipid visualization method, sulfo-phospho-vanillin method, and the thin-layer chromatography method. Each method has its own competitive advantages and disadvantages. For example, the organic solvents-based gravimetric method is mostly used and frequently employed as a reference standard to validate other methods, but it requires large amounts of samples and is time-consuming and expensive to recover solvents also with low selectivity towards desired products. The pretreatment approaches which aimed to disrupt cells and support subsequent lipid extraction through bead beating, microwave, ultrasonication, chemical methods, and enzymatic disruption are also introduced. Moreover, the principles and procedures for the production and quantification of fatty acids are finally described in detail, involving the preparation of fatty acid methyl esters and their quantification and composition analysis by gas chromatography.
Collapse
|
21
|
Vo Hoang Nhat P, Ngo HH, Guo WS, Chang SW, Nguyen DD, Nguyen PD, Bui XT, Zhang XB, Guo JB. Can algae-based technologies be an affordable green process for biofuel production and wastewater remediation? BIORESOURCE TECHNOLOGY 2018; 256:491-501. [PMID: 29472123 DOI: 10.1016/j.biortech.2018.02.031] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/04/2018] [Accepted: 02/05/2018] [Indexed: 06/08/2023]
Abstract
Algae is a well-known organism that its characteristic is prominent for biofuel production and wastewater remediation. This critical review aims to present the applicability of algae with in-depth discussion regarding three key aspects: (i) characterization of algae for its applications; (ii) the technical approaches and their strengths and drawbacks; and (iii) future perspectives of algae-based technologies. The process optimization and combinations with other chemical and biological processes have generated efficiency, in which bio-oil yield is up to 41.1%. Through life cycle assessment, algae bio-energy achieves high energy return than fossil fuel. Thus, the algae-based technologies can reasonably be considered as green approaches. Although selling price of algae bio-oil is still high (about $2 L-1) compared to fossil fuel's price of $1 L-1, it is expected that the algae bio-oil's price will become acceptable in the next coming decades and potentially dominate 75% of the market.
Collapse
Affiliation(s)
- P Vo Hoang Nhat
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia and Department of Environmental and Municipal Engineering, TianjinChengjian University, Tianjin 300384, China
| | - H H Ngo
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia and Department of Environmental and Municipal Engineering, TianjinChengjian University, Tianjin 300384, China.
| | - W S Guo
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia and Department of Environmental and Municipal Engineering, TianjinChengjian University, Tianjin 300384, China
| | - S W Chang
- Department of Environmental Energy & Engineering, Kyonggi University, 442-760, Republic of Korea
| | - D D Nguyen
- Department of Environmental Energy & Engineering, Kyonggi University, 442-760, Republic of Korea; Institution of Research and Development, Duy Tan University, Da Nang, Viet Nam
| | - P D Nguyen
- Faculty of Environment and Natural Resources, University of Technology, Vietnam National University-Ho Chi Minh, District 10, Ho Chi Minh City, Viet Nam
| | - X T Bui
- Faculty of Environment and Natural Resources, University of Technology, Vietnam National University-Ho Chi Minh, District 10, Ho Chi Minh City, Viet Nam
| | - X B Zhang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia and Department of Environmental and Municipal Engineering, TianjinChengjian University, Tianjin 300384, China
| | - J B Guo
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia and Department of Environmental and Municipal Engineering, TianjinChengjian University, Tianjin 300384, China
| |
Collapse
|
22
|
Munk M, Brandão HM, Yéprémian C, Couté A, Ladeira LO, Raposo NRB, Brayner R. Effect of Multi-walled Carbon Nanotubes on Metabolism and Morphology of Filamentous Green Microalgae. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 73:649-658. [PMID: 28687867 DOI: 10.1007/s00244-017-0429-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 06/27/2017] [Indexed: 06/07/2023]
Abstract
Multi-walled carbon nanotubes (MWCNTs) have potential applications in the industrial, agricultural, pharmaceutical, medical, and environmental remediation fields. However, many uncertainties exist regarding the environmental implications of engineered nanomaterials. This study examined the effect of the MWCNTs on metabolic status and morphology of filamentous green microalgae Klebsormidium flaccidum. Appropriate concentrations of MWCNT (1, 50, and 100 μg mL-1) were added to a microalgal culture in the exponential growth phase and incubated for 24, 48, 72, and 96 h. Exposure to MWCNT led to reductions in algal growth after 48 h and decreased on cell viability for all experimental endpoints except for 1 µg mL-1 at 24 h and 100 µg mL-1 after 72 h. At 100 µg mL-1, MWCNTs induced reactive oxygen species (ROS) production and had an effect on intracellular adenosine triphosphate (ATP) content depending on concentration and time. No photosynthetic activity variation was observed. Observations by scanning transmission electron microscopy showed cell damage. In conclusion, we have demonstrated that exposure to MWCNTs affects cell metabolism and microalgal cell morphology. To our best knowledge, this is the first case in which MWCNTs exhibit adverse effects on filamentous green microalgae K. flaccidum. These results contribute to elucidate the mechanism of MWCNT nanotoxicity in the bioindicator organism of terrestrial and freshwater habitats.
Collapse
Affiliation(s)
- Michele Munk
- Department of Biology, Federal University of Juiz de Fora, José Lourenço Kelmer, Campus Universitário, Juiz De Fora, 36036-900, Brazil.
| | - Humberto M Brandão
- Laboratory of Nanotechnology, Brazilian Agricultural Research Corporation (EMBRAPA), Juiz De Fora, 36038-330, Brazil
| | - Claude Yéprémian
- National Museum of Natural History, Communication Molecules and Adaptation of Microorganisms, UMR 7245, Paris, France
| | - Alain Couté
- National Museum of Natural History, Communication Molecules and Adaptation of Microorganisms, UMR 7245, Paris, France
| | - Luiz O Ladeira
- Department of Physics, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Nádia R B Raposo
- Nucleus of Analytical Identification and Quantification (NIQUA), Federal University of Juiz de Fora, Juiz De Fora, 36036-900, Brazil
| | - Roberta Brayner
- University of Paris Diderot, Interfaces, Traitements, Organisation et Dynamique des Systèmes (ITODYS), UMR 7086, Paris, France
| |
Collapse
|
23
|
Lee J, Tsang YF, Kim S, Ok YS, Kwon EE. Energy density enhancement via pyrolysis of paper mill sludge using CO 2. J CO2 UTIL 2017. [DOI: 10.1016/j.jcou.2017.01.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|