1
|
Wang Y, Bai Y, Xu L, Su J, Feng J, Zhang Y, Cheng W, Bai J. Mechanistic insights and performance of Mn redox cycling in a dual-bacteria bioreactor for ammonium and Cr(VI) removal. WATER RESEARCH 2025; 281:123713. [PMID: 40288248 DOI: 10.1016/j.watres.2025.123713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/23/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
The co-contamination of hexavalent chromium (Cr(VI)) and ammonium (NH4+-N) in industrial wastewater has attracted considerable attention due to its serious threats to both ecological systems and public health. Manganese(IV) (Mn(IV))-driven NH4+-N oxidation (Mnammox) coupled with Mn(II)-mediated denitrification (MnOD), built on the Mn redox cycle, is a promising nitrogen removal process, where Mn(II) and NOx--N generated during Mnammox were effectively controlled by MnOD. Herein, a bioreactor integrating Mnammox and MnOD for NH4+-N and Cr(VI) removal was constructed utilizing core-shell gel beads embedded with two core strains and δ-MnO2. When the C/N was 1.5, pH was 6.5, and HRT was 20 h, the removal efficiencies for Cr(VI) and NH4+-N reached 96.3 and 91.3 %, respectively. Cr(VI) can be bioreduced to Cr(III) in bioreactors. Additionally, the microbial activity and electron transfer properties in the Mn redox system were studied under varying Cr(VI) concentrations. High-throughput data revealed that high Cr(VI) concentrations significantly impacted microbial community diversity, while Aromatoleu and Zoogloea consistently remaining the dominant species in the bioreactor. KEGG database analysis showed that appropriately increasing C/N promoted the expression of genes related to nitrification and Mn redox cycling. This study provides novel perspectives on the application of the Mnammox coupled MnOD process driven by the Mn redox cycle for treating NH4+-N and Cr(VI) co-contaminated industrial wastewater.
Collapse
Affiliation(s)
- Yue Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yihan Bai
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Jingting Feng
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ying Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Wenjing Cheng
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jiangtao Bai
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
2
|
Xia C, Cheng W, Ren M, Zhu Y. Chromium(VI) and nitrate removal from groundwater using biochar-assisted zero valent iron autotrophic bioreduction: Enhancing electron transfer efficiency and reducing EPS accumulation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 364:125313. [PMID: 39547561 DOI: 10.1016/j.envpol.2024.125313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/30/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
Current strategies primarily utilize heterotrophic or mixotrophic bioreduction for the simultaneous removal of Cr(VI) and NO3- from groundwater. However, given the oligotrophic nature of groundwater, autotrophic bioreduction could be more appropriate, though it remains notably underdeveloped. Here, an autotrophic bioreduction technology utilizing biochar (BC)-assisted zero valent iron (ZVI) is proposed. The pyrolysis temperature of BC was optimized to enhance electron transfer efficiency and reduce extracellular polymeric substances (EPS) accumulation. BC500, with the superior electron transfer capabilities, was the most effective. After an 11-week period, the ZVI + BC500 biotic column still achieved 100% removal efficiency for Cr(VI) and 93.37 ± 0.33% for NO3-, with initial concentrations of 26 mg/L and 50 mg/L, respectively. Its performance significantly surpasses that of ZVI alone, effectively reducing the interference of Cr(VI) on denitrification. The presence of quinone and phenolic compounds in BC500, serving as electron-accepting and electron-donating groups, improves the efficiency of electron transfer between ZVI and microbes. Metagenomic analysis showed an increase in the growth of autotrophic bacteria such as Hydrogenophaga spp. and Rhodanobacter denitrificans, and heterotrophic bacteria including Arenimonas daejeonensis and Chryseobacterium shandongense. The promotion facilitates the expression of genes associated with Cr(VI) reduction (chrR, nemA) and denitrification (narG, nirS). BC500 also enhanced EPS production, which facilitates the adsorption and reduction of Cr(VI), mitigating its inhibitory effects on denitrification. Notably, in the ZVI + BC500 biotic column, the accumulated EPS primarily consists of loosely bound EPS rather than tightly bound EPS, potentially reducing the risk of pore clogging during in-situ groundwater treatment.
Collapse
Affiliation(s)
- Chuanjin Xia
- School of Life and Environmental Sciences, Shaoxing University, 508 Huancheng West Road, Shaoxing, Zhejiang, 312000, PR China; School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, Gansu, 730000, PR China
| | - Weidong Cheng
- School of Life and Environmental Sciences, Shaoxing University, 508 Huancheng West Road, Shaoxing, Zhejiang, 312000, PR China
| | - Meng Ren
- School of Life and Environmental Sciences, Shaoxing University, 508 Huancheng West Road, Shaoxing, Zhejiang, 312000, PR China
| | - Yuling Zhu
- School of Life and Environmental Sciences, Shaoxing University, 508 Huancheng West Road, Shaoxing, Zhejiang, 312000, PR China.
| |
Collapse
|
3
|
Xu F, Bao J, Liu Q, He X, Zhou Y, Wang H, Xing J, Zhou L, Yuan J. Simultaneous natural attenuation of Cr(VI) and nitrate in the hyporheic zone sediments from an upstream tributary of the Jinsha River in the Sichuan Basin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174145. [PMID: 38909795 DOI: 10.1016/j.scitotenv.2024.174145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/21/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
The coexistence of hexavalent chromium (Cr(VI)) and nitrate (NO3-) in groundwater and surface water presents a considerable challenge for the natural attenuation of these two contaminants because their interactions in nature remain contentious. This study investigated the interplay between Cr(VI) and NO3- in hyporheic zone (HZ) sediments by integrating Cr(VI) reduction kinetics, NO3- transformation, microbial community structure, and a three-rate model. The concurrent natural attenuation of Cr(VI) and NO3- in the sediments was significantly influenced by their initial concentrations and redox conditions. The reduction of low concentrations of Cr(VI) (37.1 and 96.2 μM) was slightly enhanced by NO3-, while inhibitory effects were observed at high concentrations of Cr(VI) (200.0 μM). However, except for an initial low concentration of Cr(VI) (37.1 μM) and NO3- (450 μM), the reduction of NO3- was adversely affected by Cr(VI). The reduction rates and efficiencies of Cr(VI) and NO3- were noticeably lower under aerobic conditions than under anaerobic conditions. This phenomenon can be attributed to the presence of O2, which decreased the selectivity of sediments-associated Fe(II) towards Cr(VI) and NO3- and induced alterations in the microbial community structure, leading to subsequent changes in NO3- transformation. Furthermore, the three-rate model represents a robust approach for elucidating the reduction of Cr(VI) in the presence of co-contaminants, such as NO3- contamination under diverse redox conditions. This study provides further insights into the interaction mechanism between Cr(VI) and NO3- within the HZ, necessitating the consideration of the microbial toxicity of Cr(VI) and electron competition among Cr(VI), NO3-, and O2.
Collapse
Affiliation(s)
- Fen Xu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, People's Republic of China; College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, People's Republic of China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu 610059, People's Republic of China
| | - Junqin Bao
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, People's Republic of China; College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, People's Republic of China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu 610059, People's Republic of China
| | - Qiang Liu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, People's Republic of China; College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, People's Republic of China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu 610059, People's Republic of China
| | - Xiaoxia He
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, People's Republic of China; College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, People's Republic of China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu 610059, People's Republic of China
| | - Yaqian Zhou
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, People's Republic of China; College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, People's Republic of China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu 610059, People's Republic of China
| | - Hong Wang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, People's Republic of China; College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, People's Republic of China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu 610059, People's Republic of China
| | - Jiamin Xing
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, People's Republic of China
| | - Lun Zhou
- Zhongshan Public Water Investment Co., Ltd, Zhongshan 528403, People's Republic of China
| | - Jianfei Yuan
- Chengdu Center, China Geological Survey (Geosciences Innovation Center of Southwest China), Chengdu 610218, People's Republic of China.
| |
Collapse
|
4
|
Gui M. Effect of humic acid on aerobic denitrification by Achromobacter sp. strain GAD-3. J Biosci Bioeng 2024; 138:338-344. [PMID: 39030116 DOI: 10.1016/j.jbiosc.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 06/15/2024] [Accepted: 06/20/2024] [Indexed: 07/21/2024]
Abstract
Humic acid (HA), a common natural organic matter, could affect conventional anoxic denitrification. Aim of this study was to investigate effect of HA on the process of aerobic denitrification in Achromobacter sp. GAD-3, an aerobic denitrifying strain. The findings demonstrated that an increase in HA concentrations (≥5 mg L-1) promoted the aerobic denitrification process (excluding N2O reduction), manifesting as higher rates of nitrate removal (6.67-11.1 mg L-1 h-1) and lower levels of nitrite accumulation (30.2-20.7 mg L-1). This was attributed to the increased electron transfer activities and denitrifying reductase activities (including NAR, NIR and NOR) facilitated by HA. Accordingly, the expression of denitrification genes such as napA, cnorB, and nirS was enhanced by HA. Nonetheless, the nosZ gene and N2OR activity underwent suppression by HA, which was accountable for N2O emission. It is crucial to understand the HA mechanism towards aerobic denitrifiers for wastewater treatment plants to enhance nitrogen removal.
Collapse
Affiliation(s)
- Mengyao Gui
- School of Resources and Environment, Nanchang University, Nanchang 330031, China; Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang 330031, China.
| |
Collapse
|
5
|
Gong Z, Huang M, Wang C, Wang Z, Oh WD, Wu X, Zhou T. Fenton-conditioning of landfill leachate biological sludge enables biochar for efficient Cr(Ⅵ)removal: Occurrence of oxygen-centered free radicals. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:122070. [PMID: 39098068 DOI: 10.1016/j.jenvman.2024.122070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Fenton-conditioning is commonly used to improve dewatering ability for municipal biological sludge, however, its application in industries is scarce. In this study, biochar (FT-BC) was successfully synthesized from a Fenton-conditioned landfill leachate biological sludge under oxygen-limited. As compared to the corresponding blank and poly ferric-pretreated biochars (BC and PF-BC), moderate Fenton conditioning of the sludge could enable good removal performance for Cr (Ⅵ) by FT-BC. It was found that the oxygen central free radicals (OCFRs) on the biochar surface was intensively promoted due to Fenton electrophilic addition of ·OH onto the oxygen-containing functional groups in biomass. The amounts of OCFRs correlated positively well with the removal efficiency, indicating these persistent free radicals (PFRs)would mainly responsible for the reductive immobilization of Cr(VI)on the FT-BC surface. This study is expected to provide a new method for reclamation of industrial biological sludges with poor agglomeration by introducing simple Fenton pre-conditioning.
Collapse
Affiliation(s)
- Zupeng Gong
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Mingjie Huang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China.
| | - Chen Wang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Zimeng Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, PR China
| | - Wen-da Oh
- School of Chemical Sciences, Universiti Sains Malaysia, Penang, 11800, Malaysia
| | - Xiaohui Wu
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Tao Zhou
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China.
| |
Collapse
|
6
|
Wang Q, Zhang C, Song J, Bamanu B, Zhao Y. Inhibitory mechanism of Cr(VI) on sulfur-based denitrification: Bio-toxicity, bio-electron characteristics, and microbial evolution. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134447. [PMID: 38692000 DOI: 10.1016/j.jhazmat.2024.134447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/24/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024]
Abstract
Sulfur-based denitrification is a promising technology for efficient nitrogen removal in low-carbon wastewater, while it is easily affected by toxic substances. This study revealed the inhibitory mechanism of Cr(VI) on thiosulfate-based denitrification, including bio-toxicity and bio-electron characteristics response. The activity of nitrite reductase (NIR) was more sensitive to Cr(VI) than that of nitrate reductase (NAR), and NIR was inhibited by 21.32 % and 19.86 % under 5 and 10 mg/L Cr(VI), resulting in 10.12 and 15.62 mg/L of NO2--N accumulation. The biofilm intercepted 36.57 % of chromium extracellularly by increasing 25.78 % of extracellular polymeric substances, thereby protecting microbes from bio-toxicity under 5 mg/L Cr(VI). However, it was unable to resist 20-30 mg/L of Cr(VI) bio-toxicity as 19.95 and 14.29 mg Cr/(g volatile suspended solids) invaded intracellularly, inducing the accumulation of reactive oxygen species by 165.98 % and 169.12 %, which triggered microbial oxidative-stress and damaged the cells. In terms of electron transfer, S2O32- oxidation was inhibited, and parts of electrons were redirected intracellularly to maintain microbial activity, resulting in insufficient electron donors. Meanwhile, the contents of flavin adenine dinucleotide and cytochrome c decreased under 5-30 mg/L Cr(VI), reducing the electron acquisition rate of denitrification. Thermomonas (the dominant genus) possessed denitrification and Cr(VI) resistance abilities, playing an important role in antioxidant stress and biofilm formation. ENVIRONMENTAL IMPLICATION: Sulfur-based denitrification (SBD) is a promising method for nitrate removal in low-carbon wastewater, while toxic heavy metals such as Cr(VI) negatively impair denitrification. This study elucidated Cr(VI) inhibitory mechanisms on SBD, including bio-toxicity response, bio-electron characteristics, and microbial community structure. Higher concentrations Cr(VI) led to intracellular invasion and oxidative stress, evidenced by ROS accumulation. Moreover, Cr(VI) disrupted electron flow by inhibiting thiosulfate oxidation and affecting electron acquisition by denitrifying enzymes. This study provided valuable insights into Cr(VI) toxicity, which is of great significance for improving wastewater treatment technologies and maintaining efficient and stable operation of SBD in the face of complex environmental challenges.
Collapse
Affiliation(s)
- Qian Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Chenggong Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Jinxin Song
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Bibek Bamanu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
7
|
Hongxia M, Shuaijun Z, Jiwen L, Jie S, Kaijia R, Jiannan L, Quanrui C, Yinyin S, Tingting S, Jingfeng F. Promoting the denitrification process by heavy metals in Liaohe Estuary sediment. MARINE POLLUTION BULLETIN 2024; 203:116408. [PMID: 38696947 DOI: 10.1016/j.marpolbul.2024.116408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/04/2024]
Abstract
The impact of heavy metal ions on the biodenitrification process remains unknown, which is the key to understand the nitrogen cycle in estuarine areas. Here, denitrification rate and the abundance of five denitrifying enzyme genes (narG, nirK, napA, norB and nosZ) in Liaohe Estuary sediments were examined, and the community structure of nirK denitrifying bacteria was also analyzed. The results demonstrate a significant positive correlation between heavy metal content (Cu2+, Zn2+, and Cr) and the denitrification rate, and the abundance of napA/norB (periplasmic nitrate reductase and nitric-oxide reductase) in sediments. The dominant narG denitrifiers were Pseudomonas, Hydrogenophaga, and Serratia known to be tolerant to heavy metal pollution. Sediment particle size, NO3-, NO2-, Zn2+, and Cd2+ were the key factors influencing the denitrifying community structure. These findings suggest that heavy metals may enhance the aerobic denitrification process in sediments and mitigate the adverse effects of high dissolved oxygen levels.
Collapse
Affiliation(s)
- Ming Hongxia
- National Marine Environmental Monitoring Center, Dalian 116023, China; State Environmental Protection Key Laboratory of Coastal Ecosystem, Dalian 116023, China
| | - Zan Shuaijun
- Groundwater Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Liu Jiwen
- Ocean University of China, Qingdao 266100, China
| | - Su Jie
- National Marine Environmental Monitoring Center, Dalian 116023, China; State Environmental Protection Key Laboratory of Coastal Ecosystem, Dalian 116023, China
| | - Ren Kaijia
- National Marine Environmental Monitoring Center, Dalian 116023, China; State Environmental Protection Key Laboratory of Coastal Ecosystem, Dalian 116023, China
| | - Lin Jiannan
- National Marine Environmental Monitoring Center, Dalian 116023, China; State Environmental Protection Key Laboratory of Coastal Ecosystem, Dalian 116023, China; College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Chen Quanrui
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
| | - Shi Yinyin
- National Marine Environmental Monitoring Center, Dalian 116023, China; State Environmental Protection Key Laboratory of Coastal Ecosystem, Dalian 116023, China
| | - Shi Tingting
- National Marine Environmental Monitoring Center, Dalian 116023, China; State Environmental Protection Key Laboratory of Coastal Ecosystem, Dalian 116023, China
| | - Fan Jingfeng
- Ecological Environment Monitoring and Scientistic Research Center, Taihu Basin & East China Sea Ecological Environment Supervision and Administration Bureau, Ministry of Ecology and Environment, Shanghai 200125, China; National Marine Environmental Monitoring Center, Dalian 116023, China; State Environmental Protection Key Laboratory of Coastal Ecosystem, Dalian 116023, China.
| |
Collapse
|
8
|
Wu M, Xu Y, Zhao C, Huang H, Liu C, Duan X, Zhang X, Zhao G, Chen Y. Efficient nitrate and Cr(VI) removal by denitrifier: The mechanism of S. oneidensis MR-1 promoting electron production, transportation and consumption. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133675. [PMID: 38508109 DOI: 10.1016/j.jhazmat.2024.133675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/21/2024] [Accepted: 01/29/2024] [Indexed: 03/22/2024]
Abstract
When Cr(VI) and nitrate coexist, the efficiency of both bio-denitrification and Cr(VI) bio-reduction is poor because chromate hinders bacterial normal functions (i.e., electron production, transportation and consumption). Moreover, under anaerobic condition, the method about efficient nitrate and Cr(VI) removal remained unclear. In this paper, the addition of Shewanella oneidensis MR-1 to promote the electron production, transportation and consumption of denitrifier and cause an increase in the removal of nitrate and Cr(VI). The efficiency of nitrate and Cr(VI) removal accomplished by P. denitrificans as a used model denitrifier increased respectively from 51.3% to 96.1% and 34.3% to 99.8% after S. oneidensis MR-1 addition. The mechanism investigations revealed that P. denitrificans provided S. oneidensis MR-1 with lactate, which was utilized to secreted riboflavin and phenazine by S. oneidensis MR-1. The riboflavin served as coenzymes of cellular reductants (i.e., thioredoxin and glutathione) in P. denitrificans, which created favorable intracellular microenvironment conditions for electron generation. Meanwhile, phenazine promoted biofilm formation, which increased the adsorption of Cr(VI) on the cell surface and accelerated the Cr(VI) reduction by membrane bound chromate reductases thereby reducing damage to other enzymes respectively. Overall, this strategy reduced the negative effect of chromate, thus improved the generation, transportation, and consumption of electrons. SYNOPSIS: The presence of S. oneidensis MR-1 facilitated nitrate and Cr(VI) removal by P. denitrificans through decreasing the negative effect of chromate due to the metabolites' secretion.
Collapse
Affiliation(s)
- Meirou Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yanan Xu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Chunxia Zhao
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Haining Huang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Chao Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xu Duan
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xuemeng Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Guohua Zhao
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
9
|
Jiao T, Zhao C, Zhang M, Han F, Liu Z, Zhang S, Zhou W. Recovery mechanism of heterotrophic ammonia assimilation system under chromium hexavalent stress. BIORESOURCE TECHNOLOGY 2024; 399:130615. [PMID: 38513926 DOI: 10.1016/j.biortech.2024.130615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Heterotrophic ammonia assimilation (HAA), an innovative technology for high-salinity wastewater treatment, demonstrates self-recovery capability following Cr (VI) stress. This study investigated the inhibitory effects and self-restoration mechanisms of Cr (VI) at various stress levels. The removal efficiencies of NH4+-N and Cr (VI) in the HAA gradually decreased with increasing influent Cr (VI) concentration. Exposure to Cr (VI) increased the amounts of high-molecular-weight proteins in soluble microbial products and stimulated the generation of extracellular polymeric substances. Heterotrophic functional microorganisms with Cr (VI) tolerance, such as Marinobacter and Planktosalinus, were enriched. An assimilation pathway gene (glnA) and a Cr (VI)-related gene (atoB) were also upregulated. After ceasing Cr (VI) addition, the HAA system demonstrated a 17.1 % increase in the removal efficiency of NH4+-N, which was attributable to its self-recovery ability. This study provides a scientific and theoretical foundation for the HAA process in resisting the impact of heavy-metal-containing wastewater and self-recovery.
Collapse
Affiliation(s)
- Tong Jiao
- School of Civil Engineering, Shandong University, Jinan, Shandong, PR China; Laboratory of Water-sediment Regulation and Eco-decontamination, Jinan, Shandong, PR China
| | - Chuanfu Zhao
- School of Civil Engineering, Shandong University, Jinan, Shandong, PR China; Laboratory of Water-sediment Regulation and Eco-decontamination, Jinan, Shandong, PR China
| | - Mengru Zhang
- School of Civil Engineering, Shandong University, Jinan, Shandong, PR China; Laboratory of Water-sediment Regulation and Eco-decontamination, Jinan, Shandong, PR China
| | - Fei Han
- School of Civil Engineering, Shandong University, Jinan, Shandong, PR China; Laboratory of Water-sediment Regulation and Eco-decontamination, Jinan, Shandong, PR China
| | - Zhe Liu
- Laboratory of Water-sediment Regulation and Eco-decontamination, Jinan, Shandong, PR China; School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, PR China
| | - Shuhui Zhang
- School of Civil Engineering, Shandong University, Jinan, Shandong, PR China; Laboratory of Water-sediment Regulation and Eco-decontamination, Jinan, Shandong, PR China
| | - Weizhi Zhou
- School of Civil Engineering, Shandong University, Jinan, Shandong, PR China; Laboratory of Water-sediment Regulation and Eco-decontamination, Jinan, Shandong, PR China.
| |
Collapse
|
10
|
Wang Y, Zhou Z, Zhang W, Guo J, Li N, Zhang Y, Gong D, Lyu Y. Metabolic mechanism of Cr(VI) pollution remediation by Alicycliphilus denitrificans Ylb10. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169135. [PMID: 38070572 DOI: 10.1016/j.scitotenv.2023.169135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/16/2023] [Accepted: 12/04/2023] [Indexed: 01/18/2024]
Abstract
Cr(VI) is a well-known toxic pollutant and its remediation has attracted great attention. It is important to continuously discover and explore new high-efficiency Cr(VI) reducing bacteria to further improve the efficiency of Cr(VI) pollution remediation. In this paper, metabolic mechanism of Cr(VI) reduction in a new highly efficient Cr(VI) reducing bacterium, Alicycliphilus denitrificans Ylb10, was investigated. The results showed that Ylb10 could tolerate and completely reduce 450 mg/L Cr(VI). Cr(VI) can be reduced in the intracellular compartment, membrane and the extracellular compartment, with the plasma membrane being the main active site for Cr(VI) reduction. With the addition of NADH, the reduction efficiency of cell membrane components for Cr(VI) increased 2.3-fold. The omics data analysis showed that sulfite reductase CysJ, thiosulfate dehydrogenase TsdA, nitrite reductase NrfA, nitric oxide reductase NorB, and quinone oxidoreductase ChrR play important roles in the reduction of Cr(VI), in the intracellular, and the extracellular compartment, and the membrane of Ylb10, and therefore Cr(VI) was reduced by the combined action of several reductases at these three locations.
Collapse
Affiliation(s)
- Yue Wang
- College of Biological & Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Zhiyi Zhou
- College of Biological & Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Wen Zhang
- College of Biological & Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China; Hubei Engineering Research Center for Biological Jiaosu, China Three Gorges University, Yichang 443002, China; Key Laboratory of Functional Yeast, China National Light Industry, China Three Gorges University, Yichang 443002, China
| | - Jinling Guo
- College of Biological & Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China; Hubei Engineering Research Center for Biological Jiaosu, China Three Gorges University, Yichang 443002, China; Key Laboratory of Functional Yeast, China National Light Industry, China Three Gorges University, Yichang 443002, China
| | - Ning Li
- College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang 443002, China
| | - Yaoping Zhang
- DOE-Great Lakes Bioenergy Research Center (GLBRC), University of Wisconsin-Madison, Madison, WI, USA
| | - Dachun Gong
- College of Biological & Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China; Hubei Engineering Research Center for Biological Jiaosu, China Three Gorges University, Yichang 443002, China; Key Laboratory of Functional Yeast, China National Light Industry, China Three Gorges University, Yichang 443002, China
| | - Yucai Lyu
- College of Biological & Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China; Hubei Engineering Research Center for Biological Jiaosu, China Three Gorges University, Yichang 443002, China; Key Laboratory of Functional Yeast, China National Light Industry, China Three Gorges University, Yichang 443002, China.
| |
Collapse
|
11
|
Wu Y, Zhao Y, Jia X, Liu Y, Niu J. Phosphomolybdic acid enhancing hexavalent chromium bio-reduction in long-term operation: Optimal dosage and mechanism analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167328. [PMID: 37751836 DOI: 10.1016/j.scitotenv.2023.167328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/06/2023] [Accepted: 09/22/2023] [Indexed: 09/28/2023]
Abstract
The bio-reduction of Cr(VI) is regarded as a feasible and safe strategy to treat Cr pollution. The optimal concentration of phosphomolybdic acid (PMo12) for Cr(VI) reduction and the catalytic mechanism of electron behavior (electron production, electron transport and electron consumption) were revealed in denitrifying biofilm systems. The results showed that 0.1 mM PMo12 could achieve 92.5 % removal efficiency of 90 mg/L Cr(VI), which was 47.7 % higher than that of PMo12-free system, and improve the extracellular fixation capacity of Cr(III). The activity of peroxidase (POD) was significantly promoted by PMo12 to repair oxidative stress damage caused by Cr(VI) reduction. Additionally, analysis of electron behavior demonstrated that PMo12 could enhance key indicators of electron production, transport and consumption. This led to rapid activation of the electron pathway inhibited by Cr(VI), enabling simultaneous efficient nitrogen removal and Cr(VI) reduction in the biofilm system. This discovery will provide an efficient technique for Cr-containing wastewater treatment.
Collapse
Affiliation(s)
- Yichen Wu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Xvlong Jia
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yinuo Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Jiaojiao Niu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
12
|
Ahn Y, Park S, Kim HH, Basak B, Yun ST, Jeon BH, Choi J. Field evaluation of carbon injection method for in-situ biological denitrification in groundwater using geochemical and metataxonomic analyses. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122719. [PMID: 37866751 DOI: 10.1016/j.envpol.2023.122719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/27/2023] [Accepted: 10/08/2023] [Indexed: 10/24/2023]
Abstract
This study focuses on the bioremediation of nitrate-contaminated groundwater, which has become a significant environmental problem due to the increasing usage of fertilizers and sewage disposal. The nitrate reduction efficiencies of biological denitrification by injection of carbon source in a pilot-scale treatment system setup were investigated at a groundwater contamination site. The field test was conducted using acetate as a carbon source for 22 days to assess the nitrate reduction efficiencies of in-situ treatment. Geochemical parameters and microbial community analysis using next-generation sequencing were performed before and after carbon source injection. After 12 h of reaction time, nitrate concentration decreased from 31.6 to 4.2 mg-N/L at PC-2, and then remained stable at 3.9 mg-N/L. The nitrate reduction rate when acetate was injected was 29.0 mg-N/L/day. Aquabacterium commune, pseudomonas brassicacearum, dechloromonas denitrificans, and Massilia FAOS were dominant species after acetate injection. Predictive metabolic pathway analysis indicated that nitrate reduction metabolisms during injection of acetate were denitrification and assimilatory nitrate reduction to ammonium. The evaluated hazard quotient of nitrate-contaminated groundwater significantly decreased after acetate injection (non-carcinogenic risk decreased from 1.176 to 0.134 for children). This research could provide fundamental information for decision-makers in nitrate-contaminated groundwater quality protection and management.
Collapse
Affiliation(s)
- Yongtae Ahn
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon 16227, Republic of Korea; Department of Earth Resources & Environmental Engineering, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea; Center for Environment, Health and Welfare Research, Korea Institute of Science and Technology, Hwarang-ro 14, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Sanghyun Park
- Center for Environment, Health and Welfare Research, Korea Institute of Science and Technology, Hwarang-ro 14, Seongbuk-gu, Seoul 02792, Republic of Korea; Green School, Korea University, Seoul, 02841, Republic of Korea
| | - Hoo Hugo Kim
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon 16227, Republic of Korea; Center for Water Cycle Research, Korea Institute of Science and Technology, Hwarang-ro 14, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Bikram Basak
- Center for Creative Convergence Education, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea; Petroleum and Mineral Research Institute, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Seong-Taek Yun
- Green School, Korea University, Seoul, 02841, Republic of Korea
| | - Byong-Hun Jeon
- Department of Earth Resources & Environmental Engineering, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Jaeyoung Choi
- Center for Environment, Health and Welfare Research, Korea Institute of Science and Technology, Hwarang-ro 14, Seongbuk-gu, Seoul 02792, Republic of Korea.
| |
Collapse
|
13
|
Huang Y, Tang J, Zhang B, Long ZE, Ni H, Fu X, Zou L. Influencing factors and mechanism of Cr(VI) reduction by facultative anaerobic Exiguobacterium sp. PY14. Front Microbiol 2023; 14:1242410. [PMID: 37637125 PMCID: PMC10449125 DOI: 10.3389/fmicb.2023.1242410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 07/21/2023] [Indexed: 08/29/2023] Open
Abstract
Microbial reduction is an effective way to deal with hexavalent chromium [Cr(VI)] contamination in the environment, which can significantly mitigate the biotoxicity and migration of this pollutant. The present study investigated the influence of environmental factors on aqueous Cr(VI) removal by a newly isolated facultative anaerobic bacterium, Exiguobacterium sp. PY14, and revealed the reduction mechanism. This strain with a minimum inhibitory concentration of 400 mg/L showed the strongest Cr(VI) removal capacity at pH 8.0 because of its basophilic nature, which was obviously depressed by increasing the Cr(VI) initial concentration under both aerobic and anaerobic conditions. In contrast, the removal rate constant for 50 mg/L of Cr(VI) under anaerobic conditions (1.82 × 10-2 h-1) was 3.3 times that under aerobic conditions. The co-existence of Fe(III) and Cu(II) significantly promoted the removal of Cr(VI), while Ag(I), Pb(II), Zn(II), and Cd(II) inhibited it. Electron-shuttling organics such as riboflavin, humic acid, and anthraquinone-2,6-disulfonate promoted the Cr(VI) removal to varying degrees, and the enhancement was more significant under anaerobic conditions. The removal of aqueous Cr(VI) by strain PY14 was demonstrated to be due to cytoplasmic rather than extracellular reduction by analyzing the contributions of different cell components, and the end products existed in the aqueous solution in the form of organo-Cr(III) complexes. Several possible genes involved in Cr(VI) metabolism, including chrR and chrA that encode well-known Chr family proteins responsible for chromate reduction and transport, respectively, were identified in the genome of PY14, which further clarified the Cr(VI) reduction pathway of this strain. The research progress in the influence of crucial environmental factors and biological reduction mechanisms will help promote the potential application of Exiguobacterium sp. PY14 with high adaptability to environmental stress in Cr(VI) removal in the actual environment.
Collapse
Affiliation(s)
- Yunhong Huang
- Nanchang Key Laboratory of Microbial Resources Exploitation and Utilization from Poyang Lake Wetland, College of Life Sciences, Jiangxi Normal University, Nanchang, China
| | - Jie Tang
- Nanchang Key Laboratory of Microbial Resources Exploitation and Utilization from Poyang Lake Wetland, College of Life Sciences, Jiangxi Normal University, Nanchang, China
| | - Bei Zhang
- College of Art and Design, Jiangxi Institute of Fashion Technology, Nanchang, China
| | - Zhong-Er Long
- Nanchang Key Laboratory of Microbial Resources Exploitation and Utilization from Poyang Lake Wetland, College of Life Sciences, Jiangxi Normal University, Nanchang, China
| | - Haiyan Ni
- Nanchang Key Laboratory of Microbial Resources Exploitation and Utilization from Poyang Lake Wetland, College of Life Sciences, Jiangxi Normal University, Nanchang, China
| | - Xueqin Fu
- Nanchang Key Laboratory of Microbial Resources Exploitation and Utilization from Poyang Lake Wetland, College of Life Sciences, Jiangxi Normal University, Nanchang, China
| | - Long Zou
- Nanchang Key Laboratory of Microbial Resources Exploitation and Utilization from Poyang Lake Wetland, College of Life Sciences, Jiangxi Normal University, Nanchang, China
| |
Collapse
|
14
|
Feng L, Sun FY, Yang J, Cui D, Li ZH, Pi S, Zhao HP, Li A. Intracellular electron competition in response to the oxygen pressure of the aerobic denitrification process in an O 2-based membrane biofilm reactor (MBfR) for nitrate removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162592. [PMID: 36889408 DOI: 10.1016/j.scitotenv.2023.162592] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/14/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
This study quantitatively investigated the effect of dissolved oxygen (DO) concentration on aerobic denitrification, and showed the mechanism of aerobic denitrification from the perspective of electron competition by cultivating Pseudomonas stutzeri T13, a typical aerobic denitrifier, in an oxygen-based membrane biofilm reactor (O2-based MBfR). The experiments showed that when the O2 pressure increased from 2 to 10 psig , the average effluent DO concentration during steady-state phases increased from 0.02 to 4.23 mg/L, and the corresponding mean NO3--N removal efficiency slightly decreased from 97.2 % to 90.9 %. Compared to the maximum theoretical flux of O2 in various phases, the actual O2 transfer flux increased from a limited status (2.07 e- eq m-2 d-1 at 2 psig) to an excessive status (5.58 e- eq m-2 d-1 at 10 psig). The increase of DO inhibited the electron availability for aerobic denitrification, which decreased from 23.97 % to 11.46 %, accompanying the increased electron availability for aerobic respiration from 15.87 % to 28.36 %. Unlike the napA and norB genes, the expression of the nirS and nosZ genes was significantly affected by DO, with the highest relative fold-changes of 6.5 and 6.13 at 4 psig O2, respectively. The results contribute to clarifying the mechanism of aerobic denitrification from the quantitative perspective of electron distribution and the qualitative perspective of gene expression, which benefits the control and practical application of aerobic denitrification for wastewater treatment.
Collapse
Affiliation(s)
- Liang Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Harbin Institute of Technology (Shenzhen), Guangdong 518055, PR China
| | - Fei-Yun Sun
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Harbin Institute of Technology (Shenzhen), Guangdong 518055, PR China
| | - Jixian Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Di Cui
- Engineering Research Center for Medicine, College of Pharmacy, Harbin University of Commerce, Harbin 150076, People's Republic of China
| | - Zuo-Hua Li
- Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Harbin Institute of Technology (Shenzhen), Guangdong 518055, PR China
| | - Shanshan Pi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Harbin Institute of Technology (Shenzhen), Guangdong 518055, PR China
| | - He-Ping Zhao
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Ang Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China.
| |
Collapse
|
15
|
Feng H, Yang W, Zhang Y, Ding Y, Chen L, Kang Y, Huang H, Chen R. Electroactive microorganism-assisted remediation of groundwater contamination: Advances and challenges. BIORESOURCE TECHNOLOGY 2023; 377:128916. [PMID: 36940880 DOI: 10.1016/j.biortech.2023.128916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/11/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Groundwater contamination has become increasingly prominent, therefore, the development of efficient remediation technology is crucial for improving groundwater quality. Bioremediation is cost-effective and environmentally friendly, while coexisting pollutant stress can affect microbial processes, and the heterogeneous character of groundwater medium can induce bioavailability limitations and electron donor/acceptor imbalances. Electroactive microorganisms (EAMs) are advantageous in contaminated groundwater because of their unique bidirectional electron transfer mechanism, which allows them to use solid electrodes as electron donors/acceptors. However, the relatively low-conductivity groundwater environment is unfavorable for electron transfer, which becomes a bottleneck problem that limits the remediation efficiency of EAMs. Therefore, this study reviews the recent advances and challenges of EAMs applied in the groundwater environment with complex coexisting ions, heterogeneity, and low conductivity and proposes corresponding future directions.
Collapse
Affiliation(s)
- Huajun Feng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China; College of Environment and Resources, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Wanyue Yang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Yangcheng Ding
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China
| | - Long Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China
| | - Ying Kang
- Zhejiang Ecological Environmental Monitoring Center, 117 Xueyuan Road, Hangzhou 310012, Zhejiang, China
| | - Huan Huang
- Zhejiang Ecological Environmental Monitoring Center, 117 Xueyuan Road, Hangzhou 310012, Zhejiang, China
| | - Ruya Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China.
| |
Collapse
|
16
|
Yu X, Mao C, Zong S, Khan A, Wang W, Yun H, Zhang P, Shigaki T, Fang Y, Han H, Li X. Transcriptome analysis reveals self-redox mineralization mechanism of azo dyes and novel decolorizing hydrolases in Aspergillus tabacinus LZ-M. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 325:121459. [PMID: 36934962 DOI: 10.1016/j.envpol.2023.121459] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
Bio-degradation is the most affordable method of azo dye decontamination, while its drawbacks such as aromatic amines accumulation and low degradation efficiency must be overcome. In this study, a novel mechanism of azo dye degradation by a fungus was discovered. At a concentration of 400 mg/L, the decolorization efficiency of Acid Red 73 (AR73) by Aspergillus tabacinus LZ-M was 90.28%. Metabolite analysis and transcriptome sequencing analysis revealed a self-redox process of AR73 degradation, where the electrons generated in carbon oxidation were transferred to the reduction of -C-N = and -NN. The metabolites, 2-hydroxynaphthalene and N-phenylnitrous amide were mineralized into CO2 through catechol pathway and a glycolytic process. Furthermore, the mineralization ratio of dye was computed to be 31.8% by the carbon balance and electron balance. By using comparative transcriptome, a novel decoloring enzyme Ord95 was discovered in unknown genes through gene cloning. It hydrolyzed AR73 into 2-hydroxynaphthalene and N-phenylnitrous amide, containing a glutathione S-transferase domain with three arginines as key active sites. Here the new mechanism of azo dye degradation was discovered with identification of a novel enzyme in Aspergillus tabacinus LZ-M.
Collapse
Affiliation(s)
- Xuan Yu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, 730000, Gansu, China
| | - Chunlan Mao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, 730000, Gansu, China
| | - Simin Zong
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, 730000, Gansu, China
| | - Aman Khan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, 730000, Gansu, China
| | - Wenxue Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, 730000, Gansu, China
| | - Hui Yun
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, 730000, Gansu, China
| | - Peng Zhang
- Key Laboratory for Resources Utilization Technoloy of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Duanjiatanlu #1272, Lanzhou, 730020, Gansu, China
| | - Toshiro Shigaki
- Laboratory of Plant Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yitian Fang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Huawen Han
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, 730000, Gansu, China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
17
|
Islam MM, Mohana AA, Rahman MA, Rahman M, Naidu R, Rahman MM. A Comprehensive Review of the Current Progress of Chromium Removal Methods from Aqueous Solution. TOXICS 2023; 11:toxics11030252. [PMID: 36977017 PMCID: PMC10053122 DOI: 10.3390/toxics11030252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 06/01/2023]
Abstract
Chromium (Cr) exists in aqueous solution as trivalent (Cr3+) and hexavalent (Cr6+) forms. Cr3+ is an essential trace element while Cr6+ is a dangerous and carcinogenic element, which is of great concern globally due to its extensive applications in various industrial processes such as textiles, manufacturing of inks, dyes, paints, and pigments, electroplating, stainless steel, leather, tanning, and wood preservation, among others. Cr3+ in wastewater can be transformed into Cr6+ when it enters the environment. Therefore, research on Cr remediation from water has attracted much attention recently. A number of methods such as adsorption, electrochemical treatment, physico-chemical methods, biological removal, and membrane filtration have been devised for efficient Cr removal from water. This review comprehensively demonstrated the Cr removal technologies in the literature to date. The advantages and disadvantages of Cr removal methods were also described. Future research directions are suggested and provide the application of adsorbents for Cr removal from waters.
Collapse
Affiliation(s)
- Md. Monjurul Islam
- Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, Islamic University, Kushtia 7003, Bangladesh
| | - Anika Amir Mohana
- Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, Islamic University, Kushtia 7003, Bangladesh
| | - Md. Aminur Rahman
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
- Zonal Laboratory, Department of Public Health Engineering (DPHE), Jashore 7400, Bangladesh
| | - Mahbubur Rahman
- Chittagong University of Engineering and Technology, Faculty of Civil Engineering, Chattogram 4349, Bangladesh
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
- CRC for Contamination Assessment and Remediation of the Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
- CRC for Contamination Assessment and Remediation of the Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
- Department of General Educational Development, Faculty of Science & Information Technology, Daffodil International University, Dhaka 1207, Bangladesh
| |
Collapse
|
18
|
Yu X, Mao C, Wang W, Kulshrestha S, Zhang P, Usman M, Zong S, Hilal MG, Fang Y, Han H, Li X. Reduction of metronidazole in municipal wastewater and protection of activated sludge system using a novel immobilized Aspergillus tabacinus LZ-M. BIORESOURCE TECHNOLOGY 2023; 369:128509. [PMID: 36538960 DOI: 10.1016/j.biortech.2022.128509] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Metronidazole (MNZ) accumulation inhibits municipal wastewater treatment bio-systems, and an effective solution to augment anaerobic activated sludge (AAS) is required. This research discovered that Aspergillus tabacinus LZ-M could degrade 77.39% of MNZ at 5 mg/L. MNZ was metabolized into urea, and the enzymes involved in its degradation were aminotransferase, methyltransferase, monooxygenase, and CN cleavage hydrolase. The strain was immobilized in polyurethane foam and used in AAS for the treatment of MNZ-containing municipal wastewater. The results showed that, using immobilized LZ-M, MNZ was completely removed, and the degradation efficiency of wastewater's chemical oxygen demand (COD) was increased from 11.7% to 83.31%. The extracellular polymer and ROS levels indicated that MNZ's toxicity on AAS was reduced. Furthermore, bioaugmentation stabilized its microbial community, and decreased MNZ resistance genes. These observations confirm that the immobilized fungi are effective in protecting AAS against antibiotic contamination in the treatment process of municipal wastewater.
Collapse
Affiliation(s)
- Xuan Yu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, Gansu, China
| | - Chunlan Mao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, Gansu, China
| | - Wenxue Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, Gansu, China
| | - Saurabh Kulshrestha
- School of Biotechnology Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan 173212, Himachal Pradesh, India
| | - Peng Zhang
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Duanjiatanlu #1272, Lanzhou 730020, Gansu, China
| | - Muhammad Usman
- State Key Laboratory of Grassland Agroecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, Gansu, China
| | - Simin Zong
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, Gansu, China
| | - Mian Gul Hilal
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, Gansu, China
| | - Yitian Fang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huawen Han
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, Gansu, China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, Gansu, China.
| |
Collapse
|
19
|
Hao ZL, Ali A, Ren Y, Su JF, Wang Z. A mechanistic review on aerobic denitrification for nitrogen removal in water treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157452. [PMID: 35868390 DOI: 10.1016/j.scitotenv.2022.157452] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/10/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
The traditional biological nitrogen removal technology consists of two steps: nitrification by autotrophs in aerobic circumstances and denitrification by heterotrophs in anaerobic situations; however, this technology requires a huge area and stringent environmental conditions. Researchers reached the conclusion that the denitrification process could also be carried out in aerobic circumstances with the discovery of aerobic denitrification. The aerobic denitrification process is carried out by aerobic denitrifying bacteria (ADB), most of which are heterotrophic bacteria that can metabolize various forms of nitrogen compounds under aerobic conditions and directly convert ammonia nitrogen to N2 for discharge from the system. Despite the fact that there is no universal agreement on the mechanism of aerobic denitrification, this article reviewed four current explanations for the denitrification mechanism of ADB, including the microenvironment theory, theory of enzyme, electron transport bottlenecks theory, and omics study, and summarized the parameters affecting the denitrification efficiency of ADB in terms of carbon source, temperature, dissolved oxygen (DO), and pH. It also discussed the current status of the application of aerobic denitrification in practical processes. Following the review, the difficulties of present aerobic denitrification technology are outlined and future research options are highlighted. This review may help to improve the design of current wastewater treatment facilities by utilizing ADB for effective nitrogen removal and provide the engineers with relevant references.
Collapse
Affiliation(s)
- Zhen-Le Hao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yi Ren
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jun-Feng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
20
|
Aravind MK, Kappen J, Narayanamoorthi E, Sanjaykumar A, Varalakshmi P, Arockiadoss T, John SA, Ashokkumar B. Bioengineered magnetic graphene oxide microcomposites for bioremediation of chromium in ex situ - A novel strategy for aggrandized recovery by electromagnetic gadgetry. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119675. [PMID: 35753546 DOI: 10.1016/j.envpol.2022.119675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/01/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Novel magnetic microcomposites consisting of graphene oxide and iron oxide was synthesized to immobilize metabolically versatile Paracoccus sp. MKU1 and Leucobacter sp. AA7 and tested for the simultaneous adsorption and enhanced biological detoxification of hexavalent chromium (Cr(VI)) from tannery wastewater. This study reports highest chromium adsorption of 272.6 mg/g and 179.3 mg/g with complete reduction of Cr(VI) to Cr(III) by the microcomposites of AA7 and MKU1 from wastewater in a bioreactor (10 L) at large-scale for first time in ex situ. Furthermore, both the microcomposites displayed an enhanced detoxification of tannery wastewater by reducing various physicochemical conditions such as ammonia, nitrate, TDS, fluoride, CaCO3, Ca, Mg, NO3 and SO2 under the permissible limits. Use of electromagnetic device for magnetic microcomposites recovery from bioreactor yielded a maximum of 88% and 80.6% recovery for AA7 and MKU1, respectively. The rate of chromium recuperation achieved following desorption from the microcomposites of AA7 and MKU1 was 90.71% and 93.97%, respectively. Thus, the multifarious benefits including adsorption, metabolic detoxification, recovery, and recuperation by single functional microcomposites seems to be an intriguing and profitable approach for practicing in real-time operations to effectively remove heavy metals from the contaminated wastewater for environmental protection.
Collapse
Affiliation(s)
- Manikka Kubendran Aravind
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Jincymol Kappen
- Centre for Nanoscience and Nanotechnology, Department of Chemistry, Gandhigram Rural Institute, Gandhigram, Tamil Nadu, India
| | - Eswaran Narayanamoorthi
- Centre for Nanoscience and Nanotechnology, Department of Chemistry, Gandhigram Rural Institute, Gandhigram, Tamil Nadu, India
| | - Ashokkumar Sanjaykumar
- Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu, India
| | - Perumal Varalakshmi
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | | | - Swamidoss Abraham John
- Centre for Nanoscience and Nanotechnology, Department of Chemistry, Gandhigram Rural Institute, Gandhigram, Tamil Nadu, India
| | - Balasubramaniem Ashokkumar
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, India.
| |
Collapse
|
21
|
Reductive Cr(VI) Removal under Different Reducing and Electron Donor Conditions—A Soil Microcosm Study. WATER 2022. [DOI: 10.3390/w14142179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Increased groundwater and soil contamination by hexavalent chromium have led to the employment of a variety of detoxification methods. Biological remediation of Cr(VI) polluted aquifers is an eco-friendly method that can be performed in situ by stimulating the indigenous microbial population with organic and inorganic electron donors. In order to study the effect of different redox conditions on microbial remediated Cr(VI) reduction to Cr(III), microcosm experiments were conducted under anaerobic, anoxic, and sulfate-reducing conditions and at hexavalent chromium groundwater concentrations in the 0–3000 μg/L range, with groundwater and soil collected from an industrial area (Inofyta region). As electron donors, molasses, emulsified vegetable oil (EVO), and FeSO4 were employed. To quantitatively describe the degradation kinetics of Cr(VI), pseudo-first-order kinetics were adopted. The results indicate that an anaerobic system dosed with simple or complex external organic carbon sources can lead to practically complete Cr(VI) reduction to Cr(III), while the addition of Fe2+ can further increase Cr(VI) removal rate significantly. Furthermore, Cr(VI) microbial reduction is possible in the presence of NO3− at rates comparable to anaerobic Cr(VI) microbial reduction, while high sulfate concentrations have a negative effect on Cr(VI) bioreduction rates in comparison to lower sulfate concentrations.
Collapse
|
22
|
Shi L, Liu B, Zhang X, Bu Y, Shen Z, Zou J, Chen Y. Cloning of Nitrate Reductase and Nitrite Reductase Genes and Their Functional Analysis in Regulating Cr(VI) Reduction in Ectomycorrhizal Fungus Pisolithus sp.1. Front Microbiol 2022; 13:926748. [PMID: 35875523 PMCID: PMC9301267 DOI: 10.3389/fmicb.2022.926748] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 05/24/2022] [Indexed: 11/23/2022] Open
Abstract
Assimilatory-type nitrate reductase (NR) and nitrite reductase (NiR) are the key enzymes that involve in nitrate assimilation and nitrogen cycling in microorganisms. NR and NiR with NADH or NADPH and FMN or FAD domains could be coupled to the reduction process of hexavalent chromium [Cr(VI)] in microorganisms. A new assimilatory-type NR gene (named niaD) and a new assimilatory-type NiR gene (named niiA) are cloned, identified, and functionally characterized by 5′ and 3′ RACE, alignment, annotation, phylogenetic tree, and yeast mutant complementation analyses from Pisolithus sp.1, a dominant symbiotic ectomycorrhizal fungi (EMF) that can assist in phytoremediation. Assimilatory-type niaD and niiA were 2,754 bp and 3,468 bp and encode a polypeptide with 917 and 1,155 amino acid residues, respectively. The isoelectric points of NR (Pisolithus sp.1 NR) and NiR (Pisolithus sp.1 NiR) of Pisolithus sp.1 are 6.07 and 6.38, respectively. The calculated molecular mass of Pisolithus sp.1 NR and Pisolithus sp.1 NiR is 102.065 and 126.914 kDa, respectively. Yeast mutant complementation analysis, protein purification, and activities of NR and NiR under Cr treatment suggest that Pisolithus sp.1 NR is a functional NR that mediates Cr(VI) tolerance and reduction. The multiple alignment demonstrates that Pisolithus sp.1 NR is potentially a nicotinamide adenine dinucleotide phosphate-dependent flavin mononucleotide reductase and also Class II chromate reductase. Our results suggest that Pisolithus sp.1 NR plays a key role in Cr(VI) reduction in the EMF Pisolithus sp.1.
Collapse
Affiliation(s)
- Liang Shi
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Binhao Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xinzhe Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yuan Bu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jianwen Zou
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yahua Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, China
- National Joint Local Engineering Research Center for Rural Land Resources Use and Consolidation, Nanjing Agricultural University, Nanjing, China
- The Collaborated Laboratory of Plant Molecular Ecology (between College of Life Sciences of Nanjing Agricultural University and Asian Natural Environmental Science Center of the University of Tokyo), Nanjing Agricultural University, Nanjing, China
- *Correspondence: Yahua Chen,
| |
Collapse
|
23
|
Zhao Y, Wang Q, Yang Z, Jia X, Cabrera J, Ji M. Bio-capture of Cr(VI) in a denitrification system: Electron competition, long-term performance, and microbial community evolution. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128697. [PMID: 35334263 DOI: 10.1016/j.jhazmat.2022.128697] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Chromium is widely applied in industries as an important metal resource, but the discharge of Cr(VI) containing wastewater leads to the loss of chromium resources. This study proposed a bio-capture process of chromium in a denitrification system. The bio-capture potentiality was explored by investigating the electron competition between Cr(VI) and nitrogen compounds reduction, the long-term bio-capture performance, and the microbial community evolution. In the competition utilization of electron donors, both NO3--N and NO2--N took precedence over Cr(VI), and NO2--N reduction was proved to be the rate-limiting step. Under the optimum conditions of 20 mg/L NO3--N and 6 h HRT, 99.95% of 30 mg/L Cr(VI) could be reduced, and 220980 μg Cr/g MLSS was captured by the biofilm, which was fixed in intercellular as Cr(III). Microbiological analysis confirmed that the bio-reduction of Cr(VI) and NO3--N was mediated by synergistic interactions of a series of dominant bacteria, including genera Acidovorax, Thermomonas, and Microbacterium, which contained both the denitrification genes (narG, narZ, nxrA, and nirK) and chromate reduction genes (chrA and chrR). This study proved the feasibility of chromium bio-capture in denitrification systems and provided a new perspective for the Cr(VI) pollution treatment.
Collapse
Affiliation(s)
- Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Qian Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Zhifan Yang
- Tianjin Municipal Engineering Design & Research Institute Co. Ltd., Tianjin 300380, China
| | - Xulong Jia
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Jonnathan Cabrera
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Min Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
24
|
New method for efficient removal of Cr(VI) by recoverable magnetic nitrogen-doped carbon aerogel microspheres: kinetics and mechanism. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
25
|
Shi L, Zhao X, Zhong K, Jia Q, Shen Z, Zou J, Chen Y. Physiological mechanism of the response to Cr(VI) in the aerobic denitrifying ectomycorrhizal fungus Pisolithus sp.1. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128318. [PMID: 35086038 DOI: 10.1016/j.jhazmat.2022.128318] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/04/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Pisolithus sp. 1 (P sp. 1) is an ectomycorrhizal fungus (EMF) with a strong Cr(VI) tolerance and reduction ability. The noninvasive microttest technique (NMT), real-time quantitative PCR (qRT-PCR), and the three-dimensional excitation-emission matrix (3D-EEM) were used to deeply explore the physiological mechanism of the P sp. 1 response to Cr(VI) and investigate the relationship between Cr(VI) reduction and denitrification in P sp. Cr(VI) induced the strongest elevations in nitrate reductase (NR) activity and NO production in the mycelia after treatment with Cr(VI) for 48 h under aerobic conditions. The NR inhibitor tungstate significantly inhibited Cr(VI) reduction, proton efflux and the expression of the NR gene (niaD) and NiR gene (niiA). In addition, NO was generated via NR-regulated denitrification. Combined treatments with Cr(VI) and the NO scavenger carboxy-PTIO (cPTIO) significantly increased O2-, H2O2 and MDA contents and reduced SDH, CAT, GSH, GR and GSNOR activity. Therefore, the NR-driven aerobic denitrifying process requires protons, and the generated NO reduces the oxidative stress effect of Cr(VI) on mycelia by reducing ROS accumulation and lipid peroxidation, enhancing mycelial and CAT activity, and promoting GSH recycling and regeneration. Psp.1 can also secrete humic acid-like and protein-like substances to combine with Cr(III) in a culture system.
Collapse
Affiliation(s)
- Liang Shi
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuan Zhao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Kecheng Zhong
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiyuan Jia
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianwen Zou
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yahua Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; National Joint Local Engineering Research Center for Rural Land Resources Use and Consolidation, Nanjing Agricultural University, Nanjing 210095, China; The Collaborated Lab. of Plant Molecular Ecology Between College of Life Sciences of Nanjing Agricultural University and Asian Natural Environmental Science Center of the University of Tokyo, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
26
|
Shu H, Sun H, Huang W, Zhao Y, Ma Y, Chen W, Sun Y, Chen X, Zhong P, Yang H, Wu X, Huang M, Liao S. Nitrogen removal characteristics and potential application of the heterotrophic nitrifying-aerobic denitrifying bacteria Pseudomonas mendocina S16 and Enterobacter cloacae DS'5 isolated from aquaculture wastewater ponds. BIORESOURCE TECHNOLOGY 2022; 345:126541. [PMID: 34910970 DOI: 10.1016/j.biortech.2021.126541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Two biosafety strains, identified as Pseudomonas mendocina S16 and Enterobacter cloacae DS'5, were isolated from freshwater aquaculture ponds and showed significant heterotrophic nitrification-aerobic denitrification abilities. Within 48 h, the inorganic nitrogen removal efficiencies in the two strains were 66.59 %-97.97 % (S16) and 72.27 %-96.44 % (DS'5). The optimal conditions for organic nitrogen removal of the two strains were temperature 20-35 °C and carbon/nitrogen (C/N) ratio 10-20 while using sodium citrate as the carbon source. Sequence amplification demonstrated the presence of the denitrification genes in both the two strains, and quantitative real-time PCR results showed that the coupled expression of nap + nar would improve the nitrate removal rate in S16. The nitrogen removal efficiencies of the two strains in immobilization culture systems were 79.80 %-98.58 % (S16) and 60.80 %-98.40 % (DS'5). This study indicated the great potential application of the two strains in aquaculture tail water treatment.
Collapse
Affiliation(s)
- Hu Shu
- Aquatic Research Center, Key Laboratory of Animal Nutrition and Feed Science in South China of Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; School of Life Science/School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Huiming Sun
- Aquatic Research Center, Key Laboratory of Animal Nutrition and Feed Science in South China of Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; School of Life Science/School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Wen Huang
- Aquatic Research Center, Key Laboratory of Animal Nutrition and Feed Science in South China of Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; School of Life Science/School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| | - Yang Zhao
- Aquatic Research Center, Key Laboratory of Animal Nutrition and Feed Science in South China of Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; School of Life Science/School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yonghao Ma
- Aquatic Research Center, Key Laboratory of Animal Nutrition and Feed Science in South China of Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; School of Life Science/School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Wei Chen
- Aquatic Research Center, Key Laboratory of Animal Nutrition and Feed Science in South China of Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; School of Life Science/School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yuping Sun
- Aquatic Research Center, Key Laboratory of Animal Nutrition and Feed Science in South China of Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xiaoying Chen
- Aquatic Research Center, Key Laboratory of Animal Nutrition and Feed Science in South China of Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Ping Zhong
- Aquatic Research Center, Key Laboratory of Animal Nutrition and Feed Science in South China of Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Huirong Yang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xiaopeng Wu
- Aquatic Research Center, Key Laboratory of Animal Nutrition and Feed Science in South China of Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Minwei Huang
- Aquatic Research Center, Key Laboratory of Animal Nutrition and Feed Science in South China of Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Sentai Liao
- Aquatic Research Center, Key Laboratory of Animal Nutrition and Feed Science in South China of Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
27
|
He C, Ren X, Xu G, Huang Z, Wang Y, Hu Z, Wang W. Performance of single-stage partial nitritation and anammox reactor treating low-phenol/ammonia ratio wastewater and analysis of microbial community structure. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:1969-1978. [PMID: 33844357 DOI: 10.1002/wer.1568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/21/2021] [Accepted: 03/28/2021] [Indexed: 06/12/2023]
Abstract
Phenol and ammonia are common pollutants in many industrial wastewaters. The partial nitritation and anammox process is a very promising technology for treating phenol-ammonia wastewater. This study was the first time to rapidly achieve the start-up and operation of the single-stage partial nitritation /anammox reactor treating phenol-ammonia wastewater. The optimized ratio of phenol and nitrogen (phenol/NH4 + -N=0.3) was set to start-up the reactor. After 60 days of operation, the total nitrogen and COD removal efficiencies were around 73.0% and 79.5%, respectively. The activity of ammonium-oxidizing bacteria was291.1 ± 3.0 mg NH4 + -N g-1 MLVSS d-1 and the specific anammox activity was 20.9 ± 1.0 mg NH4 + -N g-1 MLVSS d-1 . The results indicated that the anammox bacteria had adapted to phenol condition and remained stable activity after the 60 days' operation in the reactor. The sequence analysis of 16SrRNA showed that the microbial community structure evolved to a balanced distribution that the removals of phenol and ammonia could be achieved simultaneously. PRACTITIONER POINTS: Phenol/N ratio of 0.3 was set to start up the single-stage partial nitritation/anammox reactor. The single-stage partial nitritation /anammox reactor was rapidly started up when treating the phenol-ammonia wastewater. Total nitrogen removal rate and COD removal efficiencies could achieve to 73.0% and 79.5%, respectively. Microbial community structure evolved to stable distribution of which AOB, anammox bacteria, denitrification bacteria and heterotrophic nitrification bacteria coexisted.
Collapse
Affiliation(s)
- Chunhua He
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, China
- Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei, China
- Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, Hefei, China
| | - Xuesong Ren
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, China
- Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei, China
- Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, Hefei, China
| | - Guoqing Xu
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, China
- Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei, China
- Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, Hefei, China
| | - Zhiqiang Huang
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, China
- Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei, China
- Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, Hefei, China
| | - Yulan Wang
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, China
- Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei, China
- Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, Hefei, China
| | - Zhenhu Hu
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, China
- Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei, China
- Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, Hefei, China
| | - Wei Wang
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, China
- Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei, China
- Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, Hefei, China
| |
Collapse
|
28
|
Hu Y, Liu T, Chen N, Feng C. Iron oxide minerals promote simultaneous bio-reduction of Cr(VI) and nitrate: Implications for understanding natural attenuation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147396. [PMID: 33964780 DOI: 10.1016/j.scitotenv.2021.147396] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/09/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Nitrate and Cr(VI) coexist in aquifers, posing a potential threat to ecological environment and public health. Iron oxide minerals (hematite and magnetite) exist ubiquitously in groundwater, which are hot spots for biogeochemical transformation. However, there is still a knowledge gap anout the effect of iron oxide minerals on bioreduction of nitrate and Cr(VI). Here we observed that iron oxide minerals can significantly improve the ability of microorganisms to simultaneously reduce nitrate and Cr(VI), the reduction rates of nitrate and Cr(VI) increased by 7.3 and 8.5 times, respectively. The addition of minerals reinforced biofilm formation and shaped microbial communities with a new dominant strain of Azoarcus. The expression levels of functional genes were also upregulated, including napA, narG, nfsA, yieF, POD, and CAT. Furthermore, nitrate and chromate reductases' activities increased by 11 and 5 folds, respectively. These results demonstrated that iron oxide minerals participated in the bio-transformation of nitrate and Cr(VI) co-contamination, alleviating oxidative stress, shaping the microbial community, and ultimately accelerating bio-transformation. These findings offer a window into the biological transformation of co-contamination in the presence of iron oxide minerals, and insights to reveal strategies for microbial detoxification and to develop promising approaches for dealing with complex pollution conditions.
Collapse
Affiliation(s)
- Yutian Hu
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Tong Liu
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Nan Chen
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Chuanping Feng
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China
| |
Collapse
|
29
|
Feng L, Yang J, Ma F, Xing L, Pi S, Cui D, Li A. Biological stimulation with Fe(III) promotes the growth and aerobic denitrification of Pseudomonas stutzeri T13. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 776:145939. [PMID: 33647667 DOI: 10.1016/j.scitotenv.2021.145939] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/28/2021] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
Certain metal ions can contribute to the functional microorganisms becoming dominant by stimulating their metabolism and activity. Therefore, Pseudomonas stutzeri T13 was used to investigate the impacts of biological stimulation with certain metal ions on aerobic denitrifying bacteria. Results showed that with the addition of 0.036 mmol/L Fe3+ ions, the nitrogen-assimilation capacity of P. stutzeri T13 significantly increased by 43.99% when utilizing ammonium as the sole nitrogen source. Kinetic models were applied to analyze the role of Fe3+ ions in the growth, and results indicated that increasing Fe3+ ion concentrations decreased the decay rate. The maximum nitrate reduction rate increased from 9.55 mg-N L-1 h-1 to 19.65 mg-N L-1 h-1 with Fe3+ ion concentrations increasing from 0.004 to 0.036 mmol/L, which was due to the increased level of napA gene transcription and activity of nitrate reductase. This study provides a theoretical foundation for further understanding of the mechanism of Fe3+ ion stimulation of aerobic denitrification, benefiting the practicable application of aerobic denitrifiers.
Collapse
Affiliation(s)
- Liang Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Jixian Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Lulu Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Shanshan Pi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Di Cui
- Engineering Research Center for Medicine, College of Pharmacy, Harbin University of Commerce, Harbin 150076, People's Republic of China
| | - Ang Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China.
| |
Collapse
|
30
|
Recent advances in removal techniques of Cr(VI) toxic ion from aqueous solution: A comprehensive review. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115062] [Citation(s) in RCA: 175] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
31
|
Jiang Y, Huang H, Tian Y, Yu X, Li X. Stochasticity versus determinism: Microbial community assembly patterns under specific conditions in petrochemical activated sludge. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124372. [PMID: 33338810 DOI: 10.1016/j.jhazmat.2020.124372] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/21/2020] [Accepted: 10/21/2020] [Indexed: 06/12/2023]
Abstract
The pattern of microbial community assembly in petrochemical sludge is not well-explained. In this study, three kinds of petrochemical activated sludge (AS) from the same seed sludge were investigated to determine their microbial assembly pattern for long-term adaptation. Beta Nearest Taxon Index analysis revealed that the assembly strategies of the abundant and rare operational taxonomic unit (OTU) sub-communities are different for archaeal and bacterial communities. Abundant OTUs preferred deterministic processes, whereas rare OTUs randomly formed due to weak selection. Canonical correspondence analysis/variation partition analysis and Mantel testing results revealed that ammonium, petroleum, and chromium (Cr (VI)) mainly structured the abundant sub-communities. On the other hand, environmental variables, including ammonium, petroleum, and heavy metals, shaped the rare sub-communities. The PICRUSt2 tool was used to predict the functions. Results indicated a greater abundance of microbes harboring the hydrocarbon degradation pathway and heavy-metal-resistant enzymes. Cross-treatment experiments using one type of AS to treat the other two kinds of wastewater were conducted. The results of the cross-treatment experiments and qPCR both suggest the functional adaptation of the microbial community. We revealed selection strategies for the adaptation of bacteria and archaea in AS during environmental changes, providing a theoretical basis for petrochemical wastewater treatment.
Collapse
Affiliation(s)
- Yiming Jiang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, PR China; Institute of Virology, Helmholtz Center Munich/ Technical University of Munich, Germany
| | - Haiying Huang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, PR China; Institute of Virology, Helmholtz Center Munich/ Technical University of Munich, Germany
| | - Yanrong Tian
- Sewage Disposal Plant, Lanzhou Petrochemical Company, PetroChina, Huanxingdonglu #88, Lanzhou, Gansu 730060, PR China
| | - Xuan Yu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, PR China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, PR China.
| |
Collapse
|
32
|
Huang Y, Zeng Q, Hu L, Xiong D, Zhong H, He Z. Column study of enhanced Cr(Ⅵ) removal and removal mechanisms by Sporosarcina saromensis W5 assisted bio-permeable reactive barrier. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124115. [PMID: 33535357 DOI: 10.1016/j.jhazmat.2020.124115] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 06/12/2023]
Abstract
In this study, the performances of Sporosarcina saromensis W5 assisted bio-permeable reactive barrier, containing activated carbon (AC) or zero-valent iron (ZVI), were investigated by column experiments in removal of Cr(Ⅵ) from simulated groundwater. The enhanced Cr(Ⅵ) removal performances were observed in biotic columns. Cr(Ⅵ) was first detected in effluent on day 24 and day 85 in Bio-AC and Bio-ZVI columns, respectively whereas it breakthrough only on day 4 and day 15 in AC and ZVI columns. Additionally, Cr(Ⅵ) removal performances induced by biofilm in Bio-QZ columns were promoted with the increase of influent Cr(Ⅵ) concentrations. According to fluorescent images, activated carbon was found to be the best biofilm carrier. Fe0 may not be suitable for microbial colonization because biofilm depolymerization occurred on Fe0 surface. Moreover, high concentration of Cr(Ⅵ) would lag the evolution of biofilm. Magnetite generating was found on the Fe0 surface. X-ray photoelectron spectroscopy (XPS) analysis indicated that the removal mechanism of Cr(Ⅵ) in biotic columns was biotransformation of Cr(Ⅵ) to Cr(Ш) species. Our results may provide a new insight in Cr(Ⅵ) in-situ remediation from groundwater by Bio-PRB system.
Collapse
Affiliation(s)
- Yongji Huang
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Qiang Zeng
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Liang Hu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Daoling Xiong
- Faculty of Materials Metallurgy & Chemistry, Jiangxi University of Science & Technology, Ganzhou, Jiangxi 341000, China
| | - Hui Zhong
- School of Life Science, Central South University, Changsha 410012, China.
| | - Zhiguo He
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha 410083, China; Faculty of Materials Metallurgy & Chemistry, Jiangxi University of Science & Technology, Ganzhou, Jiangxi 341000, China.
| |
Collapse
|
33
|
Rahman Z, Thomas L. Chemical-Assisted Microbially Mediated Chromium (Cr) (VI) Reduction Under the Influence of Various Electron Donors, Redox Mediators, and Other Additives: An Outlook on Enhanced Cr(VI) Removal. Front Microbiol 2021; 11:619766. [PMID: 33584585 PMCID: PMC7875889 DOI: 10.3389/fmicb.2020.619766] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
Chromium (Cr) (VI) is a well-known toxin to all types of biological organisms. Over the past few decades, many investigators have employed numerous bioprocesses to neutralize the toxic effects of Cr(VI). One of the main process for its treatment is bioreduction into Cr(III). Key to this process is the ability of microbial enzymes, which facilitate the transfer of electrons into the high valence state of the metal that acts as an electron acceptor. Many underlying previous efforts have stressed on the use of different external organic and inorganic substances as electron donors to promote Cr(VI) reduction process by different microorganisms. The use of various redox mediators enabled electron transport facility for extracellular Cr(VI) reduction and accelerated the reaction. Also, many chemicals have employed diverse roles to improve the Cr(VI) reduction process in different microorganisms. The application of aforementioned materials at the contaminated systems has offered a variety of influence on Cr(VI) bioremediation by altering microbial community structures and functions and redox environment. The collective insights suggest that the knowledge of appropriate implementation of suitable nutrients can strongly inspire the Cr(VI) reduction rate and efficiency. However, a comprehensive information on such substances and their roles and biochemical pathways in different microorganisms remains elusive. In this regard, our review sheds light on the contributions of various chemicals as electron donors, redox mediators, cofactors, etc., on microbial Cr(VI) reduction for enhanced treatment practices.
Collapse
Affiliation(s)
- Zeeshanur Rahman
- Department of Botany, Zakir Husain Delhi College, University of Delhi, Delhi, India
| | - Lebin Thomas
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
| |
Collapse
|
34
|
Pei Y, Tao C, Ling Z, Yu Z, Ji J, Khan A, Mamtimin T, Liu P, Li X. Exploring novel Cr(VI) remediation genes for Cr(VI)-contaminated industrial wastewater treatment by comparative metatranscriptomics and metagenomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140435. [PMID: 32623159 DOI: 10.1016/j.scitotenv.2020.140435] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/17/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
Microbial remediation is a promising method to treat Cr(VI) in industrial wastewater. The remediation efficiency and stress-resistance ability of Cr(VI) remediation genes in microbes are the limiting factors for their application in industrial wastewater treatment. To screen novel highly efficient Cr(VI) remediation genes, comparative metatranscriptomic and metagenomic analyses were performed on long-term Cr(VI)-contaminated riparian soil with/without additional Cr(VI) treatment. The most suitable Cr(VI) treatment time was determined to be 30 min according to the high quality RNA yield and fold changes in gene expression. Six novel genes, which had complete open reading frames (ORFs) in metagenomic libraries, were identified from unculturable microbes. In the phenotypic functional assay, all novel genes enhanced the Cr(VI) resistance/reduction ability of E. coli. In the industrial wastewater treatment, E-mcr and E-gsr presented at least 50% Cr(VI) removal efficiencies in the presence of 200-600 μM of Cr(VI), without a decrease in efficiency over 17 days. The stress resistance assay showed that gsr increased the growth rate of E. coli by at least 30% under different extreme conditions, and thus, gsr was identified as a general stress-response gene. In the Cr valence distribution assay, E-mcr presented ~40 μM higher extracellular Cr (III) compared to E-yieF. Additionally, transmission electron microscopy (TEM) of E-mcr showed bulk black agglomerates on the cell surface. Thus, mcr was identified as a membrane chromate reductase gene. This research provides a new idea for studying novel highly efficient contaminant remediation genes from unculturable microbes.
Collapse
Affiliation(s)
- Yaxin Pei
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, China; Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu province, Gansu Academy of Membrane Science and Technology, Duanjiatanlu #1272, Lanzhou 730000, Gansu, China
| | - Chen Tao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqinglu #18, Beijing 100085, China
| | - Zhenmin Ling
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, China; Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu province, Gansu Academy of Membrane Science and Technology, Duanjiatanlu #1272, Lanzhou 730000, Gansu, China
| | - Zhengsheng Yu
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu province, Gansu Academy of Membrane Science and Technology, Duanjiatanlu #1272, Lanzhou 730000, Gansu, China
| | - Jing Ji
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu province, Gansu Academy of Membrane Science and Technology, Duanjiatanlu #1272, Lanzhou 730000, Gansu, China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, China
| | - Aman Khan
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu province, Gansu Academy of Membrane Science and Technology, Duanjiatanlu #1272, Lanzhou 730000, Gansu, China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, China
| | - Tursunay Mamtimin
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, China
| | - Pu Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, China; Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu province, Gansu Academy of Membrane Science and Technology, Duanjiatanlu #1272, Lanzhou 730000, Gansu, China.
| |
Collapse
|
35
|
Li Y, Wang H, Wu P, Yu L, Rehman S, Wang J, Yang S, Zhu N. Bioreduction of hexavalent chromium on goethite in the presence of Pseudomonas aeruginosa. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114765. [PMID: 32454358 DOI: 10.1016/j.envpol.2020.114765] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
The effective mineral absorption and bioreduction were considered as two preferred processes to alleviate the bioavailability and toxicity of toxic trace metals. In this study, the bioreduction of hexavalent chromium (Cr(VI)) on goethite (FeOOH) in the presence of Pseudomonas aeruginosa (P. aeruginosa) was investigated with different environmental factors, including carbon source concentrations, pH, temperature and initial Cr(VI) concentrations. The characterization of FeOOH-P. aeruginosa indicated that P. aeruginosa was surrounded by FeOOH, which could provide the essential iron for bacterial growth and reduce Cr(VI) to Cr(III). The optimal experimental conditions for Cr(VI) (initial concentration: 35 mg L-1) absorption (∼46%) and bioreduction (∼54%) involved a temperature of 45 °C and pH of 5.5. Meanwhile, extracellular polymeric substances (EPS) secreted by P. aeruginosa and its functional groups played important roles in the reduction of Cr(VI). They could reduce Cr(VI) to Cr(III) and transform to Cr(OH)3 or Fex-Cr(1-x)(OH)3 precipitation. These results of this study are of significant importance to better understand the environmental geochemical behavior of Cr(VI) with the interactions between soil minerals and microorganisms.
Collapse
Affiliation(s)
- Yihao Li
- College of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Huimin Wang
- College of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Pingxiao Wu
- College of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, PR China; Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou, 510006, PR China.
| | - Langfeng Yu
- College of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Saeed Rehman
- College of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Junfeng Wang
- School of Environment, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Shanshan Yang
- College of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Nengwu Zhu
- College of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| |
Collapse
|
36
|
Zhou T, Li R, Zhang S, Zhao S, Sharma M, Kulshrestha S, Khan A, Kakade A, Han H, Niu Y, Li X. A copper-specific microbial fuel cell biosensor based on riboflavin biosynthesis of engineered Escherichia coli. Biotechnol Bioeng 2020; 118:210-222. [PMID: 32915455 DOI: 10.1002/bit.27563] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 11/07/2022]
Abstract
Copper pollution poses a serious threat to the aquatic environment; however, in situ analytical methods for copper monitoring are still scarce. In the current study, Escherichia coli Rosetta was genetically modified to express OprF and ribB with promoter Pt7 and PcusC , respectively, which could synthesize porin and senses Cu2+ to produce riboflavin. The cell membrane permeability of this engineered strain was increased and its riboflavin production (1.45-3.56 μM) was positively correlated to Cu2+ (0-0.5 mM). The biosynthetic strain was then employed in microbial fuel cell (MFC) based biosensor. Under optimal operating parameters of pH 7.1 and 37°C, the maximum voltage (248, 295, 333, 352, and 407 mV) of the constructed MFC biosensor showed a linear correlation with Cu2+ concentration (0.1, 0.2, 0.3, 0.4, 0.5 mM, respectively; R2 = 0.977). The continuous mode testing demonstrated that the MFC biosensor specifically senses Cu2+ with calculated detection limit of 28 μM, which conforms to the common Cu2+ safety standard (32 μM). The results obtained with the developed biosensor system were consistent with the existing analytical methods such as colorimetry, flame atomic absorption spectrometry, and inductively coupled plasma optical emission spectrometry. In conclusion, this MFC-based biosensor overcomes the signal conversion and transmission problems of conventional approaches, providing a fast and economic analytical alternative for in situ monitoring of Cu2+ in water.
Collapse
Affiliation(s)
- Tuoyu Zhou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Rong Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China.,Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou, Gansu, China
| | - Shuting Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Shuai Zhao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China.,Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou, Gansu, China
| | - Monika Sharma
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Saurabh Kulshrestha
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Aman Khan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Apurva Kakade
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou, Gansu, China
| | - Huawen Han
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Yongyan Niu
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou, Gansu, China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
37
|
Yang J, Feng L, Pi S, Cui D, Ma F, Zhao HP, Li A. A critical review of aerobic denitrification: Insights into the intracellular electron transfer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 731:139080. [PMID: 32417477 DOI: 10.1016/j.scitotenv.2020.139080] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/04/2020] [Accepted: 04/26/2020] [Indexed: 05/23/2023]
Abstract
Aerobic denitrification is a novel biological nitrogen removal technology, which has been widely investigated as an alternative to the conventional denitrification and for its unique advantages. To fully comprehend aerobic denitrification, it is essential to clarify the regulatory mechanisms of intracellular electron transfer during aerobic denitrification. However, reports on intracellular electron transfer during aerobic denitrification are rather limited. Thus, the purpose of this review is to discuss the molecular mechanism of aerobic denitrification from the perspective of electron transfer, by summarizing the advancements in current research on electron transfer based on conventional denitrification. Firstly, the implication of aerobic denitrification is briefly discussed, and the status of current research on aerobic denitrification is summarized. Then, the occurring foundation and significance of aerobic denitrification are discussed based on a brief review of the key components involved in the electron transfer of denitrifying enzymes. Moreover, a strategy for enhancing the efficiency of aerobic denitrification is proposed on the basis of the regulatory mechanisms of denitrification enzymes. Finally, scientific outlooks are given for further investigation on aerobic denitrification in the future. This review could help clarify the mechanism of aerobic denitrification from the perspective of electron transfer.
Collapse
Affiliation(s)
- Jixian Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Liang Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Shanshan Pi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Di Cui
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China; Engineering Research Center for Medicine, College of Pharmacy, Harbin University of Commerce, Harbin 150076, People's Republic of China
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - He-Ping Zhao
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Ang Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China.
| |
Collapse
|
38
|
Sun C, Zhang Y, Qu Z, Zhou J. Simultaneous cobalt(III)-histidine reduction and aerobic denitrification by Paracoccus versutus LYM. BIORESOURCE TECHNOLOGY 2020; 310:123404. [PMID: 32334362 DOI: 10.1016/j.biortech.2020.123404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
Cobalt(II)-histidine [Co(II)His] is potentially a better alternative to ferrous complexes in the chemical absorption-biological reduction (CABR) flue gas denitrification process in view of its higher oxygenation reversibility. Though with excellent O2-resistant ability, Co(II)His was still gradually oxidized into Co(III)His, losing NO binding capacity. Thus, Co(III)His biological reduction is an indispensable step in CABR process. Co(III)His reduction by Paracoccus versutus LYM under aerobic condition in the presence of nitrate or nitrite was investigated. Results indicated that simultaneous Co(III)His reduction and aerobic denitrification were achieved by strain LYM. Co(III)His reduction was significantly promoted by denitrification process, but dramatically inhibited by 5-15 mM sulfite. Co(II)His absorbent regeneration could be facilitated by adjusting O2 supply properly or adding nitrogen and carbon source regularly. These findings provide a basis for the application of Co(II)His as the absorbent in the CABR process and qualify P. versutus LYM as an applicable and competitive strain for this process.
Collapse
Affiliation(s)
- Chaoyue Sun
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yu Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Zhenping Qu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
39
|
Yu X, Shi J, Khan A, Yun H, Zhang P, Zhang P, Kakade A, Tian Y, Pei Y, Jiang Y, Huang H, Wu K, Li X. Immobilized-microbial bioaugmentation protects aerobic denitrification from heavy metal shock in an activated-sludge reactor. BIORESOURCE TECHNOLOGY 2020; 307:123185. [PMID: 32244075 DOI: 10.1016/j.biortech.2020.123185] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/08/2020] [Accepted: 03/12/2020] [Indexed: 05/21/2023]
Abstract
The inhibition of denitrification by heavy metals is a problem in nitrogen wastewater treatment, but the solutions are rarely studied. In this study, Pseudomonas brassicacearum LZ-4, immobilized in sodium alginate-kaolin, was applied in an activated-sludge reactor to protect denitrifiers from hexavalent chromium (Cr(VI)). Q-PCR result showed that the strain LZ-4 was incorporated into activated sludge under the help of immobilization. In the non-bioaugmentation system, the removal efficiency of nitrate was decreased by 86.07% by 30 mg/L Cr(VI). Whereas, denitrification was protected and 95% of nitrate was removed continuously in immobilized-cell bioaugmentation system. Miseq sequencing data showed that bioaugmentation decreased the impact of Cr(VI) on microbial communities and increased the abundance of denitrifiers. Based on the results of biomass and extracellular polymers, activated sludge was protected from Cr(VI) toxicity. This discovery will provide a feasible technique for nitrogen wastewater treatment in the presence of distressing heavy metals.
Collapse
Affiliation(s)
- Xuan Yu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, PR China; Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou 730020, Gansu, PR China
| | - Juanjuan Shi
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, PR China
| | - Aman Khan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, PR China
| | - Hui Yun
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, PR China
| | - Pengyun Zhang
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou 730020, Gansu, PR China
| | - Peng Zhang
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou 730020, Gansu, PR China
| | - Apurva Kakade
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, PR China
| | - Yanrong Tian
- PetroChina Lanzhou Petrochemical Company, yumenjie#10, Lanzhou 730060, Gansu, PR China
| | - Yaxin Pei
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, PR China
| | - Yiming Jiang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, PR China
| | - Haiying Huang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, PR China
| | - Kejia Wu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, PR China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, PR China.
| |
Collapse
|
40
|
Mishra A, Gupta B, Kumar N, Singh R, Varma A, Thakur IS. Synthesis of calcite-based bio-composite biochar for enhanced biosorption and detoxification of chromium Cr (VI) by Zhihengliuella sp. ISTPL4. BIORESOURCE TECHNOLOGY 2020; 307:123262. [PMID: 32247278 DOI: 10.1016/j.biortech.2020.123262] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
The current study presents a comprehensive analysis of the potential of actinobacterium Zhihengliuella sp. ISTPL4 and different composite materials for the removal of hexavalent chromium [Cr (VI)]. Genome analysis of strain indicated the presence of several oxidoreductases which includes chromate reductase, nitrate reductase, thioredoxin, superoxide dismutase and hydrogenase are other major candidate genes. Catalytic calcite-based bio-composite material was absorbed on biochar had highest Cr removal efficiency. The main mechanism involved in Cr biosorption by this strain was explained by the Langmuir isotherm model; under equilibrium conditions the maximum adsorption was observed 49 ± 0.3 mgg-1. Kinetic studies showed that biosorption of Cr (VI) by this strain was a rate-limiting step and followed a pseudo-second-order kinetics (R2 = 0.99). SEM analysis is in line with EDX result indicating highest Cr removal by calcined biochar. MTT assay shown that the bacteria successfully convert toxic Cr (VI) to comparatively less toxic form such as Cr (III).
Collapse
Affiliation(s)
- Arti Mishra
- Amity Institute of Microbial Technology, Amity University, Sector-125, Noida 201303, Uttar Pradesh, India
| | - Bulbul Gupta
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Naveen Kumar
- School of Life Sciences, The University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Rashmi Singh
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Ajit Varma
- Amity Institute of Microbial Technology, Amity University, Sector-125, Noida 201303, Uttar Pradesh, India
| | - Indu Shekhar Thakur
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
41
|
Chen Z, Jiang Y, Chang Z, Wang J, Song X, Huang Z, Chen S, Li J. Denitrification characteristics and pathways of a facultative anaerobic denitrifying strain, Pseudomonas denitrificans G1. J Biosci Bioeng 2020; 129:715-722. [DOI: 10.1016/j.jbiosc.2019.12.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 11/19/2019] [Accepted: 12/27/2019] [Indexed: 11/25/2022]
|
42
|
Zhang X, Yan J, Luo X, Zhu Y, Xia L, Luo L. Simultaneous ammonia and Cr (VI) removal by Pseudomonas aeruginosa LX in wastewater. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107551] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
43
|
An Q, Deng S, Xu J, Nan H, Li Z, Song JL. Simultaneous reduction of nitrate and Cr(VI) by Pseudomonas aeruginosa strain G12 in wastewater. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 191:110001. [PMID: 31812281 DOI: 10.1016/j.ecoenv.2019.110001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/20/2019] [Accepted: 11/23/2019] [Indexed: 06/10/2023]
Abstract
The interference of toxic heavy metals in the process of microbial aerobic denitrification is a hot issue in industry wastewater treatment in recent years. In this study, a multifunctional aerobic denitrifying bacterium - Pseudomonas aeruginosa G12 isolated from sewage sludge was used to explore the simultaneous removal ability to NO3--N and Cr(VI) in wastewater by a series of batch experiments. The results showed that G12 could effectively remove NO3--N (500 mg L-1) and Cr(VI) (10 mg L-1) by 98% and 93%, respectively. Meanwhile, the study found that the strain G12 had the potential to adapt to the complex external environment, including different carbon resources, nitrogen sources, and the coexisting heavy metals (Mn2+ and Cu2+). The strain G12 also had the considerable tolerance to initial NO3--N (100-700 mg L-1) and Cr(VI) (1-20 mg L-1) concentrations. The instrument analysis methods-Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD), from the molecular level, further confirmed that the strain G12 could remove NO3--N by aerobic denitrification, and the reduced functional groups (amino group, amide group, hydroxyl group and carboxyl group) on the surface of bacteria could transform Cr(VI) to Cr(III) (mainly CrCl3). This study will offer a promising new microbial resource for nitrogen and Cr(VI) removal in industry wastewater treatment.
Collapse
Affiliation(s)
- Qiang An
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China; The Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Chongqing University, Chongqing, 400045, PR China.
| | - Shuman Deng
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - Jia Xu
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - Hongyan Nan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 2002405, PR China
| | - Zheng Li
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - Jia-Li Song
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| |
Collapse
|
44
|
Shi L, Dong P, Song W, Li C, Lu H, Wen Z, Wang C, Shen Z, Chen Y. Comparative transcriptomic analysis reveals novel insights into the response to Cr(VI) exposure in Cr(VI) tolerant ectomycorrhizal fungi Pisolithus sp. 1 LS-2017. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 188:109935. [PMID: 31740233 DOI: 10.1016/j.ecoenv.2019.109935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/21/2019] [Accepted: 11/08/2019] [Indexed: 06/10/2023]
Abstract
Chromium (Cr) is one of the most toxic heavy metals and a health hazard to millions of people worldwide. Ectomycorrhizal (ECM) fungi can assist plants in phytoremediation of heavy metal contaminated soil. Cr tolerance differs among ECM fungal varieties, but the underlying molecular mechanisms of Cr tolerance in ECM fungi are not clear. This study identified, analysed and compared the Cr(VI)-induced transcriptional changes between Cr(VI)-tolerant strain (Pisolithus sp. 1 LS-2017) and Cr(VI)-sensitive strain (Pisolithus sp. 2 LS-2017) by de novo transcriptomic analysis. The results showed that 93,642 assembled unique transcripts representing the 22,353 (46.76%) unigenes matched the proteins we have known in the Nr database and 47,801 unigenes were got from the Pisolithus spp. For DEGs between the control and 10 mg/L Cr(VI) treatment, cyanoamino acid metabolic, type I diabetes mellitus metabolism, nitrogen metabolism and beta-Alanine metabolism pathways were significantly enriched (p < 0.05) in Pisolithus sp. 1 LS-2017. Two nitrate reductase family genes (nidD, niiA) provide Cr(VI) tolerance for Pisolithus sp. 1 LS-2017 by regulating Cr(VI) reduction. In addition, NO produced by nidD, niiA regulated denitrification can alleviate Cr(VI) induced oxidative stress. In Pisolithus sp. 2 LS-2017, the alcC, aldA and lcf2 gene may alleviate Cr(VI) induced oxidative stress by protecting SH groups and increasing secondary metabolism, reducing detoxify aldehydes to carboxylic acids and producing LCPUFAs respectively; .T gene regulate Cr(VI) induced wound healing by pigmentation and stability of melanin in spore; MKP2 gene accelerate Cr(VI) induced cell death and gpmA gene regulated Cr(VI) induced energy emergency.
Collapse
Affiliation(s)
- Liang Shi
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| | - Pengcheng Dong
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| | - Wuyu Song
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| | - Chenxi Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| | - Haining Lu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| | - Zhugui Wen
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng, Jiangsu, 224002, China.
| | - Chunchun Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China; The Collaborated Lab. of Plant Molecular Ecology (between College of Life Sciences of Nanjing Agricultural University and Asian Natural Environmental Science Center of the University of Tokyo), Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agiricultural University, Nanjing, Jiangsu, 210095, China; National Joint Local Engineering Research Center for Rural Land Resources Use and Consolidation, Nanjing Agiricultural University, Nanjing, Jiangsu, 210095, China.
| | - Yahua Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China; The Collaborated Lab. of Plant Molecular Ecology (between College of Life Sciences of Nanjing Agricultural University and Asian Natural Environmental Science Center of the University of Tokyo), Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agiricultural University, Nanjing, Jiangsu, 210095, China; National Joint Local Engineering Research Center for Rural Land Resources Use and Consolidation, Nanjing Agiricultural University, Nanjing, Jiangsu, 210095, China.
| |
Collapse
|
45
|
He T, Xie D, Ni J, Li Z, Li Z. Characteristics of nitrogen transformation and intracellular nitrite accumulation by the hypothermia bacterium Arthrobacter arilaitensis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 701:134730. [PMID: 31726404 DOI: 10.1016/j.scitotenv.2019.134730] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/11/2019] [Accepted: 09/28/2019] [Indexed: 06/10/2023]
Abstract
A new nitrite accumulation pathway was discovered in the nitrogen conversion process of Arthrobacter arilaitensis. The extracellular nitrite reached 0.65 and 43.66 mg/L with hydroxylamine and nitrate as the sole nitrogen source, respectively. The enzyme activities of ammonia monooxygenase, hydroxylamine oxidoreductase and nitrate reductase were 0.42, 0.0014 and 0.0049 U/mg protein, respectively. The activity of nitrite reductase was completely inhibited by diethyldithiocarbamate. Intriguingly, the intracellular nitrite accumulated as high as 43.0, 42.26, 39.94 and 35.01 mg/L, when the Arthrobacter arilaitensis was incubated with Luria-Bertani medium, ammonium, nitrate and nitrite as the nitrogen source, respectively. These results confirmed that the highest concentration of intracellular nitrite was accumulated when LB was selected as the nitrogen source, followed by ammonium and nitrate, then nitrite was the least. To date, biochemical mechanism responsible for the accumulation of a high concentration of intracellular nitrite is unknown.
Collapse
Affiliation(s)
- Tengxia He
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Deti Xie
- Chongqing Key Laboratory of Soil Multiscale Interfacial Process, College of Resources and Environment, Southwest University, Chongqing 400716, China.
| | - Jiupai Ni
- Chongqing Key Laboratory of Soil Multiscale Interfacial Process, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Zhu Li
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Zhenlun Li
- Chongqing Key Laboratory of Soil Multiscale Interfacial Process, College of Resources and Environment, Southwest University, Chongqing 400716, China.
| |
Collapse
|
46
|
Yang M, Lu D, Yang J, Zhao Y, Zhao Q, Sun Y, Liu H, Ma J. Carbon and nitrogen metabolic pathways and interaction of cold-resistant heterotrophic nitrifying bacteria under aerobic and anaerobic conditions. CHEMOSPHERE 2019; 234:162-170. [PMID: 31207421 DOI: 10.1016/j.chemosphere.2019.06.052] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 06/09/2023]
Abstract
In this study, both the carbon and nitrogen metabolisms of two heterotrophic nitrification bacteria were investigated under aerobic and anaerobic conditions at 2 °C. Similar catabolism and anabolism trends were observed for the two bacteria in stable experimental systems under aerobic and anaerobic conditions. Based on the nitrogen and carbon balance analysis and adenosine triphosphate (ATP) calculation, we proposed the following metabolic pathways: i) aerobic: except for microbial assimilation, the carbon and nitrogen sources were removed through respiration and nitrification, which provided energy for cell synthesis; and ii) anaerobic: the nitrification process almost stopped and most of the carbon sources decomposed into inorganic carbon, which dissolved in the medium. Based on our proposed metabolic pathways, we speculated that the nitrifying process almost stopped under anaerobic conditions and the nitrification bacteria would degrade more carbon contaminants to produce energy and maintain the cell growth. Furthermore, these bacteria may decompose the non-readily biodegradable carbon through anaerobic degradation. To verify these hypotheses, experiments with two types of synthetic wastewater were conducted: i) synthetic wastewater rich in carbon and poor in nitrogen, and higher carbon removal efficiencies of strain J and strain P (∼25%) were obtained under anaerobic conditions compared with aerobic conditions (∼19%); and ii) synthetic wastewater with recalcitrant carbon sources, and carbon removal efficiencies under anaerobic conditions were higher than those under aerobic conditions. The results of the synthetic wastewater experiments were consistent with the hypotheses and thus validated the metabolic pathways proposed for carbon and nitrogen.
Collapse
Affiliation(s)
- Mo Yang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Dongwei Lu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Jiaxuan Yang
- Central & Southern China Municipal Engineering Design and Research Institute Co., Ltd, Wuhan, 430010, China
| | - Yumeng Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Qi Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yan Sun
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Huiling Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
47
|
Rajta A, Bhatia R, Setia H, Pathania P. Role of heterotrophic aerobic denitrifying bacteria in nitrate removal from wastewater. J Appl Microbiol 2019; 128:1261-1278. [PMID: 31587489 DOI: 10.1111/jam.14476] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 11/27/2022]
Abstract
With the increase in industrial and agricultural activities, a large amount of nitrogenous compounds are released into the environment, leading to nitrate pollution. The perilous effects of nitrate present in the environment pose a major threat to human and animal health. Bioremediation provides a cost-effective and environmental friendly method to deal with this problem. The process of aerobic denitrification can reduce nitrate compounds to harmless dinitrogen gas. This review provides a brief view of the exhaustive role played by aerobic denitrifiers for tackling nitrate pollution under different ecological niches and their dependency on various environmental parameters. It also provides an understanding of the enzymes involved in aerobic denitrification. The role of aerobic denitrification to solve the issues faced by the conventional method (aerobic nitrification-anaerobic denitrification) in treating nitrogen-polluted wastewaters is elaborated.
Collapse
Affiliation(s)
- A Rajta
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - R Bhatia
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - H Setia
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - P Pathania
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| |
Collapse
|
48
|
Yang L, Wang XH, Cui S, Ren YX, Yu J, Chen N, Xiao Q, Guo LK, Wang RH. Simultaneous removal of nitrogen and phosphorous by heterotrophic nitrification-aerobic denitrification of a metal resistant bacterium Pseudomonas putida strain NP5. BIORESOURCE TECHNOLOGY 2019; 285:121360. [PMID: 31015182 DOI: 10.1016/j.biortech.2019.121360] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/13/2019] [Accepted: 04/16/2019] [Indexed: 05/16/2023]
Abstract
A novel strain NP5 with efficient heterotrophic nitrification, aerobic denitrification and phosphorus accumulation ability was isolated and identified as Pseudomonas putida strain NP5. The removed ammonium and phosphate were mainly converted into intracellular components by assimilation, and negligible nitrification intermediates and N2O were accumulated during heterotrophic nitrification. In addition, the optimal conditions for nutrient removal were: succinate as carbon source, C/N 10, P/N 0.2, temperature 30 °C, salinity 0% and shaking speed 160 rpm. Besides, strain NP5 possessed an exceptional heavy metal and nanoparticles resistance. Cr6+ was found to be the most toxic among the tested metals, and it could be removed simultaneously. Moreover, an obvious phosphorus release was observed under anaerobic condition, and repeated exposure to the anaerobic/aerobic conditions could significantly improve the nutrient removal. Furthermore, the successful expression of key enzymes for nitrogen and phosphorous removal provided additional evidence for possibility of simultaneous nitrification, denitrification and phosphorus removal.
Collapse
Affiliation(s)
- Lei Yang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xu-Hui Wang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Shen Cui
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yong-Xiang Ren
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Jie Yu
- China United Northwest Institute for Engineering Design & Research Co., Ltd., Xi'an 710077, China
| | - Ning Chen
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Qian Xiao
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Lin-Kai Guo
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Rui-Hua Wang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
49
|
Shen L, Saky SA, Yang Z, Ho SH, Chen C, Qin L, Zhang G, Wang Y, Lu Y. The critical utilization of active heterotrophic microalgae for bioremoval of Cr(VI) in organics co-contaminated wastewater. CHEMOSPHERE 2019; 228:536-544. [PMID: 31051357 DOI: 10.1016/j.chemosphere.2019.04.152] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/23/2019] [Accepted: 04/20/2019] [Indexed: 06/09/2023]
Abstract
Considering the importance of removing toxic Cr(VI) from practical wastewater containing complex pollutants, this study presented for the first time the utilization of the live heterotrophic microalgae (Botryocossuss sp. NJD-1) to achieve a concurrent abatement of Cr(VI), TOC, NO3-N and PO4-P, through a comprehensive biochemical process. The experimental results showed that the Cr(VI) removal efficiencies in the culture with different types of organic descended in the order of sodium acetate, ethanol and methanol. The highest removal efficiencies were achieved as 94.2%, 98.2%, 66.9% and 99.2% for Cr(VI), TOC, NO3-N and PO4-P, respectively, in the culture with 5 mg L-1 Cr(VI) and sodium acetate of equivalent to 2.92 g C L-1. Through mass balance calculation and characterization, the fate of Cr(VI) and Cr(III) was tracked and quantified in the culture system, which indicates that 87.17% of initial Cr(VI) were reduced to Cr(III) and then adsorbed in algal biomass for the optimal removal case. Consequently, the mechanism demonstrating the correlation among the removal process of Cr(VI), the biological activity of microalgae and the effect of organic compounds was proposed.
Collapse
Affiliation(s)
- Liang Shen
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, PR China.
| | - Shaila Akter Saky
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, PR China
| | - Zheng Yang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, PR China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Cuixue Chen
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, PR China
| | - Lei Qin
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Guoliang Zhang
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Yuanpeng Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, PR China
| | - Yinghua Lu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, PR China.
| |
Collapse
|
50
|
Kumar M, Saini HS. Reduction of hexavalent chromium (VI) by indigenous alkaliphilic and halotolerant Microbacterium sp. M5: comparative studies under growth and nongrowth conditions. J Appl Microbiol 2019; 127:1057-1068. [PMID: 31260173 DOI: 10.1111/jam.14366] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/29/2019] [Accepted: 06/24/2019] [Indexed: 01/26/2023]
Abstract
AIMS To evaluate hexavalent chromium (Cr (VI)) reduction potential of indigenous isolate M5, under growing and nongrowing conditions. METHODS AND RESULTS Microbacterium sp. M5 was isolated from soil samples collected from a common effluent treatment plant, after enrichment of indigenous microbial diversity in the presence of 200 mg l-1 of Cr (VI). The isolate achieved complete reduction of 400 mg l-1 Cr (VI) supplement to Luria Bertani medium having initial pH of 9·0 after 48 h incubation. Furthermore, the reduction potential of resting and surfactant treated cell membrane compromised cells of M5 was evaluated. The control and biosurfactant treated cells achieved 22·71 ± 0·5% and 40·56 ± 0·5% reduction of 50 mg l-1 Cr (VI) in Tris-HCl buffer, under resting cells conditions. To the best of our knowledge, this is the first report where cells with compromised cell membrane obtained after exposure to biosurfactant have been evaluated for Cr (VI) reduction. CONCLUSION The Cr (VI) reduction potential of Microbacterium sp. M5 could be effectively exploited for treatment of chromium-rich effluents, under nongrowing conditions. SIGNIFICANCE AND IMPACT OF THE STUDY The isolate M5 could be a potential inoculum for effluent treatment plants as it is able to support Cr (VI) reduction under wide range of pH, salinity and in the presence of different metal ions.
Collapse
Affiliation(s)
- M Kumar
- Department of Microbiology, Guru Nanak Dev University, Amritsar, India
| | - H S Saini
- Department of Microbiology, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|