1
|
Tang X, Wu S, Hua X, Fan Y, Li X. Ferulic acid triggering a co-production of 4-vinyl guaiacol and fumaric acid from lignocellulose-based carbon source by Rhizopus oryzae. Food Chem 2024; 461:140799. [PMID: 39154464 DOI: 10.1016/j.foodchem.2024.140799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024]
Abstract
Plant secondary metabolites have attracted considerable attention due to the increasing demand for finite fossil resources and environmental concerns. However, the biosynthesis of aromatic aldehydes or alcohols from renewable resources remains challenging and costly. This study explores a novel approach performed by the aromatic catabolizing organism Rhizopus oryzae, which enables a ferulic acid-activated co-production of 4-vinyl guaiacol (4-VG) and fumaric acid. The strain produced 4.60 g/L 4-VG and 11.25 g/L fumaric acid from a mixed carbon source of glucose and xylose, suggesting that this new pathway allows the potential production of natural 4-VG from low-cost substrates. This green route, which utilizes Rhizopus oryzae's ability to efficiently convert various renewable resources into valuable chemicals, paves the way for improved catalytic efficiency in 4-VG production.
Collapse
Affiliation(s)
- Xueyu Tang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China
| | - Shanshan Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China
| | - Xia Hua
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China
| | - Yimin Fan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China
| | - Xin Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China.
| |
Collapse
|
2
|
Prado-Acebo I, Cubero-Cardoso J, Lu-Chau TA, Eibes G. Integral multi-valorization of agro-industrial wastes: A review. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 183:42-52. [PMID: 38714121 DOI: 10.1016/j.wasman.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/17/2024] [Accepted: 05/04/2024] [Indexed: 05/09/2024]
Abstract
Agriculture and industries related to the agriculture sector generate a large amount of waste each year. These wastes are usually burned or dumped, causing damage to the environment, the economy and society. Due to their composition, they have great potential for obtaining high value-added products in biorefineries. This fact, added to the growing demand for energy and chemicals from fossil resources, is driving the interest of the scientific community in them. Biorefinery processes are hardly profitable when applied individually, so a better alternative is to develop integrated multi-feedstock and multi-product biorefinery schemes using all biomass fractions in a zero-waste approach. However, for industrial scale application, extensive research, scale-up studies, and techno-economic and environmental feasibility analyses are needed. This review compiles information on integrated multi-biorefinery processes from agro-industrial wastes to shed light on the path towards sustainable development and circular bioeconomy.
Collapse
Affiliation(s)
- Inés Prado-Acebo
- CRETUS, Department of Chemical Engineering, University of Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Juan Cubero-Cardoso
- CRETUS, Department of Chemical Engineering, University of Santiago de Compostela, Santiago de Compostela 15782, Spain; Laboratory of Sustainable and Circular Technology, CIDERTA and Chemistry Department, Faculty of Experimental Sciences, Campus de ''El Carmen", University of Huelva, 21071 Huelva, Spain.
| | - Thelmo A Lu-Chau
- CRETUS, Department of Chemical Engineering, University of Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Gemma Eibes
- CRETUS, Department of Chemical Engineering, University of Santiago de Compostela, Santiago de Compostela 15782, Spain
| |
Collapse
|
3
|
Matei PL, Deleanu I, Brezoiu AM, Chira NA, Busuioc C, Isopencu G, Cîlțea-Udrescu M, Alexandrescu E, Stoica-Guzun A. Ultrasound-Assisted Extraction of Blackberry Seed Oil: Optimization and Oil Characterization. Molecules 2023; 28:molecules28062486. [PMID: 36985462 PMCID: PMC10053259 DOI: 10.3390/molecules28062486] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Ultrasound-assisted extraction (UAE) was applied to extract oil from blackberry (BB) seeds. The effect of UAE conditions on oil recovery and quality was investigated. Favorable experimental conditions (ultrasound intensity (UI), extraction temperature, and time) were investigated using response surface methodology (RSM). A Box–Behnken design was used to predict optimized conditions for BB seed oil extraction. These conditions were as follows: 13.77 W/cm2 UI, 45 °C extraction temperature, and 15 min extraction time. The experimental value obtained for extraction efficiency under optimal conditions was 87 ± 0.34%, in good agreement with the optimized predicted value. UAE does not affect the oil composition and confers higher antioxidant values in BB seed oil in comparison with Soxhlet extraction.
Collapse
Affiliation(s)
- Petronela L. Matei
- Department of Chemical and Biochemical Engineering, Faculty of Chemical Engineering and Biotechnologies, University “Politehnica” of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania
| | - Iuliana Deleanu
- Department of Chemical and Biochemical Engineering, Faculty of Chemical Engineering and Biotechnologies, University “Politehnica” of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania
| | - Ana M. Brezoiu
- Department of Chemical and Biochemical Engineering, Faculty of Chemical Engineering and Biotechnologies, University “Politehnica” of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania
| | - Nicoleta A. Chira
- Department of Organic Chemistry “Costin Neniţescu”, Faculty of Chemical Engineering and Biotechnologies, University “Politehnica” of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania
| | - Cristina Busuioc
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University “Politehnica” of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania
| | - Gabriela Isopencu
- Department of Chemical and Biochemical Engineering, Faculty of Chemical Engineering and Biotechnologies, University “Politehnica” of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania
| | - Mihaela Cîlțea-Udrescu
- Department of Biotechnologies, Bioresources and Bioproducts for Bioeconomy, National Institute for Research and Development in Chemistry and Petrochemistry-ICECHIM, 202 Splaiul Independentei Street, 060021 Bucharest, Romania
| | - Elvira Alexandrescu
- Department of Heterogeneous Systems, National Institute for Research and Development in Chemistry and Petrochemistry-ICECHIM, 202 Splaiul Independentei Street, 060021 Bucharest, Romania
| | - Anicuta Stoica-Guzun
- Department of Chemical and Biochemical Engineering, Faculty of Chemical Engineering and Biotechnologies, University “Politehnica” of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania
- Correspondence:
| |
Collapse
|
4
|
Rodríguez-Martínez B, Romaní A, Eibes G, Garrote G, Gullón B, Del Río PG. Potential and prospects for utilization of avocado by-products in integrated biorefineries. BIORESOURCE TECHNOLOGY 2022; 364:128034. [PMID: 36174891 DOI: 10.1016/j.biortech.2022.128034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
The industrial processing of avocado to extract oil, and produce guacamole or sauces generates enormous quantities of peels and seeds (around 2 million tons worldwide in 2019) without commercially valuable applications. However, various studies have suggested the presence of a wide range of interesting compounds in the composition of these by-products. This review depicts a thorough outline of the capacity of avocado residues to be converted into a portfolio of commodities that can be employed in sectors such as the food, cosmetics, pharmaceuticals, environment, and energy industries. Therefore, a novel biorefinery strategy to valorize avocado-processing residues to obtain a polyphenolic extract, pectooligosaccharides, and succinic acid was presented. Additionally, the prospects and challenges facing a biorefinery based on the valorization of avocado residues are presented, particularly its techno-economic feasibility on an industrial scale, aiming for a resource-efficient circular bio-economy.
Collapse
Affiliation(s)
| | - Aloia Romaní
- Universidade de Vigo, Departamento de Enxeñaría Química, Facultade de Ciencias, 32004 Ourense, Spain
| | - Gemma Eibes
- CRETUS Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, Santiago de Compostela, 15706 A Coruña, Spain
| | - Gil Garrote
- Universidade de Vigo, Departamento de Enxeñaría Química, Facultade de Ciencias, 32004 Ourense, Spain
| | - Beatriz Gullón
- Universidade de Vigo, Departamento de Enxeñaría Química, Facultade de Ciencias, 32004 Ourense, Spain.
| | - Pablo G Del Río
- Universidade de Vigo, Departamento de Enxeñaría Química, Facultade de Ciencias, 32004 Ourense, Spain; Stokes Laboratories, School of Engineering, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| |
Collapse
|
5
|
Liu H, Qin S, Sirohi R, Ahluwalia V, Zhou Y, Sindhu R, Binod P, Rani Singhnia R, Kumar Patel A, Juneja A, Kumar D, Zhang Z, Kumar J, Taherzadeh MJ, Kumar Awasthi M. Sustainable blueberry waste recycling towards biorefinery strategy and circular bioeconomy: A review. BIORESOURCE TECHNOLOGY 2021; 332:125181. [PMID: 33888357 DOI: 10.1016/j.biortech.2021.125181] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
Waste valorization using biological methods for value addition as well as environmental management is becoming popular approach for sustainable development. The present review addresses the availability of blueberry crop residues (BCR), applications of this feedstock in bioprocess for obtaining range of value-added products, to offer economic viability, business development and market potential, challenges and future perspectives. To the best of our knowledge, this is the first article addressing the blueberry waste valorization for a sustainable circular bioeconomy. Furthermore, it covers the information on the alternative BCR valorization methods and production of biochar for environmental management through removal or mitigation of organic and inorganic pollutants from contaminated sites. The review also discusses the ample opportunities of strategic utilization of BCR to offer solutions for environmental sustenance, covers the emerging trends to produce multi-products and techno-economic prospective for sustainable agronomy.
Collapse
Affiliation(s)
- Huimin Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Shiyi Qin
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Ranjna Sirohi
- Department of Chemical and Biological Engineering, Korea University, Seoul, South Korea
| | - Vivek Ahluwalia
- Institute of Pesticide Formulation Technology, Gurugram, Haryana 122 016, India
| | - Yuwen Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala 695019, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala 695019, India
| | - Reeta Rani Singhnia
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Ankita Juneja
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana Champaign, 1304 W. Pennsylvania Avenue, Urbana, IL 61801, USA
| | - Deepak Kumar
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, 402 Walters Hall, 1 Forestry Drive, Syracuse, NY 13210, USA
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Jitendra Kumar
- Institute of Pesticide Formulation Technology, Gurugram, Haryana 122 016, India
| | | | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Swedish Centre for Resource Recovery, University of Borås, Borås 50190, Sweden.
| |
Collapse
|
6
|
Villacís-Chiriboga J, Vera E, Van Camp J, Ruales J, Elst K. Valorization of byproducts from tropical fruits: A review, Part 2: Applications, economic, and environmental aspects of biorefinery via supercritical fluid extraction. Compr Rev Food Sci Food Saf 2021; 20:2305-2331. [PMID: 33864344 DOI: 10.1111/1541-4337.12744] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 01/30/2021] [Accepted: 02/21/2021] [Indexed: 12/25/2022]
Abstract
The global trade of tropical fruits is expected to increase significantly in the coming years. In 2018, the production was approximately 100 million tones, an increase of 3.3% compared to the previous year. Nevertheless, according to the Food and Agricultural Organization, every year one-third of the food produced in the world for human consumption is lost or wasted. More specifically, around 45% of the fruits, constituted mainly by peels, seeds, and pulps after juice extraction, are discarded mainly in the agricultural and processing steps. Therefore, decreasing and/or using these byproducts, which are often rich in bioactive components, have become an important focus for both the scientific community and the fruit processing industry. In this line, supercritical fluid extraction (SFE) technology is expected to play a significant role in the valorization of these byproducts. This review presents the concepts of a tropical fruit biorefinery using supercritical CO2 extraction and the potential applications of the isolated fractions. There is a specific focus on the extraction of bioactive compounds, that is, carotenoids and phenolics, but also oils and other valuable molecules. Moreover, the techno-economic and environmental performance is assessed. Overall, the biorefinery of tropical fruits via SFE provides new opportunities for development of food and pharmaceutical products with improved economic and environmental performance.
Collapse
Affiliation(s)
- José Villacís-Chiriboga
- Business Unit Separation and Conversion Technology, Flemish Institute for Technological Research (VITO), Mol, Belgium.,Department of Food Technology, Safety and Health, Ghent University, Ghent, Belgium.,Department of Food Science and Biotechnology, Escuela Politécnica Nacional, Quito, Pichincha, Ecuador
| | - Edwin Vera
- Department of Food Science and Biotechnology, Escuela Politécnica Nacional, Quito, Pichincha, Ecuador
| | - John Van Camp
- Department of Food Technology, Safety and Health, Ghent University, Ghent, Belgium
| | - Jenny Ruales
- Department of Food Science and Biotechnology, Escuela Politécnica Nacional, Quito, Pichincha, Ecuador
| | - Kathy Elst
- Business Unit Separation and Conversion Technology, Flemish Institute for Technological Research (VITO), Mol, Belgium
| |
Collapse
|
7
|
Machado APDF, Geraldi MV, do Nascimento RDP, Moya AMTM, Vezza T, Diez-Echave P, Gálvez JJ, Cazarin CBB, Maróstica Júnior MR. Polyphenols from food by-products: An alternative or complementary therapy to IBD conventional treatments. Food Res Int 2021; 140:110018. [PMID: 33648249 DOI: 10.1016/j.foodres.2020.110018] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022]
Abstract
Inflammatory bowel diseases (IBD) are illnesses characterized by chronic intestinal inflammation and microbial dysbiosis that have emerged as a public health challenge worldwide. It comprises two main conditions: Crohn's disease and ulcerative colitis. Currently, conventional therapy to treat IBD are not free from side effects, such as liver and kidney toxicity, drug resistance, and allergic reactions. In view of this, there is growing research for alternative and complementary therapies that, in addition to acting in the prevention or the control of the disease, do not compromise the quality of life and health of individuals. In this sense, a growing body of evidence has confirmed the benefits of natural phenolic compounds in intestinal health. Phenolic compounds or polyphenols are molecules widely distributed throughout the plant kingdom (flowers, vegetables, leaves, and fruits), including plant materials remaining of the handling and food industrial processing, referred to in the scientific literature as by-products, food waste, or bagasse. Since by-products are low-cost, abundant, easily accessible, safe, and rich in bioactive compounds, it becomes an exciting option to extract, concentrate or isolate phenolic compounds to be posteriorly applied in the therapeutic approach of IBD. In this article, we have reviewed the main phenolic compounds present in various plants and by-products that have shown beneficial and/or promising effects in experimental pre-clinical, clinical, and in vitro research with IBD. In addition, we have mentioned and suggested several plants and by-products originated and produced in Latin America that could be part of future research as good sources of specific phenolic compounds to be applied in the prevention and development of alternative treatments for IBD. This review may offer a valuable reference for studies related to IBD administering phenolic compounds from natural, cheap, and easily accessible raw and undervalued materials.
Collapse
Affiliation(s)
| | - Marina Vilar Geraldi
- University of Campinas, School of Food Engineering, 80 Monteiro Lobato Street, 13083-862 Campinas, SP, Brazil
| | | | | | - Teresa Vezza
- University of Granada, Department of Pharmacology, CIBER-EHD, Institute of Biosanitary Research of Granada (ibs.GRANADA), Biomedical Research Center (CIBM), Campus de la Salud, 18071 Granada, Spain
| | - Patricia Diez-Echave
- University of Granada, Department of Pharmacology, CIBER-EHD, Institute of Biosanitary Research of Granada (ibs.GRANADA), Biomedical Research Center (CIBM), Campus de la Salud, 18071 Granada, Spain
| | - Julio Juan Gálvez
- University of Granada, Department of Pharmacology, CIBER-EHD, Institute of Biosanitary Research of Granada (ibs.GRANADA), Biomedical Research Center (CIBM), Campus de la Salud, 18071 Granada, Spain
| | - Cinthia Bau Betim Cazarin
- University of Campinas, School of Food Engineering, 80 Monteiro Lobato Street, 13083-862 Campinas, SP, Brazil
| | | |
Collapse
|
8
|
Aristizábal-Marulanda V, Cardona A. CA. Experimental production of ethanol, electricity, and furfural under the biorefinery concept. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2020.116047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
9
|
Abstract
Nowadays, the transport sector is one of the main sources of greenhouse gas (GHG) emissions and air pollution in cities. The use of renewable energies is therefore imperative to improve the environmental sustainability of this sector. In this regard, biofuels play an important role as they can be blended directly with fossil fuels and used in traditional vehicles’ engines. Bioethanol is the most used biofuel worldwide and can replace gasoline or form different gasoline-ethanol blends. Additionally, it is an important building block to obtain different high added-value compounds (e.g., acetaldehyde, ethylene, 1,3-butadiene, ethyl acetate). Today, bioethanol is mainly produced from food crops (first-generation (1G) biofuels), and a transition to the production of the so-called advanced ethanol (obtained from lignocellulosic feedstocks, non-food crops, or industrial waste and residue streams) is needed to meet sustainability criteria and to have a better GHG balance. This work gives an overview of the current production, use, and regulation rules of bioethanol as a fuel, as well as the advanced processes and the co-products that can be produced together with bioethanol in a biorefinery context. Special attention is given to the opportunities for making a sustainable transition from bioethanol 1G to advanced bioethanol.
Collapse
|
10
|
Aguilar‐Veloz LM, Calderón‐Santoyo M, Vázquez González Y, Ragazzo‐Sánchez JA. Application of essential oils and polyphenols as natural antimicrobial agents in postharvest treatments: Advances and challenges. Food Sci Nutr 2020; 8:2555-2568. [PMID: 32566173 PMCID: PMC7300048 DOI: 10.1002/fsn3.1437] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/28/2019] [Accepted: 12/31/2019] [Indexed: 11/07/2022] Open
Abstract
The use of natural antimicrobial agents is an attractive ecological alternative to the synthetic fungicides applied to control pathogens during postharvest. In order to improve industrial production systems, postharvest research has evolved toward integration with science and technology aspects. Thus, the present review aims to draw attention to the achieved advances and challenges must be overcome, to promote application of essential oils and polyphenols as antimicrobial agents, against phytopathogens and foodborne microorganisms during postharvest. Besides that, it attempts to highlight the use of coating and encapsulation techniques as emerging methods that improve their effectiveness. The integral knowledge about the vegetable systems, molecular mechanisms of pathogens and mechanisms of these substances would ensure more efficient in vitro and in vivo experiences. Finally, the cost-benefit, toxicity, and ecotoxicity evaluation will be guaranteed the successful implementation and commercialization of these technologies, as a sustainable alternative to minimize production losses of vegetable commodities.
Collapse
Affiliation(s)
- Laura Maryoris Aguilar‐Veloz
- Laboratorio Integral de Investigación en AlimentosTecnológico Nacional de México ‐ Instituto Tecnológico de TepicTepicMéxico
| | - Montserrat Calderón‐Santoyo
- Laboratorio Integral de Investigación en AlimentosTecnológico Nacional de México ‐ Instituto Tecnológico de TepicTepicMéxico
| | - Yuliana Vázquez González
- Laboratorio Integral de Investigación en AlimentosTecnológico Nacional de México ‐ Instituto Tecnológico de TepicTepicMéxico
| | - Juan Arturo Ragazzo‐Sánchez
- Laboratorio Integral de Investigación en AlimentosTecnológico Nacional de México ‐ Instituto Tecnológico de TepicTepicMéxico
| |
Collapse
|
11
|
Cortés Rodríguez M, Villegas Yépez C, Gil González JH, Ortega-Toro R. Effect of a multifunctional edible coating based on cassava starch on the shelf life of Andean blackberry. Heliyon 2020; 6:e03974. [PMID: 32514481 PMCID: PMC7266784 DOI: 10.1016/j.heliyon.2020.e03974] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/28/2019] [Accepted: 05/07/2020] [Indexed: 11/30/2022] Open
Abstract
The blackberry is a fragile fruit with a high degree of decomposition, which limits its shelf life. The effect of an edible coating (EC) based on cassava starch, whey protein, beeswax, chitosan, glycerol, stearic acid, and glacial acetic acid on the shelf life of fruit stored at 4 °C was evaluated. The physical, chemical, physical, microbiological, and sensorial quality was evaluated, comparing with a fresh control fruit. The EC had a positive effect on the physicochemical and sensorial properties (mainly in texture, flavor, and aromas), due to the reduction of physiological processes, whereas the color changes are mainly due to anthocyanin losses. After 10 days of storage, weight losses were 39.6% lower and firmness was 81.4% higher; while chitosan reduced the mold and yeast count. The EC increased the useful life of the Andean blackberries by 100%.
Collapse
Affiliation(s)
- Misael Cortés Rodríguez
- Universidad Nacional de Colombia, Facultad Ciencias Agrarias, Cra. 65 No. 59A - 110, Medellín, Colombia
| | - Camilo Villegas Yépez
- Universidad Nacional de Colombia, Facultad Ciencias Agrarias, Cra. 65 No. 59A - 110, Medellín, Colombia
| | | | - Rodrigo Ortega-Toro
- Universidad de Cartagena, Programa de Ingeniería de Alimentos, Research Group in Complex Fluids Engineering and Food Rheology (IFCRA), Food Packaging and Shelf Life Research Group (FP&SL), Avenida del Consulado Calle 30 No. 48 - 152, Cartagena de Indias D.T. y C., Colombia
| |
Collapse
|
12
|
Aristizábal-Marulanda V, Solarte-Toro JC, Cardona Alzate CA. Economic and social assessment of biorefineries: The case of Coffee Cut-Stems (CCS) in Colombia. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.biteb.2020.100397] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
A Review on the Feedstocks for the Sustainable Production of Bioactive Compounds in Biorefineries. SUSTAINABILITY 2019. [DOI: 10.3390/su11236765] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Since 2015, the sustainable development goals of the United Nations established a route map to achieve a sustainable society, pushing the industry to aim for sustainable processes. Biorefineries have been studied as the technological scheme to process integrally renewable resources. The so-called “bioactive” compounds (BACs) have been of high interest, given their high added value and potential application in pharmaceutics and health, among others. However, there are still elements to be addressed to consider them as economic drivers of sustainable processes. First, BACs can be produced from many sources and it is important to identify feedstocks for this purpose. Second, a sustainable production process should also consider valorizing the remaining components. Finally, feedstock availability plays an important role in affecting the process scale, logistics, and feasibility. This work consists of a review on the feedstocks for the sustainable production of BACs in biorefineries, covering the type of BAC, composition, and availability. Some example biorefineries are proposed using wheat straw, hemp and grapevine shoots. As a main conclusion, multiple raw materials have the potential to obtain BACs that can become economic drivers of biorefineries. This is an interesting outlook, as the integral use of the feedstocks may not only allow obtaining different types of BACs, but also other fiber products and energy for the process self-supply.
Collapse
|
14
|
Felipe Hernández-Pérez A, de Arruda PV, Sene L, da Silva SS, Kumar Chandel A, de Almeida Felipe MDG. Xylitol bioproduction: state-of-the-art, industrial paradigm shift, and opportunities for integrated biorefineries. Crit Rev Biotechnol 2019; 39:924-943. [DOI: 10.1080/07388551.2019.1640658] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
| | - Priscila Vaz de Arruda
- Department of Bioprocess Engineering and Biotechnology-COEBB/TD, Universidade Tecnológica Federal do Paraná, Toledo, Brazil
| | - Luciane Sene
- Center for Exact and Technological Sciences, Universidade Estadual do Oeste de Paraná (UNIOESTE), Cascavel, Brazil
| | - Silvio Silvério da Silva
- Departamento de Biotecnologia, Escola de Engenharia de Lorena (EEL), Universidade de São Paulo, Lorena, Brazil
| | - Anuj Kumar Chandel
- Departamento de Biotecnologia, Escola de Engenharia de Lorena (EEL), Universidade de São Paulo, Lorena, Brazil
| | | |
Collapse
|
15
|
Ospina M, Montaña-Oviedo K, Díaz-Duque Á, Toloza-Daza H, Narváez-Cuenca CE. Utilization of fruit pomace, overripe fruit, and bush pruning residues from Andes berry (Rubus glaucus Benth) as antioxidants in an oil in water emulsion. Food Chem 2019; 281:114-123. [DOI: 10.1016/j.foodchem.2018.12.087] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/21/2018] [Accepted: 12/21/2018] [Indexed: 12/25/2022]
|
16
|
Dávila JA, Rosenberg M, Cardona CA. Extraction of phenolic compounds from spent blackberry pulp by enhanced‐fluidity liquid extraction. AIChE J 2019. [DOI: 10.1002/aic.16609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Javier A. Dávila
- Chemical Engineering Program, Department of EngineeringUniversidad Jorge Tadeo Lozano Bogotá Colombia
| | - Moshe Rosenberg
- Department of Food Science and TechnologyUniversity of California, Davis Davis California
| | - Carlos A. Cardona
- Instituto de Biotecnología y Agroindustria, Departamento de Ingeniería QuímicaUniversidad Nacional de Colombia sede Manizales Manizales Colombia
| |
Collapse
|
17
|
Serna-Loaiza S, Martínez A, Pisarenko Y, Cardona-Alzate CA. Integral use of plants and their residues: the case of cocoyam (Xanthosoma sagittifolium) conversion through biorefineries at small scale. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:35949-35959. [PMID: 29796887 DOI: 10.1007/s11356-018-2313-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 05/13/2018] [Indexed: 06/08/2023]
Abstract
During last decades, there has been a growing interest of decreasing the environmental impact generated by humans. This situation has been approached from different perspectives being the integral use of raw materials as one of the best alternatives. It was estimated that 3.7 × 109 tonnes of agricultural residues are produced annually worldwide. Then, the integral use of feedstocks has been studied through the biorefinery concept. A biorefinery can be a promissory option for processing feedstocks in rural zones aiming to boost the techno-economic and social growth. However, many plants produced at small scale in rural zones without high industrial use contribute with residues usually not studied as raw materials for other processes. Cocoyam (Xanthosoma sagittifolium) is a plant grown extensively in tropical regions. Nigeria, China, and Ghana are the main producers with 1.3, 1.18, and 0.9 million tonnes/year, respectively. In Colombia, there are no technified crops, but it is used where it is grown mainly as animal feed. This plant consists of leaves, stem, and a tuber but the use is generally limited to the leaves, discarding the other parts. These discarded parts have great potential (lignocellulose and starch). This work proposes different processing schemes using the parts of the plant to obtain value-added products, and their techno-economic and environmental assessment. The simulation was performed with Aspen Plus and the economic package was used for the economic assessment. For the environmental assessment, Waste Algorithm Reduction of the U.S. EPA was implemented. The obtained results showed that the integral use of plants under a biorefinery scheme allows obtaining better techno-economic and environmental performance and that small-scale biorefineries can be a promissory option for boosting rural zones.
Collapse
Affiliation(s)
- Sebastián Serna-Loaiza
- Instituto de Biotecnología y Agroindustria, Universidad Nacional de Colombia Sede Manizales, Manizales, Caldas, Colombia
| | - Alfredo Martínez
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Yuri Pisarenko
- Moscow State Academy of Fine Chemical Technology, Moscow, Russia
| | - Carlos Ariel Cardona-Alzate
- Instituto de Biotecnología y Agroindustria, Universidad Nacional de Colombia Sede Manizales, Manizales, Caldas, Colombia.
| |
Collapse
|
18
|
Martínez-Ruano JA, Caballero-Galván AS, Restrepo-Serna DL, Cardona CA. Techno-economic and environmental assessment of biogas production from banana peel (Musa paradisiaca) in a biorefinery concept. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:35971-35980. [PMID: 29626328 DOI: 10.1007/s11356-018-1848-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/20/2018] [Indexed: 06/08/2023]
Abstract
Two scenarios for the biogas production using Banana Peel as raw material were evaluated. The first scenario involves the stand-alone production of biogas and the second scenario includes the biogas production together with other products under biorefinery concept. In both scenarios, the influence of the production scale on the process economy was assessed and feasibility limits were defined. For this purpose, the mass and energy balances were established using the software Aspen Plus along with kinetic models reported in the literature. The economic and environmental analysis of the process was performed considering Colombian economic conditions. As a result, it was found that different process scales showed great potential for biogas production. Thus, plants with greater capacity have a greater economic benefit than those with lower capacity. However, this benefit leads to high-energy consumption and greater environmental impact.
Collapse
Affiliation(s)
- Jimmy Anderson Martínez-Ruano
- Instituto de Biotecnología y Agroindustria, Laboratorio de Equilibrios Químicos y Cinética Enzimática, Departamento de Ingeniería Química, Universidad Nacional de Colombia sede Manizales, Manizales, Colombia
| | - Ashley Sthefanía Caballero-Galván
- Instituto de Biotecnología y Agroindustria, Laboratorio de Equilibrios Químicos y Cinética Enzimática, Departamento de Ingeniería Química, Universidad Nacional de Colombia sede Manizales, Manizales, Colombia
| | - Daissy Lorena Restrepo-Serna
- Instituto de Biotecnología y Agroindustria, Laboratorio de Equilibrios Químicos y Cinética Enzimática, Departamento de Ingeniería Química, Universidad Nacional de Colombia sede Manizales, Manizales, Colombia
| | - Carlos Ariel Cardona
- Instituto de Biotecnología y Agroindustria, Laboratorio de Equilibrios Químicos y Cinética Enzimática, Departamento de Ingeniería Química, Universidad Nacional de Colombia sede Manizales, Manizales, Colombia.
| |
Collapse
|
19
|
Cristóbal J, Caldeira C, Corrado S, Sala S. Techno-economic and profitability analysis of food waste biorefineries at European level. BIORESOURCE TECHNOLOGY 2018; 259:244-252. [PMID: 29567596 DOI: 10.1016/j.biortech.2018.03.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/01/2018] [Accepted: 03/02/2018] [Indexed: 05/22/2023]
Abstract
Food waste represents a potential source to produce value-added materials replacing the use of virgin ones. However, the use of food waste as feedstock in biorefineries is still at an early stage of development and studies assessing its economic viability at large scale are lacking in the literature. This paper presents a techno-economic and profitability analysis of four food waste biorefineries that use wastes from tomato, potato, orange, and olive processing as feedstock. The study includes the assessment of potentially available quantities of those waste flows in Europe. Due to the low technology readiness level of this kind of biorefineries, a screening methodology to estimate the investment and manufacturing costs as well as two profitability ratios (the return on investment and the payback time) was adopted. Results show that not all the waste feedstocks have the same potential. The most profitable options are those related to implementing fewer plants, namely concentrating the production and capitalising on economies of scale while being at risk of increasing externalities, e.g. due to logistics of the feedstocks.
Collapse
Affiliation(s)
- Jorge Cristóbal
- European Commission, Joint Research Centre (JRC), Directorate D - Sustainable Resources, Bio-economy Unit, Via E. Fermi, 21027 Ispra, VA, Italy
| | - Carla Caldeira
- European Commission, Joint Research Centre (JRC), Directorate D - Sustainable Resources, Bio-economy Unit, Via E. Fermi, 21027 Ispra, VA, Italy
| | - Sara Corrado
- European Commission, Joint Research Centre (JRC), Directorate D - Sustainable Resources, Bio-economy Unit, Via E. Fermi, 21027 Ispra, VA, Italy
| | - Serenella Sala
- European Commission, Joint Research Centre (JRC), Directorate D - Sustainable Resources, Bio-economy Unit, Via E. Fermi, 21027 Ispra, VA, Italy.
| |
Collapse
|
20
|
Charoensiddhi S, Lorbeer AJ, Franco CM, Su P, Conlon MA, Zhang W. Process and economic feasibility for the production of functional food from the brown alga Ecklonia radiata. ALGAL RES 2018. [DOI: 10.1016/j.algal.2017.11.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
21
|
Romero-García JM, Gutiérrez CDB, Toro JCS, Alzate CAC, Castro E. Environmental Assessment of Biorefineries. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/978-981-10-7434-9_20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|