1
|
Huang Y, Zheng X, Zhao Z, Tao J, Hu T, Han Z, Lin T. Integration of manganese ores with activated carbon into constructed wetland for greenhouse gas emissions reduction. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124205. [PMID: 39935055 DOI: 10.1016/j.jenvman.2025.124205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/20/2024] [Accepted: 01/17/2025] [Indexed: 02/13/2025]
Abstract
Manganese oxide and activated carbon (AC) are widely employed in constructed wetlands (CWs) to remove nutrients and reduce greenhouse gas (GHG) emissions, however, the effect and mechanism of AC combined with manganese ores (MO) on GHG emissions remain unclear. In this study, the mechanisms of nutrient removal and GHG emissions reduction were investigated by three vertical subsurface-flow CWs: gravel (CW-B), manganese ores (MO) uniformly mixing with gravel (CW-M), or activated carbon (CW-MC). The average removal efficiencies of chemical oxygen demand, total nitrogen and total phosphorus in CW-MC were markedly improved compared to CW-B and CW-M, reaching 82.72%, 95.72% and 93.43%, respectively. Moreover, the global warming potential (CO2 equivalent) of CW-MC was reduced by 52.80% and 36.88% relative to CW-B and CW-M, respectively. Mixing of MO with AC reduced the loss of manganese and further enhanced the manganese cycling process by X-ray photoelectron spectroscope and concentration of Mn(Ⅱ) in CWs analysis. The introduction of MO and AC enhanced the PN/PS ratio of extracellular polymeric substances and facilitated extracellular electron transfer (EET). Furthermore, metagenomic analysis showed that the abundances of denitrifying, manganese oxidizing and electroactive bacteria genera were enhanced in the CW-MC, which promoted the transformation of nitrogen and manganese. Meanwhile, high abundances of denitrification and EET related genes were observed in CW-MC, improving denitrification efficiency and reducing N2O emission. This study elucidated the impacts and mechanisms of MO and AC on GHG emissions, providing a new insight to improve manganese-based CW performance.
Collapse
Affiliation(s)
- Yu Huang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Xiaoying Zheng
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Zhilin Zhao
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Jiaqing Tao
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Tianxing Hu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Zongshuo Han
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Tao Lin
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| |
Collapse
|
2
|
Quan H, Jia Y, Zhang H, Ji F, Shi Y, Deng Q, Hao T, Khanal SK, Sun L, Lu H. Insights into the role of electrochemical stimulation on sulfur-driven biodegradation of antibiotics in wastewater treatment. WATER RESEARCH 2024; 266:122385. [PMID: 39255566 DOI: 10.1016/j.watres.2024.122385] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/18/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024]
Abstract
The presence of antibiotics in wastewater poses significant threat to our ecosystems and health. Traditional biological wastewater treatment technologies have several limitations in treating antibiotic-contaminated wastewaters, such as low removal efficiency and poor process resilience. Here, a novel electrochemical-coupled sulfur-mediated biological system was developed for treating wastewater co-contaminated with several antibiotics (e.g., ciprofloxacin (CIP), sulfamethoxazole (SMX), chloramphenicol (CAP)). Superior removal of CIP, SMX, and CAP with efficiencies ranging from 40.6 ± 2.6 % to 98.4 ± 1.6 % was achieved at high concentrations of 1000 μg/L in the electrochemical-coupled sulfur-mediated biological system, whereas the efficiencies ranged from 30.4 ± 2.3 % to 98.2 ± 1.4 % in the control system (without electrochemical stimulation). The biodegradation rates of CIP, SMX, and CAP increased by 1.5∼1.9-folds under electrochemical stimulation compared to the control. The insights into the role of electrochemical stimulation for multiple antibiotics biodegradation enhancement was elucidated through a combination of metagenomic and electrochemical analyses. Results showed that sustained electrochemical stimulation significantly enriched the sulfate-reducing and electroactive bacteria (e.g., Desulfobulbus, Longilinea, and Lentimicrobiumin on biocathode and Geobactor on bioanode), and boosted the secretion of electron transport mediators (e.g., cytochrome c and extracellular polymeric substances), which facilitated the microbial extracellular electron transfer processes and subsequent antibiotics removal in the sulfur-mediated biological system. Furthermore, under electrochemical stimulation, functional genes associated with sulfur and carbon metabolism and electron transfer were more abundant, and the microbial metabolic processes were enhanced, contributing to antibiotics biodegradation. Our study for the first time demonstrated that the synergistic effects of electrochemical-coupled sulfur-mediated biological system was capable of overcoming the limitations of conventional biological treatment processes. This study shed light on the mechanism of enhanced antibiotics biodegradation via electrochemical stimulation, which could be employed in sulfur-mediated bioprocess for treating antibiotic-contaminated wastewaters.
Collapse
Affiliation(s)
- Haoting Quan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510275, PR China
| | - Yanyan Jia
- School of Ecology, Sun Yat-sen University, Shenzhen, 518107, PR China
| | - Huiqun Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510275, PR China
| | - Fahui Ji
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510275, PR China
| | - Yongsen Shi
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510275, PR China
| | - Qiujin Deng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510275, PR China
| | - Tianwei Hao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, PR China
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Lianpeng Sun
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510275, PR China
| | - Hui Lu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510275, PR China.
| |
Collapse
|
3
|
Liu Y, Zhang J, Cheng D, Guo W, Liu X, Chen Z, Zhang Z, Ngo HH. Fate and mitigation of antibiotics and antibiotic resistance genes in microbial fuel cell and coupled systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 938:173530. [PMID: 38815818 DOI: 10.1016/j.scitotenv.2024.173530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024]
Abstract
Microbial fuel cells (MFCs), known for their low energy consumption, high efficiency, and environmental friendliness, have been widely utilized for removing antibiotics from wastewater. Compared to conventional wastewater treatment methods, MFCs produce less sludge while exhibiting superior antibiotic removal capacity, effectively reducing the spread of antibiotic resistance genes (ARGs). This study investigates 1) the mechanisms of ARGs generation and proliferation in MFCs; 2) the influencing factors on the fate and removal of antibiotics and ARGs; and 3) the fate and mitigation of ARGs in MFC and MFC-coupled systems. It is indicated that high removal efficiency of antibiotics and minimal amount of sludge production contribute the mitigation of ARGs in MFCs. Influencing factors, such as cathode potential, electrode materials, salinity, initial antibiotic concentration, and additional additives, can lead to the selection of tolerant microbial communities, thereby affecting the abundance of ARGs carried by various microbial hosts. Integrating MFCs with other wastewater treatment systems can synergistically enhance their performance, thereby improving the overall removal efficiency of ARGs. Moreover, challenges and future directions for mitigating the spread of ARGs using MFCs are suggested.
Collapse
Affiliation(s)
- Yufei Liu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China
| | - Jian Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China
| | - Dongle Cheng
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Xiaoqing Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Zhijie Chen
- UNSW Water Research Centre, School of Civil and Environmental Engineering, The University New South Wales, Sydney, NSW 2052, Australia
| | - Zehao Zhang
- National Engineering Laboratory of Urban Sewage Advanced Treatment and Resource Utilization Technology, The College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China
| | - Huu Hao Ngo
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia.
| |
Collapse
|
4
|
Zou J, Chang Q, Guo C, Yan M. Vanadium nitride decorated carbon cloth anode promotes aniline degradation and electricity generation of MFCs by efficiently enriching electroactive bacteria and promoting extracellular electron transfer. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 346:119048. [PMID: 37742561 DOI: 10.1016/j.jenvman.2023.119048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/29/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023]
Abstract
To increase the colonization of electroactive bacteria and accelerate the rate of extracellular electron transfer, a simple coated anode of microbial fuel cell was designed. Here, we took advantage of vanadium nitride (VN) particles to modify the carbon cloth (VN@CC). Compared with bare carbon cloth, the designed VN@CC bioanodes exhibited a larger electrochemically active area, better biocompatibility, and smaller charge transfer impedance. The MFC with VN@CC bioanodes achieved the maximum power density of 3.89 W m-2 and chemical oxygen demand removal rate of 84% when 1000 mg L-1 aniline was degraded, which were about 1.88 and 2.8 times that of CC. The morphology of biofilm and 16s rRNA gene sequence analysis proved that the VN@CC bioanodes facilitated the enrichment of electroactive bacteria (99.02%) and increased the ratio of fast electron transfer in the extracellular electron transfer, thus enhancing the MFC performance of aniline degradation and power output. This work disclosed that it was feasible to increase the overall performance of MFC by enhancing the EET efficiency and presented valuable insights for future work.
Collapse
Affiliation(s)
- Jixiang Zou
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, PR China.
| | - Qinghuan Chang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, PR China.
| | - Chongshen Guo
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, PR China.
| | - Mei Yan
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, PR China.
| |
Collapse
|
5
|
Li X, Zheng S, Li Y, Ding J, Qin W. Effectively facilitating the degradation of chloramphenicol by the synergism of Shewanella oneidensis MR-1 and the metal-organic framework. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131545. [PMID: 37148794 DOI: 10.1016/j.jhazmat.2023.131545] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/14/2023] [Accepted: 04/29/2023] [Indexed: 05/08/2023]
Abstract
Electroactive bacteria (EAB) and metal oxides are capable of synergistically removing chloramphenicol (CAP). However, the effects of redox-active metal-organic frameworks (MOFs) on CAP degradation with EAB are not yet known. This study investigated the synergism of iron-based MOFs (Fe-MIL-101) and Shewanella oneidensis MR-1 on CAP degradation. 0.5 g/L Fe-MIL-101 with more possible active sites led to a three-fold higher CAP removal rate in the synergistic system with MR-1 (initial bacterial concentration of 0.2 at OD600), and showed a superior catalytic effect than exogenously added Fe(III)/Fe(II) or magnetite. Mass spectrometry revealed that CAP was transformed into smaller molecular weight and less toxic metabolites in cultures. Transcriptomic analysis showed that Fe-MIL-101 enhanced the expression of genes related to nitro and chlorinated contaminants degradation. Additionally, genes encoding hydrogenases and c-type cytochromes associated with extracellular electron transfer were significantly upregulated, which may contribute to the simultaneous bioreduction of CAP both intracellularly and extracellularly. These results indicated that Fe-MIL-101 can be used as a catalyst to synergize with EAB to effectively facilitate CAP degradation, which might shed new light on the application in the in situ bioremediation of antibiotic-contaminated environments.
Collapse
Affiliation(s)
- Xin Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shiling Zheng
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, PR China; Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, PR China.
| | - Yinhao Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jiawang Ding
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, PR China; Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, PR China.
| | - Wei Qin
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, PR China; Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, PR China
| |
Collapse
|
6
|
Cao D, Li ZL, Shi K, Liang B, Zhu Z, Liu W, Nan J, Sun K, Wang AJ. Cathode potential regulates the microbiome assembly and function in electrostimulated bio- dechlorination system. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130113. [PMID: 36252407 DOI: 10.1016/j.jhazmat.2022.130113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/05/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Mechanism of microbiome assembly and function driven by cathode potential in electro-stimulated microbial reductive dechlorination system remain poorly understood. Here, core microbiome structure, interaction, function and assembly regulating by cathode potential were investigated in a 2,4,6-trichlorophenol bio-dechlorination system. The highest dechlorination rate (24.30 μM/d) was observed under - 0.36 V with phenol as a major end metabolite, while, lower (-0.56 V) or higher (0.04 V or -0.16 V) potentials resulted in 1.3-3.8 times decreased of dechlorination kinetic constant. The lower the cathode potential, the higher the generated CH4, revealing cathode participated in hydrogenotrophic methanogenesis. Taxonomic and functional structure of core microbiome significantly shifted within groups of - 0.36 V and - 0.56 V, with dechlorinators (Desulfitobacterium, Dehalobacter), fermenters (norank_f_Propionibacteriaceae, Dysgonomonas) and methanogen (Methanosarcina) highly enriched, and the more positive interactions between functional genera were found. The lowest number of nodes and links and the highest positive correlations were observed among constructed sub-networks classified by function, revealing simplified and strengthened cooperation of functional genera driven by group of - 0.36 V. Cathode potential plays one important driver controlling core microbiome assembly, and the low potentials drove the assembly of major dechlorinating, methanogenic and electro-active genera to be more deterministic, while, the major fermenting genera were mostly governed by stochastic processes.
Collapse
Affiliation(s)
- Di Cao
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhi-Ling Li
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Ke Shi
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bin Liang
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Zhongli Zhu
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wenzong Liu
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Jun Nan
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Kai Sun
- Key Lab of Structures Dynamic Behavior and Control of China Ministry of Education, School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|
7
|
Zhao N, Liu Y, Zhang Y, Li Z. Pyrogenic carbon facilitated microbial extracellular electron transfer in electrogenic granular sludge via geobattery mechanism. WATER RESEARCH 2022; 220:118618. [PMID: 35609427 DOI: 10.1016/j.watres.2022.118618] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/05/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Electroactive pyrogenic carbon (PC) is an intriguing candidate for realizing the ambitious goals of large-scale applications of microbial electrochemical technologies (METs). In this study, PC was employed to promote the extracellular electron transfer (EET) within the electrogenic granular sludge (EGS) by acting as an electron conduit. The pecan shell-derived PC prepared at three temperatures (600, 800, and 1000 ˚C) contained rich oxygenated-functional moieties (mainly quinone) on the surface, endowing a good electron transfer capacity (EEC). The maximum current density (Jmax) of EGS with PC amendment outperformed the control EGS without PC amendment, i.e., 100-132 times higher than Jamx of EGS in the absence of PC. Among various pyrolysis temperatures, the PC derived from 600 ˚C produced the highest Jmax (0.40 A/ m2), 0.67-times, and 0.33-times higher than that of PC derived from 800 and 1000 ˚C, respectively. Furthermore, more polysaccharides were secreted in extracellular polymeric substance with PC amendments. The microbial community analysis demonstrated that the PC favored the growth of electroactive bacteria over methanogens. The metabolic pathway revealed that PC induced more functional enzymes in the quinone biosynthesis and cytochrome c and heme synthesis, resulting in an enhanced EET. The EEC of PC was responsible for the EET enhancement effect via PC acting as a geobattery to wire up the EGS and electrodes. Overall, this study pinpoints the finding of PC role in a mixed electroactive biofilm and provides a wide scenario of the PC applications in MET at large scales.
Collapse
Affiliation(s)
- Nannan Zhao
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China; International Science and Technology Cooperation Platform for Low-carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Yuhang Liu
- College of Chemical and Biological Engineering, Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Zhongjian Li
- College of Chemical and Biological Engineering, Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
8
|
Wu X, Zhang L, Lv Z, Xin F, Dong W, Liu G, Li Y, Jia H. N-acyl-homoserine lactones in extracellular polymeric substances from sludge for enhanced chloramphenicol-degrading anode biofilm formation in microbial fuel cells. ENVIRONMENTAL RESEARCH 2022; 207:112649. [PMID: 34979128 DOI: 10.1016/j.envres.2021.112649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/21/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Exploring an efficient acclimation strategy to obtain robust bioanodes is of practical significance for antibiotic wastewater treatment by bioelectrochemical systems (BESs). This study investigated the effects of two acclimation conditions on chloramphenicol (CAP)-degrading anode biofilm formation in microbial fuel cells (MFCs). The one was continuously added the extracellular polymeric substances (EPS) extracted from anaerobic sludge and increasing concentrations of CAP after the first start-up phase, while the other was added the EPS-1 (N-acyl-homoserine lactones, namely AHLs were extracted from the EPS) at the same conditions. The results demonstrated that AHLs in the sludge EPS played a crucial role for enhanced CAP-degrading anode biofilm formation in MFCs. The AHL-regulation could not only maintain stable voltage outputs but also significantly accelerate CAP removal in the EPS MFC. The maximum voltage of 653.83 mV and CAP removal rate of 1.21 ± 0.05 mg/L·h were attained from the EPS MFC at 30 mg/L of CAP, which were 0.84 and 1.57 times higher than those from the EPS-1 MFC, respectively. These improvements were largely caused by the thick and 3D structured biofilm, strong and homogeneous cell viability throughout the biofilm, and high protein/polysaccharide ratio along with more conductive contents in the biofilm EPS. Additionally, AHLs facilitated the formation of a biofilm with rich biodiversity and balanced bacterial proportions, leading to more beneficial mutualism among different functional bacteria. More bi-functional bacteria (for electricity generation and antibiotic resistance/degradation) were specifically enriched by AHLs as well. These findings provide quorum sensing theoretical knowledge and practical instruction for rapid antibiotic-degrading electrode biofilm acclimation in BESs.
Collapse
Affiliation(s)
- Xiayuan Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China.
| | - Lina Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Zuopeng Lv
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou, 221116, China
| | - Fengxue Xin
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Weiliang Dong
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Guannan Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China; Frontier Technology Research Institute, Tianjin University, Tianjin, 301700, China
| | - Yan Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Honghua Jia
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China.
| |
Collapse
|
9
|
Tu L, Rong Y, Yu Z, Chen S, Sun J, Li Z, Li J, Hou Y. Chlortetracycline degradation performance and mechanism in the self-biased bio-photoelectrochemical system constructed with an oxygen-defect-rich BiVO 4/Ni 9S 8 photoanode. CHEMOSPHERE 2022; 295:133787. [PMID: 35104538 DOI: 10.1016/j.chemosphere.2022.133787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/15/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Efficient photoelectrodes are highly desired in bio-photoelectrochemical systems (BPES). Herein, in this paper, the oxygen defect-rich BiVO4/Ni9S8 photoanode was developed and coupled with a biocathode for enhanced chlortertracycline (CTC) degradation and current generation in the self-biased BPES. Characterization results showed that the optimized BiVO4/Ni9S8-7 mg-150 °C NF exhibited the best photocatalytic activity, due to that the rich oxygen vacancies and Ni9S8 could significantly improve light absorption, enhance photo-generated carriers separation, and accelerate charges transfer. CTC (20 mg L-1) removal efficiency from the BPES was about 1.3 times (82.3% vs 64.7%) of that from the unilluminated reactor, and current output (0.68 A m-3) was about 7.6 times (0.09 A m-3). The dominant species in genus level was Geobacter, which is capable of reducing nitroaromatics and in favor of reductive dehalogenation of CTC. Besides, Comamonas and Rhodopseudomonas that are capable of degrading antibiotics were also detected. Possible degradation pathways and mechanism of CTC degradation in the BPES were proposed. This research advances the development of photoelectrode materials for light-driven BPESs and enriches antibiotics degradation mechanism.
Collapse
Affiliation(s)
- Lingli Tu
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Yiyuan Rong
- Guangxi Open University, Nanning, 530004, China
| | - Zebin Yu
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China; Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Nanning, 530004, China; MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Nanning, 530004, China
| | - Shuo Chen
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Jiangli Sun
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Zhihong Li
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Jialu Li
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Yanping Hou
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China; Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Nanning, 530004, China; MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Nanning, 530004, China.
| |
Collapse
|
10
|
Xu H, Sheng Y, Liu Q, Li C, Tang Q, Li Z, Wang W. In situ fabrication of gold nanoparticles into biocathodes enhance chloramphenicol removal. Bioelectrochemistry 2022; 144:108006. [PMID: 34871846 DOI: 10.1016/j.bioelechem.2021.108006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/31/2021] [Accepted: 11/23/2021] [Indexed: 12/22/2022]
Abstract
The development of highly conductive biofilms is a key strategy to enhance antibiotic removal in bioelectrochemical systems (BESs) with biocathodes. In this study, Au nanoparticles (Au-NPs) were in situ fabricated in a biocathode (Au biocathode) to enhance the removal of chloramphenicol (CAP) in BESs. The concentration of Au(III) was determined to be 5 mg/L. CAP was effectively removed in the BES containing a Au biocathode with a removal percentage of 94.0% within 48 h; this result was 1.8-fold greater than that obtained using a biocathode without Au-NPs (51.7%). The Au-NPs significantly reduced the charge transfer resistance and promoted the electrochemical activity of the biocathode. In addition, the Au biocathode showed a specifical enrichment of Dokdonella, Bosea, Achromobacter, Bacteroides and Petrimonas, all of which are associated with electron transfer and contaminant degradation. This study provides a new strategy for enhancing CAP removal in BESs through a simple and eco-friendly electrode design.
Collapse
Affiliation(s)
- Hengduo Xu
- Research Center for Coastal Environment Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Yanqing Sheng
- Research Center for Coastal Environment Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Qunqun Liu
- Research Center for Coastal Environment Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Changyu Li
- Research Center for Coastal Environment Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Tang
- Research Center for Coastal Environment Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaoran Li
- Research Center for Coastal Environment Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Wenjing Wang
- Research Center for Coastal Environment Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| |
Collapse
|
11
|
Pan QR, Jiang PY, Lai BL, Qian YB, Huang LJ, Liu XX, Li N, Liu ZQ. Co, N co-doped hierarchical porous carbon as efficient cathode electrocatalyst and its impact on microbial community of anode biofilm in microbial fuel cell. CHEMOSPHERE 2022; 291:132701. [PMID: 34715100 DOI: 10.1016/j.chemosphere.2021.132701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/15/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
The exploration of low-cost, long-term stable, and highly electrochemically active cathode catalysts is important for the practical application of microbial fuel cell (MFC). In this work, a series of the 3D hierarchical porous Co-N-C (3DHP Co-N-C) materials are designed and synthesized by a metal-organic framework ZIF-67 as a precursor and SiO2 sphere of different sizes as the hard template. The 3DHP Co-N-C-2 with 129 nm macropore exhibits excellent ORR performance in 0.1 M KOH solution with a half-wave potential of 0.80 V vs. RHE and superior durability than Pt/C (20%) due to the specific macropore-mesopore-micropore structure that exposes a large number of active sites and accelerates the electrolyte transport and oxygen diffusion. The MFC with 3DHP Co-N-C-2 as the cathode catalysts shows excellent performance with a maximum power density of 426.9±7.87 mW m-2 and favorable durability after 50 d of operation. In addition, 16s rDNA results reveal the presence of different dominant electrogenic bacteria and different abundance of important non-electrogenic bacteria in the anode biofilm in MFCs using cathode catalysts with different ORR activity. And 3DHP Co-N-C-2 was found to be beneficial to the synergistic effect of electrogenic and non-electrogenic bacteria. This study explores electrocatalysts in terms of both electrocatalytic activity and anode microorganisms, providing new and comprehensive insights into the power generation of MFC.
Collapse
Affiliation(s)
- Qiu-Ren Pan
- School of Chemistry and Chemical Engineering/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, China
| | - Peng-Yang Jiang
- School of Chemistry and Chemical Engineering/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, China
| | - Bi-Lin Lai
- School of Chemistry and Chemical Engineering/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, China
| | - Yun-Bing Qian
- School of Chemistry and Chemical Engineering/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, China
| | - Li-Juan Huang
- School of Chemistry and Chemical Engineering/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, China
| | - Xiao-Xin Liu
- School of Chemistry and Chemical Engineering/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, China
| | - Nan Li
- School of Chemistry and Chemical Engineering/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, China.
| | - Zhao-Qing Liu
- School of Chemistry and Chemical Engineering/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
12
|
Cui Y, Chen X, Pan Z, Wang Y, Xu Q, Bai J, Jia H, Zhou J, Yong X, Wu X. Biosynthesized iron sulfide nanoparticles by mixed consortia for enhanced extracellular electron transfer in a microbial fuel cell. BIORESOURCE TECHNOLOGY 2020; 318:124095. [PMID: 32927315 DOI: 10.1016/j.biortech.2020.124095] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/28/2020] [Accepted: 09/02/2020] [Indexed: 06/11/2023]
Abstract
The bioanode of mixed consortia was for the first time used to in-situ synthesize iron sulfide nanoparticles in a microbial fuel cell (MFC) over a long-term period (46 days). These poorly crystalline nanoparticles with an average size of 29.97 ± 7.1 nm, comprising of FeS and FeS2, significantly promoted extracellular electron transfer and thus the electricity generation of the MFC. A maximum power density of 519.00 mW/m2 was obtained from the MFC, which was 1.92 times as high as that of the control. The cell viability was promoted by a small amount of iron sulfide nanoparticles but inhibited by the thick nanoparticle "shell" covered on the bacterial cells. Some electroactive and sulfur reducing bacteria (eg. Enterobacteriaceae, Desulfovibrio, and Geobacter) were specifically enriched on the anode. This study provides a novel insight for improving the performance of bioelectrochemical systems through in-situ sustainable nanomaterials biofabrication by mixed consortia.
Collapse
Affiliation(s)
- Yan Cui
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xueru Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhengyong Pan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yuqi Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Qiang Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jiaying Bai
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Honghua Jia
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jun Zhou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xiaoyu Yong
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xiayuan Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
13
|
Qin S, Hou Y, Yuan G, Yu Z, Tu L, Yan Y, Chen S, Sun J, Lan D, Wang S. Different refractory organic substances degradation and microbial community shift in the single-chamber bio-photoelectrochemical system. BIORESOURCE TECHNOLOGY 2020; 307:123176. [PMID: 32203871 DOI: 10.1016/j.biortech.2020.123176] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/02/2020] [Accepted: 03/06/2020] [Indexed: 06/10/2023]
Abstract
The single-chamber bio-photoelectrochemical system (BPES) with a BiOBr photocathode was developed for acid orange 7 (AO7), 2,4 dichlorophenol (2,4-DCP) and chloramphenicol (CAP) degradation under solar irradiation. Photoelectrochemical characterizations showed that the optimized BiOBr-photocathode exhibited great light-response property and excellent electrochemcial performance. Moreover, desired TOC removals were achieved for various organic pollutants, with the values of 90.97% (AO7), 81.41% (2,4-DCP) and 78.47% (CAP). Besides, the lower cathode potentials in the illuminated BPESs were favorable to efficient pollutants degradation. Significant microbial community shifts were observed among the inoculation and anodic biofilms from the BPES, and the most dominated species in anodic biofilms acclimated to various pollutants were Geobacter and Pseudomonas, which have the abilities of extracellular electrons transfer and organics degradation. Some other species that different from the inoculation were also identified from the BPES biofilms. This study suggested that BPES had great potential for refractory organics degradation.
Collapse
Affiliation(s)
- Shanming Qin
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Yanping Hou
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, China.
| | - Guiyun Yuan
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Zebin Yu
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, China
| | - Lingli Tu
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Yimin Yan
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Shuo Chen
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Jiangli Sun
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Danquan Lan
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Shuangfei Wang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, China; College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; Guangxi Bossco Environmental Protection Technology Co., Ltd, 12 Kexin Road, Nanning 530007, China
| |
Collapse
|
14
|
Yun H, Liang B, Kong D, Li X, Wang A. Fate, risk and removal of triclocarban: A critical review. JOURNAL OF HAZARDOUS MATERIALS 2020; 387:121944. [PMID: 31901847 DOI: 10.1016/j.jhazmat.2019.121944] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/01/2019] [Accepted: 12/19/2019] [Indexed: 06/10/2023]
Abstract
The halogenated antimicrobial triclocarban (TCC) has large production and consumption over last decades. Its extensive utilization in personal care products and insufficient treatment in conventional wastewater treatment plants (WWTPs) has led to its listing as one of emerging organic contaminants (EOCs). Due to the hydrophobicity and chemical stability of TCC, it has been omnipresent detected in terrestrial and aquatic environments, and its prolonged exposure has thrown potential pernicious threat to ecosystem and human health. Considering its recalcitrance, especially under anoxic conditions, both biological and non-biological methods have been exploited for its removal. The efficiency of advanced oxidation processes was optimistic, but complete removal can rarely be realized through a single method. The biodegradation of TCC either with microbial community or pure culture is feasible but efficient bacterial degraders and the molecular mechanism of degradation need to be further explored. This review provides comprehensive information of the occurrence, potential ecological and health effects, and biological and non-biological removal of TCC, and outlines future prospects for the risk evaluation and enhanced bioremediation of TCC in various environments.
Collapse
Affiliation(s)
- Hui Yun
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, Tianshui South Road #222, Lanzhou, 730000, Gansu, China; Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshui South Road #222, Lanzhou, 730000, Gansu, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Bin Liang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Deyong Kong
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Shenyang Academy of Environmental Sciences, Shenyang, 110167, China
| | - Xiangkai Li
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, Tianshui South Road #222, Lanzhou, 730000, Gansu, China; Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshui South Road #222, Lanzhou, 730000, Gansu, China
| | - Aijie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
15
|
Zhang J, Zhao R, Cao L, Lei Y, Liu J, Feng J, Fu W, Li X, Li B. High-efficiency biodegradation of chloramphenicol by enriched bacterial consortia: Kinetics study and bacterial community characterization. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121344. [PMID: 31606710 DOI: 10.1016/j.jhazmat.2019.121344] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
The risk of environmental pollution caused by chloramphenicol has necessitated special attention. Biodegradation has tremendous potential for chloramphenicol removal in the environment. Six chloramphenicol-degrading consortia were acclimated under different culture conditions to investigate their chloramphenicol biodegradation behaviors, and the bacterial community structures were comprehensively characterized. The enriched consortia CL and CH which utilized chloramphenicol as their sole carbon and energy source could thoroughly degrade 120 mg/L chloramphenicol within 5 days, and the mineralization rate reached up to 90%. Chloramphenicol biodegradation kinetics by different enriched consortia fit the modified Gompertz model or the first-order decay model (R2≥0.97). Consortia CL could almost completely degrade 1-500 mg/L CAP with a final mineralization rate of 87.8-91.7%. Chloramphenicol 3-acetate was identified to be a major intermediate of CAP biodegradation by metabolite analysis and enzyme activity assay. 16S rRNA sequencing analysis revealed that the diversities and abundances of the main genera in the enriched consortia were distinct from each other. Forty-one core OTUs belonging to 18 genera were the core bacteria which might be related to chloramphenicol biodegradation. Among them, the genera Sphingomonas, Chryseobacterium, Cupriavidus, Bradyrhizobium, Burkholderia, and Afipia with high abundance may play potential roles for chloramphenicol biodegradation.
Collapse
Affiliation(s)
- Jiayu Zhang
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Graduate School at Shenzhen, Tsinghua University, China; School of Environment, Tsinghua University, Beijing, 100084, China
| | - Renxin Zhao
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Graduate School at Shenzhen, Tsinghua University, China; School of Environment, Tsinghua University, Beijing, 100084, China
| | - Lijia Cao
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Graduate School at Shenzhen, Tsinghua University, China; School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yusha Lei
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Graduate School at Shenzhen, Tsinghua University, China; School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jie Liu
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Graduate School at Shenzhen, Tsinghua University, China
| | - Jie Feng
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Graduate School at Shenzhen, Tsinghua University, China
| | - Wenjie Fu
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Graduate School at Shenzhen, Tsinghua University, China
| | - Xiaoyan Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Graduate School at Shenzhen, Tsinghua University, China; Shenzhen Environmental Science and New Energy Laboratory, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, China
| | - Bing Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Graduate School at Shenzhen, Tsinghua University, China.
| |
Collapse
|
16
|
Jiang Y, Zeng RJ. Bidirectional extracellular electron transfers of electrode-biofilm: Mechanism and application. BIORESOURCE TECHNOLOGY 2019; 271:439-448. [PMID: 30292689 DOI: 10.1016/j.biortech.2018.09.133] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 09/25/2018] [Accepted: 09/27/2018] [Indexed: 06/08/2023]
Abstract
The extracellular electron transfer (EET) between microorganisms and electrodes forms the basis for microbial electrochemical technology (MET), which recently have advanced as a flexible platform for applications in energy and environmental science. This review, for the first time, focuses on the electrode-biofilm capable of bidirectional EET, where the electrochemically active bacteria (EAB) can conduct both the outward EET (from EAB to electrodes) and the inward EET (from electrodes to EAB). Only few microorganisms are tested in pure culture with the capability of bidirectional EET, however, the mixed culture based bidirectional EET offers great prospects for biocathode enrichment, pollutant complete mineralization, biotemplated material development, pH stabilization, and bioelectronic device design. Future efforts are necessary to identify more EAB capable of the bidirectional EET, to balance the current density, to evaluate the effectiveness of polarity reversal for biocathode enrichment, and to boost the future research endeavors of such a novel function.
Collapse
Affiliation(s)
- Yong Jiang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Raymond Jianxiong Zeng
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
17
|
Wu X, Xiong X, Owens G, Brunetti G, Zhou J, Yong X, Xie X, Zhang L, Wei P, Jia H. Anode modification by biogenic gold nanoparticles for the improved performance of microbial fuel cells and microbial community shift. BIORESOURCE TECHNOLOGY 2018; 270:11-19. [PMID: 30199701 DOI: 10.1016/j.biortech.2018.08.092] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 08/19/2018] [Accepted: 08/20/2018] [Indexed: 06/08/2023]
Abstract
In this study, carbon cloth anodes were modified using biogenic gold nanoparticles (BioAu) and nanohybrids of multi-walled carbon nanotubes blended with BioAu (BioAu/MWCNT) to improve the performance of microbial fuel cells (MFCs). The results demonstrated that BioAu modification significantly enhanced the electricity generation of MFCs. In particular, BioAu/MWCNT nanohybrids as the modifier displayed a better performance. The MFC with the BioAu/MWCNT electrode had the shortest start-up time (6.74 d) and highest power density (178.34 ± 4.79 mW/m2), which were 141.69% shorter and 56.11% higher compared with those of the unmodified control, respectively. These improvements were attributed to the excellent electrocatalytic activity and strong affinity towards exoelectrogens of the BioAu/MWCNT nanohybrids on the electrode. High throughput sequencing analysis indicated that the relative abundance of electroactive bacteria in the biofilm community, mostly from the classes of Gammaproteobacteria and Negativicutes, increased after anode modification.
Collapse
Affiliation(s)
- Xiayuan Wu
- Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xiaomin Xiong
- Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Gary Owens
- Environmental Contaminants Group, Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Gianluca Brunetti
- Environmental Contaminants Group, Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Jun Zhou
- Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xiaoyu Yong
- Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xinxin Xie
- Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Lijuan Zhang
- Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ping Wei
- Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Honghua Jia
- Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
18
|
Ding J, Li Q, Xu X, Zhang X, Su Y, Yue Q, Gao B. A wheat straw cellulose-based hydrogel for Cu (II) removal and preparation copper nanocomposite for reductive degradation of chloramphenicol. Carbohydr Polym 2018; 190:12-22. [DOI: 10.1016/j.carbpol.2018.02.032] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 01/22/2018] [Accepted: 02/10/2018] [Indexed: 01/13/2023]
|
19
|
Yun H, Liang B, Kong D, Wang A. Improving biocathode community multifunctionality by polarity inversion for simultaneous bioelectroreduction processes in domestic wastewater. CHEMOSPHERE 2018; 194:553-561. [PMID: 29241129 DOI: 10.1016/j.chemosphere.2017.12.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 06/07/2023]
Abstract
Bioelectrochemical systems (BESs) have been tentatively applied for wastewater treatment processes, but the complex composition of wastewater could lead to difficulties in establishing functional biofilm or result in performance instability. Few studies have investigated the enrichment of biocathode with domestic wastewater (DW) and the function. A biocathode with multi-pollutant removal capabilities was enriched based on polarity inverted bioanode, which was established with DW. The biocathode function was examined using model pollutants (nitrate, nitrobenzene and Acid Orange 7) supplemented as sole or mixed electron acceptors. When compared to the anaerobic control treatment, the biofilm demonstrated significantly enhanced reduction abilities in the open circuit. For the closed circuit, their removal efficiencies were further enhanced for both the sole and mixed substrates conditions. The bioanodes community structure and diversity markedly changed after operating for 50 d as biocathodes. The biocathode multifunctionality and stability could be related to the maintenance of organic matters fermentative bacteria (mainly belonging to Bacteroidetes, Firmicutes and Synergistetes) and the enrichment of versatile pollutant-reducing bacteria (e.g. Pseudomonas, Thauera and Comamonas from Proteobacteria). Other pollutants, such as perchlorate, sulfate, heavy metals, and halogenated organics, may also work as potential electron acceptors. This study provides a new strategy to improve the biocathode community multifunctionality for simultaneous bioelectroreduction, which can be combined with other wastewater treatment processes in actual application.
Collapse
Affiliation(s)
- Hui Yun
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, China
| | - Bin Liang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Deyong Kong
- Shenyang Academy of Environmental Sciences, Shenyang, 110167, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Aijie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
20
|
Chen J, Hu Y, Zhang L, Huang W, Sun J. Bacterial community shift and improved performance induced by in situ preparing dual graphene modified bioelectrode in microbial fuel cell. BIORESOURCE TECHNOLOGY 2017; 238:273-280. [PMID: 28454001 DOI: 10.1016/j.biortech.2017.04.044] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 06/07/2023]
Abstract
Dual graphene modified bioelectrode (D-GM-BE) was prepared by in situ microbial-induced reduction of graphene oxide (GO) and polarity reversion in microbial fuel cell (MFC). Next Generation Sequencing technology was used to elucidate bacterial community shift in response to improved performance in D-GM-BE MFC. The results indicated an increase in the relative ratio of Proteobacteria, but a decrease of Firmicutes was observed in graphene modified bioanode (GM-BA); increase of Proteobacteria and Firmicutes were observed in graphene modified biocathode (GM-BC). Genus analysis demonstrated that GM-BE was beneficial to enrich electrogens. Typical exoelectrogens were accounted for 13.02% and 8.83% in GM-BA and GM-BC. Morphology showed that both GM-BA and GM-BC formed 3D-like graphene/biofilm architectures and revealed that the biofilm viability and thickness would decrease to some extent when GM-BE was formed. D-GM-BE MFC obtained the maximum power density by 124.58±6.32mWm-2, which was 2.34 times over C-BE MFC.
Collapse
Affiliation(s)
- Junfeng Chen
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Yongyou Hu
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China.
| | - Lihua Zhang
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Wantang Huang
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Jian Sun
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
21
|
Yun H, Liang B, Kong DY, Cheng HY, Li ZL, Gu YB, Yin HQ, Wang AJ. Polarity inversion of bioanode for biocathodic reduction of aromatic pollutants. JOURNAL OF HAZARDOUS MATERIALS 2017; 331:280-288. [PMID: 28273578 DOI: 10.1016/j.jhazmat.2017.02.054] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 02/07/2017] [Accepted: 02/26/2017] [Indexed: 06/06/2023]
Abstract
The enrichment of specific pollutant-reducing consortium is usually required prior to the startup of biocathode bioelectrochemical system (BES) and the whole process is time consuming. To rapidly establish a non-specific functional biocathode, direct polar inversion from bioanode to biocathode is proposed in this study. Based on the diverse reductases and electron transfer related proteins of anode-respiring bacteria (ARB), the acclimated electrochemically active biofilm (EAB) may catalyze reduction of different aromatic pollutants. Within approximately 12 d, the acclimated bioanodes were directly employed as biocathodes for nitroaromatic nitrobenzene (NB) and azo dye acid orange 7 (AO7) reduction. Our results indicated that the established biocathode significantly accelerated the reduction of NB to aniline (AN) and AO7 to discolored products compared with the abiotic cathode and open circuit controls. Several microbes possessing capabilities of nitroaromatic/azo dye reduction and bidirectional electron transfer were maintained or enriched in the biocathode communities. Cyclic voltammetry highlighted the decreased over-potentials and enhanced electron transfer of biocathode as well as demonstrated the ARB Geobacter containing cytochrome c involved in the backward electron transfer from electrode to NB. This study offers new insights into the rapid establishment and modularization of functional biocathodes for the potential treatment of complicated electron acceptors-coexisting wastewaters.
Collapse
Affiliation(s)
- Hui Yun
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing, China
| | - Bin Liang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - De-Yong Kong
- Shenyang Academy of Environmental Sciences, Shenyang 110167, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hao-Yi Cheng
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhi-Ling Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ya-Bing Gu
- Key Laboratory of Biometallurgy of Ministry of Education, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Hua-Qun Yin
- Key Laboratory of Biometallurgy of Ministry of Education, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Ai-Jie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
22
|
Zhang Q, Zhang Y, Li D. Cometabolic degradation of chloramphenicol via a meta-cleavage pathway in a microbial fuel cell and its microbial community. BIORESOURCE TECHNOLOGY 2017; 229:104-110. [PMID: 28110226 DOI: 10.1016/j.biortech.2017.01.026] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 06/06/2023]
Abstract
The performance of a microbial fuel cell (MFC) in terms of degradation of chloramphenicol (CAP) was investigated. Approximately 84% of 50mg/L CAP was degraded within 12h in the MFC. A significant interaction of pH, temperature, and initial CAP concentration was found on removal of CAP, and a maximum degradation rate of 96.53% could theoretically be achieved at 31.48°C, a pH of 7.12, and an initial CAP concentration of 106.37mg/L. Moreover, CAP was further degraded through a ring-cleavage pathway. The antibacterial activity of CAP towards Escherichia coli ATCC 25922 and Shewanella oneidensis MR-1 was largely eliminated by MFC treatment. High-throughput sequencing analysis indicated that Azonexus, Comamonas, Nitrososphaera, Chryseobacterium, Azoarcus, Rhodococcus, and Dysgonomonas were the predominant genera in the MFC anode biofilm. In conclusion, the MFC shows potential for the treatment of antibiotic residue-containing wastewater due to its high rates of CAP removal and energy recovery.
Collapse
Affiliation(s)
- Qinghua Zhang
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041, China; College of Life Sciences, Sichuan University, Chengdu 610064, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyan Zhang
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daping Li
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|