1
|
Wang Z, Zheng Y, Guo J, Lai Z, Liu J, Li N, Li Z, Gao M, Qiao X, Yang Y, Zhang H, An L, Xu K. Recent advance on the production of microbial exopolysaccharide from waste materials. Bioprocess Biosyst Eng 2025:10.1007/s00449-025-03169-7. [PMID: 40272479 DOI: 10.1007/s00449-025-03169-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Accepted: 04/09/2025] [Indexed: 04/25/2025]
Abstract
Polysaccharide has been widely used in the fields of industry, agriculture, food and medicine because of its excellent physicochemical properties and bioactivities. Compared to plant and animal polysaccharides, microbial exopolysaccharide has advantages of occupying less cultivated land, short fermentation period, controllable fermentation process and not restricted by seasons. However, due to the deterioration of global climates and outbreak of conflicts, food crisis has become more and more serious. Therefore, searching alternative substrates for microbial exopolysaccharide production has attracted worldwide attention, waste materials might be an ideal substitute due to its high-content nutrients. Present work discussed and reviewed the production of microbial exopolysaccharide from molasses, cheese whey, lignocellulosic biomass, fruit pomace and/or husk, crude glycerol and kitchen waste. It was found that commercial grade exopolysaccharides were mainly produced from waste materials via submerged fermentation, and pretreatment of waste materials is a commonly used strategy. Although industrial production of microbial exopolysaccharides with waste materials as substrate has not been reported, we hoped that this work could not only provide contribution for efficient utilization of waste materials, but also help for alleviating global food crises.
Collapse
Affiliation(s)
- Zichao Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Yi Zheng
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Jinghan Guo
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Ziru Lai
- School of International Education, Henan University of Technology, Zhengzhou, 450001, China
| | - Jiale Liu
- School of International Education, Henan University of Technology, Zhengzhou, 450001, China
| | - Na Li
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhitao Li
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Minjie Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Xueyi Qiao
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Yahui Yang
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China.
| | - Huiru Zhang
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China.
| | - Lemei An
- Department of Rheumatology and Clinical Immunology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.
| | - Keyu Xu
- Guo Shoujing Innovative College, College of Chemical and Biological Engineering, Xingtai University, Xingtai, 054000, China.
| |
Collapse
|
2
|
Wang Z, Li L, Hong Y. Trilogy of comprehensive treatment of kitchen waste by bacteria-microalgae-fungi combined system: Pretreatment, water purification and resource utilization, and biomass harvesting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175160. [PMID: 39084368 DOI: 10.1016/j.scitotenv.2024.175160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/14/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
Given its profound disservice, a bacteria-microalgae-fungi combined system was designed to treat kitchen waste. Firstly, a new type of microbial agent homemade compound microorganisms (HCM) (composed of Serratia marcescens, Bacillus subtilis and other 11 strains) with relatively high bio-security were developed for pretreating kitchen waste, and HCM efficiently degraded 85.2 % cellulose, 94.3 % starch, and 59.0 % oil. HCM also accomplished brilliantly the initial nutrients purification and liquefaction conversion of kitchen waste. Under mono-culture mode (fungi and microalgae were inoculated separately in the pre - and post-stages) and co-culture mode (fungi and microalgae were inoculated simultaneously in the early stage), microalgae-fungi consortia were then applied for further water purification and resource utilization of kitchen waste liquefied liquid (KWLL) produced in the pretreatment stage. Two kinds of microalgae-fungi consortia (Chlorella sp. HQ and Chlorella sp. MHQ2 form consortia with pellet-forming fungi Aspergillus niger HW8-1, respectively) removed 79.5-83.0 % chemical oxygen demand (COD), 44.0-56.5 % total nitrogen (TN), 90.3-96.4 % total phosphorus (TP), and 64.9-71.0 % NH4+-N of KWLL. What's more, the microalgae-fungi consortia constructed in this study accumulated abundant high-value substances at the same time of efficiently purifying KWLL. Finally, in the biomass harvesting stage, pellet-forming fungi efficiently harvested 81.9-82.1 % of microalgal biomass in a low-cost manner through exopolysaccharides adhesion, surface proteins interaction and charge neutralization. Compared with conventional microalgae-bacteria symbiosis system, the constructed bacteria-microalgae-fungi new-type combined system achieves the triple purpose of efficient purification, resource utilization, and biomass recovery on raw kitchen waste through the trilogy strategy, providing momentous technical references and more treatment systems selection for future kitchen waste treatment.
Collapse
Affiliation(s)
- Zeyuan Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Lihua Li
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yu Hong
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
3
|
Sharma P, Bano A, Singh SP, Atkinson JD, Lam SS, Iqbal HM, Tong YW. Biotransformation of food waste into biogas and hydrogen fuel – A review. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 2024; 52:46-60. [DOI: 10.1016/j.ijhydene.2022.08.081] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
|
4
|
Revin VV, Liyaskina EV, Parchaykina MV, Kurgaeva IV, Efremova KV, Novokuptsev NV. Production of Bacterial Exopolysaccharides: Xanthan and Bacterial Cellulose. Int J Mol Sci 2023; 24:14608. [PMID: 37834056 PMCID: PMC10572569 DOI: 10.3390/ijms241914608] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Recently, degradable biopolymers have become increasingly important as potential environmentally friendly biomaterials, providing a wide range of applications in various fields. Bacterial exopolysaccharides (EPSs) are biomacromolecules, which due to their unique properties have found applications in biomedicine, foodstuff, textiles, cosmetics, petroleum, pharmaceuticals, nanoelectronics, and environmental remediation. One of the important commercial polysaccharides produced on an industrial scale is xanthan. In recent years, the range of its application has expanded significantly. Bacterial cellulose (BC) is another unique EPS with a rapidly increasing range of applications. Due to the great prospects for their practical application, the development of their highly efficient production remains an important task. The present review summarizes the strategies for the cost-effective production of such important biomacromolecules as xanthan and BC and demonstrates for the first time common approaches to their efficient production and to obtaining new functional materials for a wide range of applications, including wound healing, drug delivery, tissue engineering, environmental remediation, nanoelectronics, and 3D bioprinting. In the end, we discuss present limitations of xanthan and BC production and the line of future research.
Collapse
Affiliation(s)
- Viktor V. Revin
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia; (E.V.L.); (M.V.P.); (I.V.K.); (K.V.E.); (N.V.N.)
| | | | | | | | | | | |
Collapse
|
5
|
Yu X, Jiang N, Yang Y, Liu H, Gao X, Cheng L. Heavy metals remediation through bio-solidification: Potential application in environmental geotechnics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115305. [PMID: 37517309 DOI: 10.1016/j.ecoenv.2023.115305] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/19/2023] [Accepted: 07/23/2023] [Indexed: 08/01/2023]
Abstract
Heavy metals are pervasive pollutants found in water, soil, and solid wastes. Bio-solidification offers an environmentally friendly approach to immobilize heavy metal ions using two types of bacteria: urease-producing bacteria (UPB) and phosphatase-producing bacteria (PPB). UPB, exemplified by Sporosarcina pasteurii, secretes urease to hydrolyze urea and generate CO32- ions, while PPB, like Bacillus subtilis, produces alkaline phosphatase to hydrolyze organophosphate monoester (ROP) and produce PO43- ions. These ions react with heavy metal ions, effectively reducing their concentration by forming insoluble carbonate or phosphate precipitates. The success of bio-solidification is influenced by various factors, including substrate concentration, temperature, pH, and bacterial density. Optimal operational conditions can significantly enhance the remediation performance of heavy metals. UPB and PPB hold great potential for remediating heavy metal pollution in diverse contaminated areas such as tailings ponds, electroplating sewage, and garbage incineration plants. In conclusion, harnessing the power of these microbial methods can provide effective solutions for remediating heavy metal-induced pollution across a range of environmental conditions.
Collapse
Affiliation(s)
- Xiaoniu Yu
- Jiangsu Key Laboratory of Construction Materials, Southeast University, Nanjing 211189, China.
| | - Ningjun Jiang
- Institute of Geotechnical Engineering, Southeast University, Nanjing, Jiangsu 211189, China.
| | - Yang Yang
- School of Civil Engineering, Chongqing University, No. 174 Shazhengjie, Shapingba, Chongqing 400044, China.
| | - Haijun Liu
- School of Civil Engineering, Chongqing University, No. 174 Shazhengjie, Shapingba, Chongqing 400044, China.
| | - Xuecheng Gao
- School of Civil Engineering, Chongqing University; Chongqing University Industrial Technology Research Institute, Chongqing 400045, China.
| | - Liang Cheng
- School of Environmental and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, China.
| |
Collapse
|
6
|
Paul P, Nair R, Mahajan S, Gupta U, Aalhate M, Maji I, Singh PK. Traversing the diverse avenues of exopolysaccharides-based nanocarriers in the management of cancer. Carbohydr Polym 2023; 312:120821. [PMID: 37059549 DOI: 10.1016/j.carbpol.2023.120821] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 04/16/2023]
Abstract
Exopolysaccharides are unique polymers generated by living organisms such as algae, fungi and bacteria to protect them from environmental factors. After a fermentative process, these polymers are extracted from the medium culture. Exopolysaccharides have been explored for their anti-viral, anti-bacterial, anti-tumor, and immunomodulatory effects. Specifically, they have acquired massive attention in novel drug delivery strategies owing to their indispensable properties like biocompatibility, biodegradability, and lack of irritation. Exopolysaccharides such as dextran, alginate, hyaluronic acid, pullulan, xanthan gum, gellan gum, levan, curdlan, cellulose, chitosan, mauran, and schizophyllan exhibited excellent drug carrier properties. Specific exopolysaccharides, such as levan, chitosan, and curdlan, have demonstrated significant antitumor activity. Moreover, chitosan, hyaluronic acid and pullulan can be employed as targeting ligands decorated on nanoplatforms for effective active tumor targeting. This review shields light on the classification, unique characteristics, antitumor activities and nanocarrier properties of exopolysaccharides. In addition, in vitro human cell line experiments and preclinical studies associated with exopolysaccharide-based nanocarriers have also been highlighted.
Collapse
Affiliation(s)
- Priti Paul
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Rahul Nair
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Ujala Gupta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Mayur Aalhate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Indrani Maji
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India.
| |
Collapse
|
7
|
Miao CH, Wang XF, Qiao B, Xu QM, Cao CY, Cheng JS. Artificial consortia of Bacillus amyloliquefaciens HM618 and Bacillus subtilis for utilizing food waste to synthetize iturin A. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:72628-72638. [PMID: 35612705 DOI: 10.1007/s11356-022-21029-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Food waste is a cheap and abundant organic resource that can be used as a substrate for the production of the broad-spectrum antifungal compound iturin A. To increase the efficiency of food waste biotransformation, different artificial consortia incorporating the iturin A producer Bacillus amyloliquefaciens HM618 together with engineered Bacillus subtilis WB800N producing lipase or amylase were constructed. The results showed that recombinant B. subtilis WB-A13 had the highest amylase activity of 23406.4 U/mL, and that the lipase activity of recombinant B. subtilis WB-L01 was 57.5 U/mL. When strain HM618 was co-cultured with strain WB-A14, the higher yield of iturin A reached to 7.66 mg/L, representing a 32.9% increase compared to the pure culture of strain HM618. In the three-strain consortium comprising strains HM618, WB-L02, and WB-A14 with initial OD600 values of 0.2, 0.15, and 0.15, respectively, the yield of iturin A reached 8.12 mg/L, which was 38.6% higher than the control. Taken together, artificial consortia of B. amyloliquefaciens and recombinant B. subtilis can produce an increased yield of iturin A, which provides a new strategy for the valorization of food waste.
Collapse
Affiliation(s)
- Chang-Hao Miao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, People's Republic of China
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, People's Republic of China
| | - Xiao-Feng Wang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, People's Republic of China
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, People's Republic of China
| | - Bin Qiao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, People's Republic of China
| | - Qiu-Man Xu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Binshuixi Road 393, Xiqing District, Tianjin, 300387, People's Republic of China
| | - Chun-Yang Cao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, People's Republic of China
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, People's Republic of China
| | - Jing-Sheng Cheng
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, People's Republic of China.
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, People's Republic of China.
| |
Collapse
|
8
|
Şen E, Demirci AS, Palabiyik I. Xanthan Gum Characterization and Production Kinetics from Pomace of
Vitis vinifera. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Ebru Şen
- Department of Food Engineering, Faculty of Agriculture Tekirdağ Namık Kemal University 59030 Tekirdağ Turkey
| | - Ahmet Sukru Demirci
- Department of Food Engineering, Faculty of Agriculture Tekirdağ Namık Kemal University 59030 Tekirdağ Turkey
| | - Ibrahim Palabiyik
- Department of Food Engineering, Faculty of Agriculture Tekirdağ Namık Kemal University 59030 Tekirdağ Turkey
| |
Collapse
|
9
|
Haldar D, Shabbirahmed AM, Singhania RR, Chen CW, Dong CD, Ponnusamy VK, Patel AK. Understanding the management of household food waste and its engineering for sustainable valorization- A state-of-the-art review. BIORESOURCE TECHNOLOGY 2022; 358:127390. [PMID: 35636679 DOI: 10.1016/j.biortech.2022.127390] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Increased urbanization and industrialization accelerated demand for energy, large-scale waste output, and negative environmental consequences. Therefore, the implementation of an effective solid-waste-management (SWM) policy for the handling of food waste is of great importance. The global food waste generation is estimated at about 1.6 gigatons/yr which attributes to an economic revenue of 750 billion USD. It can be converted into high-value enzymes, surfactants, Poly-hydroxybutyrate, biofuels, etc. However, the heterogeneous composition of food with high organic load and varying moisture content makes their transformation into value-added products difficult. This review aims to bring forth the possibilities and repercussions of food waste management. The socio-economic challenges related to SWM are comprehensively discussed particularly in terms of environmental concern. The engineering aspect in the collection, storage, and biotransformation of food waste into useful value-added products such as biofuels, advanced biomaterials, bioactive compounds, and platform chemicals are critically reviewed for efficient food waste management.
Collapse
Affiliation(s)
- Dibyajyoti Haldar
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore 641114, India
| | | | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, India
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Vinoth Kumar Ponnusamy
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Department of Medicinal and Applied Chemistry & Research Center for Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan
| | - Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, India.
| |
Collapse
|
10
|
Deciphering the blackbox of omics approaches and artificial intelligence in food waste transformation and mitigation. Int J Food Microbiol 2022; 372:109691. [DOI: 10.1016/j.ijfoodmicro.2022.109691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 04/18/2022] [Accepted: 04/23/2022] [Indexed: 01/29/2023]
|
11
|
Valorisation of fruit waste for enhanced exopolysaccharide production by Xanthomonas campestries using statistical optimisation of medium and process. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Horue M, Rivero Berti I, Cacicedo ML, Castro GR. Microbial production and recovery of hybrid biopolymers from wastes for industrial applications- a review. BIORESOURCE TECHNOLOGY 2021; 340:125671. [PMID: 34333348 DOI: 10.1016/j.biortech.2021.125671] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
Agro-industrial wastes to be a global concern since agriculture and industrial processes are growing exponentially with the fast increase of the world population. Biopolymers are complex molecules produced by living organisms, but also found in many wastes or derived from wastes. The main drawbacks for the use of polymers are the high costs of the polymer purification processes from waste and the scale-up in the case of biopolymer production by microorganisms. However, the use of biopolymers at industrial scale for the development of products with high added value, such as food or biomedical products, not only can compensate the primary costs of biopolymer production, but also improve local economies and environmental sustainability. The present review describes some of the most relevant aspects related to the synthesis of hybrid materials and nanocomposites based on biopolymers for the development of products with high-added value.
Collapse
Affiliation(s)
- Manuel Horue
- Laboratorio de Nanobiomateriales, CINDEFI, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) -CONICET (CCT La Plata), Calle 47 y 115, (B1900AJI), La Plata, Buenos Aires, Argentina
| | - Ignacio Rivero Berti
- Laboratorio de Nanobiomateriales, CINDEFI, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) -CONICET (CCT La Plata), Calle 47 y 115, (B1900AJI), La Plata, Buenos Aires, Argentina
| | - Maximiliano L Cacicedo
- Children's Hospital, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Guillermo R Castro
- Laboratorio de Nanobiomateriales, CINDEFI, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) -CONICET (CCT La Plata), Calle 47 y 115, (B1900AJI), La Plata, Buenos Aires, Argentina; Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC). Partner Laboratory of the Max Planck Institute for Biophysical Chemistry (MPIbpC, MPG). Centro de Estudios Interdisciplinarios (CEI), Universidad Nacional de Rosario, Maipú 1065, S2000 Rosario, Santa Fe, Argentina.
| |
Collapse
|
13
|
Usmani Z, Sharma M, Awasthi AK, Sharma GD, Cysneiros D, Nayak SC, Thakur VK, Naidu R, Pandey A, Gupta VK. Minimizing hazardous impact of food waste in a circular economy - Advances in resource recovery through green strategies. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126154. [PMID: 34492935 DOI: 10.1016/j.jhazmat.2021.126154] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/08/2021] [Accepted: 05/15/2021] [Indexed: 06/13/2023]
Abstract
Recent trends in food waste and its management have increasingly started to focus on treating it as a reusable resource. The hazardous impact of food waste such as the release of greenhouse gases, deterioration of water quality and contamination of land areas are a major threat posed by food waste. Under the circular economy principles, food waste can be used as a sustainable supply of high-value energy, fuel, and nutrients through green techniques such as anaerobic digestion, co-digestion, composting, enzymatic treatment, ultrasonic, hydrothermal carbonization. Recent advances made in anaerobic co-digestion are helping in tackling dual or even multiple waste streams at once with better product yields. Integrated approaches that employ pre-processing the food waste to remove obstacles such as volatile fractions, oils and other inhibitory components from the feedstock to enhance their bioconversion to reduce sugars. Research efforts are also progressing in optimizing the operational parameters such as temperature, pressure, pH and residence time to enhance further the output of products such as methane, hydrogen and other platform chemicals such as lactic acid, succinic acid and formic acid. This review brings together some of the recent progress made in the green strategies towards food waste valorization.
Collapse
Affiliation(s)
- Zeba Usmani
- Department of Applied Biology, University of Science and Technology, Meghalaya 793101, India
| | - Minaxi Sharma
- Department of Applied Biology, University of Science and Technology, Meghalaya 793101, India; Food Technology, Akal College of Agriculture, Eternal University, Baru Sahib, Himachal Pradesh 173101, India
| | | | | | | | - S Chandra Nayak
- DOS in Biotechnology, University of Mysore Manasagangotri, Mysore, India
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Faculty of Science, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, India; Centre for Energy and Environmental Sustainability, Lucknow-226 029, India
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK; Center for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK.
| |
Collapse
|
14
|
Mohanty SS, Koul Y, Varjani S, Pandey A, Ngo HH, Chang JS, Wong JWC, Bui XT. A critical review on various feedstocks as sustainable substrates for biosurfactants production: a way towards cleaner production. Microb Cell Fact 2021; 20:120. [PMID: 34174898 PMCID: PMC8236176 DOI: 10.1186/s12934-021-01613-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/15/2021] [Indexed: 12/17/2022] Open
Abstract
The quest for a chemical surfactant substitute has been fuelled by increased environmental awareness. The benefits that biosurfactants present like biodegradability, and biocompatibility over their chemical and synthetic counterparts has contributed immensely to their popularity and use in various industries such as petrochemicals, mining, metallurgy, agrochemicals, fertilizers, beverages, cosmetics, etc. With the growing demand for biosurfactants, researchers are looking for low-cost waste materials to use them as substrates, which will lower the manufacturing costs while providing waste management services as an add-on benefit. The use of low-cost substrates will significantly reduce the cost of producing biosurfactants. This paper discusses the use of various feedstocks in the production of biosurfactants, which not only reduces the cost of waste treatment but also provides an opportunity to profit from the sale of the biosurfactant. Furthermore, it includes state-of-the-art information about employing municipal solid waste as a sustainable feedstock for biosurfactant production, which has not been simultaneously covered in many published literatures on biosurfactant production from different feedstocks. It also addresses the myriad of other issues associated with the processing of biosurfactants, as well as the methods used to address these issues and perspectives, which will move society towards cleaner production.
Collapse
Affiliation(s)
- Swayansu Sabyasachi Mohanty
- Gujarat Pollution Control Board, Gandhinagar, Gujarat, 382 010, India
- Central University of Gujarat, Gandhinagar, Gujarat, 382030, India
| | - Yamini Koul
- Gujarat Pollution Control Board, Gandhinagar, Gujarat, 382 010, India
- Central University of Gujarat, Gandhinagar, Gujarat, 382030, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat, 382 010, India.
| | - Ashok Pandey
- CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001, India
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Jonathan W C Wong
- Institute of Bioresource and Agriculture, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Xuan-Thanh Bui
- Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, 700000, Vietnam
- Key Laboratory of Advanced Waste Treatment Technology, Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City, 700000, Vietnam
| |
Collapse
|
15
|
Chen H, Mao J, Jiang B, Wu W, Jin Y. Carbonate-oxygen pretreatment of waste wheat straw for enhancing enzymatic saccharification. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.03.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Comparison of Potential Environmental Impacts and Waste-to-Energy Efficiency for Kitchen Waste Treatment Scenarios in Central Taiwan. Processes (Basel) 2021. [DOI: 10.3390/pr9040696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Taiwan has a sound solid waste recycling system, and waste-to-energy is attractive under the encouragement policy and economic feasibility, especially in central and southern regions with vast agricultural wastes. The four scenarios evaluated in this study relating to current use or under consideration for kitchen waste treatment strategy in Taiwan were incineration, landfill, composting, and anaerobic digestion. These scenarios were compared through life cycle assessment to obtain the most preferable treatment solution. The analysis was based on a functional unit, i.e., 1 metric ton of kitchen waste treated, and considered all impact categories through the CML_IA baseline 2000 method. It has shown that energy recovery had enormous effects on all scenarios with the anaerobic digestion having the highest environmental performance change. A comparison between actual electricity consumption and estimated electricity generation by kitchen waste treatment through anaerobic digestion indicates that decentralized electricity generation was suitable for central Taiwan and could be considered as the energy solution in a short-term context. This study provides an experience in selecting a proper waste-to-energy method with the most negligible environmental impact.
Collapse
|
17
|
Ahmed I, Zia MA, Afzal H, Ahmed S, Ahmad M, Akram Z, Sher F, Iqbal HMN. Socio-Economic and Environmental Impacts of Biomass Valorisation: A Strategic Drive for Sustainable Bioeconomy. SUSTAINABILITY 2021; 13:4200. [DOI: 10.3390/su13084200] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In the late twentieth century, the only cost-effective opportunity for waste removal cost at least several thousand dollars, but nowadays, a lot of improvement has occurred. The biomass and waste generation problems attracted concerned authorities to identify and provide environmentally friendly sustainable solutions that possess environmental and economic benefits. The present study emphasises the valorisation of biomass and waste produced by domestic and industrial sectors. Therefore, substantial research is ongoing to replace the traditional treatment methods that potentially acquire less detrimental effects. Synthetic biology can be a unique platform that invites all the relevant characters for designing and assembling an efficient program that could be useful to handle the increasing threat for human beings. In the future, these engineered methods will not only revolutionise our lives but practically lead us to get cheaper biofuels, producing bioenergy, pharmaceutics, and various biochemicals. The bioaugmentation approach concomitant with microbial fuel cells (MFC) is an example that is used to produce electricity from municipal waste, which is directly associated with the loading of waste. Beyond the traditional opportunities, herein, we have spotlighted the new advances in pertinent technology closely related to production and reduction approaches. Various integrated modern techniques and aspects related to the industrial sector are also discussed with suitable examples, including green energy and other industrially relevant products. However, many problems persist in present-day technology that requires essential efforts to handle thoroughly because significant valorisation of biomass and waste involves integrated methods for timely detection, classification, and separation. We reviewed and proposed the anticipated dispensation methods to overcome the growing stream of biomass and waste at a distinct and organisational scale.
Collapse
Affiliation(s)
- Ishtiaq Ahmed
- Gold Coast Campus, Menzies Health Institute Queensland, School of Medical Science, Griffith University, Gold Coast, QLD 4222, Australia
| | - Muhammad Anjum Zia
- Enzyme Biotechnology Lab, Department of Biochemistry, University of Agriculture, Faisalabad 38040, Pakistan
| | - Huma Afzal
- Enzyme Biotechnology Lab, Department of Biochemistry, University of Agriculture, Faisalabad 38040, Pakistan
| | - Shaheez Ahmed
- Enzyme Biotechnology Lab, Department of Biochemistry, University of Agriculture, Faisalabad 38040, Pakistan
| | - Muhammad Ahmad
- Shaheed Benazir Bhutto University of Veterinary and Animal Sciences (SBBUVAS), Sakrand 67210, Pakistan
| | - Zain Akram
- Gold Coast Campus, Menzies Health Institute Queensland, School of Medical Science, Griffith University, Gold Coast, QLD 4222, Australia
| | - Farooq Sher
- Faculty of Engineering, Environment and Computing, School of Mechanical, Aerospace and Automotive Engineering, Coventry University, Coventry CV1 5FB, UK
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| |
Collapse
|
18
|
Moscoviz R, Kleerebezem R, Rombouts JL. Directing carbohydrates toward ethanol using mesophilic microbial communities. Curr Opin Biotechnol 2021; 67:175-183. [PMID: 33588238 DOI: 10.1016/j.copbio.2021.01.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 01/12/2021] [Accepted: 01/20/2021] [Indexed: 12/14/2022]
Abstract
Bioethanol production is an established biotechnological process. Margins are low which prevent a larger scale production of bioethanol. As a large part of the production cost is due to the feedstock, the use of low value unsterile feedstocks fermented by microbial communities will enable a more cost-competitive bioethanol production. To select for high yield ethanol producing communities, three selective conditions are proposed: acid washing of the cells after fermentation, a low pH (<5) during the fermentation and microaerobiosis at the start of the fermentation. Ethanol producers, such as Zymomonas species and yeasts, compete for carbohydrates with volatile fatty acid and lactic acid producing bacteria. Creating effective consortia of lactic acid bacteria and homo-ethanol producers at low pH will lead to robust and competitive ethanol yields and titres. A conceptual design of an ecology-based bioethanol production process is proposed using food waste to produce bioethanol, electricity, digestate and heat.
Collapse
Affiliation(s)
- Roman Moscoviz
- SUEZ, Centre International de Recherche Sur l'Eau et l'Environnement (CIRSEE), 38 rue du Président Wilson, Le Pecq, France
| | - Robbert Kleerebezem
- Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | | |
Collapse
|
19
|
Wu M, Zhao X, Shen Y, Shi Z, Li G, Ma T. Efficient simultaneous utilization of glucose and xylose from corn straw by Sphingomonas sanxanigenens NX02 to produce microbial exopolysaccharide. BIORESOURCE TECHNOLOGY 2021; 319:124126. [PMID: 32971336 DOI: 10.1016/j.biortech.2020.124126] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
Lignocellulosic biomass is a cheap and abundant carbon source in the microbial manufacturing industry. The native co-utilization of glucose and xylose from corn straw total hydrolysate (CSTH) by Sphingomonas sanxanigenens NX02 to produce exopolysaccharide Sanxan was investigated. Batch fermentation demonstrated that, compared to single sugar fermentation, co-substrate of glucose and xylose accelerated cell growth and Sanxan production in the initial 24 h with the same consumption rate. Additionally, NX02 converted CSTH into Sanxan with a yield of 13.10 ± 0.35 g/Kg, which is slightly higher than that of glucose fermentation. Coexistence of three xylose metabolic pathways (Xylose isomerase, Weimberg, and Dahms pathway), incomplete phosphoenolpyruvate-dependent phosphotransferase system, and reinforced fructose metabolism were recognized as the co-utilization mechanism through comparative transcriptome analysis. Therefore, strain NX02 has a prospect of becoming an attractive platform organism to produce polysaccharides and other bio-based products derived from agricultural waste hydrolysate rich in both glucose and xylose.
Collapse
Affiliation(s)
- Mengmeng Wu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xin Zhao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yaqi Shen
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhuangzhuang Shi
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Guoqiang Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; Tianjin Engineering Technology Center of Green Manufacturing Biobased Materials, Tianjin 300071, China.
| | - Ting Ma
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; Tianjin Engineering Technology Center of Green Manufacturing Biobased Materials, Tianjin 300071, China.
| |
Collapse
|
20
|
Dhiman S, Mukherjee G. Present scenario and future scope of food waste to biofuel production. J FOOD PROCESS ENG 2020. [DOI: 10.1111/jfpe.13594] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Sunny Dhiman
- University Institute of Biotechnology, Chandigarh University Mohali Punjab India
| | - Gunjan Mukherjee
- University Institute of Biotechnology, Chandigarh University Mohali Punjab India
| |
Collapse
|
21
|
Sharma P, Gaur VK, Kim SH, Pandey A. Microbial strategies for bio-transforming food waste into resources. BIORESOURCE TECHNOLOGY 2020; 299:122580. [PMID: 31877479 DOI: 10.1016/j.biortech.2019.122580] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/06/2019] [Accepted: 12/06/2019] [Indexed: 05/27/2023]
Abstract
With the changing life-style and rapid urbanization of global population, there is increased generation of food waste from various industrial, agricultural, and household sources. According to Food and Agriculture Organization (FAO), almost one-third of the total food produced annually is wasted. This poses serious concern as not only there is loss of rich resources; their disposal in environment causes concern too. Food waste is rich in organic, thus traditional approaches of land-filling and incineration could cause severe environmental and human health hazard by generating toxic gases. Thus, employing biological methods for the treatment of such waste offers a sustainable way for valorization. This review comprehensively discusses state-of-art knowledge about various sources of food waste generation, their utilization, and valorization by exploiting microorganisms. The use of microorganisms either aerobically or anaerobically could be a sustainable and eco-friendly solution for food waste management by generating biofuels, electrical energy, biosurfactants, bioplastics, biofertilizers, etc.
Collapse
Affiliation(s)
- Poonam Sharma
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, India
| | - Vivek Kumar Gaur
- Environmental Biotechnology Division, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, India; Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul, Republic of Korea
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, India; Frontier Research Lab, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
22
|
Li P, Hu M, Suo J, Xie Y, Hu W, Wang X, Wang Y, Zhang Y. Enhanced Cr(VI) removal by waste biomass derived nitrogen/oxygen co-doped microporous biocarbon. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:5433-5445. [PMID: 31848959 DOI: 10.1007/s11356-019-07330-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
Herein, kitchen waste hydrolysis residue (KWHR) was utilized as the precursor to fabricate nitrogen/oxygen co-doped microporous biocarbons (NOMBs) with ultrahigh specific surface area via KOH activation. Activation temperature was found to be crucial for heteroatom doping and pore structure construction. Attractively, the obtained NOMB with high surface area (2417 m2/g) and microporosity (~ 90%) displayed an outstanding capacity of Cr(VI) removal (526.1 mg/g at pH 2). The kinetics and isotherm studies showed that the adsorption of Cr(VI) onto NOMB was well described by the pseudo-second-order kinetics and Langmuir isotherm. Moreover, it was found that Cr(VI) was partly reduced to Cr(III) during the removal process as the nitrogen/oxygen functionalities and unsaturated carbon bond played crucial roles of electron-donors, which revealed the fact that the removal of Cr(VI) by NOMB was attributed to the coupling of adsorption and reduction reaction. Overall, this study has demonstrated the possibility of preparing microporous biocarbons using KWHR as a renewable material and the resultant NOMB is of great potential to detoxify Cr(VI).
Collapse
Affiliation(s)
- Panyu Li
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, People's Republic of China
| | - Mengning Hu
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, People's Republic of China
| | - Jiao Suo
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, People's Republic of China
| | - Yi Xie
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, People's Republic of China
| | - Wanrong Hu
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, People's Republic of China
| | - Xuqian Wang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, People's Republic of China
| | - Yabo Wang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, People's Republic of China
| | - Yongkui Zhang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, People's Republic of China.
| |
Collapse
|
23
|
Wu M, Chen W, Hu J, Tian D, Shen F, Zeng Y, Yang G, Zhang Y, Deng S. Valorizing kitchen waste through bacterial cellulose production towards a more sustainable biorefinery. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 695:133898. [PMID: 31425977 DOI: 10.1016/j.scitotenv.2019.133898] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/11/2019] [Accepted: 08/11/2019] [Indexed: 06/10/2023]
Abstract
In this work, water washing pretreatment was employed on kitchen waste (KW) to integrate a multi-product biorefinery process for producing biogas, biodiesel, bacterial cellulose (BC) and biofertilizer. As a crucial stream in this biorefinery process, BC production were investigated to clarify the effects of residual salt and cooked oil. Meanwhile, glycerol, a by-product in biodiesel stream, as carbon source was attempted to produce BC. Results indicated that BC yield was significantly promoted from 0.11 g L-1 to 2.07 g L-1 as NaCl content decreased from 0.44% to 0.04%. Correspondingly, the BC crystallinity increased from 30.1% to 57.4% and the tensile strength increased from 3.30 MPa to 21.64 MPa. In addition, the residual cooked oil didn't affect the BC yield significantly, however, the crystallinity was greatly decreased from 57.4% to 34.5% as more cooked oil was remained in the medium of KW, and the tensile strength was decreased from 21.64 MPa to 4.30 MPa, correspondingly. Obviously, reducing the salt and cooked oil content in the starch fraction of KW by intensifying the water washing pretreatment will greatly benefit the BC yield and qualities. When the glycerol from biodiesel stream was employed for BC production with content of 10 g L-1-25 g L-1, 34.2%-44.0% increase on BC yield can be achieved. By contrast, extra higher glycerol content (50 g L-1) reduced the BC yield by 41%. However, the crystallinity and the tensile strength were increased by 18% and 2.2-folds, respectively. Therefore, the biodiesel stream can be well integrated in the process via producing BC with by-product of glycerol as a replaceable carbon source. Based on the results above, a more sustainable biorefinery process of KW via BC production can be achieved, which will potentially offer a new path to valorize the daily-released KW.
Collapse
Affiliation(s)
- Mengke Wu
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Wei Chen
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Jinguang Hu
- Chemical and Petroleum Engineering, Schulich School of Engineering, the University of Calgary, Calgary T2N 4H9, Canada; Department of Wood Science, the University of British Columbia, Vancouver V6T 1Z4, BC, Canada
| | - Dong Tian
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Fei Shen
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.
| | - Yongmei Zeng
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Gang Yang
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Yanzong Zhang
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Shihuai Deng
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| |
Collapse
|
24
|
Liu W, Dong Z, Sun D, Chen Y, Wang S, Zhu J, Liu C. Bioconversion of kitchen wastes into bioflocculant and its pilot-scale application in treating iron mineral processing wastewater. BIORESOURCE TECHNOLOGY 2019; 288:121505. [PMID: 31128543 DOI: 10.1016/j.biortech.2019.121505] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/14/2019] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
In this study, the feasibility of converting kitchen waste into bioflocculant using Bacillus agaradhaerens C9 was analyzed. The result showed that strain C9 could secrete various degrading enzymes, including amylase, protease, lipase, cellulase, xylanase and pectinase, promoting the hydrolysis of kitchen waste. Strong alkaline fermentation condition was able to induce the bioflocculant production, and inhibit the growth of contaminated bacteria, which avoids the sterilization process of kitchen waste. The optimum fermentation condition for enzymatic hydrolysis and bioflocculant production was 40 g/L kitchen waste, 37 °C, pH 9.5, and the highest bioflocculant yield of 6.92 g/L was achieved. Furthermore, bioflocculant was applied to treat pilot-scale (30 L) of mineral processing wastewater for the first time, and the removal rate of 92.35% was observed when 9 mg/L bioflocculant was added into wastewater. Therefore, this study could promote the resource utilization of kitchen waste and recycling of mineral processing wastewater.
Collapse
Affiliation(s)
- Weijie Liu
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, China
| | - Zhen Dong
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, China
| | - Di Sun
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, China
| | - Ying Chen
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, China
| | - Shiwei Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xian 710069, Shanxi Province, China
| | - Jingrong Zhu
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, China
| | - Cong Liu
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, China.
| |
Collapse
|
25
|
Rončević Z, Grahovac J, Dodić S, Vučurović D, Dodić J. Utilisation of winery wastewater for xanthan production in stirred tank bioreactor: Bioprocess modelling and optimisation. FOOD AND BIOPRODUCTS PROCESSING 2019. [DOI: 10.1016/j.fbp.2019.06.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Sindhu R, Gnansounou E, Rebello S, Binod P, Varjani S, Thakur IS, Nair RB, Pandey A. Conversion of food and kitchen waste to value-added products. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 241:619-630. [PMID: 30885564 DOI: 10.1016/j.jenvman.2019.02.053] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 02/07/2019] [Accepted: 02/08/2019] [Indexed: 06/09/2023]
Abstract
Food and kitchen waste - omnipresent in every corner of the world serve as an excellent source of value added products owing to high organic content. Regardless of existence of various traditional methods of land filling or biogas production used to harness food waste energy, effective conversion of food to valuable resources is often challenged by its heterogenous nature and high moisture content. The current paper tries to lay down the prospects and consequences associated with food waste management. The various social, economical and environmental concerns associated with food waste management especially in terms of green house gas emission and extended rate of leachate generation also has been discussed. The difficulties in proper collection, storage and bioconversion of food waste to valuable by-products are pointed as a big hurdle in proper waste management. Finally, the wide array of value added products developed from food waste after pretreatment are also enlisted to emphasis the prospects of food waste management.
Collapse
Affiliation(s)
- Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, India.
| | - Edgard Gnansounou
- Ecole Polytechnique Federale de Lausanne, ENAC GR-GN, GC A3, Station 18, CH, 1015, Lausanne, Switzerland
| | - Sharrel Rebello
- Communicable Disease Research Laboratory, St. Joseph's College, Irinjalakuda, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382 010, India
| | - Indu Shekhar Thakur
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | | | - Ashok Pandey
- CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 31 MG Marg, Lucknow 226 001, India
| |
Collapse
|
27
|
Kang Y, Li P, Zeng X, Chen X, Xie Y, Zeng Y, Zhang Y, Xie T. Biosynthesis, structure and antioxidant activities of xanthan gum from Xanthomonas campestris with additional furfural. Carbohydr Polym 2019; 216:369-375. [PMID: 31047079 DOI: 10.1016/j.carbpol.2019.04.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 03/15/2019] [Accepted: 04/03/2019] [Indexed: 01/11/2023]
Abstract
Lignocellulosic-like materials are potentially low-cost fermentation substrates, but their pretreatment brings about by-products. This work investigated the effects of furfural on xanthan gum (XG) production, and product quality was evaluated by structure, viscosity and antioxidant capacities. Xanthomonas campestris maintained steady polysaccharide yield (above 13 g·L-1) with enhanced cell growth at low furfural concentrations (below 3.2 g·L-1). The products were verified as XG by FT-IR, XRD, NMR and monosaccharide analysis. Moreover, they were found to have reduced acetyl, rising pyruvate and up-to-down glucuronic acid groups as increasing furfural concentration. Furthermore, XG product with 1 g·L-1 furfural addition showed the best hydroxyl scavenging effects, though reducing powers presented no variation. It was demonstrated that furfural, the common hydrolysis by-product, was not necessarily an inhibitor for fermentation, and an appropriate amount of furfural was beneficial to XG production with steady yield and good quality.
Collapse
Affiliation(s)
- Yan Kang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Panyu Li
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Xiaotong Zeng
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Xi Chen
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Yi Xie
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Yu Zeng
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Yongkui Zhang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Tonghui Xie
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| |
Collapse
|
28
|
Li Z, Liu Y, Liu C, Wu S, Wei W. Direct conversion of cellulose into sorbitol catalyzed by a bifunctional catalyst. BIORESOURCE TECHNOLOGY 2019; 274:190-197. [PMID: 30504102 DOI: 10.1016/j.biortech.2018.11.089] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 06/09/2023]
Abstract
The conversion of cellulose into sorbitol has been recognized as one of most promising biomass valorization routes for the production of high added-value chemicals. In this work, Sulfonic acid-functionalized carbonized cassava dregs supported ruthenium bifunctional catalyst (Ru/CCD-SO3H) was prepared. The Ru/CCD-SO3H catalyst was employed for direct conversion of cellulose into sorbitol in a neutral aqueous solution. A sorbitol yield of 63.8% could be obtained at 180 °C for 10 h. The acidic sites and metal hydrogenation sites of the Ru/CCD-SO3H catalyst played an important role in hydrolytic hydrogenation of cellulose. Particularly, there presented a strong synergistic effect between sulfonic groups and Ru nanoparticles in conversion of cellulose into sorbitol. This synergistic effect was favorable to enhancing the sorbitol yield. Besides, the stability of Ru/CCD-SO3H catalyst was investigated under the optimal reaction conditions. The catalytic performance of catalyst was decreased after being used five times.
Collapse
Affiliation(s)
- Zengyong Li
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Ying Liu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Chuanfu Liu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shubin Wu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Weiqi Wei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
29
|
|
30
|
Gharib-Bibalan S. High Value-added Products Recovery from Sugar Processing By-products and Residuals by Green Technologies: Opportunities, Challenges, and Prospects. FOOD ENGINEERING REVIEWS 2018. [DOI: 10.1007/s12393-018-9174-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
31
|
Utilization of Waste Biomass (Kitchen Waste) Hydrolysis Residue as Adsorbent for Dye Removal: Kinetic, Equilibrium, and Thermodynamic Studies. Appl Biochem Biotechnol 2018; 185:971-985. [DOI: 10.1007/s12010-018-2699-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/15/2018] [Indexed: 01/04/2023]
|
32
|
Li J, Zhang W, Li X, Ye T, Gan Y, Zhang A, Chen H, Xue G, Liu Y. Production of lactic acid from thermal pretreated food waste through the fermentation of waste activated sludge: Effects of substrate and thermal pretreatment temperature. BIORESOURCE TECHNOLOGY 2018; 247:890-896. [PMID: 30060427 DOI: 10.1016/j.biortech.2017.09.186] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 09/24/2017] [Accepted: 09/26/2017] [Indexed: 06/08/2023]
Abstract
Valorization of organic-rich waste stream to lactic acid by the mixed microbial consortium has attracted tremendous research interests in recent years. In this study, thermal pretreatment was involved in co-fermentation of food waste (FW) and waste activated sludge (WAS) to enhance lactic acid production. First, sole FW was observed as the most suitable substrate employing thermal pretreatment for the generation of lactic acid. The fermentation time for reaching the maximal plateau was significantly shortened at a corresponding thermal pretreatment temperature. The mechanism study found that the enhancement of lactic acid yield was in accordance with the acceleration of solubilization and hydrolysis. Furthermore, the physicochemical characteristics of fermentative substrate and surface morphology of the fermentation mixture varied with the pretreatment temperatures. Further investigations of microbial community structure also revealed that the proportions of key microorganisms such as Bacillus and Lactobacillus were changed by the thermal pretreatment.
Collapse
Affiliation(s)
- Jun Li
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Wenjuan Zhang
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Xiang Li
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; Jiangsu Tongyan Environm Prod Sci & Technol Co Lt, Yancheng 224000, China.
| | - Tingting Ye
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Yanfei Gan
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Ai Zhang
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Hong Chen
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Gang Xue
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Yanan Liu
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| |
Collapse
|
33
|
Bajić BŽ, Vučurović DG, Dodić SN, Grahovac JA, Dodić JM. Process model economics of xanthan production from confectionery industry wastewaters. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 203:999-1004. [PMID: 28882406 DOI: 10.1016/j.jenvman.2017.08.055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 08/19/2017] [Accepted: 08/30/2017] [Indexed: 06/07/2023]
Abstract
In this research a process and cost model for a xanthan production facility was developed using process simulation software (SuperPro Designer®). This work represents a novelty in the field for two reasons. One is that xanthan gum has been produced from several wastes but never from wastewaters from confectionery industries. The other more important is that the aforementioned software, which in intended exclusively for bioprocesses, is used for generating a base case, i.e. starting point for transferring the technology to industrial scales. Previously acquired experimental knowledge about using confectionery wastewaters from five different factories as substitutes for commercially used cultivation medium have been incorporated into the process model in order to obtain an economic viability of implementing such substrates. A lower initial sugar content in the medium based on wastewater (28.41 g/L) compared to the synthetic medium (30.00 g/L) gave a lower xanthan content at the end of cultivation (23.98 and 26.27 g/L, respectively). Although this resulted in somewhat poorer economic parameters, they were still in the range of being an investment of interest. Also the possibility of utilizing a cheap resource (waste) and reducing pollution that would result from its disposal has a positive effect on the environment.
Collapse
Affiliation(s)
- Bojana Ž Bajić
- Department of Biotechnology and Pharmaceutical Engineering, Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000, Novi Sad, Serbia
| | - Damjan G Vučurović
- Department of Biotechnology and Pharmaceutical Engineering, Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000, Novi Sad, Serbia.
| | - Siniša N Dodić
- Department of Biotechnology and Pharmaceutical Engineering, Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000, Novi Sad, Serbia
| | - Jovana A Grahovac
- Department of Biotechnology and Pharmaceutical Engineering, Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000, Novi Sad, Serbia
| | - Jelena M Dodić
- Department of Biotechnology and Pharmaceutical Engineering, Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000, Novi Sad, Serbia
| |
Collapse
|
34
|
Hafid HS, Nor 'Aini AR, Mokhtar MN, Talib AT, Baharuddin AS, Umi Kalsom MS. Over production of fermentable sugar for bioethanol production from carbohydrate-rich Malaysian food waste via sequential acid-enzymatic hydrolysis pretreatment. WASTE MANAGEMENT (NEW YORK, N.Y.) 2017; 67:95-105. [PMID: 28527863 DOI: 10.1016/j.wasman.2017.05.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 05/08/2017] [Accepted: 05/11/2017] [Indexed: 06/07/2023]
Abstract
In Malaysia, the amount of food waste produced is estimated at approximately 70% of total municipal solid waste generated and characterised by high amount of carbohydrate polymers such as starch, cellulose, and sugars. Considering the beneficial organic fraction contained, its utilization as an alternative substrate specifically for bioethanol production has receiving more attention. However, the sustainable production of bioethanol from food waste is linked to the efficient pretreatment needed for higher production of fermentable sugar prior to fermentation. In this work, a modified sequential acid-enzymatic hydrolysis process has been developed to produce high concentration of fermentable sugars; glucose, sucrose, fructose and maltose. The process started with hydrothermal and dilute acid pretreatment by hydrochloric acid (HCl) and sulphuric acid (H2SO4) which aim to degrade larger molecules of polysaccharide before accessible for further steps of enzymatic hydrolysis by glucoamylase. A kinetic model is proposed to perform an optimal hydrolysis for obtaining high fermentable sugars. The results suggested that a significant increase in fermentable sugar production (2.04-folds) with conversion efficiency of 86.8% was observed via sequential acid-enzymatic pretreatment as compared to dilute acid pretreatment (∼42.4% conversion efficiency). The bioethanol production by Saccharomyces cerevisiae utilizing fermentable sugar obtained shows ethanol yield of 0.42g/g with conversion efficiency of 85.38% based on the theoretical yield was achieved. The finding indicates that food waste can be considered as a promising substrate for bioethanol production.
Collapse
Affiliation(s)
- Halimatun Saadiah Hafid
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| | - Abdul Rahman Nor 'Aini
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| | - Mohd Noriznan Mokhtar
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| | - Ahmad Tarmezee Talib
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| | - Azhari Samsu Baharuddin
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| | - Md Shah Umi Kalsom
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| |
Collapse
|
35
|
Habibi H, Khosravi-Darani K. Effective variables on production and structure of xanthan gum and its food applications: A review. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.02.013] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
36
|
Bioconversion of Welan Gum from Kitchen Waste by a Two-Step Enzymatic Hydrolysis Pretreatment. Appl Biochem Biotechnol 2017; 183:820-832. [PMID: 28365855 DOI: 10.1007/s12010-017-2466-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 03/22/2017] [Indexed: 12/26/2022]
Abstract
Kitchen waste (KW) is a worldwide issue, which can lead to environment pollution. Nevertheless, it is also a low-cost and sustainable resource for bio-production. Meanwhile, welan gum (WG) is one kind of the most important exopolysaccharide but with high material cost. The aim of this study was to adopt two-step enzymatic hydrolysis to improve the release and recovery of both sugar and protein in KW for subsequent WG production. As the results, the recovery rates of sugar and protein reached 81.07 and 77.38%, which were both satisfactory. After the conditions optimized in flasks, the welan fermentation was conducted in a 5-L fermentor, and the WG yield, utilization rates of reducing sugar and KDN, respectively, reached 5.57 g L-1, 94.25% and 61.96%. Moreover, the kinetic analyses demonstrated that the WG fermentation in KWH was a partly growth-associated process. The KW was successfully treated by fermentation for the bioconversion to WG.
Collapse
|