1
|
Wang W, Xu M, He C, Joya MB, Hadja Kaka AZ, Kollah ES, Mwansa BK, Tremblay PL, Zhang T. A polyethyleneimine-coated thermally-oxidized graphitic-carbon nitride adsorbent for the removal of organic pollutants. CHEMOSPHERE 2025; 373:144168. [PMID: 39889647 DOI: 10.1016/j.chemosphere.2025.144168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/24/2025] [Accepted: 01/26/2025] [Indexed: 02/03/2025]
Abstract
Negatively charged organic pollutants in water are responsible for a large range of public health and ecological issues. Low-cost and low-toxicity graphitic carbon nitride (CN), with its abundant functional groups and surface defects, is a promising material for the removal of organic molecules by adsorption. However, basic synthesis methods for CN often result in a material with morphology and electric charge that are suboptimal for interacting with negatively charged pollutants. Here, an adsorbent was prepared by thermally oxidizing a tubular CN precursor and then coating the resulting flake-shaped material (FCNO) with the polycationic polymer polyethyleneimine (PEI). The resulting adsorbent, FCNO550-PEI, removed humic acid (HA), a widespread problematic organic molecule, as well as the common toxic anionic dye Congo red (CR). FCNO550-PEI was superior to other CN-based adsorbents previously reported in the literature with maximum adsorption capacities according to the Sips isotherm model for HA and CR of 437.1 mg/g and 1430.3 mg/g, respectively. In addition, FCNO550-PEI could adsorb HA and CR from different types of water and was reusable. Besides electrostatic interactions and hydrogen bonds between PEI and the pollutants, HA and CR adsorption was enabled by π-π interactions with the FCNO support itself. The high efficiency of FCNO550-PEI for the removal of HA and CR highlights its potential for water treatment applications.
Collapse
Affiliation(s)
- Wenhao Wang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, PR China; Shaoxing Institute for Advanced Research, Wuhan University of Technology, Shaoxing, 312300, PR China
| | - Mengying Xu
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan, 430070, PR China; School of Architecture and Materials Engineering, Hubei University of Education, Wuhan, 430205, PR China; Shaoxing Institute for Advanced Research, Wuhan University of Technology, Shaoxing, 312300, PR China
| | - Chun He
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Muhammad Babur Joya
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan, 430070, PR China
| | | | - Emmanuel Seneway Kollah
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Blessings Kapungwe Mwansa
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Pier-Luc Tremblay
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan, 430070, PR China; Shaoxing Institute for Advanced Research, Wuhan University of Technology, Shaoxing, 312300, PR China.
| | - Tian Zhang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, PR China; School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan, 430070, PR China; Shaoxing Institute for Advanced Research, Wuhan University of Technology, Shaoxing, 312300, PR China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China; Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya, 572024, Hainan, PR China.
| |
Collapse
|
2
|
Shi TT, Yang B, Hu WG, Gao GJ, Jiang XY, Yu JG. Garlic Peel-Based Biochar Prepared under Weak Carbonation Conditions for Efficient Removal of Methylene Blue from Wastewater. Molecules 2024; 29:4772. [PMID: 39407700 PMCID: PMC11478232 DOI: 10.3390/molecules29194772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Due to it containing cellulose, hemicellulose, and lignin with abundant specific functional groups which could interact with organic dyes, garlic peel (GP) might be used as an efficient biosorbent. The aim of this study is to evaluate the adsorption performances of GP-based bio-adsorbents and obtain optimum preparation conditions. METHODS GP-based bio-adsorbents were prepared by thermal pyrolysis under different temperatures (150-400 °C). The morphologies, chemical states, and surface functional groups of the adsorbents were analyzed by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). Batch experiments were conducted to investigate the adsorption of methylene blue (MB) under various conditions, including contact time, contact temperature, initial dye concentration, and initial pH value. The equilibrium adsorption data were fitted to different kinetic and isothermal models, and the adsorption thermodynamics were also calculated. Significant Findings: The physicochemical properties of the GP-based bio-adsorbents were primarily dominated by the pyrolysis temperature, because their morphologies and surface functional groups of GP-based bio-adsorbents significantly varied with the changes in pyrolysis temperature. The adsorption capacity of GP materials for MB decreased as the pyrolysis temperature increased. At an initial concentration of 50.00 mg L-1, GP150 possessed a higher adsorption capacity of 167.74 mg g-1 toward MB. The possible adsorbate-adsorbent interactions, including electrostatic attraction, hydrogen bonding, and π-π stacking, were recognized. After 10 consecutive adsorption-desorption cycles, GP150 maintained a high removal rate (88%) for MB, demonstrating its excellent adsorption performance, good reusability, and potential application in the treatment of MB-contaminated water.
Collapse
Affiliation(s)
| | | | | | | | | | - Jin-Gang Yu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China (B.Y.); (W.-G.H.)
| |
Collapse
|
3
|
Noorin S, Paul T, Ghosh A, Yee JJ, Park SH. Synthesis of novel composite material with spent coffee ground biochar and steel slag zeolite for enhanced dye and phosphate removal. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11137. [PMID: 39323177 DOI: 10.1002/wer.11137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/31/2024] [Accepted: 09/07/2024] [Indexed: 09/27/2024]
Abstract
Rising concerns over water scarcity, driven by industrialization and urbanization, necessitate the need for innovative solutions for wastewater treatment. This study focuses on developing an eco-friendly and cost-effective biochar-zeolite composite (BZC) adsorbent using waste materials-spent coffee ground biochar (CGB) and steel slag zeolite (SSZ). Initially, the biochar was prepared from spent coffee ground, and zeolite was prepared from steel slag; their co-pyrolysis resulted in novel adsorbent material. Later, the physicochemical characteristics of the BZC were examined, which showed irregular structure and well-defined pores. Dye removal studies were conducted, which indicate that BZC adsorption reach equilibrium in 2 h, exhibiting 95% removal efficiency compared to biochar (43.33%) and zeolite (74.58%). Moreover, the removal efficiencies of the novel BZC composite toward dyes methyl orange (MO) and crystal violet (CV) were found to be 97% and 99.53%, respectively. The kinetic studies performed with the dyes and phosphate with an adsorbent dosage of 0.5 g L-1 suggest a pseudo-second-order model. Additionally, the reusability study of BZC proves to be effective through multiple adsorption and regeneration cycles. Initially, the phosphate removal remains high but eventually decreases from 92% to 70% in the third regeneration cycle, highlighting the robustness of the BZC. In conclusion, this study introduces a promising, cost-effective novel BZC adsorbent derived from waste materials as a sustainable solution for wastewater treatment. Emphasizing efficiency, reusability, and potential contributions to environmentally conscious water treatment, the findings highlight the composite's significance in addressing key challenges for the removal of toxic pollutants from the aqueous solutions. PRACTITIONER POINTS: A novel biochar-zeolite composite (BZC) material has been synthesized. Excellent removal of dyes by BZC (~95%) was achieved as compared to their counterparts The kinetic studies performed suggest a pseudo-second-order model. BZC proves to be highly effective for multiple adsorption studies. Excellent reusability showed potential as a robust adsorbent.
Collapse
Affiliation(s)
- Shazia Noorin
- Department of ICT Integrated Safe Ocean Smart Cities Engineering, Dong-A University, Busan, Republic of Korea
| | - Tanushree Paul
- Department of ICT Integrated Safe Ocean Smart Cities Engineering, Dong-A University, Busan, Republic of Korea
- Department of Civil Engineering, Dong-A University, Busan, Republic of Korea
| | - Arnab Ghosh
- University Core Research Center for Disaster-Free Safe Ocean City Construction, Dong-A University, Busan, Republic of Korea
| | - Jurng-Jae Yee
- Department of ICT Integrated Safe Ocean Smart Cities Engineering, Dong-A University, Busan, Republic of Korea
| | - Sung Hyuk Park
- Department of ICT Integrated Safe Ocean Smart Cities Engineering, Dong-A University, Busan, Republic of Korea
- Department of Civil Engineering, Dong-A University, Busan, Republic of Korea
| |
Collapse
|
4
|
Jacob MM, Ponnuchamy M, Roshin A, Kapoor A. Adsorptive removal of oxytetracycline hydrochloride using bagasse-based biochar powder and beads. CHEMOSPHERE 2024; 363:143016. [PMID: 39103098 DOI: 10.1016/j.chemosphere.2024.143016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 06/15/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
Oxytetracycline Hydrochloride (OTC), a common antibiotic used to treat specific illnesses in humans and animals, is characterized by poor absorption into cells, low volatility, and high hydrophilicity. It is a potent contaminant that poses a serious threat to the ecosystem, particularly the aquatic sources. Adsorption onto natural adsorbents is one of the most successful, economical, and ecologically friendly ways to remove antibiotics from waste water. The present work focuses on the adsorption of OTC utilizing alginate biochar beads (AlBCB) and biochar powder (BC) derived from bagasse. The influence of several factors were studies and optimized through batch studies employing BC and AlBCB. After 50 min BC displayed a removal of 97%, at an initial concentration of 10 ppm. The experimental data was discovered to follow PFO kinetics and fit with the Freundlich isotherm adsorption model. AlBCB, after a contact time of 40 min, indicated a maximum percentage removal of 86% for initial concentration of 10 ppm OTC. Al-biochar beads showed the maximum percentage removal at pH 10. 0.5 g of adsorbent was used to carry out all batch experiments at room temperature. The adsorption fitted Freundlich adsorption isotherm and intraparticle diffusion kinetics.
Collapse
Affiliation(s)
- Meenu Mariam Jacob
- Department of Chemical Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India, 603 202
| | - Muthamilselvi Ponnuchamy
- Department of Chemical Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India, 603 202.
| | - Akhina Roshin
- Functional Materials Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India, 603 202
| | - Ashish Kapoor
- Department of Chemical Engineering, Harcourt Butler Technical University, Nawabganj, Kanpur, UP, India, 208 002
| |
Collapse
|
5
|
Gong ZX, Steven M, Chen YT, Huo LZ, Xu H, Guo CF, Yang XJ, Wang YX, Luo XP. High adsorption to methylene blue based on Fe 3O 4-N-banana-peel biomass charcoal. RSC Adv 2024; 14:25619-25628. [PMID: 39148761 PMCID: PMC11325343 DOI: 10.1039/d4ra04973j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/08/2024] [Indexed: 08/17/2024] Open
Abstract
This research focused on utilizing banana peel as the primary material for producing mesoporous biomass charcoal through one-step potassium hydroxide activation. Subsequently, the biomass charcoal underwent high-temperature calcination with varying impregnation ratios of KOH : BC for different durations in tubular furnaces set at different temperatures. The resultant biomass charcoal was then subjected to hydrothermal treatment with FeCl3·6H2O to produce biochar/iron oxide composites. The adsorption capabilities of these composites towards methylene blue (MB) were examined under various conditions, including pH (ranging from 3 to 12), temperature variations, and initial MB concentrations (ranging from 50 to 400 mg L-1). The adsorption behavior aligned with the Langmuir model and demonstrated quasi-secondary kinetics. After five adsorption cycles, the capacity decreased from 618.64 mg g-1 to 497.18 mg g-1, indicating considerable stability. Notably, Fe3O4-N-BC exhibited exceptional MB adsorption performance.
Collapse
Affiliation(s)
- Zhu-Xiang Gong
- College of Chemistry and Materials Engineering, Zhejiang A&F University Hangzhou 311300 China
| | - Mfitumucunguzi Steven
- College of Chemistry and Materials Engineering, Zhejiang A&F University Hangzhou 311300 China
| | - Yan-Ting Chen
- College of Chemistry and Materials Engineering, Zhejiang A&F University Hangzhou 311300 China
| | - Li-Zhu Huo
- College of Chemistry and Materials Engineering, Zhejiang A&F University Hangzhou 311300 China
| | - Hao Xu
- College of Chemistry and Materials Engineering, Zhejiang A&F University Hangzhou 311300 China
| | - Chao-Fei Guo
- College of Chemistry and Materials Engineering, Zhejiang A&F University Hangzhou 311300 China
| | - Xue-Juan Yang
- College of Chemistry and Materials Engineering, Zhejiang A&F University Hangzhou 311300 China
| | - Yu-Xuan Wang
- College of Chemistry and Materials Engineering, Zhejiang A&F University Hangzhou 311300 China
| | - Xi-Ping Luo
- College of Chemistry and Materials Engineering, Zhejiang A&F University Hangzhou 311300 China
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass Hangzhou 311300 China
| |
Collapse
|
6
|
Kumar V, Sharma N, Panneerselvam B, Dasarahally Huligowda LK, Umesh M, Gupta M, Muzammil K, Zahrani Y, Malmutheibi M. Lignocellulosic biomass for biochar production: A green initiative on biowaste conversion for pharmaceutical and other emerging pollutant removal. CHEMOSPHERE 2024; 360:142312. [PMID: 38761824 DOI: 10.1016/j.chemosphere.2024.142312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 03/25/2024] [Accepted: 05/09/2024] [Indexed: 05/20/2024]
Abstract
Lignocellulosic waste generation and their improper disposal has accelerated the problems associated with increased greenhouse gas emissions and associated environmental pollution. Constructive ways to manage and mitigate the pollution associated with lignocellulosic waste has propelled the research on biochar production using lignocellulose-based substrates. The sustainability of various biochar production technologies in employing lignocellulosic biomass as feedstock for biochar production not only aids in the lignocellulosic biomass valorization but also helps in carbon neutralization and carbon utilization. Functionalization of biochar through various physicochemical methods helps in improving their functional properties majorly by reducing the size of the biochar particles to nanoscale and modifying their surface properties. The usage of engineered biochar as nano adsorbents for environmental applications like dye absorption, removal of organic pollutants and endocrine disrupting compounds from wastewater has been the thrust areas of research in the past few decades. This review presents a comprehensive outlook on the up-to-date research findings related to the production and engineering of biochar from lignocellulosic biomass and their applications in environmental remediation especially with respect to wastewater treatment. Further a detailed discussion on various biochar activation methods and the future scope of biochar research is presented in this review work.
Collapse
Affiliation(s)
- Vinay Kumar
- Biomaterials and Tissue Engineering (BITE) Laboratory, Department of Community Medicine, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Thandalam, 602105, India.
| | - Neha Sharma
- Department of Biochemistry, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Thandalam, 602105, India
| | - Balamurugan Panneerselvam
- Center of Excellence in Interdisciplinary Research for Sustainable Development, Chulalongkorn University, Bangkok, 10330, Thailand; Department of Community Medicine, Saveetha Medical College, SIMATS, Chennai, 602105, India
| | | | - Mridul Umesh
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru, 560029, Karnataka, India
| | - Manish Gupta
- Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh, 174103, India
| | - Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha, 62561, Saudi Arabia
| | - Yousef Zahrani
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha, 62561, Saudi Arabia
| | - Musa Malmutheibi
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha, 62561, Saudi Arabia
| |
Collapse
|
7
|
Sivaranjanee R, Senthil Kumar P, Chitra B, Rangasamy G. A critical review on biochar for the removal of toxic pollutants from water environment. CHEMOSPHERE 2024; 360:142382. [PMID: 38768788 DOI: 10.1016/j.chemosphere.2024.142382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 04/30/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
As an effort to tackle some of the most pressing ecological issues we are currently experiencing, there has been an increasing interest in employing biomass-derived char products in various disciplines. Thermal combustion of biomass results in biochar production, which is a remarkably rich source of carbon. Not only does the biochar obtained by the thermochemical breakdown of biomass lower the quantity of carbon released into the environment, but it also serves as an eco-friendly substitute for activated carbon (AC) and further carbon-containing products. An overview of using biochar to remove toxic pollutants is the main subject of this article. Several techniques for producing biochar have been explored. The most popular processes for producing biochar are hydrothermal carbonization, gasification and pyrolysis. Carbonaceous materials, alkali, acid and steam are all capable of altering biochar. Depending on the environmental domains of applications, several modification techniques are chosen. The current findings on characterization and potential applications of biochar are compiled in this survey. Comprehensive discussion is given on the fundamentals regarding the formation of biochar. Process variables influencing the yield of biochar have been summarized. Several biochars' adsorption capabilities for expulsion pollutants under various operating circumstances are compiled. In the domain of developing biochar, a few suggestions for future study have been given.
Collapse
Affiliation(s)
- R Sivaranjanee
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India
| | - P Senthil Kumar
- Centre for Pollution Control and Environmental Engineering, School of Engineering and Technology, Pondicherry University, Kalapet, Puducherry, 605014, India.
| | - B Chitra
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India
| | - Gayathri Rangasamy
- Department of Civil Engineering, Faculty of Engineering, Karpagam Academy of Higher Education, Pollachi Main Road, Eachanari Post, Coimbatore, 641021, Tamil Nadu, India; Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| |
Collapse
|
8
|
Hu M, Chen J, Liu Y. Structural properties and adsorption performance relationship towards three categories of lignin and their derived biochar. BIORESOURCE TECHNOLOGY 2024; 401:130712. [PMID: 38641300 DOI: 10.1016/j.biortech.2024.130712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
The growing interest in utilizing lignin for dye removal has gained momentum, but there is limited information on the intricate relationship between lignin structural characteristics and adsorption efficacy, especially for its biochar derivatives. This study focused on three types of lignin and their corresponding biochar derivatives. Among them, ZnCl2-activated acidic/alkali densified lignin preparation of lignin-derived active carbon exhibited superior adsorption performance, achieving 526.32 mg/g for methylene blue and 2156.77 mg/g for congo red. Its exceptional adsorption capacity was attributed to its unique structural properties, including low alkyl and O-alkyl group content and high aromatic carbon levels. Furthermore, the adsorption mechanisms adhered to pseudo-second-order kinetics and the Langmuir model, signifying a spontaneous process. Intriguingly, lignin-derived active carbon also demonstrated remarkable recovery capabilities. These findings provide valuable insights into the impact of structural attributes on lignin and its biochar's adsorption performance.
Collapse
Affiliation(s)
- Mingyang Hu
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Jiangwei Chen
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yun Liu
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
9
|
Mortada WI, Ghaith MM, Khedr NE, Ellethy MI, Mohsen AW, Shafik AL. Mesoporous magnetic biochar derived from common reed (Phragmites australis) for rapid and efficient removal of methylene blue from aqueous media. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:42330-42341. [PMID: 38866933 PMCID: PMC11219389 DOI: 10.1007/s11356-024-33860-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024]
Abstract
A novel mesoporous magnetic biochar (MBC) was prepared, using a randomly growing plant, i.e., common reed, as an exporter of carbon, and applied for removal of methylene blue (MB) from aqueous solutions. The prepared sorbent was characterized by nitrogen adsorption/desorption isotherm, saturation magnetization, pH of point of zero charges (pHPZC), Fourier-transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM). The obtained MBC has a specific surface area of 94.2 m2 g-1 and a pore radius of 4.1 nm, a pore volume of 0.252 cm3 g-1, a saturation magnetization of 0.786 emu g-1, and a pHPZC of 6.2. Batch adsorption experiments were used to study the impact of the physicochemical factors involved in the adsorption process. The findings revealed that MB removal by MBC was achieved optimally at pH 8.0, sorbent dosage of 1.0 g L-1, and contact time of 30 min. At these conditions, the maximum adsorption was 353.4 mg g-1. Furthermore, the adsorption isotherm indicated that the Langmuir pattern matched well with the experimental data, compared to the Freindlich model. The ∆G was - 6.7, - 7.1, and - 7.5 kJ mol-1, at 298, 308, and 318 K, respectively, indicating a spontaneous process. The values of ∆H and ∆S were 5.71 kJ mol-1 and 41.6 J mol-1 K-1, respectively, suggesting endothermic and the interaction between MB and MBC is van der Waals type. The absorbent was regenerated and reused for four cycles after elution with 0.1 mol L-1 of HCl. This study concluded that the magnetic biochar generated from common reed has tremendous promise in the practical use of removing MB from wastewater.
Collapse
Affiliation(s)
| | - Mahmoud Mohsen Ghaith
- Petrochemical Program, Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Nada Elsayed Khedr
- Petrochemical Program, Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Mostafa Ibrahim Ellethy
- Petrochemical Program, Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Alaa Waleed Mohsen
- Petrochemical Program, Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Amira Labib Shafik
- Petrochemical Program, Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
10
|
Mishra A, Pandey J, Ojha H, Sharma M, Kaur L, Pandey A, Sharma P, Murab S, Singhal R, Pathak M. A green and economic approach to synthesize magnetic Lagenaria siceraria biochar (γ-Fe 2O 3-LSB) for methylene blue removal from aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:34038-34055. [PMID: 38696013 DOI: 10.1007/s11356-024-33477-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/23/2024] [Indexed: 05/31/2024]
Abstract
In the printing and textile industries, methylene blue (a cationic azo dye) is commonly used. MB is a well-known carcinogen, and another major issue is its high content in industrial discharge. There are numerous removal methodologies that have been employed to remove it from industrial discharge; however, these current modalities have one or more limitations. In this research, a novel magnetized biochar (γ-Fe2O3-LSB) was synthesized using Lagenaria siceraria peels which were further magnetized via the co-precipitation method. The synthesized γ-Fe2O3-LSB was characterized using FTIR, X-ray diffraction, Raman, SEM-EDX, BET, and vibrating sample magnetometry (VSM) for the analysis of magnetic properties. γ-Fe2O3-LSB showed a reversible type IV isotherm, which is a primary characteristic of mesoporous materials. γ-Fe2O3-LSB had a specific surface area (SBET = 135.30 m2/g) which is greater than that of LSB (SBET = 11.54 m2/g). γ-Fe2O3-LSB exhibits a saturation magnetization value (Ms) of 3.72 emu/g which shows its superparamagnetic nature. The batch adsorption process was performed to analyze the adsorptive removal of MB dye using γ-Fe2O3-LSB. The adsorption efficiency of γ-Fe2O3-LSB for MB was analyzed by varying parameters like the initial concentration of adsorbate (MB), γ-Fe2O3-LSB dose, pH effect, contact time, and temperature. Adsorption isotherm, kinetic, and thermodynamics were also studied after optimizing the protocol. The non-linear Langmuir model fitted the best to explain the adsorption isotherm mechanism and resulting adsorption capacity ( q e =54.55 mg/g). The thermodynamics study showed the spontaneous and endothermic nature, and pseudo-second-order rate kinetics was followed during the adsorption process. Regeneration study showed that γ-Fe2O3-LSB can be used up to four cycles. In laboratory setup, the cost of γ-Fe2O3-LSB synthesis comes out to be 162.75 INR/kg which is low as compared to commercially available adsorbents. The results obtained suggest that magnetic Lagenaria siceraria biochar, which is economical and efficient, can be used as a potential biochar material for industrial applications in the treatment of wastewater.
Collapse
Affiliation(s)
- Ayushi Mishra
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, Uttar Pradesh, India
| | - Jyoti Pandey
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, Uttar Pradesh, India
| | - Himanshu Ojha
- Division of Radiological, Nuclear and Imaging Sciences, Institute of Nuclear Medicine and Allied Sciences, Brig S K Mazumdar Road, Timarpur, Delhi, 110054, India
| | - Malti Sharma
- Department of Chemistry, Miranda House, University of Delhi, Delhi, 110007, India
| | - Lajpreet Kaur
- Division of Radiological, Nuclear and Imaging Sciences, Institute of Nuclear Medicine and Allied Sciences, Brig S K Mazumdar Road, Timarpur, Delhi, 110054, India
| | - Akhilesh Pandey
- Solid State Physics Laboratory, DRDO, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Pankaj Sharma
- BioX Center, School of Biosciences & Bioengineering, IIT Mandi, Kamand, Himachal Pradesh, 175075, India
| | - Sumit Murab
- BioX Center, School of Biosciences & Bioengineering, IIT Mandi, Kamand, Himachal Pradesh, 175075, India
| | - Rahul Singhal
- Department of Chemistry, Shivaji College, University of Delhi, Delhi, 110027, India
| | - Mallika Pathak
- Department of Chemistry, Miranda House, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
11
|
Zhang L, Li Q, Liu X, Shi W, HanYu. Bismuth oxymetallate-modified biochar derived from Euryale ferox husk for efficient removal of Congo red from wastewater: adsorption behavior and mechanisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:29497-29512. [PMID: 38578591 DOI: 10.1007/s11356-024-33106-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/22/2024] [Indexed: 04/06/2024]
Abstract
Using Euryale ferox husk as raw material, pristine biochar (EBC), Bi2MoO6-modified biochar (BM-EBC), and BiFeO3-modified biochar (BF-EBC) were prepared and employed for decontaminating Congo red (CR) from wastewater. Compared with EBC (217.59 mg/g) and BF-EBC (359.49 mg/g), a superior adsorption capacity of 460.77 mg/g was achieved by BM-EBC. Based on the evaluation results of the Freundlich and pseudo-second-order models, multilayer chemisorption was suggested as the adsorption mechanism. The adsorption process of BM-EBC was spontaneous and endothermic, and the rate-limiting step pertained to liquid film diffusion and intraparticle diffusion. The underlying removal mechanism was explored via SEM, BET, FTIR, XPS, Raman spectra, and Zeta potential analyses. The introduction of bismuth oxymetallates with their high number of M-O (M: Bi, Mo, Fe) structural elements provided the adsorbent with enlarged surface areas and reinforced oxygen functional groups, thereby promoting pore filling, π-π interactions, hydrogen bonding, and complexation, leading to enhanced adsorption capacity. These results demonstrate that Euryale ferox husk biochar modified by bismuth oxymetallates has high prospects for valorizing biomass waste and removing CR from wastewater.
Collapse
Affiliation(s)
- Luxin Zhang
- College of Environmental and Municipal Engineering, Shaanxi Key Laboratory of Environmental Engineering, Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China.
| | - Qunshuai Li
- College of Environmental and Municipal Engineering, Shaanxi Key Laboratory of Environmental Engineering, Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Xiaobing Liu
- College of Environmental and Municipal Engineering, Shaanxi Key Laboratory of Environmental Engineering, Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Weiwei Shi
- Xi'an University of Technology, Xi'an, 710048, People's Republic of China
| | - HanYu
- Division of Water Resources Engineering, Lund University, Lund, Sweden
| |
Collapse
|
12
|
Zhou Y, Wei Z, Yao S, Li Z, Zhang Z, Ji L, Jing H. Activated biochar derived from Enteromorpha with high specific surface area for efficient removal of phenanthrene: Experiments, mechanism and DFT calculations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122709. [PMID: 37832778 DOI: 10.1016/j.envpol.2023.122709] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023]
Abstract
Conversion of solid marine waste into innovative nanomaterials has been successfully developed for removing organic pollutants from aqueous solutions. In this study, activated biochar (HTST) was successfully synthesized using a straightforward three-step method involving pretreatment, carbonization, and chemical regulation. Multiple characterization techniques revealed the presence of abundant three-dimensional hierarchical porous structures in the samples, along with amorphous and active functional group structures such as -COOH, -OH, -NHR, -CC, and C-O. Notably, the prepared sample exhibited a remarkable specific surface area (SBET) of 3284.52 m2/g, which was close to 1700 times larger than that of the raw biomass. Additionally, the highest removal efficiency could reach approximately 100% under neutral condition, while the adsorption capacity even achieved up to 782.37 mg/g within 2 h at room temperature. Calculations simulation not only highlighted the significance of the π-π conjugation between sample and pollutant molecules, but deeply explored the bonding interaction of active functional groups on the surface, whereas adsorption energies of different configurations had the following order: ΔE(-NHR) = 0.75194674 eV > ΔE(-OH) = 0.72502369 > ΔE(-COOH) = 0.71488135 > ΔE(-CC-) = 0.53852269 eV. Moreover, the adsorption activities for the optimized configuration were further analyzed based on the LUMO-HOMO energy gap and electric distribution. This work presents a viable synthesis method for low-cost nanomaterials and offers new insights into the exceptional adsorption properties of advanced adsorbents for wastewater treatment.
Collapse
Affiliation(s)
- Yarui Zhou
- Ocean College, Zhejiang University, Zhoushan, 316021, China.
| | - Zehui Wei
- Ocean College, Zhejiang University, Zhoushan, 316021, China.
| | - Sirui Yao
- College of Agriculture, Life & Environmental Science, University of Arizona, USA.
| | - Zilong Li
- Ocean College, Zhejiang University, Zhoushan, 316021, China.
| | - Zhenya Zhang
- Life and Environmental Sciences College, University of Tsukuba, Japan.
| | - Lili Ji
- National Marine Facilities Aquaculture Engineering Technology Research Center, Zhejiang Ocean University, Zhoushan, 316022, China.
| | - Hua Jing
- Ocean College, Zhejiang University, Zhoushan, 316021, China.
| |
Collapse
|
13
|
Cho SH, Jung S, Park J, Lee S, Kim Y, Lee J, Fai Tsang Y, Kwon EE. Strategic use of crop residue biochars for removal of hazardous compounds in wastewater. BIORESOURCE TECHNOLOGY 2023; 387:129658. [PMID: 37591466 DOI: 10.1016/j.biortech.2023.129658] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/19/2023]
Abstract
Crop residues are affordable lignocellulosic waste in the world, and a large portion of the waste has been burned, releasing toxic pollutants into the environment. Since the crop residue is a carbon and ingredient rich material, it can be strategically used as a sorptive material for (in)organic pollutants in the wastewater after thermo-chemical valorization (i.e., biochar production). In this review, applications of crop residue biochars to adsorption of non-degradable synthetic dyes, antibiotics, herbicides, and inorganic heavy metals in wastewater were discussed. Properties (porosity, functional groups, heteroatom, and metal(oxide)s, etc.) and adsorption capacity relationships were comprehensively reviewed. The current challenges of crop residue biochars and guidelines for development of efficient adsorbents were also provided. In the last part, the future research directions for practical applications of the crop residue biochars in wastewater treatment plants have been suggested.
Collapse
Affiliation(s)
- Seong-Heon Cho
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Sungyup Jung
- Department of Environmental Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - JongHyun Park
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Sangyoon Lee
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Youkwan Kim
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Jechan Lee
- Department of Global Smart City, Sungkyunkwan University, Suwon 16419, Republic of Korea; School of Civil, Architectural Engineering, and Landscape Architecture, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yiu Fai Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories 999077, Hong Kong
| | - Eilhann E Kwon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
14
|
Zhang Y, Tang Y, Yan R, Li J, Li C, Liang S. Removal performance and mechanisms of aqueous Cr (VI) by biochar derived from waste hazelnut shell. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:97310-97318. [PMID: 37587398 DOI: 10.1007/s11356-023-28603-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/30/2023] [Indexed: 08/18/2023]
Abstract
Cr (VI) is still of great concern due to its high toxicity, solubility, and mobility. The transformation of waste biomass to biochar is favorable for sustainable development. Hazelnut shell, an agriculture waste, was utilized as precursor to prepare biochar at 700 °C and firstly conducted for Cr (VI) removal. Nearly all 50 mg L-1 of Cr (VI) was removed from aqueous media in 180 min under the optimal conditions. The best compliance with pseudo-second-order kinetic model (R2 = 0.999) and Langmuir isotherm model (R2 = 0.999) indicated Cr (VI) removal was a monolayer chemisorption process. The hazelnut shell biochar exhibited superior performance on Cr (VI) removal at low pH (2.0) and Cr (VI) concentrations (≤ 50 mg L-1). Various techniques illustrated that the predominant mechanism of Cr (VI) removal by hazelnut shell biochar involved electrostatic attraction, reduction, and complexation. This study provides a promising low-cost alternative for Cr (VI) elimination from acidic wastewater and groundwater after extraction following by pH adjustment to 2.0.
Collapse
Affiliation(s)
- Yuting Zhang
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, China
| | - Yuwei Tang
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, China
| | - Ruiping Yan
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, China
| | - Jinchunzi Li
- School of Food and Pharmaceutical Engineering (Liubao Tea Modern Industry College), Wuzhou University, Wuzhou, 543002, China
| | - Chenyang Li
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, China
| | - Shuang Liang
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, China.
| |
Collapse
|
15
|
Das E, Rabha S, Talukdar K, Goswami M, Devi A. Propensity of a low-cost adsorbent derived from agricultural wastes to interact with cationic dyes in aqueous solutions. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1044. [PMID: 37589779 DOI: 10.1007/s10661-023-11656-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/31/2023] [Indexed: 08/18/2023]
Abstract
Ash collected from thrown-away by-products while preparing a popular traditional food additive, kolakhar of the Assamese community of North East, India, was used as an alternate cost-effective, porous bioadsorbent option from the conventional activated carbon for the purification of carcinogenic dyes laden water. The base material for kolakhar preparation was taken from the discarded banana stem waste to stimulate agricultural waste management. Methylene blue (MB) and basic fuchsin (BF) dyes were used as model cationic dyes. Characterization techniques like CHN, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission-scanning electron microscope (FE-SEM), energy dispersive X-ray (EDX), and Brunauer-Emmett-Teller (BET) analysis of the prepared banana stem ash (BSA) reveal the presence of high inorganic contents and functional groups in the irregular, porous bioadsorbent with surface area 55.534 m2 g-1. Various regulating parameters studied to optimize the adsorption capacity of BSA were bioadsorbent dose (0.1-3 g/L), temperature (298-318 K), contact time (0-150 min), pH (2-9), and initial dye concentrations (10-40 mg/L). Non-linear kinetic models suggested Elovich for both MB and BF adsorption, while the non-linear isotherm model suggested Langmuir and Temkin for MB and BF adsorption, respectively, as best-fitted curves. The monolayer adsorption capacity (qm) for MB and BF was 15.22 mg/g and 24.08 mg/g at 318 K, respectively, with more than 95% removal efficiency for both dyes. The thermodynamic parameters studied indicated that the adsorption is spontaneous. The ∆H0 values of MB and BF adsorptions were 2.303 kJ/mol (endothermic) and - 29.238 kJ/mol (exothermic), respectively.
Collapse
Affiliation(s)
- Emee Das
- Environmental Chemistry Laboratory, Resource Management and Environmental Section, Life Science Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, 781035, India
| | - Suprakash Rabha
- Environmental Chemistry Laboratory, Resource Management and Environmental Section, Life Science Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, 781035, India
| | - Karishma Talukdar
- Department of Chemistry, Abhayapuri College, Abhayapuri, Bongaigaon, Assam, India
| | - Manisha Goswami
- Environmental Chemistry Laboratory, Resource Management and Environmental Section, Life Science Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, 781035, India
| | - Arundhuti Devi
- Environmental Chemistry Laboratory, Resource Management and Environmental Section, Life Science Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, 781035, India.
| |
Collapse
|
16
|
Zhao H, Wang Z, Liang Y, Wu T, Chen Y, Yan J, Zhu Y, Ding D. Adsorptive decontamination of antibiotics from livestock wastewater by using alkaline-modified biochar. ENVIRONMENTAL RESEARCH 2023; 226:115676. [PMID: 36907344 DOI: 10.1016/j.envres.2023.115676] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/14/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Efficient abatement of antibiotics from livestock wastewater is in urgent demand, but still challenging. In this study, alkaline-modified biochar with larger surface area (130.520 m2 g-1) and pore volume (0.128 cm3 g-1) was fabricated and explored for the adsorption of different types of antibiotics from livestock wastewater. Batch adsorption experiments demonstrated that the adsorption process was mainly determined by chemisorption and was heterogeneous, which could be moderately affected by the variations of solution pH (3-10). Furthermore, the computational analysis based on density functional theory (DFT) indicated that the -OH groups on biochar surface could serve as the dominant active sites for antibiotics adsorption due to the strongest adsorption energies between antibiotics and -OH groups. In addition, the antibiotics removal was also evaluated in multi-pollutants system, where biochar performed synergistic adsorption towards Zn2+/Cu2+ and antibiotics. Overall, these findings not only deepen our understandings on the adsorption mechanism between biochar and antibiotics, but also promote the application of biochar in the remediation of livestock wastewater.
Collapse
Affiliation(s)
- Haiyan Zhao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ziqian Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yonghong Liang
- Jiangsu Provincial Cultivated Land Quality and Agricultural Environmental Protection Station, China
| | - Tianxiang Wu
- Jiangsu Provincial Cultivated Land Quality and Agricultural Environmental Protection Station, China
| | - Yiliang Chen
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Jieru Yan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yiyong Zhu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dahu Ding
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
17
|
Hua Z, Pan Y, Hong Q. Adsorption of Congo red dye in water by orange peel biochar modified with CTAB. RSC Adv 2023; 13:12502-12508. [PMID: 37091607 PMCID: PMC10119749 DOI: 10.1039/d3ra01444d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/14/2023] [Indexed: 04/25/2023] Open
Abstract
In order to improve the adsorption effect of biochar on Congo red dye, this study used hexadecyl trimethyl ammonium bromide (CTAB) to organically modify orange peel biochar (OBC) to produce CTAB-modified orange peel biochar (NOBC), and the biochar before and after modification was analyzed by SEM-EDS, FTIR and BET. The adsorption performance of NOBC on Congo red dye was investigated and the adsorption mechanism was studied. The results showed that the adsorption amount was influenced by the initial concentration, adsorption time and solution pH. NOBC adsorbed 50 mg L-1 CR with an equilibrium time of 60 min and an equilibrium amount of 290.1 mg g-1, while the adsorption equilibrium time of OBC was 210 min and an equilibrium amount of 155.2 mg g-1, the adsorption of CR by NOBC was above 210 mg g-1 at pH 2 to 11, NOBC can be recycled three times. The experimental results showed that the adsorption data of CR on NOBC were consistent with the Langmuir isothermal adsorption model and the Pseudo-second-order model, and the mechanism of CR adsorption on NOBC mainly included electrostatic attraction and surface adsorption. In conclusion, NOBC is a promising material for dye wastewater adsorption.
Collapse
Affiliation(s)
- Zhongxin Hua
- Zhejiang Zhongda Engineering Costing Firm Co., Ltd Hangzhou 310012 China
| | - Yaping Pan
- Zhejiang Zhongda Engineering Costing Firm Co., Ltd Hangzhou 310012 China
| | - Qiankun Hong
- Zhejiang Tongji Vocational College of Science and Technology Hangzhou 311231 China
| |
Collapse
|
18
|
Liu Y, Zhou S, Fu Y, Sun X, Li T, Yang C. Characterization of dissolved organic matter in biochar derived from various macroalgae (Phaeophyta, Rhodophyta, and Chlorophyta): Effects of pyrolysis temperature and extraction solution pH. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161786. [PMID: 36706994 DOI: 10.1016/j.scitotenv.2023.161786] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/03/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Characterization of biochar-derived dissolved organic matter (DOM) can provide deep insight into potential applications of biochar. Herein, biochar from six macroalgae (Phaeophyta-Sargassum fusiforme, Sargassum thunbergii, and Sargassum vachellianum; Rhodophyta-Grateloupia turuturu and Chondria crassicaulis; and Chlorophyta-Ulva pertusa) were subjected to pyrolysis at different temperatures (200 °C-500 °C). The effects of pyrolysis temperature and extraction solution pH on the characteristics of the macroalgal biochar-derived DOM (MBDOM) were investigated via fluorescence excitation-emission matrix spectroscopy with parallel factor (PARAFAC) analysis. Five humic-like substances and one protein-like substance were identified. The distributions of the six PARAFAC components depended on the macroalgae species, pyrolysis temperature, and extraction solution pH. The proportion of the protein-like substance (0 %-46.77 %) was less than that of the humic-like substances (100 %-53.23 %) in a given MBDOM regardless of the extraction solution pH values. Fluorescence spectral indicators show that DOM from macroalgal biochar is more autochthonous and humified than that from the corresponding biomass. Hierarchical cluster analysis and redundancy analysis results further show that the macroalgae species, pyrolysis temperature, and extraction solution pH jointly affect DOM characteristics with varying contribution levels.
Collapse
Affiliation(s)
- Yangzhi Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Shanshan Zhou
- Zhejiang Marine Fisheries Research Institute, Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhoushan 316021, China; Marine and Fishery institute of Zhejiang Ocean University, Zhoushan 316021, China
| | - Yu Fu
- Zhejiang Marine Fisheries Research Institute, Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhoushan 316021, China; Marine and Fishery institute of Zhejiang Ocean University, Zhoushan 316021, China
| | - Xiumei Sun
- Zhejiang Marine Fisheries Research Institute, Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhoushan 316021, China; Marine and Fishery institute of Zhejiang Ocean University, Zhoushan 316021, China
| | - Tiejun Li
- Zhejiang Marine Fisheries Research Institute, Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhoushan 316021, China; Marine and Fishery institute of Zhejiang Ocean University, Zhoushan 316021, China
| | - Chenghu Yang
- Zhejiang Marine Fisheries Research Institute, Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhoushan 316021, China; Marine and Fishery institute of Zhejiang Ocean University, Zhoushan 316021, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
19
|
Nickel/Biochar from Palm Leaves Waste as Selective Catalyst for Producing Green Diesel by Hydrodeoxygenation of Vegetable Oil. BULLETIN OF CHEMICAL REACTION ENGINEERING & CATALYSIS 2023. [DOI: 10.9767/bcrec.16403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The objective of this research was to prepare low-cost catalyst for green diesel conversion from vegetable oil. The catalyst of nickel-dispersed biochar (Ni/BC) was prepared by direct pyrolysis of nickel precursor with palm leaves waste under N2 stream at 500 °C. The obtained catalyst was examined by using x-ray diffraction, scanning electron microscope-energy dispersive x-ray, transmission electron microscopy, gas sorption analysis, FTIR and surface acidity examination. The catalytic activity testing was performed on rice bran oil hydrodeoxygenation at varied temperature and time of reaction. Based on analyses, the results showed the successful preparation of Ni/BC with the characteristic of single nickel nanoparticles decorated on surface. The increasing specific surface area of material was conclusively remarked the surface area enhancement by nickel dispersion along with the increased surface acidity, suggesting that the material can be applied for acid catalysis applications. The Ni/BC exhibited excellent catalytic conversion of rice bran oil with the high selectivity toward diesel fraction with 85.3% yield and 92.6% selectivity. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Collapse
|
20
|
Agarwala R, Mulky L. Adsorption of Dyes from Wastewater: A Comprehensive Review. CHEMBIOENG REVIEWS 2023. [DOI: 10.1002/cben.202200011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
21
|
Srinivasan S, Kaarmukhilnilavan RS, Murugesan K. Removal of Malachite Green using carbonized material derived from disposable facemasks: optimization of removal process through Box-Behnken design. ENVIRONMENTAL TECHNOLOGY 2023:1-13. [PMID: 36779287 DOI: 10.1080/09593330.2023.2179943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Water resources are being heavily contaminated due to the huge load of toxic pollutants released by industrial activities. Among various physical and chemical methods, adsorption is considered as a promising method for rapidly removing contaminants from wastewater. In the present study, a novel carbon-based adsorbent was prepared through controlled pyrolysis of disposable facemasks. The properties of carbonized compound (CC) were characterized by FTIR, XRD, SEM and EDX. The pollutant removal efficiency of CC was initially investigated with synthetic dyes Malachite Green (MG) and Congo Red (CR). The peaks observed in FTIR spectra corresponding to C=O and C=C and C-N functional groups on adsorbed CC surface confirm the interaction between dye and CC. The XRD spectra of CC showed strong peaks at 2θ = 26.629, 27.488, 27.810 and 29.404 which correspond to the disordered graphitic plane. The SEM images of CC showed good porosity nature. A quadratic model was developed through response surface methodology by conducting a series of Box-Behnken design experiments. Adequacy of this model variables was ensured by ANOVA tests at P-value <0.05. The lower P-value (<0.0001) and higher F-value (44.54) of the quadratic model showed it was a significant model for dye removal. Finally, the optimal condition to obtain maximum MG removal (rate >99%) was identified by desirability function as CC 1000 and MG 212 mg/L and adsorption time 180 min. Adsorption kinetic study indicates that a pseudo second-order kinetic model showed the best fit with R2 = 0.999.
Collapse
|
22
|
Luo M, Wang L, Li H, Bu Y, Zhao Y, Cai J. Hierarchical porous biochar from kelp: Insight into self-template effect and highly efficient removal of methylene blue from water. BIORESOURCE TECHNOLOGY 2023; 372:128676. [PMID: 36706822 DOI: 10.1016/j.biortech.2023.128676] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Biochar is known to efficiently remove dyes especially for biochar with hierarchical pores and partial N-species. Here, a facile pyrolysis is used to yield N-doped biochar from kelp without additives, showing surface areas of 771 m2/g as temperature up to 1000 °C and hierarchical small-sized mesopores (2-4 nm) and wide meso-macropores (8-60 nm). A possible self-template mechanism from inorganics is proposed to form hierarchical pore architecture in biochar and used for methylene blue (MB) removal. Biochar pyrolyzed at 1000 °C is found to be efficient for MB removal with uptake of 379.8 mg/g under ambient conditions, one of the largest ever recorded uptakes for other biochar without activation, owing to synergistic effects of high surface areas, mesopores, and graphitized N-species. These results confirm that a facile pyrolysis for transformation of kelp into efficient dyes adsorbent is a cost-effective process for economic and environmental protection.
Collapse
Affiliation(s)
- Mingyu Luo
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Liuting Wang
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Haixia Li
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Yu Bu
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Yinxu Zhao
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Jinjun Cai
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China; School of Engineering Materials & Science, Queen Mary University of London, London E1 4NS, United Kingdom.
| |
Collapse
|
23
|
Tang Y, Lu XM, Yang G, Wang YY. Paddle-Wheel-Shaped Porous Cu(II)-Organic Framework with Two Different Channels as an Absorbent for Methylene Blue. Inorg Chem 2023; 62:1735-1743. [PMID: 36656916 DOI: 10.1021/acs.inorgchem.2c04350] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The destruction of the ecological environment caused by human activity and modern industrial development is so severe that the water environment has become seriously polluted. Therefore, the exploration of high-efficiency absorbents has become one of the hot topics to solve this issue. Herein, a porous metal-organic framework [Cu(L)]·2.5H2O·0.5DMF (1, DMF = N,N-dimethylformamide) was successfully constructed using a rigid N-heterocyclic 5-(4-(1H,3,4-triazol-1-yl)phenyl)isophthalic acid (H2L) ligand. In particular, its structure includes the classical paddle-wheel-shaped secondary building units and two 1D channels with diameters of 7.2 and 3.2 Å, respectively. Complex 1 shows great sorption performance for methylene blue (MB) with a maximum capacity of 589 mg·g-1. The various influence factors, including the time, dye concentration, adsorbent dosage, and the pH of the solution, are investigated respectively. Also, the adsorption process is more in line with the first-order kinetics and the Langmuir isothermal adsorption model. The strong electrostatic force and intermolecular forces are primarily responsible for the remarkable adsorption ability of MB.
Collapse
Affiliation(s)
- Yue Tang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an710127, P.R. China
| | - Xiang-Mei Lu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an710127, P.R. China
| | - Guoping Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an710127, P.R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an710127, P.R. China
| |
Collapse
|
24
|
A Comprehensive Review on Adsorption, Photocatalytic and Chemical Degradation of Dyes and Nitro-Compounds over Different Kinds of Porous and Composite Materials. Molecules 2023; 28:molecules28031081. [PMID: 36770748 PMCID: PMC9918932 DOI: 10.3390/molecules28031081] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Dye and nitro-compound pollution has become a significant issue worldwide. The adsorption and degradation of dyes and nitro-compounds have recently become important areas of study. Different methods, such as precipitation, flocculation, ultra-filtration, ion exchange, coagulation, and electro-catalytic degradation have been adopted for the adsorption and degradation of these organic pollutants. Apart from these methods, adsorption, photocatalytic degradation, and chemical degradation are considered the most economical and efficient to control water pollution from dyes and nitro-compounds. In this review, different kinds of dyes and nitro-compounds, and their adverse effects on aquatic organisms and human beings, were summarized in depth. This review article covers the comprehensive analysis of the adsorption of dyes over different materials (porous polymer, carbon-based materials, clay-based materials, layer double hydroxides, metal-organic frameworks, and biosorbents). The mechanism and kinetics of dye adsorption were the central parts of this study. The structures of all the materials mentioned above were discussed, along with their main functional groups responsible for dye adsorption. Removal and degradation methods, such as adsorption, photocatalytic degradation, and chemical degradation of dyes and nitro-compounds were also the main aim of this review article, as well as the materials used for such degradation. The mechanisms of photocatalytic and chemical degradation were also explained comprehensively. Different factors responsible for adsorption, photocatalytic degradation, and chemical degradation were also highlighted. Advantages and disadvantages, as well as economic cost, were also discussed briefly. This review will be beneficial for the reader as it covers all aspects of dye adsorption and the degradation of dyes and nitro-compounds. Future aspects and shortcomings were also part of this review article. There are several review articles on all these topics, but such a comprehensive study has not been performed so far in the literature.
Collapse
|
25
|
Chen X, Zhang J, Lin Q, Li G, Zhao X. Dispose of Chinese cabbage waste via hydrothermal carbonization: hydrochar characterization and its potential as a soil amendment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:4592-4602. [PMID: 35974264 DOI: 10.1007/s11356-022-22359-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Landfill of waste biomass not only poses a threat to environmental protection but also leads to a great waste of biomass resources. Hydrothermal carbonization (HTC) has been considered a promising method to convert the wet biomass into hydrochar, a high-value-added product with multiple application potentials. The cabbage waste, typical wet waste biomass with a huge production per year, was hydrothermally carbonized under 190 °C and 260 °C, respectively. The results indicated that the majority of nutrients from feedstock were dissolved in spent liquor during HTC, with only a few amounts retained on hydrochar. Temperature showed a more significant impact on hydrochar properties than retention time, which enables hydrochar to be potentially used as a soil conditioner. Particularly, the hydrochar produced at 190 °C could improve plant nutrition in the short term, while that produced at 260 °C may benefit in C sequestration. Moreover, the hydrochar dominated by meso/macropores (> 90%) would be conducive to the storage of plant-available water. But both BTX and VOCs may release during hydrochar application; thus, further field experiments are needed to test the environmental risks of hydrochar when applied as a soil amendment.
Collapse
Affiliation(s)
- Xuejiao Chen
- School of Food Science and Bioengineering, Xihua University, Chengdu, 610039, China.
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Jinhong Zhang
- Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Qimei Lin
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, China
- Agricultural Resources and Environmental Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Guitong Li
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xiaorong Zhao
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
26
|
Removal of fluoroquinolone antibiotics by adsorption of dopamine-modified biochar aerogel. KOREAN J CHEM ENG 2023. [DOI: 10.1007/s11814-022-1263-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
27
|
Wei F, Zhu Y, He T, Zhu S, Wang T, Yao C, Yu C, Huang P, Li Y, Zhao Q, Song W. Insights into the pH-Dependent Adsorption Behavior of Ionic Dyes on Phosphoric Acid-Activated Biochar. ACS OMEGA 2022; 7:46288-46302. [PMID: 36570255 PMCID: PMC9773931 DOI: 10.1021/acsomega.2c04799] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Activated biochar is a promising porous carbonaceous adsorbent material for organic pollutant removal, but it remains challenging to obtain high porosity and aromaticity through a simple and low-cost synthetic method. The common adsorption mechanisms of organic dyes on activated biochar should be further investigated in order to guide the synthesis of high-efficiency adsorbent materials. Here, we proposed a high-yield (up to 40 wt %) synthetic method of phosphoric acid-activated biochar from pomelo peel (PPC) with a high specific area of 877.3 m2/g through a facile thermal treatment at a relatively low temperature (250 °C). The specific activation mechanism of H3PO4 in the preparation of the adsorbent was investigated by a range of experiments and characterizations. The kinetic and isotherm experiments are also conducted to evaluate its dye adsorption behavior. According to the adsorption experiment results, PPC exhibits high saturated adsorption capacities for methyl orange (MO, 239.1 mg/g), rhodamine B (RhB, 2821.8 mg/g), methylene blue (MB, 580.5 mg/g), and crystal violate (CV, 396.6 mg/g) according to the Langmuir model. The maximum initial concentration of each dye solution for acquiring 90% removal efficiency is estimated to be 234.55 ppm (MO), 2943.8 ppm (RhB), 633.8 ppm (MB), and 423.6 ppm (CV) at 298 K with an adsorbent dosage of 1 g/L. The characterization results also indicate PPC has a complex synergetic mechanism for ionic dye adsorption behavior. This provides perspectives regarding PPC as a promising biochar adsorbent from biomass waste, which is probably useful for high-efficiency dye removal in water treatment.
Collapse
Affiliation(s)
- Fang Wei
- College
of Science, Civil Aviation University of
China (CAUC), Tianjin300300, China
| | - Yuwei Zhu
- College
of Science, Civil Aviation University of
China (CAUC), Tianjin300300, China
| | - Tongmin He
- College
of Science, Civil Aviation University of
China (CAUC), Tianjin300300, China
| | - Shengpu Zhu
- College
of Science, Civil Aviation University of
China (CAUC), Tianjin300300, China
| | - Tianhao Wang
- College
of Science, Civil Aviation University of
China (CAUC), Tianjin300300, China
| | - Chunyi Yao
- College
of Science, Civil Aviation University of
China (CAUC), Tianjin300300, China
| | - Chenlu Yu
- College
of Science, Civil Aviation University of
China (CAUC), Tianjin300300, China
| | - Peipei Huang
- School
of Physics & Information Technology, Shaanxi Normal University, Xi’an710119, China
| | - Yan Li
- College
of Science, Civil Aviation University of
China (CAUC), Tianjin300300, China
| | - Qiang Zhao
- College
of Science, Civil Aviation University of
China (CAUC), Tianjin300300, China
| | - Weiguo Song
- Laboratory
of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China
| |
Collapse
|
28
|
Diaz-Uribe C, Walteros L, Duran F, Vallejo W, Romero Bohórquez AR. Prosopis juliflora Seed Waste as Biochar for the Removal of Blue Methylene: A Thermodynamic and Kinetic Study. ACS OMEGA 2022; 7:42916-42925. [PMID: 36467916 PMCID: PMC9713793 DOI: 10.1021/acsomega.2c05007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/02/2022] [Indexed: 06/17/2023]
Abstract
In this work, we studied the methylene blue (MB) dye adsorption capacity on biochar derived from residues of Prosopis juliflora seed waste, a species found in the region of the tropical dry forest of Piojó in the Department of Atlántico, Colombia. The materials were obtained by pyrolysis at temperatures of 300, 500, and 700 °C. Biochar was characterized using Fourier transform infrared (FTIR), scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM-EDX), TGA, and Brunauer-Emmett-Teller (BET) techniques. The three biochar samples presented a macroporous, rough structure with pore size between 6 and 28 μm. The largest pore surface area observed was 1.28 m2/g for pyrolyzed biochar produced at 500 °C, larger than that of biochar produced at 700 °C, which was 0.83 m2/g. The adsorption results show that the maximum percentage of MB removal was 69%. According to SEM results, the material's pore sizes varied on average from 6 to 28 μm. We modeled MB adsorption on biomass through three different isotherm models. The Freundlich model was the best-fitting model for the removal of MB (K F = 1.447; 1/n = 0.352). The kinetic results showed that the pseudo-second-order model was the best-fitting model for the sorption process (q e = 2.94 mg/g; k 2 = 0.087 g/(mg/min-1)). Furthermore, the recycling test showed that the biochar did not change its adsorption capacity significantly. Finally, under the experimental conditions, the thermodynamic parameters indicated that the removal of MB using biochar was an endothermic and spontaneous process; all ΔG° values ranged from -2.14 to -0.95 kJ/mol; ΔH° was 23.54 kJ/mol and ΔS° was 79.5 J/mol.
Collapse
Affiliation(s)
- Carlos Diaz-Uribe
- Grupo
de Investigación en Fotoquímica y Fotobiología,
Programa de Química, Facultad de Ciencias Básicas, Universidad del Atlántico, Puerto Colombia081007, Colombia
| | - Luis Walteros
- Grupo
de Investigación en Fotoquímica y Fotobiología,
Programa de Química, Facultad de Ciencias Básicas, Universidad del Atlántico, Puerto Colombia081007, Colombia
| | - Freider Duran
- Grupo
de Investigación en Fotoquímica y Fotobiología,
Programa de Química, Facultad de Ciencias Básicas, Universidad del Atlántico, Puerto Colombia081007, Colombia
| | - William Vallejo
- Grupo
de Investigación en Fotoquímica y Fotobiología,
Programa de Química, Facultad de Ciencias Básicas, Universidad del Atlántico, Puerto Colombia081007, Colombia
| | - Arnold R. Romero Bohórquez
- Grupo
de Investigación en Compuestos Orgánicos de Interés
Medicinal (CODEIM), Parque Tecnológico Guatiguará, Universidad Industrial de Santander, Bucaramanga680002, Colombia
| |
Collapse
|
29
|
Madzin Z, Zahidi I, Raghunandan ME, Talei A. Potential application of spent mushroom compost (SMC) biochar as low-cost filtration media in heavy metal removal from abandoned mining water: a review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY : IJEST 2022; 20:6989-7006. [PMID: 36373081 PMCID: PMC9638476 DOI: 10.1007/s13762-022-04617-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 08/31/2022] [Accepted: 10/18/2022] [Indexed: 05/24/2023]
Abstract
Overpopulation and rapid development have put an increasing burden on the environment, leading to various water crisis. Importing water from abandoned mines as an alternative raw water source could be the next answer to alleviate water scarcity problems globally. However, due to its high heavy metals content, there is a need to find an economical and effective method to remove heavy metals before reusing it as potable water source. Biochar, a low-cost and carbon-rich biosorbent, has received increasing attention on its application as a remediating agent to remove heavy metals from water. Previous studies have revealed the potential properties of biochar as a heavy metal removal agent including high cation exchange capacity, high surface area, active surface functional groups, as well as efficient adsorption. Apparently, the most important factor influencing the sorption mechanism is the type of feedstock materials. Spent mushroom compost (SMC), a waste product from mushroom cultivation, has been found as an excellent biosorbent. SMC has received global attention as it is low cost and eco-friendly. It also has been proved as an efficient heavy metals remover from water. Nevertheless, its application as biochar is still scarce. Therefore, this review focuses on the potential of transforming SMC into modified biochar to remove heavy metals, especially from abandoned mining water. The present review emphasizes the current trends in adsorption methods for heavy metal removal from water, assembles data from previous studies on the feedstock of biosorbents to biochars, and discusses the potentials of SMC as a biochar for water treatment.
Collapse
Affiliation(s)
- Z. Madzin
- Civil Engineering Discipline, School of Engineering, Monash University Malaysia, Subang Jaya, Malaysia
| | - I. Zahidi
- Civil Engineering Discipline, School of Engineering, Monash University Malaysia, Subang Jaya, Malaysia
| | - M. E. Raghunandan
- Civil Engineering Discipline, School of Engineering, Monash University Malaysia, Subang Jaya, Malaysia
| | - A. Talei
- Civil Engineering Discipline, School of Engineering, Monash University Malaysia, Subang Jaya, Malaysia
| |
Collapse
|
30
|
Kaya D, Croft K, Pamuru ST, Yuan C, Davis AP, Kjellerup BV. Considerations for evaluating innovative stormwater treatment media for removal of dissolved contaminants of concern with focus on biochar. CHEMOSPHERE 2022; 307:135753. [PMID: 35963377 DOI: 10.1016/j.chemosphere.2022.135753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Stormwater from complex land uses is an important contributor of contaminants of concern (COCs) such as polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), Copper, and Zinc to receiving water bodies. A large portion of these COCs bind to particulate matter in stormwater, which can be removed through filtration by traditional media. However, the remaining dissolved COCs can be significant and require special attention such as engineered treatment measures and media. Biochar is a porous sorbent produced from a variety of organic materials. In the last decade biochar has been gaining attention as a stormwater treatment medium due to low cost compared to activated carbon. However, biochar is not a uniform product and selection of an appropriate biochar for the removal of specific contaminants can be a complex process. Biochars are synthesized from various feedstocks and using different manufacturing approaches, including pyrolysis temperature, impact the biochar properties thus affecting ability to remove stormwater contaminants. The local availability of specific biochar products is another important consideration. An evaluation of proposed stormwater control measure (SCM) media needs to consider the dynamic conditions associated with stormwater and its management, but the passive requirements of the SCM. The media should be able to mitigate flood risks, remove targeted COCs under high flow SCM conditions, and address practical considerations like cost, sourcing, and construction and maintenance. This paper outlines a process for selecting promising candidates for SCM media and evaluating their performance through laboratory tests and field deployment with special attention to unique stormwater considerations.
Collapse
Affiliation(s)
- Devrim Kaya
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD 20742, USA
| | - Kristen Croft
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD 20742, USA
| | - Sai Thejaswini Pamuru
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD 20742, USA
| | - Chen Yuan
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD 20742, USA
| | - Allen P Davis
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD 20742, USA
| | - Birthe V Kjellerup
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
31
|
Efficient Removal of Eriochrome Black T Dye Using Activated Carbon of Waste Hemp (Cannabis sativa L.) Grown in Northern Morocco Enhanced by New Mathematical Models. SEPARATIONS 2022. [DOI: 10.3390/separations9100283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
In the present work, the adsorption behavior of Eriochrome Black T (EBT) on waste hemp activated carbon (WHAC) was examined. The surface of the WHAC was modified by H3PO4 acid treatment. The surface and structural characterization of the adsorbents was carried out using Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) analysis. The effect of influential adsorption parameters (pH, contact time, dosage, and initial concentration) on the adsorption of EBT onto WHAC was examined in batch experiments; some adsorption parameters such as pH, concentration and dose were improved by new mathematical models. The adsorption behavior of EBT on the surfaces of WHAC was evaluated by applying different isotherm models (Langmuir, Freundlich, Temkin and Dubinin–Radushkevich) to equilibrium data. The adsorption kinetics was studied by using pseudo-first-order, pseudo-second-order, Elovich and intraparticle models on the model. Adsorption followed the pseudo-second-order rate kinetics. The maximum removal of EBT was found to be 44–62.08% by WHAC at pH = 7, adsorbent dose of 10–70 mg, contact time of 3 h and initial dye concentration of 10 mg.L−1. The maximum adsorption capacities were 14.025 mg.g−1 obtained by calculating according to the Langmuir model, while the maximum removal efficiency was obtained at 70 mg equal to 62.08% for the WHAC. The adsorption process is physical in the monolayer and multilayer.
Collapse
|
32
|
Liu B, Chen T, Wang B, Zhou S, Zhang Z, Li Y, Pan X, Wang N. Enhanced removal of Cd 2+ from water by AHP-pretreated biochar: Adsorption performance and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129467. [PMID: 35779399 DOI: 10.1016/j.jhazmat.2022.129467] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 04/12/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
The sesame straw-derived biochar was successfully prepared via alkaline hydrogen peroxide (AHP) pretreatment in this study. Systematic experimental characterizations, 15 relevant batch and column adsorption models, combined with density functional theory (DFT) calculation were used to investigate the performances and micro-mechanisms of Cd2+ adsorption onto biochar. We found AHP-pretreatment could greatly improve the adsorption performance of biochar for Cd2+. The maximum Cd2+ adsorption capacity of AHP-pretreated biochar (87.13 mg g-1) was much larger than that of unpretreated biochar. Cd2+ adsorption was mainly dominated by the chemisorption of the homogeneous surface monolayer. The hydroxyl and carboxyl groups on the surface of biochar provided preferential adsorption sites, and liquid film diffusion and intra-particle diffusion were two dominant rate-controlling steps. Our results showed that ion exchange, co-precipitation, surface complexation, and Cd2+-π interaction were the dominant adsorption mechanisms. Especially, DFT calculations well-identified that lone-pair electrons during complexation and π electrons during coordination were provided by oxygen-containing functional groups and aromatic rings, respectively. The experimental breakthrough curves fitted better with the theoretical value of the BJP model, compared to Thomas, Yoon-Nelson, and EXY models. Overall, our study provides a promising method for Cd2+ removal from wastewater and resource utilization of agricultural wastes.
Collapse
Affiliation(s)
- Bingxiang Liu
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Hefei 230601, China; Guizhou Academy of Sciences, Guiyang 550001, China.
| | - Tong Chen
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Hefei 230601, China
| | - Bing Wang
- College of Resources and Environment Engineering, Guizhou University, Guiyang 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou 550025, China
| | - Shaoqi Zhou
- College of Resources and Environment Engineering, Guizhou University, Guiyang 550025, China.
| | - Zihang Zhang
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Hefei 230601, China
| | - Yucheng Li
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Hefei 230601, China
| | - Xiaoxue Pan
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Hefei 230601, China
| | - Ning Wang
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Hefei 230601, China
| |
Collapse
|
33
|
Memetova A, Tyagi I, Singh L, Karri RR, Tyagi K, Kumar V, Memetov N, Zelenin A, Tkachev A, Bogoslovskiy V, Shigabaeva G, Galunin E, Mubarak NM, Agarwal S. Nanoporous carbon materials as a sustainable alternative for the remediation of toxic impurities and environmental contaminants: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155943. [PMID: 35577088 DOI: 10.1016/j.scitotenv.2022.155943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/10/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Due to rapidly deteriorating water resources, the world is looking forward to a sustainable alternative for the remediation of noxious pollutants such as heavy metals and organic and gaseous contaminants. To address this global issue of environmental pollution, nanoporous carbon materials (NPCMs) can be used as a one-stop solution. They are widely applied as adsorbents for many toxic impurities and environmental contaminants. The present review provides a detailed overview of the role of different synthesis factors on the porous characteristics of carbon materials, activating agents, reagent-precursor ratio and their potential application in the remediation. Findings revealed that synthetic parameters result in the formation of microporous NPCMs (SBET: >4000 m3/g; VTotal (cm3/g) ≥ 2; VMicro (cm3/g) ≥ 1), micromesoporous (SBET: >2500 m3/g; VTotal (cm3/g) ≥ 1.5; VMicro (cm3/g) ≥ 0.7) and mesoporous (SBET: >2500 m3/g; VTotal (cm3/g) ≥ 1.5; VMicro (cm3/g) ≥ 0.5) NPCMs. Moreover, it was observed that a narrow pore size distribution (0.5-2.0 nm) yields excellent results in the remediation of noxious contaminants. Further, chemical activating agents such as NaOH, KOH, ZnCl2, and H3PO4 were compared. It was observed that activating agents KОН, H3PO4, and ZnCl2 were generally used and played a significant role in the possible large-scale production and commercialization of NPCMs. Thus, it can be interpreted that with a well-planned strategy for the synthesis, NPCMs with a "tuned" porosity for a specific application, in particular, microporosity for the accumulation and adsorption of energetically important gases (CO2, CH4, H2), micro-mesoporosity and mesoporosity for high adsorption capacity for towards metal ions and a large number of dyes, respectively.
Collapse
Affiliation(s)
- Anastasia Memetova
- Department of Technology and Methods of Nanoproducts Manufacturing, Tambov State Technical University, 106 Sovetskaya St., Tambov 392000, Russian Federation
| | - Inderjeet Tyagi
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Kolkata 700 053, India.
| | - Lipi Singh
- Department of Environmental Engineering, Delhi Technological University, New Delhi 110042, India
| | - Rama Rao Karri
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei Darussalam
| | - Kaomud Tyagi
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Kolkata 700 053, India
| | - Vikas Kumar
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Kolkata 700 053, India
| | - Nariman Memetov
- Department of Technology and Methods of Nanoproducts Manufacturing, Tambov State Technical University, 106 Sovetskaya St., Tambov 392000, Russian Federation
| | - Andrey Zelenin
- Department of Technology and Methods of Nanoproducts Manufacturing, Tambov State Technical University, 106 Sovetskaya St., Tambov 392000, Russian Federation
| | - Alexey Tkachev
- Department of Technology and Methods of Nanoproducts Manufacturing, Tambov State Technical University, 106 Sovetskaya St., Tambov 392000, Russian Federation
| | - Vladimir Bogoslovskiy
- Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, 30 Lenina Ave., Tomsk 634050, Russian Federation
| | - Gulnara Shigabaeva
- Department of Organic and Ecological Chemistry, University of Tyumen, 6 Volodarskogo St., Tyumen 625003, Russian Federation
| | - Evgeny Galunin
- Department of Organic and Ecological Chemistry, University of Tyumen, 6 Volodarskogo St., Tyumen 625003, Russian Federation
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei Darussalam
| | - Shilpi Agarwal
- Center for Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
34
|
Wang Z, Tang Z, Xie X, Xi M, Zhao J. Salt template synthesis of hierarchical porous carbon adsorbents for Congo red removal. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Zhang N, Gao Y, Sheng K, Jing W, Xu X, Bao T, Wang S. Effective extraction of fluoroquinolones from water using facile modified plant fibers. J Pharm Anal 2022; 12:791-800. [PMID: 36320600 PMCID: PMC9615579 DOI: 10.1016/j.jpha.2022.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 12/01/2022] Open
Abstract
In this study, ecofriendly and economic carboxy-terminated plant fibers (PFs) were used as adsorbents for the effective in-syringe solid phase extraction (IS-SPE) of fluoroquinolone (FQ) residues from water. Based on the thermal esterification and etherification reaction of cellulose hydroxy with citric acid (CA) and sodium chloroacetate in aqueous solutions, carboxy groups grafted onto cotton, cattail, and corncob fibers were fabricated. Compared with carboxy-terminated corncob and cotton, CA-modified cattail with more carboxy groups showed excellent adsorption capacity for FQs. The modified cattail fibers were reproducible and reusable with relative standard deviations of 3.2%–4.2% within 10 cycles of adsorption-desorption. A good extraction efficiency of 71.3%–80.9% was achieved after optimizing the extraction condition. Based on carboxylated cattail, IS-SPE coupled with ultra-performance liquid chromatography with a photodiode array detector was conducted to analyze FQs in environmental water samples. High sensitivity with limit of detections of 0.08–0.25 μg/L and good accuracy with recoveries of 83.8%–111.7% were obtained. Overall, the simple and environment-friendly modified waste PFs have potential applications in the effective extraction and detection of FQs in natural waters. Plant fibers were functionalized by green methods. The bio-adsorbents were applied for the extraction of fluoroquinolones. The higher carboxy content in fibers improved extraction performance. Carboxylated cattail was efficient in the adsorption of fluoroquinolones in environmental waters.
Collapse
Affiliation(s)
- Nan Zhang
- School of Pharmacy, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Yan Gao
- School of Pharmacy, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Kangjia Sheng
- School of Pharmacy, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Wanghui Jing
- School of Pharmacy, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, 999078, China
| | - Xianliang Xu
- School of Pharmacy, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Tao Bao
- School of Pharmacy, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, 999078, China
- Corresponding author. School of Pharmacy, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.
| | - Sicen Wang
- School of Pharmacy, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an, 710061, China
- Corresponding author. School of Pharmacy, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.
| |
Collapse
|
36
|
Sutar S, Patil P, Jadhav J. Recent advances in biochar technology for textile dyes wastewater remediation: A review. ENVIRONMENTAL RESEARCH 2022; 209:112841. [PMID: 35120893 DOI: 10.1016/j.envres.2022.112841] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/15/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
With the continuous rise of industrialization and agriculture, the concentration of organic contaminants such as dyes in the ecosystem has increased in subsequent years, causing major environmental contamination. Adsorption has been revealed to be a reliable and cost-effective way of eliminating organic pollutants. Biochar technology has the potential of converting trash into treasure when utilized for environmental remediation since it has numerous benefits such as the availability of diverse types of raw materials, low cost, and reusability. The potential of biochar as an adsorbent, support for catalysis, and a composite catalyst for dye degradation and mineralization is summarized in this research. It discusses its current research status in the adsorption and degradation of various dyes, incorporates the pertinent adsorption variables, encapsulates its regeneration techniques, investigates its engineering applications, and finally analyses limitations and discusses future development prospects.
Collapse
Affiliation(s)
- Shubham Sutar
- Department of Biotechnology, Shivaji University, Vidyanagar, Kolhapur, 416004, India.
| | - Prasanna Patil
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, China.
| | - Jyoti Jadhav
- Department of Biotechnology, Shivaji University, Vidyanagar, Kolhapur, 416004, India; Department of Biochemistry, Shivaji University, Vidyanagar, Kolhapur, 416004, India.
| |
Collapse
|
37
|
Abstract
The study provides a review of various applications of biomass-derived biochars, waste-derived biochars, and modified biochars as adsorbent materials for removing dyestuff from process effluents. Processing significant amounts of dye effluent discharges into receiving waters can supply major benefits to countries which are affected by the water crisis and anticipated future stress in many areas in the world. When compared to most conventional adsorbents, biochars can provide an economically attractive solution. In comparison to many other textile effluent treatment processes, adsorption technology provides an economic, easily managed, and highly effective treatment option. Several tabulated data values are provided that summarize the main characteristics of various biochar adsorbents according to their ability to remove dyestuffs from wastewaters.
Collapse
|
38
|
Cai Z, Liu Q, Li H, Wang J, Tai G, Wang F, Han J, Zhu Y, Wu G. Waste-to-Resource Strategy to Fabricate Functionalized MOFs Composite Material Based on Durian Shell Biomass Carbon Fiber and Fe 3O 4 for Highly Efficient and Recyclable Dye Adsorption. Int J Mol Sci 2022; 23:ijms23115900. [PMID: 35682580 PMCID: PMC9180916 DOI: 10.3390/ijms23115900] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 12/24/2022] Open
Abstract
Recently, metal–organic frameworks (MOFs), which are porous inorganic–organic hybrid materials consisting of metal ions (clusters or secondary building units) and organic ligands through coordination bonds, have attracted wide attention because of their high surface area, huge ordered porosity, uniform structural cavities, and excellent thermal/chemical stability. In this work, durian shell biomass carbon fiber and Fe3O4 functionalized metal–organic framework composite material (durian shell fiber-Fe3O4-MOF, DFM) was synthesized and employed for the adsorption removal of methylene blue (MB) from wastewater. The morphology, structure, and chemical elements of the DFM material were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), transmission electron microscope (TEM), and X-ray photoelectron spectroscope (XPS) techniques. Adsorption conditions such as pH, adsorption time, and temperature were optimized. The adsorption isotherm and kinetics results show that the adsorption process of DFM material to MB is more in line with the Freundlich model and pseudo-second-order kinetic model. Using these models, the maximum adsorption capacity of 53.31 mg/g was obtained by calculation. In addition, DFM material could be easily reused through an external magnet and the removal rate of MB was still 80% after five adsorption cycles. The obtained results show that DFM composite material, as an economical, environmentally friendly, recyclable new adsorbent, can simply and effectively remove MB from wastewater.
Collapse
Affiliation(s)
- Zhangzhen Cai
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (Z.C.); (Q.L.); (H.L.); (J.W.); (G.T.); (F.W.); (Y.Z.)
| | - Qi Liu
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (Z.C.); (Q.L.); (H.L.); (J.W.); (G.T.); (F.W.); (Y.Z.)
| | - Haoxin Li
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (Z.C.); (Q.L.); (H.L.); (J.W.); (G.T.); (F.W.); (Y.Z.)
| | - Jingyi Wang
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (Z.C.); (Q.L.); (H.L.); (J.W.); (G.T.); (F.W.); (Y.Z.)
| | - Guoyu Tai
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (Z.C.); (Q.L.); (H.L.); (J.W.); (G.T.); (F.W.); (Y.Z.)
| | - Fan Wang
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (Z.C.); (Q.L.); (H.L.); (J.W.); (G.T.); (F.W.); (Y.Z.)
| | - Jiangang Han
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (Z.C.); (Q.L.); (H.L.); (J.W.); (G.T.); (F.W.); (Y.Z.)
- Correspondence: (J.H.); (G.W.)
| | - Yongli Zhu
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (Z.C.); (Q.L.); (H.L.); (J.W.); (G.T.); (F.W.); (Y.Z.)
| | - Guangyu Wu
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (Z.C.); (Q.L.); (H.L.); (J.W.); (G.T.); (F.W.); (Y.Z.)
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
- Correspondence: (J.H.); (G.W.)
| |
Collapse
|
39
|
Zhou Y, Li Z, Ji L, Wang Z, Cai L, Guo J, Song W, Wang Y, Piotrowski AM. Facile preparation of alveolate biochar derived from seaweed biomass with potential removal performance for cationic dye. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
40
|
Kamal A, Saleem MH, Alshaya H, Okla MK, Chaudhary HJ, Munis MFH. Ball-milled synthesis of maize biochar-ZnO nanocomposite (MB-ZnO) and estimation of its photocatalyticability against different organic and inorganic pollutants. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101445] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Composites derived from synthetic clay and carbon sphere: Preparation, characterization, and application for dye decontamination. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-021-0940-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
42
|
Zhang H, Li R, Zhang Z. A versatile EDTA and chitosan bi-functionalized magnetic bamboo biochar for simultaneous removal of methyl orange and heavy metals from complex wastewater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118517. [PMID: 34801624 DOI: 10.1016/j.envpol.2021.118517] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 10/07/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
At present, the simultaneous removal of organic dyes and heavy metals in complex wastewater has raised considerable concern, owing to their striking differences in physicochemical properties. Adsorption, as one of the few removal methods, has attracted extensive attention and gained popularity. Herein, a versatile EDTA and chitosan bi-functionalized magnetic bamboo biochar adsorbent (ECMBB) was synthesized for coinstantaneous adsorption of methyl orange (MO) and heavy metals (Cd(II) and Zn(II)). In this case, the as-synthesized ECMBB composites inherited favorable anionic MO removal performance from bamboo biochar (BB) obtained at 700 °C through electrostatic attraction, hydrogen bonding and π-π interaction, also enhanced the binding of cationic metals by introducing amino groups of chitosan and carboxyl groups of EDTA. In the unitary system, the removal of MO, Cd(II) and Zn(II) by three as-prepared adsorbents can be well illuminated by pseudo-second-order kinetic model and Langmuir isotherm theory. The saturated capture amounts of ECMBB at 25 °C are 305.4 mg g-1 for MO, 63.2 mg g-1 for Cd(II) and 50.8 mg g-1 for Zn(II), which, under the same conditions, are 1.3, 2.6 and 2.5 times those of chitosan-modified magnetic bamboo biochar (CMBB) and 1.9, 6.1 and 5.4 times those of magnetic bamboo biochar (MBB), respectively. Remarkably, in MO-metal binary system, coexisting MO visibly enhanced the adsorption of Cd(II) and Zn(II), while coexisting heavy metals had no significant impact on MO adsorption. Furthermore, ECMBB exhibited no significant loss in adsorption efficiency even after eight adsorption-desorption experiments. This study lays the foundation for fabricating desired integrative biochar adsorbents in the simultaneous purification of organic and metallic pollutants from complex wastewater.
Collapse
Affiliation(s)
- Han Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| |
Collapse
|
43
|
Liu W, Huang J, Weatherley AJ, Zhai W, Liu F, Ma Z, Jiao Y, Zhang C, Han B. Identifying adsorption sites for Cd(II) and organic dyes on modified straw materials. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 301:113862. [PMID: 34619583 DOI: 10.1016/j.jenvman.2021.113862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 08/27/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Turning agricultural waste into effective remediation materials is a highly promising approach for reducing in-field crop burning and promoting affordable wastewater treatment. This comparative study aims to identify active adsorption sites for methylene blue (MB), crystal violet (CV), and cadmium (Cd) as model pollutants on wheat straw materials modified by a thermal partial-oxidation process. The optimal modification temperature was found to be 160-180 °C for MB and CV adsorption, which is much lower than that of Cd(II) at 220-240 °C. A strong linear correlation exits between total surface group concentrations and Cd(II) uptake, indicating that both acidic and basic functional groups are favourable adsorption sites of Cd(II). By contrast, basic groups generated at higher modification temperatures might have adverse effects on MB and CV adsorption. These results provided mechanistic insights and predictive approach into reuse of agricultural waste for environmental remediation.
Collapse
Affiliation(s)
- Wei Liu
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, PR China; Institute of Life Science and Green Development, Hebei University, Baoding, 071002, PR China
| | - Jie Huang
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, PR China
| | - Anthony J Weatherley
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Wenjun Zhai
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, PR China
| | - Fuya Liu
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, PR China
| | - Zhiling Ma
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, PR China
| | - Yunhong Jiao
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, PR China
| | - Chao Zhang
- College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Bing Han
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, PR China; Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia; Institute of Life Science and Green Development, Hebei University, Baoding, 071002, PR China.
| |
Collapse
|
44
|
Luo Z, Yao B, Yang X, Wang L, Xu Z, Yan X, Tian L, Zhou H, Zhou Y. Novel insights into the adsorption of organic contaminants by biochar: A review. CHEMOSPHERE 2022; 287:132113. [PMID: 34826891 DOI: 10.1016/j.chemosphere.2021.132113] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/14/2021] [Accepted: 08/29/2021] [Indexed: 05/22/2023]
Abstract
With rising concerns in the practical application of biochar for the remediation of environment influenced by various organic contaminants, a critical review to facilitate insights the crucial role that biochar has played in wastewater and polluted soil decontamination is urgently needed. This research therefore aimed to describe different intriguing dimensions of biochar interactions with organic contaminants, which including: (i) an introduction of biochar preparation and the related physicochemical properties, (ii) an overview of mechanisms and factors controlling the adsorption of organic contaminants onto biochar, and (iii) a summary of the challenges and an outlook of the further research needs in this issue. In the light of the survey consequences, the appearance of biochar indicates the potential in substituting the existing costly adsorbents, and it has been proved that biochar is one promising adsorbent for organic pollutants adsorption removal from water and soil. However, some research gaps, such as dynamic adsorption, potential environmental risks, interactions between biochar and soil microbes, novel modification techniques, need to be further investigated to facilitate its practical application. This research will be conductive to better understanding the adsorption removal of organic contaminants by biochar.
Collapse
Affiliation(s)
- Zirui Luo
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Bin Yao
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Xiao Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lingqing Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhangyi Xu
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Xiulan Yan
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Lin Tian
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Hao Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
45
|
Zhao Y, Qamar SA, Qamar M, Bilal M, Iqbal HMN. Sustainable remediation of hazardous environmental pollutants using biochar-based nanohybrid materials. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 300:113762. [PMID: 34543967 DOI: 10.1016/j.jenvman.2021.113762] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 02/08/2023]
Abstract
Biochar is a well-known carbon material with diversified functionalities and excellent physicochemical characteristics with high wastewater treatment potential. This review aims to summarize recent advancements in the development of biochar and biochar-based nanohybrid materials as a potential tool for the removal of harmful organic compounds such as synthetic dyes/effluents. The formation of biochar using pyrolysis of renewable feedstocks and their applications in various industries are explained hereafter. The characteristics and construction of biochar-based hybrid materials are explained in detail. Diversity of feedstocks, including municipal wastes, industrial byproducts, agricultural, and forestry residues, endows different biochar types with a wide structural variety. The production of cost-effective biochar drives the interest in manipulating biochars and induces desire functionality using nanoscale reinforcements. Various types of biochars, such as magnetic biochar, layered nanomaterial coated biochar, nanometallic oxide composites, chemically and physically functionalized biochar, have been produced. With the aid of nanomaterial, hybrid biochar exhibits a high potential to remove toxic contaminants. Depending upon biochar type, dyes/effluents can be removed via different mechanisms, including the Fenton process, photocatalytic degradation, π-π interaction, electrostatic interaction, and physical adsorption. In conclusion, desired physicochemical features, and tunable surface properties of biochar present high potential material in removing organic dyes and other effluents. The blended biochar with different materials/nanomaterials endows broader development and multi-functional opportunities for treating dyes/effluents.
Collapse
Affiliation(s)
- Yuping Zhao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Sarmad Ahmad Qamar
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Mahpara Qamar
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
46
|
Sewu DD, Woo SH, Lee DS. Biochar from the co-pyrolysis of Saccharina japonica and goethite as an adsorbent for basic blue 41 removal from aqueous solution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149160. [PMID: 34311353 DOI: 10.1016/j.scitotenv.2021.149160] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/25/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
The effects of utilizing goethite (5%, 10%, and 20%) in co-pyrolysis with low-lignin macroalgae, Saccharina japonica, on the carbon sequestration potential, magnetic, physicochemical, and dye (basic blue 41, BB41) removal properties of the resulting biochar were investigated. Biochars exhibited more aromaticity, better magnetic properties, and insignificant alterations to their point of zero charges (11.07 ± 0.03 to 10.59 ± 0.01) with goethite increment. Optimum conditions for high organic matter conversion and carbon preservation occurred using 5% goethite. Adsorption experiments showed that BB41 adsorption was highly pH-dependent, equilibrated later (from 12 h to 24 h) after goethite modification, and was best fitted to the pseudo-second-order model (higher R2 and lower SSE values). Langmuir monolayer adsorption capacity for BB41 was the highest amongst carbonaceous adsorbents in the literature [1494 mg/g (pristine); 1216 mg/g (5% goethite)]; initial BB41 concentration of 2000 mg/L at 30 °C and pH 8. The main governing mechanisms involved ion exchanges, hydrogen bonding, π-π interaction and pore-filling. Overall, low goethite amount (5%), co-pyrolyzed with macroalgae, offers an economically and environmentally effective way to produce magnetic biochar with enhanced carbon sequestration potential and superb cationic dye removal performance for environmental remediation applications.
Collapse
Affiliation(s)
- Divine Damertey Sewu
- Life Green Technology Co. Ltd., 875 Yuseong-daero, Yuseong-gu, Daejeon 34158, Republic of Korea; Department of Chemical and Biological Engineering, Hanbat National University, 125 Dongseo-daero, Yuseong-gu, Daejeon 34158, Republic of Korea
| | - Seung Han Woo
- Life Green Technology Co. Ltd., 875 Yuseong-daero, Yuseong-gu, Daejeon 34158, Republic of Korea; Department of Chemical and Biological Engineering, Hanbat National University, 125 Dongseo-daero, Yuseong-gu, Daejeon 34158, Republic of Korea.
| | - Dae Sung Lee
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| |
Collapse
|
47
|
Tran-Ly AN, De France KJ, Rupper P, Schwarze FWMR, Reyes C, Nyström G, Siqueira G, Ribera J. Melanized-Cationic Cellulose Nanofiber Foams for Bioinspired Removal of Cationic Dyes. Biomacromolecules 2021; 22:4681-4690. [PMID: 34696590 DOI: 10.1021/acs.biomac.1c00942] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In recent years, water pollution has developed into a severe environmental and public health problem due to rapid urbanization and industrialization, especially in some developing countries. Finding solutions to tackle water pollution is urgently required and is of global importance. Currently, a range of water treatment methods are available; however, a water remediation process that is simple, inexpensive, eco-friendly, and effective for the removal of pollutants down to ppm/ppb concentrations has long been sought after. Herein, we describe a novel approach using fungal melanin for developing melanized-cationic cellulose nanofiber (melanized-C-CNF) foams that can successfully remove pollutants in water systems. The foam can be recycled several times while retaining its adsorption/desorption property, indicating high practicability for adsorbing the cationic dye crystal violet. This work highlights the opportunity to combine both the advanced features of sustainable polymers such as cellulose and the unique properties of fungal melanin to manufacture biohybrid composites for water purification.
Collapse
Affiliation(s)
- Anh N Tran-Ly
- Laboratory for Cellulose & Wood Materials, Empa─Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland.,Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Stefano-Franscini Platz 5, Postfach 193, CH-8093 Zurich, Switzerland
| | - Kevin J De France
- Laboratory for Cellulose & Wood Materials, Empa─Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Patrick Rupper
- Laboratory for Advanced Fibers, Empa─Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Francis W M R Schwarze
- Laboratory for Cellulose & Wood Materials, Empa─Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Carolina Reyes
- Laboratory for Cellulose & Wood Materials, Empa─Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Gustav Nyström
- Laboratory for Cellulose & Wood Materials, Empa─Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Gilberto Siqueira
- Laboratory for Cellulose & Wood Materials, Empa─Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Javier Ribera
- Laboratory for Cellulose & Wood Materials, Empa─Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| |
Collapse
|
48
|
Yan X, Sun Y, Ma C, Kong X, Zhang Y, Tao W. Adsorption of Anionic and Cationic Dyes on Different Biochars. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2021. [DOI: 10.1134/s0036024421100289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Yang X, Zhu W, Song Y, Zhuang H, Tang H. Removal of cationic dye BR46 by biochar prepared from Chrysanthemum morifolium Ramat straw: A study on adsorption equilibrium, kinetics and isotherm. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116617] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
50
|
Senanu BM, Boakye P, Oduro-Kwarteng S, Sewu DD, Awuah E, Obeng PA, Afful K. Inhibition of ammonia and hydrogen sulphide as faecal sludge odour control in dry sanitation toilet facilities using plant waste materials. Sci Rep 2021; 11:17803. [PMID: 34493737 PMCID: PMC8423729 DOI: 10.1038/s41598-021-97016-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/18/2021] [Indexed: 11/15/2022] Open
Abstract
On-site dry sanitation facilities, although cheaper than wet sanitation systems, suffer from high malodour and insect nuisance as well as poor aesthetics. The high odour deters users from utilizing dry sanitation toilets as an improved facility leading to over 20% open defecation in Sub-Saharan Africa. To address this malodour concern, this study first assessed odour levels, using hydrogen sulphide (H2S) and ammonia (NH3) as indicators, on two dry sanitation facilities named T1 and T2. The potential of using biomass (sawdust, rice husk, moringa leaves, neem seeds), ash (coconut husk, cocoa husk) or biochar (sawdust, rice husk, bamboo) as biocovers to remove or suppress odour from fresh faecal sludge (FS) over a 12-day period was investigated. Results showed that the odour levels for H2S in both T1 (3.17 ppm) and T2 (0.22 ppm) were above the threshold limit of 0.05 ppm, for unpleasantness in humans and vice versa for NH3 odour levels (T1 = 6.88 ppm; T2 = 3.16 ppm; threshold limit = 30 ppm limit). The biomasses exhibited low pH (acidic = 5–7) whereas the biochars and ashes had higher pHs (basic = 8–13). Basic biocovers were more effective at H2S emission reduction (80.9% to 96.2%) than acidic biocovers. The effect of pH on suppression of NH3 was determined to be statistically insignificant at 95% confidence limit. In terms of H2S and NH3 removal, sawdust biochar was the most effective biocover with odour abatement values of 96.2% and 74.7%, respectively. The results suggest that biochar produced from locally available waste plant-based materials, like sawdust, can serve as a cost-effective and sustainable way to effectively combat odour-related issues associated with dry sanitation facilities to help stop open defecation.
Collapse
Affiliation(s)
- Bernice Mawumenyo Senanu
- Department of Civil Engineering, Kwame Nkrumah University of Science and Technology, PMB, UPO, Kumasi, Ghana
| | - Patrick Boakye
- Department of Chemical Engineering, Kwame Nkrumah University of Science and Technology, PMB, UPO, Kumasi, Ghana.
| | - Sampson Oduro-Kwarteng
- Department of Civil Engineering, Kwame Nkrumah University of Science and Technology, PMB, UPO, Kumasi, Ghana.
| | - Divine Damertey Sewu
- Life Green Technology Co. Ltd., 875 Yuseong-daero, Yuseong-gu, Daejeon, 34158, Republic of Korea.,Department of Chemical and Biological Engineering, Hanbat National University, 125 Dongseo-daero, Yuseong-gu, Daejeon, 34158, Republic of Korea
| | - Esi Awuah
- Department of Civil Engineering, Kwame Nkrumah University of Science and Technology, PMB, UPO, Kumasi, Ghana
| | - Peter Appiah Obeng
- Department of Water and Sanitation, University of Cape Coast, Cape Coast, Ghana
| | - Kobina Afful
- Department of Civil Engineering, Kwame Nkrumah University of Science and Technology, PMB, UPO, Kumasi, Ghana
| |
Collapse
|