1
|
Mandalika AS, Runge TM, Ragauskas AJ. Membrane Separations in Biomass Processing. Chempluschem 2025; 90:e202400497. [PMID: 39466007 PMCID: PMC11826140 DOI: 10.1002/cplu.202400497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 10/29/2024]
Abstract
The development of integrated biorefineries and the greater utilization of biomass resources to reduce dependence on fossil fuel-derived products require research emphasis not just on conversion strategies but also on improving separations associated with biorefining. A significant roadblock towards developing biorefineries is the lack of effective separation techniques evidenced by the relative deficiency of literature in this area. Additionally, high conversion yields may only be realized if effective separations generate feedstock of sufficient purity - this makes research into biomass conversion strategies all the more critical. In this review, the challenges associated with biomass separations are discussed, followed by an overview of the most appropriate separation strategies for processing biomass. One of the unit operations most appealing for biorefining, membrane separations (MS), is then considered along with a review of the recent literature utilizing this technique in biomass processing.
Collapse
Affiliation(s)
- Anurag S. Mandalika
- Assistant Research Professor, Center for Energy StudiesLouisiana State University93 S Quad Dr, 1115Baton RougeLA 70803
| | - Troy M. Runge
- Professor of Biological Systems Engineering and CALS Associate Dean for Research, 2121 Wisconsin Energy Institute BuildingUniversity of Wisconsin-Madison1552 University AveMadisonWI 53726
| | - Arthur J. Ragauskas
- Governor's Chair for Biorefining, Joint Institute for Biological Sciences, Biosciences DivisionOak Ridge National Laboratory1 Bethel Valley RoadOak RidgeTN 37831
| |
Collapse
|
2
|
Dewan A, Sridhar K, Yadav M, Bishnoi S, Ambawat S, Nagaraja SK, Sharma M. Recent trends in edible algae functional proteins: Production, bio-functional properties, and sustainable food packaging applications. Food Chem 2025; 463:141483. [PMID: 39369604 DOI: 10.1016/j.foodchem.2024.141483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/24/2024] [Accepted: 09/28/2024] [Indexed: 10/08/2024]
Abstract
In recent years, there has been a notable surge in the development and adoption of edible algae protein-based sustainable food packaging, which presents a promising alternative to traditional materials due to its biodegradability, renewability, and minimal environmental impact. Hence, this review aims to emphasize the sources, cultivation, and downstream potential of algal protein and protein complexes. Moreover, it comprehensively examines the advancements in utilizing protein complexes for smart and active packaging applications, while also addressing the challenges that must be overcome for the widespread commercial adoption of algal proteins to meet industry 4.0. The review revealed that the diversity of algae species and their sustainable cultivation methods offers a promising alternative to traditional protein sources. Being vegan source with higher photosynthetic conversion efficiency and reduced growth cycle has permitted the proposition of algae as proteins of the future. The unique combination of techno-functional combined with bio-functional properties such as antioxidant, anti-inflammatory and antimicrobial response have captured the sustainable groups to invest considerable research and promote the innovations in algal proteins. Food packaging research has increasingly benefited by the excellent gas barrier property and superior mechanical strength of algal proteins either stand alone or in synergy with other biodegradable polymers. Advanced packaging functionality such as freshness monitoring and active preservation techniques has been explored and needs considerable characterization for commercial advancement. Overall, while algal proteins show promising downstream potential in various industries aligned with Industry 4.0 principles, their broader adoption hinges on overcoming these barriers through continued innovation and strategic development.
Collapse
Affiliation(s)
- Aastha Dewan
- Department of Food Technology, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India
| | - Monika Yadav
- Department of Food Technology, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Sonam Bishnoi
- Department of Food Technology, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Shobhit Ambawat
- Department of Food Technology, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | | | - Minaxi Sharma
- Research Center for Life Science and Healthcare, Nottingham Ningbo China Beacons of Excellence Research and Innovation (CBI), University of Nottingham Ningbo China, Ningbo 315000, China.
| |
Collapse
|
3
|
Obeid S, Rida H, Peydecastaing J, Takache H, Ismail A, Pontalier PY. Coupling ultrasound and membrane filtration for the fractionation of Spirulina platensis sp. and the recovery of phycocyanin and pigment-free proteins. Biotechnol Lett 2024; 47:8. [PMID: 39613998 PMCID: PMC11607054 DOI: 10.1007/s10529-024-03541-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/28/2024] [Accepted: 11/10/2024] [Indexed: 12/01/2024]
Abstract
The cyanobacterium Spirulina platensis was subjected to a fractionation process involving ultrasound-assisted extraction and membrane filtration to obtain a pure phycocyanin fraction and a clarified colorless protein fraction free of chlorophyll and carotenoids. The effects of pressure and power on total protein release were assessed. The retention of the extracted proteins was then assessed by ultrafiltration, with and without ammonium sulfate precipitation. Total protein recovery yields reached 97% in aqueous solution, at a low frequency (12 kHz), atmospheric pressure, and with an ultrasonic power of 200 Watts (W). Ammonium sulfate (25% w/v) precipitation was used to remove pigments and impurities from the crude protein extract. Finally, semi-frontal ultrafiltration resulted in high levels of C-phycocyanin recovery in the retentate: 95% and 91% with 10 and 100 kDa-cutoff membranes, respectively. However, the levels of total non-pigmented proteins in the permeate compartment did not exceed 67% with a 100 kDa-cutoff membrane. A fractionation process is proposed here for the valorization of two different protein fractions from Spirulina platensis.
Collapse
Affiliation(s)
- Sara Obeid
- Laboratoire de Chimie Agro-Industrielle (LCA), Université de Toulouse, Toulouse INP, INRAE, France
- Département des Sciences et Technologies Alimentaires, Faculté d'Agronomie, Université Libanaise, Dekwaneh, Lebanon
- Plateforme de Recherche et d'Analyses en Sciences de L'Environnement (PRASE), Ecole Doctorale des Sciences et Technologies, Université Libanaise, Hadath, Lebanon
| | - Hussein Rida
- Laboratoire de Chimie Agro-Industrielle (LCA), Université de Toulouse, Toulouse INP, INRAE, France
- Plateforme de Recherche et d'Analyses en Sciences de L'Environnement (PRASE), Ecole Doctorale des Sciences et Technologies, Université Libanaise, Hadath, Lebanon
| | - Jérôme Peydecastaing
- Laboratoire de Chimie Agro-Industrielle (LCA), Université de Toulouse, Toulouse INP, INRAE, France
| | - Hosni Takache
- Département des Sciences et Technologies Alimentaires, Faculté d'Agronomie, Université Libanaise, Dekwaneh, Lebanon
- Plateforme de Recherche et d'Analyses en Sciences de L'Environnement (PRASE), Ecole Doctorale des Sciences et Technologies, Université Libanaise, Hadath, Lebanon
| | - Ali Ismail
- Département des Sciences et Technologies Alimentaires, Faculté d'Agronomie, Université Libanaise, Dekwaneh, Lebanon
- Plateforme de Recherche et d'Analyses en Sciences de L'Environnement (PRASE), Ecole Doctorale des Sciences et Technologies, Université Libanaise, Hadath, Lebanon
| | - Pierre-Yves Pontalier
- Laboratoire de Chimie Agro-Industrielle (LCA), Université de Toulouse, Toulouse INP, INRAE, France.
| |
Collapse
|
4
|
Hamzelou S, Belobrajdic D, Broadbent JA, Juhász A, Lee Chang K, Jameson I, Ralph P, Colgrave ML. Utilizing proteomics to identify and optimize microalgae strains for high-quality dietary protein: a review. Crit Rev Biotechnol 2024; 44:1280-1295. [PMID: 38035669 DOI: 10.1080/07388551.2023.2283376] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 09/27/2023] [Accepted: 10/17/2023] [Indexed: 12/02/2023]
Abstract
Algae-derived protein has immense potential to provide high-quality protein foods for the expanding human population. To meet its potential, a broad range of scientific tools are required to identify optimal algal strains from the hundreds of thousands available and identify ideal growing conditions for strains that produce high-quality protein with functional benefits. A research pipeline that includes proteomics can provide a deeper interpretation of microalgal composition and biochemistry in the pursuit of these goals. To date, proteomic investigations have largely focused on pathways that involve lipid production in selected microalgae species. Herein, we report the current state of microalgal proteome measurement and discuss promising approaches for the development of protein-containing food products derived from algae.
Collapse
Affiliation(s)
| | | | | | - Angéla Juhász
- School of Science, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Edith Cowan University, Joondalup, Australia
| | | | - Ian Jameson
- CSIRO Ocean and Atmosphere, Hobart, Australia
| | - Peter Ralph
- Climate Change Cluster, University of Technology Sydney, Ultimo, Australia
| | - Michelle L Colgrave
- CSIRO Agriculture and Food, St Lucia, Australia
- School of Science, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Edith Cowan University, Joondalup, Australia
| |
Collapse
|
5
|
Perez B, Zermatten C, Haberkorn I, Mathys A. Enhancing protein extraction from heterotrophic Auxenochlorella protothecoides microalgae through emerging cell disruption technologies combined with incubation. BIORESOURCE TECHNOLOGY 2024; 407:131099. [PMID: 38986878 DOI: 10.1016/j.biortech.2024.131099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/29/2024] [Accepted: 07/07/2024] [Indexed: 07/12/2024]
Abstract
This study evaluated pulsed electric fields (PEF) and ultrasonication (US) combined with incubation to enhance cell disruption and protein extraction from Auxenochlorella protothecoides, comparing them to conventional high-pressure homogenization (HPH). A 5 h incubation enhanced protein yield by 79.4 % for PEF- and 27.2 % for US-treated samples. Extending the incubation to 24 h resulted in a total yield increase of 122 % for PEF (0.25 ± 0.03 kgEP kgTP-1) and 51.9 % for US (0.20 ± 0.02 kgEP-1 kgTP-1). Autofermentation in untreated cells after 24 h resulted in protein release with lower yields than all other treated and incubated samples. While HPH had the highest protein yield (0.58 ± 0.04 kgEP kgTP-1), PEF-incubation after 5 h (56.6 ± 5.3 MJ kgEP-1) and 24 h (49.5 ± 3.7 MJ kgEP-1) were 1.5 and 1.7-times more energy-efficient than HPH (82.9 ± 7.8 MJ kgEP-1). PEF combined incubation is an energy-efficient and targeted protein extraction method in heterotrophic A. protothecoides biorefinery.
Collapse
Affiliation(s)
- Byron Perez
- Laboratory of Sustainable Food Processing, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland; Singapore-ETH Centre, 1 Create Way #06-01, 138602 Singapore, Singapore.
| | - Carole Zermatten
- Laboratory of Sustainable Food Processing, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland; Singapore-ETH Centre, 1 Create Way #06-01, 138602 Singapore, Singapore.
| | - Iris Haberkorn
- Singapore-ETH Centre, 1 Create Way #06-01, 138602 Singapore, Singapore.
| | - Alexander Mathys
- Laboratory of Sustainable Food Processing, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland; Singapore-ETH Centre, 1 Create Way #06-01, 138602 Singapore, Singapore.
| |
Collapse
|
6
|
Mosibo OK, Ferrentino G, Udenigwe CC. Microalgae Proteins as Sustainable Ingredients in Novel Foods: Recent Developments and Challenges. Foods 2024; 13:733. [PMID: 38472846 DOI: 10.3390/foods13050733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/04/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Microalgae are receiving increased attention in the food sector as a sustainable ingredient due to their high protein content and nutritional value. They contain up to 70% proteins with the presence of all 20 essential amino acids, thus fulfilling human dietary requirements. Microalgae are considered sustainable and environmentally friendly compared to traditional protein sources as they require less land and a reduced amount of water for cultivation. Although microalgae's potential in nutritional quality and functional properties is well documented, no reviews have considered an in-depth analysis of the pros and cons of their addition to foods. The present work discusses recent findings on microalgae with respect to their protein content and nutritional quality, placing a special focus on formulated food products containing microalgae proteins. Several challenges are encountered in the production, processing, and commercialization of foods containing microalgae proteins. Solutions presented in recent studies highlight the future research and directions necessary to provide solutions for consumer acceptability of microalgae proteins and derived products.
Collapse
Affiliation(s)
- Ornella Kongi Mosibo
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 9A7, Canada
| | - Giovanna Ferrentino
- Faculty of Agriculture, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy
| | - Chibuike C Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 9A7, Canada
| |
Collapse
|
7
|
Roberge H, Moreau P, Couallier E, Abellan P. Lipids and Proteins Differentiation in Membrane Fouling Using Heavy Metal Staining and Electron Microscopy at Cryogenic Temperatures. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:2090-2098. [PMID: 37966971 DOI: 10.1093/micmic/ozad114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/08/2023] [Accepted: 09/24/2023] [Indexed: 11/17/2023]
Abstract
The detailed characterization of fouling in membranes is essential to understand any observed improvement or reduction on filtration performance. Electron microscopy allows detailed structural characterization, and its combination with labeling techniques, using electron-dense probes, typically allows for the differentiation of biomolecules. Developing specific protocols that allow for differentiation of biomolecules in membrane fouling by electron microscopy is a major challenge due to both as follows: the necessity to preserve the native state of fouled membranes upon real filtration conditions as well as the inability of the electron-dense probes to penetrate the membranes once they have been fouled. In this study, we present the development of a heavy metal staining technique for identification and differentiation of biomolecules in membrane fouling, which is compatible with cryofixation methods. A general contrast enhancement of biomolecules and fouling is achieved. Our observations indicate a strong interaction between biomolecules: A tendency of proteins, both in solution as well as in the fouling, to surround the lipids is observed. Using transmission electron microscopy and scanning electron microscopy at cryogenic conditions, cryo-SEM, in combination with energy-dispersive X-ray spectroscopy, the spatial distribution of proteins and lipids within fouling is shown and the role of proteins in fouling discussed.
Collapse
Affiliation(s)
- Hélène Roberge
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN, 2 rue de la Houssinère, 44000 Nantes, France
- Laboratoire de Génie des Procédés, Nantes Université, CNRS, ONIRIS, Environnement et Agroalimentaire, 37 boulevard de l'université, GEPEA, 44600 Saint-Nazaire, France
| | - Philippe Moreau
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN, 2 rue de la Houssinère, 44000 Nantes, France
| | - Estelle Couallier
- Laboratoire de Génie des Procédés, Nantes Université, CNRS, ONIRIS, Environnement et Agroalimentaire, 37 boulevard de l'université, GEPEA, 44600 Saint-Nazaire, France
| | - Patricia Abellan
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN, 2 rue de la Houssinère, 44000 Nantes, France
| |
Collapse
|
8
|
Hamzelou S, Belobrajdic D, Juhász A, Brook H, Bose U, Colgrave ML, Broadbent JA. Nutrition, allergenicity and physicochemical qualities of food-grade protein extracts from Nannochloropsis oculata. Food Chem 2023; 424:136459. [PMID: 37247596 DOI: 10.1016/j.foodchem.2023.136459] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/11/2023] [Accepted: 05/22/2023] [Indexed: 05/31/2023]
Abstract
Microalgae offer an opportunity to act as a sustainable source of dietary protein. This study aimed to evaluate the impact of different protein extraction methods on the nutritional and physicochemical properties of Nannochloropsis oculata. Food-grade protein extracts were obtained by hypotonic osmotic shock using milli-Q water. Food grade (FG) and non-food grade (NFG) extraction buffers were compared along with three cell disruption methods including bead beating, probe sonication and a combination of both methods for protein extraction. Mass spectrometry was used for protein and putative allergen identification in FG extracts. Bead beating led to a slightly higher number of identifiable proteins in FG extracts compared to control condition. Putative allergenic proteins were identified in FG extracts of N. oculata using different in-silico methods. These findings support the need to further evaluate the potential allergenic proteins in microalgae including N. oculata such as immunoglobulin E (IgE) binding tests.
Collapse
Affiliation(s)
- Sara Hamzelou
- CSIRO Health & Biosecurity, Adelaide, SA 5000, Australia.
| | | | - Angéla Juhász
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, School of Science, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Henri Brook
- CSIRO Health & Biosecurity, Adelaide, SA 5000, Australia
| | - Utpal Bose
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, School of Science, Edith Cowan University, Joondalup, WA 6027, Australia; CSIRO Agriculture and Food, St Lucia, QLD 4067, Australia
| | - Michelle L Colgrave
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, School of Science, Edith Cowan University, Joondalup, WA 6027, Australia; CSIRO Agriculture and Food, St Lucia, QLD 4067, Australia
| | | |
Collapse
|
9
|
Deepika C, Wolf J, Roles J, Ross I, Hankamer B. Sustainable Production of Pigments from Cyanobacteria. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 183:171-251. [PMID: 36571616 DOI: 10.1007/10_2022_211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Pigments are intensely coloured compounds used in many industries to colour other materials. The demand for naturally synthesised pigments is increasing and their production can be incorporated into circular bioeconomy approaches. Natural pigments are produced by bacteria, cyanobacteria, microalgae, macroalgae, plants and animals. There is a huge unexplored biodiversity of prokaryotic cyanobacteria which are microscopic phototrophic microorganisms that have the ability to capture solar energy and CO2 and use it to synthesise a diverse range of sugars, lipids, amino acids and biochemicals including pigments. This makes them attractive for the sustainable production of a wide range of high-value products including industrial chemicals, pharmaceuticals, nutraceuticals and animal-feed supplements. The advantages of cyanobacteria production platforms include comparatively high growth rates, their ability to use freshwater, seawater or brackish water and the ability to cultivate them on non-arable land. The pigments derived from cyanobacteria and microalgae include chlorophylls, carotenoids and phycobiliproteins that have useful properties for advanced technical and commercial products. Development and optimisation of strain-specific pigment-based cultivation strategies support the development of economically feasible pigment biorefinery scenarios with enhanced pigment yields, quality and price. Thus, this chapter discusses the origin, properties, strain selection, production techniques and market opportunities of cyanobacterial pigments.
Collapse
Affiliation(s)
- Charu Deepika
- Institute of Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Juliane Wolf
- Institute of Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - John Roles
- Institute of Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Ian Ross
- Institute of Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Ben Hankamer
- Institute of Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
10
|
Development of Lipid Nanoparticles Containing Omega-3-Rich Extract of Microalga Nannochlorpsis gaditana. Foods 2022; 11:foods11233749. [PMID: 36496557 PMCID: PMC9736134 DOI: 10.3390/foods11233749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/23/2022] Open
Abstract
Microalgae are described as a new source of a wide range of bioactive compounds with health-promoting properties, such as omega-3 lipids. This biomass product is gaining attention mainly due to its potential to accumulate different compounds depending on the species and environment, and it has been commonly recognized as a valuable nutraceutical alternative to fish and krill oils. In this work, we obtained the extract of the microalga Nannochloropsis gaditana, selected on the basis of its content of eicosapentaenoic acid (EPA) and glycolipids, which were determined using GC-MS and high-performance liquid chromatography (HPLC), respectively. To develop an oral formulation for the delivery of the extract, we used a 23 factorial design approach to obtain an optimal lipid nanoparticle formulation. The surfactant and solid lipid content were set as the independent variables, while the particle size, polydispersity index, and zeta potential were taken as the dependent variables of the design. To ensure the potential use of the optimum LN formulation to protect and modify the release of the loaded microalga extract, rheological and differential scanning calorimetry analyses were carried out. The developed formulations were found to be stable over 30 days, with an encapsulation efficiency over 60%.
Collapse
|
11
|
Obeid S, Beaufils N, Peydecastaing J, Camy S, Takache H, Ismail A, Pontalier PY. Microalgal fractionation for lipids, pigments and protein recovery. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
12
|
Soto-Sierra L, Nikolov ZL. Feasibility of membrane ultrafiltration as a single-step clarification and fractionation of microalgal protein hydrolysates. Front Bioeng Biotechnol 2022; 10:957268. [PMID: 36110323 PMCID: PMC9468705 DOI: 10.3389/fbioe.2022.957268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/01/2022] [Indexed: 11/28/2022] Open
Abstract
Protein hydrolysates are one of the most valuable products that can be obtained from lipid-extracted microalgae (LEA). The advantages of protein hydrolysates over other protein products encompass enhanced solubility, digestibility, and potential bioactivity. The development of an economically feasible process to produce protein hydrolysates depends on maximizing the recovery of hydrolyzed native protein from the lipid-extracted algal biomass and subsequent fractionation of hydrolyzed protein slurry. Previously, we reported a method for fractionation of enzymatically generated protein hydrolysates by acidic precipitation of algal cell debris and unhydrolyzed protein, precipitate wash, centrifugation, and depth filtration. The present study evaluates tangential flow ultrafiltration as a single-step alternative to centrifugation, precipitate wash, and depth filtration. The results demonstrate that the tangential flow ultrafiltration process has a potential that deserves further investigation. First, the membrane diafiltration process uses a single and easily scalable unit operation (tangential flow filtration) to separate and “wash out” hydrolyzed protein from the algal residue. Second, the protein recovery yield achieved with the tangential flow process was >70% compared to 64% previously achieved by centrifugation and depth filtration methods. Finally, protein hydrolysates obtained by membrane ultrafiltration exhibited slightly better heat and pH stability.
Collapse
Affiliation(s)
- Laura Soto-Sierra
- Molecular Templates, Inc. (MTEM), Austin, TX, United States
- Texas A&M University, College Station, TX, United States
- *Correspondence: Laura Soto-Sierra, ; Zivko L. Nikolov,
| | - Zivko L. Nikolov
- Texas A&M University, College Station, TX, United States
- *Correspondence: Laura Soto-Sierra, ; Zivko L. Nikolov,
| |
Collapse
|
13
|
Kumar R, Hegde AS, Sharma K, Parmar P, Srivatsan V. Microalgae as a sustainable source of edible proteins and bioactive peptides – Current trends and future prospects. Food Res Int 2022; 157:111338. [DOI: 10.1016/j.foodres.2022.111338] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 12/23/2022]
|
14
|
Gkioni MD, Andriopoulos V, Koutra E, Hatziantoniou S, Kornaros M, Lamari FN. Ultrasound-Assisted Extraction of Nannochloropsis oculata with Ethanol and Betaine: 1,2-Propanediol Eutectic Solvent for Antioxidant Pigment-Rich Extracts Retaining Nutritious the Residual Biomass. Antioxidants (Basel) 2022; 11:antiox11061103. [PMID: 35740000 PMCID: PMC9220189 DOI: 10.3390/antiox11061103] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/23/2022] [Accepted: 05/29/2022] [Indexed: 02/04/2023] Open
Abstract
The aim of this study was the development of an efficient “green” extraction method of Nannochloropsis oculata to produce antioxidant extracts and nutritious residual biomass. Twenty-one extraction methods were evaluated by measuring the reactivity with the Folin–Ciocalteu reagent: ultrasonication or maceration at different temperatures with different organic solvents, extraction at different pH values, enzyme-assisted extraction, encapsulation with β-cyclodextrin, and the use of natural deep eutectic solvents. Ultrasound-assisted extraction with ethanol or betaine: 1,2-propanediol in a molar ratio of 2:5 (BP) had optimal extractive capacity. Both extracts were evaluated with antioxidant assays and the ethanol extract exhibited significantly higher (at least twofold) values. The determination of carotenoids by LC-MS and HPLC-DAD revealed the dominance of violaxanthin and antheraxanthin and their fourfold higher concentrations in the ethanol extract. The 1H-NMR characterization of the ethanol extract confirmed the results of the colorimetric and chromatographic assays. The microalgal biomass was characterized before and after the extraction in terms of humidity, ash, carbohydrates, proteins, chlorophyll-a, carotenoids, and lipids; the identity and content of the latter were determined with gas chromatography. BP caused a smaller depletion of the lipids from the biomass compared to ethanol, but proteins, carbohydrates, and ash were at a higher content in the biomass obtained after ethanol extraction, whereas the biomass was dry and easy to handle. Although further optimization may take place for the scale-up of those procedures, our study paves the way for a green strategy for the valorization of microalgae in cosmetics without generating waste, since the remaining biomass can be used for aquafeed.
Collapse
Affiliation(s)
- Maria D. Gkioni
- Department of Pharmacy, School of Health Sciences, University of Patras, 26504 Patras, Greece; (M.D.G.); (S.H.)
| | - Vasilis Andriopoulos
- Department of Chemical Engineering, School of Engineering, University of Patras, 26504 Patras, Greece; (V.A.); (E.K.); (M.K.)
| | - Eleni Koutra
- Department of Chemical Engineering, School of Engineering, University of Patras, 26504 Patras, Greece; (V.A.); (E.K.); (M.K.)
| | - Sophia Hatziantoniou
- Department of Pharmacy, School of Health Sciences, University of Patras, 26504 Patras, Greece; (M.D.G.); (S.H.)
| | - Michael Kornaros
- Department of Chemical Engineering, School of Engineering, University of Patras, 26504 Patras, Greece; (V.A.); (E.K.); (M.K.)
| | - Fotini N. Lamari
- Department of Pharmacy, School of Health Sciences, University of Patras, 26504 Patras, Greece; (M.D.G.); (S.H.)
- Correspondence: ; Tel.: +30-2610962335
| |
Collapse
|
15
|
Ribeiro C, Santos ET, Costa L, Brazinha C, Saraiva P, Crespo JG. Nannochloropsis sp. Biorefinery: Recovery of Soluble Protein by Membrane Ultrafiltration/Diafiltration. MEMBRANES 2022; 12:membranes12040401. [PMID: 35448371 PMCID: PMC9032216 DOI: 10.3390/membranes12040401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 11/16/2022]
Abstract
This work proposes a way to maximize the potential of a Nannochloropsis sp. biorefinery process, through membrane technology, producing an extract enriched in soluble proteins, free from the insoluble protein fraction, with a low lipid content and eliminating the colored chlorophyll-a. This procedure, following the principles of a circular economy approach, allows for the valorization of a stream from the biorefining of Nannochloropsis sp. that, otherwise, would be considered a residue without commercial value. The process proposed minimizes fouling phenomena at the membrane surface, making it possible to achieve high permeate fluxes, thus reducing the need for membrane cleaning and, therefore, contributing to an extended membrane lifetime. Supernatant obtained after centrifugation of a suspension of ruptured Nannochloropsis sp. cells was processed by ultrafiltration using a membrane with a cut-off of 100 kDa MWCO. Two different operating approaches were evaluated—controlled transmembrane pressure and controlled permeate flux—under concentration and diafiltration modes. Ultrafiltration operated in a diafiltration mode, under controlled permeate flux conditions, led to the highest soluble protein recovery (78%) with the highest constant permeate flux (12 L·m−2·h−1) and low membrane fouling.
Collapse
Affiliation(s)
- Cláudia Ribeiro
- LAQV/Requimte, Department of Chemistry, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (C.R.); (J.G.C.)
- A4F—Algae for Future, Campus do Lumiar, Estrada do Paço do Lumiar, Edif. E, R/C, 1649-038 Lisboa, Portugal;
| | - Edgar T. Santos
- A4F—Algae for Future, Campus do Lumiar, Estrada do Paço do Lumiar, Edif. E, R/C, 1649-038 Lisboa, Portugal;
- Correspondence: (E.T.S.); (C.B.); Tel.: +351-21-807-24-99 (E.T.S.); +351-21-294-83-85 (C.B.)
| | - Luís Costa
- A4F—Algae for Future, Campus do Lumiar, Estrada do Paço do Lumiar, Edif. E, R/C, 1649-038 Lisboa, Portugal;
| | - Carla Brazinha
- LAQV/Requimte, Department of Chemistry, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (C.R.); (J.G.C.)
- Correspondence: (E.T.S.); (C.B.); Tel.: +351-21-807-24-99 (E.T.S.); +351-21-294-83-85 (C.B.)
| | - Pedro Saraiva
- CIEPQPF, Chemical Engineering Department, FCT, University of Coimbra, 3030-790 Coimbra, Portugal;
- Dean of NOVA IMS, NOVA University of Lisbon, 1070-312 Lisboa, Portugal
| | - João G. Crespo
- LAQV/Requimte, Department of Chemistry, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (C.R.); (J.G.C.)
| |
Collapse
|
16
|
Liu S, Rouquié C, Lavenant L, Frappart M, Couallier E. Coupling bead-milling and microfiltration for the recovery of lipids and proteins from Parachlorella kessleri: Impact of the cell disruption conditions on the separation performances. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
17
|
NaCl precleaning of microfiltration membranes fouled with oil-in-water emulsions: Impact on fouling dislodgment. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
18
|
Blanco-Llamero C, García-García P, Señoráns FJ. Cross-Linked Enzyme Aggregates and Their Application in Enzymatic Pretreatment of Microalgae: Comparison Between CLEAs and Combi-CLEAs. Front Bioeng Biotechnol 2021; 9:794672. [PMID: 34957082 PMCID: PMC8696024 DOI: 10.3389/fbioe.2021.794672] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/08/2021] [Indexed: 01/22/2023] Open
Abstract
Carrier-free immobilization is a key process to develop efficient biocatalysts able to catalyze the cell wall degradation in microalgae where the traditional solid supports cannot penetrate. Thus, the insolubilization of commercial Celluclast®, Alcalase®, and Viscozyme® enzymes by carrier-free immobilization and their application in microalgae pretreatment was investigated. In this study, different precipitants at different ratios (ethanol, acetone, and polyethylene glycol 4000) were tested in the first part of the method, to establish the precipitation conditions. The screening of the best precipitant is needed as it depends on the nature of the enzyme. The best results were studied in terms of immobilization yield, thermal stability, and residual activity and were analyzed using scanning electron microscopy. Moreover, a novel strategy was intended including the three enzymes (combi-CLEAs) to catalyze the enzymatic degradation of Nannochloropsis gaditana microalgal cell wall in one pot. The carrier-free immobilized derivatives were 10 times more stable compared to soluble enzymes under the same. At the best conditions showed its usefulness in the pretreatment of microalgae combined with ultrasounds, facilitating the cell disruption and lipid recovery. The results obtained suggested the powerful application of these robust biocatalysts with great catalytic properties on novel and sustainable biomass such as microalgae to achieve cost-effective and green process to extract valuable bioactive compounds.
Collapse
Affiliation(s)
- Cristina Blanco-Llamero
- Healthy Lipids Group, Departmental Section of Food Sciences, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
| | - Paz García-García
- Healthy Lipids Group, Departmental Section of Food Sciences, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
| | - Francisco Javier Señoráns
- Healthy Lipids Group, Departmental Section of Food Sciences, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
19
|
Recovery of soluble proteins from Chlorella vulgaris by bead-milling and microfiltration: Impact of the concentration and the physicochemical conditions during the cell disruption on the whole process. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.05.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Madadi R, Maljaee H, Serafim LS, Ventura SPM. Microalgae as Contributors to Produce Biopolymers. Mar Drugs 2021; 19:md19080466. [PMID: 34436305 PMCID: PMC8398342 DOI: 10.3390/md19080466] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/09/2021] [Accepted: 08/16/2021] [Indexed: 12/15/2022] Open
Abstract
Biopolymers are very favorable materials produced by living organisms, with interesting properties such as biodegradability, renewability, and biocompatibility. Biopolymers have been recently considered to compete with fossil-based polymeric materials, which rase several environmental concerns. Biobased plastics are receiving growing interest for many applications including electronics, medical devices, food packaging, and energy. Biopolymers can be produced from biological sources such as plants, animals, agricultural wastes, and microbes. Studies suggest that microalgae and cyanobacteria are two of the promising sources of polyhydroxyalkanoates (PHAs), cellulose, carbohydrates (particularly starch), and proteins, as the major components of microalgae (and of certain cyanobacteria) for producing bioplastics. This review aims to summarize the potential of microalgal PHAs, polysaccharides, and proteins for bioplastic production. The findings of this review give insight into current knowledge and future direction in microalgal-based bioplastic production considering a circular economy approach. The current review is divided into three main topics, namely (i) the analysis of the main types and properties of bioplastic monomers, blends, and composites; (ii) the cultivation process to optimize the microalgae growth and accumulation of important biobased compounds to produce bioplastics; and (iii) a critical analysis of the future perspectives on the field.
Collapse
Affiliation(s)
- Rozita Madadi
- Department of Agricultural Biotechnology, University College of Agriculture and Natural Resources, University of Tehran, Karaj 77871-31587, Iran;
| | - Hamid Maljaee
- CICECO—Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (H.M.); (L.S.S.)
| | - Luísa S. Serafim
- CICECO—Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (H.M.); (L.S.S.)
- Chemistry Department, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Sónia P. M. Ventura
- CICECO—Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (H.M.); (L.S.S.)
- Chemistry Department, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- Correspondence:
| |
Collapse
|
21
|
Blanco-Llamero C, García-García P, Señoráns FJ. Combination of Synergic Enzymes and Ultrasounds as an Effective Pretreatment Process to Break Microalgal Cell Wall and Enhance Algal Oil Extraction. Foods 2021; 10:foods10081928. [PMID: 34441705 PMCID: PMC8392219 DOI: 10.3390/foods10081928] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 12/25/2022] Open
Abstract
Microalgal biomass is a sustainable source of bioactive lipids with omega-3 fatty acids. The efficient extraction of neutral and polar lipids from microalgae requires alternative extraction methods, frequently combined with biomass pretreatment. In this work, a combined ultrasound and enzymatic process using commercial enzymes Viscozyme, Celluclast, and Alcalase was optimized as a pretreatment method for Nannochloropsis gaditana, where the Folch method was used for lipid extraction. Significant differences were observed among the used enzymatic pretreatments, combined with ultrasound bath or probe-type sonication. To further optimize this method, ranges of temperatures (35, 45, and 55 °C) and pH (4, 5, and 8) were tested, and enzymes were combined at the best conditions. Subsequently, simultaneous use of three hydrolytic enzymes rendered oil yields of nearly 29%, showing a synergic effect. To compare enzymatic pretreatments, neutral and polar lipids distribution of Nannochloropsis was determined by HPLC-ELSD. The highest polar lipids content was achieved employing ultrasound-assisted enzymatic pretreatment (55 °C and 6 h), whereas the highest glycolipid (44.54%) and PE (2.91%) contents were achieved using Viscozyme versus other enzymes. The method was applied to other microalgae showing the potential of the optimized process as a practical alternative to produce valuable lipids for nutraceutical applications.
Collapse
|
22
|
Castro-Muñoz R, García-Depraect O. Membrane-Based Harvesting Processes for Microalgae and Their Valuable-Related Molecules: A Review. MEMBRANES 2021; 11:membranes11080585. [PMID: 34436347 PMCID: PMC8400455 DOI: 10.3390/membranes11080585] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 11/21/2022]
Abstract
The interest in microalgae production deals with its role as the third generation of feedstock to recover renewable energy. Today, there is a need to analyze the ultimate research and advances in recovering the microalgae biomass from the culture medium. Therefore, this review brings the current research developments (over the last three years) in the field of harvesting microalgae using membrane-based technologies (including microfiltration, ultrafiltration and forward osmosis). Initially, the principles of membrane technologies are given to outline the main parameters influencing their operation. The main strategies adopted by the research community for the harvesting of microalgae using membranes are subsequently addressed, paying particular attention to the novel achievements made for improving filtration performance and alleviating fouling. Moreover, this contribution also gives an overview of the advantages of applying membrane technologies for the efficient extraction of the high added-value compounds in microalgae cells, such as lipids, proteins and carbohydrates, which together with the production of renewable biofuels could boost the development of more sustainable and cost-effective microalgae biorefineries.
Collapse
Affiliation(s)
- Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca, Avenida Eduardo Monroy Cárdenas 2000 San Antonio Buenavista, Toluca de Lerdo 50110, Mexico
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 11/12 Narutowicza St., 80-233 Gdansk, Poland
- Correspondence: (R.C.-M.); (O.G.-D.)
| | - Octavio García-Depraect
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
- Correspondence: (R.C.-M.); (O.G.-D.)
| |
Collapse
|
23
|
Life cycle assessment with parameterised inventory to derive target values for process parameters of microalgae biorefineries. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
24
|
Fu Y, Chen T, Chen SHY, Liu B, Sun P, Sun H, Chen F. The potentials and challenges of using microalgae as an ingredient to produce meat analogues. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.050] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Balti R, Zayoud N, Hubert F, Beaulieu L, Massé A. Fractionation of Arthrospira platensis (Spirulina) water soluble proteins by membrane diafiltration. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117756] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
26
|
Bertsch P, Böcker L, Mathys A, Fischer P. Proteins from microalgae for the stabilization of fluid interfaces, emulsions, and foams. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.12.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
27
|
Nitsos C, Filali R, Taidi B, Lemaire J. Current and novel approaches to downstream processing of microalgae: A review. Biotechnol Adv 2020; 45:107650. [PMID: 33091484 DOI: 10.1016/j.biotechadv.2020.107650] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 10/02/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023]
Abstract
Biotechnological application of microalgae cultures at large scale has significant potential in the various fields of biofuels, food and feed, cosmetic, pharmaceutic, environmental remediation and water treatment. Despite this great potential application, industrialisation of microalgae culture and valorisation is still faced with serious remaining challenges in culture scale-up, harvesting and extraction of target molecules. This review presents a general summary of current techniques for harvesting and extraction of biomolecules from microalgae, their relative merits and potential for industrial application. The cell wall composition and its impact on microalgae cell disruption is discussed. Additionally, more recent progress and promising experimental methods and studies are summarised that would allow the reader to further investigate the state of the art. A final survey of energetic assessments of the different techniques is also made. Bead milling and high-pressure homogenisation seem to give clear advantages in terms of target high value compounds extraction from microalgae, with enzyme hydrolysis as a promising emerging technique. Future industrialisation of microalgae for high scale biotechnological processing will require the establishment of universal comparison-standards that would enable easy assessment of one technique against another.
Collapse
Affiliation(s)
- Christos Nitsos
- LGPM, CentraleSupélec, SFR Condorcet FR CNRS 3417, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), Université paris-Saclay, 3 rue des Rouges Terres, 51110 Pomacle, France.
| | - Rayen Filali
- LGPM, CentraleSupélec, SFR Condorcet FR CNRS 3417, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), Université paris-Saclay, 3 rue des Rouges Terres, 51110 Pomacle, France.
| | - Behnam Taidi
- LGPM, CentraleSupélec, Unierstiy of Paris Sacaly, Bât Gustave Eiffel, 3 rue Joliot Curie, 91190 Gif-sur-Yvette, France.
| | - Julien Lemaire
- LGPM, CentraleSupélec, SFR Condorcet FR CNRS 3417, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), Université paris-Saclay, 3 rue des Rouges Terres, 51110 Pomacle, France.
| |
Collapse
|
28
|
Gifuni I, Lavenant L, Pruvost J, Masse A. Recovery of microalgal protein by three-steps membrane filtration: Advancements and feasibility. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.102082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
29
|
Dolganyuk V, Belova D, Babich O, Prosekov A, Ivanova S, Katserov D, Patyukov N, Sukhikh S. Microalgae: A Promising Source of Valuable Bioproducts. Biomolecules 2020; 10:E1153. [PMID: 32781745 PMCID: PMC7465300 DOI: 10.3390/biom10081153] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 12/20/2022] Open
Abstract
Microalgae are a group of autotrophic microorganisms that live in marine, freshwater and soil ecosystems and produce organic substances in the process of photosynthesis. Due to their high metabolic flexibility, adaptation to various cultivation conditions as well as the possibility of rapid growth, the number of studies on their use as a source of biologically valuable products is growing rapidly. Currently, integrated technologies for the cultivation of microalgae aiming to isolate various biologically active substances from biomass to increase the profitability of algae production are being sought. To implement this kind of development, the high productivity of industrial cultivation systems must be accompanied by the ability to control the biosynthesis of biologically valuable compounds in conditions of intensive culture growth. The review considers the main factors (temperature, pH, component composition, etc.) that affect the biomass growth process and the biologically active substance synthesis in microalgae. The advantages and disadvantages of existing cultivation methods are outlined. An analysis of various methods for the isolation and overproduction of the main biologically active substances of microalgae (proteins, lipids, polysaccharides, pigments and vitamins) is presented and new technologies and approaches aimed at using microalgae as promising ingredients in value-added products are considered.
Collapse
Affiliation(s)
- Vyacheslav Dolganyuk
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (V.D.); (D.B.); (O.B.); (D.K.); (N.P.); (S.S.)
| | - Daria Belova
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (V.D.); (D.B.); (O.B.); (D.K.); (N.P.); (S.S.)
| | - Olga Babich
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (V.D.); (D.B.); (O.B.); (D.K.); (N.P.); (S.S.)
- Laboratory of Biocatalysis, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia;
| | - Alexander Prosekov
- Laboratory of Biocatalysis, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia;
| | - Svetlana Ivanova
- Natural Nutraceutical Biotesting Laboratory, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia
- Department of General Mathematics and Informatics, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia
| | - Dmitry Katserov
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (V.D.); (D.B.); (O.B.); (D.K.); (N.P.); (S.S.)
| | - Nikolai Patyukov
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (V.D.); (D.B.); (O.B.); (D.K.); (N.P.); (S.S.)
| | - Stanislav Sukhikh
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (V.D.); (D.B.); (O.B.); (D.K.); (N.P.); (S.S.)
- Laboratory of Biocatalysis, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia;
| |
Collapse
|
30
|
Alavijeh RS, Karimi K, Wijffels RH, van den Berg C, Eppink M. Combined bead milling and enzymatic hydrolysis for efficient fractionation of lipids, proteins, and carbohydrates of Chlorella vulgaris microalgae. BIORESOURCE TECHNOLOGY 2020; 309:123321. [PMID: 32305840 DOI: 10.1016/j.biortech.2020.123321] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
A combined bead milling and enzymatic hydrolysis process was developed for fractionation of the major valuable biomass components, i.e., proteins, carbohydrates, and lipids from the microalgae Chlorella vulgaris. The cells were treated by bead milling followed by hydrolysis with different hydrolytic enzymes, including lipase, phospholipase, protease, and cellulase. Without enzymatic hydrolysis, the recovery yield of lipids, carbohydrates, and proteins for bead milled biomass was 75%, 31%, and 40%, respectively, while by applying enzymatic treatments these results were improved significantly. The maximum recovery yield for all components was obtained after enzymatic hydrolysis of bead milled biomass by lipase at 37 °C and pH 7.4 for 24 h, yielding 88% lipids in the solid phase while 74% carbohydrate and 68% protein were separated in the liquid phase. The recovery yield of components after enzymatic hydrolysis of biomass without bead milling was 44% lower than that of the milled biomass.
Collapse
Affiliation(s)
- Razieh Shafiei Alavijeh
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; Bioprocess Engineering, Wageningen University, PO Box 16, 6700 AA Wageningen, The Netherlands
| | - Keikhosro Karimi
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; Industrial Biotechnology Group, Research Institute for Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Rene H Wijffels
- Bioprocess Engineering, Wageningen University, PO Box 16, 6700 AA Wageningen, The Netherlands; Faculty of Biosciences and Aquaculture, Nord University, Kongens gate 42, 8049 Bodø, Norway
| | - Corjan van den Berg
- Bioprocess Engineering, Wageningen University, PO Box 16, 6700 AA Wageningen, The Netherlands
| | - Michel Eppink
- Bioprocess Engineering, Wageningen University, PO Box 16, 6700 AA Wageningen, The Netherlands.
| |
Collapse
|
31
|
Sarkar S, Manna MS, Bhowmick TK, Gayen K. Priority-based multiple products from microalgae: review on techniques and strategies. Crit Rev Biotechnol 2020; 40:590-607. [DOI: 10.1080/07388551.2020.1753649] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Sambit Sarkar
- Department of Chemical Engineering, National Institute of Technology Agartala, Agartala, India
| | - Mriganka Sekhar Manna
- Department of Chemical Engineering, National Institute of Technology Agartala, Agartala, India
| | - Tridib Kumar Bhowmick
- Department of Bioengineering, National Institute of Technology Agartala, Agartala, India
| | - Kalyan Gayen
- Department of Chemical Engineering, National Institute of Technology Agartala, Agartala, India
| |
Collapse
|
32
|
Safi C, Olivieri G, Engelen-Smit N, Spekking W, Veloo R, den Broek LAMV, Sijtsma L. Effect of growth conditions on the efficiency of cell disruption of Neochloris oleoabundans. BIORESOURCE TECHNOLOGY 2020; 300:122699. [PMID: 31901515 DOI: 10.1016/j.biortech.2019.122699] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 06/10/2023]
Abstract
The impact of four different growth conditions on the cell disruption efficiency of Neochloris oleoabundans was investigated. A mechanical and biological cell disruption methods were evaluated separately and combined. It has been established that microalgae grown in marine water under nitrogen deprivation were the most resistant against cell disruption methods and released the lowest amount of proteins. The release of lipids, however, followed the "hindered molecule diffusion phenomenon" because it did not follow the same release pattern as proteins. The enzymatic treatment was efficient enough to release the majority of the proteins without combining it with high-pressure homogenization. Regarding energy input, Neochloris oleoabundans grown in marine water under nitrogen deprivation required the highest energy input to release proteins (Ep = 13.76 kWh.kg-1) and to break the cells by high-pressure homogenization (Ex - HPH = 1.14 kWh.kg-1) or by the combination of enzymes and High-pressure homogenization (Ex - ENZ = 2.79 kWh.kg-1).
Collapse
Affiliation(s)
- C Safi
- Wageningen Food & Biobased Research, Wageningen University and Research, PO Box 17, 6700 AA Wageningen, The Netherlands.
| | - G Olivieri
- Bioprocess Engineering Group, AlgaePARC, Wageningen University and Research, Droevendaalsesteeg 1, P.O. Box 8129, 6708 PB Wageningen, The Netherlands; Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale - Università degli Studi di Napoli Federico II - Piazzale V, Tecchio 80, 80125 Napoli, Italy
| | - N Engelen-Smit
- Wageningen Food & Biobased Research, Wageningen University and Research, PO Box 17, 6700 AA Wageningen, The Netherlands
| | - W Spekking
- Wageningen Food & Biobased Research, Wageningen University and Research, PO Box 17, 6700 AA Wageningen, The Netherlands
| | - R Veloo
- Wageningen Food & Biobased Research, Wageningen University and Research, PO Box 17, 6700 AA Wageningen, The Netherlands
| | - L A M van den Broek
- Wageningen Food & Biobased Research, Wageningen University and Research, PO Box 17, 6700 AA Wageningen, The Netherlands
| | - L Sijtsma
- Wageningen Food & Biobased Research, Wageningen University and Research, PO Box 17, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
33
|
Cross-flow filtration for the recovery of lipids from microalgae aqueous extracts: Membrane selection and performances. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.10.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Grossmann L, Hinrichs J, Weiss J. Cultivation and downstream processing of microalgae and cyanobacteria to generate protein-based technofunctional food ingredients. Crit Rev Food Sci Nutr 2019; 60:2961-2989. [DOI: 10.1080/10408398.2019.1672137] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Lutz Grossmann
- Department of Food Physics and Meat Science, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Jörg Hinrichs
- Department of Soft Matter Science and Dairy Technology, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Jochen Weiss
- Department of Food Physics and Meat Science, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
35
|
Evidence of the production of galactooligosaccharide from whey permeate by the microalgae Tetradesmus obliquus. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101470] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
36
|
Main Variables Affecting a Chemical-Enzymatic Method to Obtain Protein and Amino Acids from Resistant Microalgae. J CHEM-NY 2019. [DOI: 10.1155/2019/1390463] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The development of microalgae uses requires further investigation in cell disruption alternatives to reduce the costs associated to this processing stage. This study aimed to evaluate the main variables affecting an extraction method to obtain protein and amino acids from microalgae. The method was based on a sequential alkaline-enzymatic process, with separate extractions and noncontrolled pH, and was applied to fresh biomass of a resistant species. The processed microalgae were composed of a consortium with Nannochloropsis sp. as predominant species. After the optimization of the pH of the alkaline reaction, the effect of the time of the alkaline reaction (30–120 min), the time (30–120 min) and temperature (40–60°C) of the enzymatic reaction, and the biomass concentration (50–150 mg·ml−1), on the extraction yields of protein and free amino nitrogen (FAN) and on the final concentration of protein in the extract, was studied using a response surface methodology. Even though all the variables and some interactions among them had a significant effect, the biomass concentration was the most important factor affecting the overall process. The results showed relevant information about the different options in order to maximize not only the response variables individually but also different combinations of them. Assays with optimized values reached maximum yields of 80.3% and 1.07% of protein (% of total protein) and FAN (% of total biomass), respectively, and a protein concentration in the extract of 15.2 mg·ml−1. The study provided the essential information of an alternative approach to obtain protein and amino acids from fresh biomass of resistant microalgae with a high yield, also opening perspectives for further research in particular aspects.
Collapse
|
37
|
Current Bottlenecks and Challenges of the Microalgal Biorefinery. Trends Biotechnol 2019; 37:242-252. [DOI: 10.1016/j.tibtech.2018.09.006] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/08/2018] [Accepted: 09/13/2018] [Indexed: 01/02/2023]
|
38
|
|
39
|
Zhang R, Parniakov O, Grimi N, Lebovka N, Marchal L, Vorobiev E. Emerging techniques for cell disruption and extraction of valuable bio-molecules of microalgae Nannochloropsis sp. Bioprocess Biosyst Eng 2018; 42:173-186. [PMID: 30470909 DOI: 10.1007/s00449-018-2038-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/02/2018] [Indexed: 12/16/2022]
Abstract
Microalgae of Nannochloropsis sp. present valuable source of bio-molecules (pigments, lipids, proteins) that have nutritional potential for the prevention and treatment of human diseases. Moreover, some species of Nannochloropsis are the promising sources of biofuels and excellent candidates for the replacement of classical biofuel crops. This review describes and compares the efficiency of different conventional and novel techniques that can be used for cell disruption and recovery of bio-molecules from Nannochloropsis sp. Classification of different extraction techniques includes chemical, enzymatic, mechanical and other physical methods. The detailed analysis of extraction efficiency assisted by pressure and temperature (subcritical and supercritical fluids, hydrothermal liquefaction), ultrasound, microwaves, and pulsed electric energy (pulsed electric fields and high voltage electrical discharges) is presented. The general discussion includes comparison between techniques, their effectiveness for cell disruption and selectivity of bio-molecules extraction from Nannochloropsis sp. The cost-effectiveness, benefits and limitations of different techniques are also analyzed.
Collapse
Affiliation(s)
- Rui Zhang
- Laboratoire de Transformations Intégrées de la Matière Renouvelable, EA 4297, Centre de Recherches de Royallieu, Sorbonne Universités, Université de Technologie de Compiègne, BP 20529, 60205, Compiègne Cedex, France.
| | - Oleksii Parniakov
- Laboratoire de Transformations Intégrées de la Matière Renouvelable, EA 4297, Centre de Recherches de Royallieu, Sorbonne Universités, Université de Technologie de Compiègne, BP 20529, 60205, Compiègne Cedex, France
| | - Nabil Grimi
- Laboratoire de Transformations Intégrées de la Matière Renouvelable, EA 4297, Centre de Recherches de Royallieu, Sorbonne Universités, Université de Technologie de Compiègne, BP 20529, 60205, Compiègne Cedex, France
| | - Nikolai Lebovka
- Laboratoire de Transformations Intégrées de la Matière Renouvelable, EA 4297, Centre de Recherches de Royallieu, Sorbonne Universités, Université de Technologie de Compiègne, BP 20529, 60205, Compiègne Cedex, France.,Institute of Biocolloidal Chemistry named after F. D. Ovcharenko, NAS of Ukraine, 42, blvr. Vernadskogo, Kyiv, 03142, Ukraine
| | - Luc Marchal
- LUNAM Université, CNRS, GEPEA, Université de Nantes, UMR6144, CRTT, Boulevard de l'Université, BP 406, 44602, Saint-Nazaire Cedex, France
| | - Eugène Vorobiev
- Laboratoire de Transformations Intégrées de la Matière Renouvelable, EA 4297, Centre de Recherches de Royallieu, Sorbonne Universités, Université de Technologie de Compiègne, BP 20529, 60205, Compiègne Cedex, France
| |
Collapse
|
40
|
Suarez Garcia E, van Leeuwen J, Safi C, Sijtsma L, Eppink MHM, Wijffels RH, van den Berg C. Selective and energy efficient extraction of functional proteins from microalgae for food applications. BIORESOURCE TECHNOLOGY 2018; 268:197-203. [PMID: 30077880 DOI: 10.1016/j.biortech.2018.07.131] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 06/08/2023]
Abstract
The use of a single controlled bead milling step of the microalga Tetraselmis suecica resulted in a soluble fraction, rich in functional proteins. This was achieved by fine-tuning the processing time, thereby exploiting the difference in rates of protein and carbohydrate release during milling. Soluble proteins were extracted under mild conditions -room temperature, no addition of chemicals, pH 6.5-, with a yield of 22.5% and a specific energy consumption of 0.6 kWh kgDW-1, which is within the recommended minimum energy for an extraction step in a biorefinery process. The resulting protein extract contained 50.4% (DW) of proteins and 26.4% carbohydrates, showed light green color and displayed superior surface activity and gelation behavior compared to whey protein isolate. The proposed process is simple (only one bead milling step), scalable, and allows the mild extraction of functional proteins, making it interesting for industrial applications in the food industry.
Collapse
Affiliation(s)
- E Suarez Garcia
- Bioprocess Engineering, AlgaePARC, Wageningen University and Research, PO Box 16, 6700 AA Wageningen, The Netherlands.
| | - J van Leeuwen
- Wageningen Food & Biobased Research, Wageningen University and Research, PO Box 17, 6700 AA Wageningen, The Netherlands
| | - C Safi
- Wageningen Food & Biobased Research, Wageningen University and Research, PO Box 17, 6700 AA Wageningen, The Netherlands
| | - L Sijtsma
- Wageningen Food & Biobased Research, Wageningen University and Research, PO Box 17, 6700 AA Wageningen, The Netherlands
| | - M H M Eppink
- Bioprocess Engineering, AlgaePARC, Wageningen University and Research, PO Box 16, 6700 AA Wageningen, The Netherlands
| | - R H Wijffels
- Bioprocess Engineering, AlgaePARC, Wageningen University and Research, PO Box 16, 6700 AA Wageningen, The Netherlands; Nord University, Faculty of Biosciences and Aquaculture, N-8049 Bodø, Norway
| | - C van den Berg
- Bioprocess Engineering, AlgaePARC, Wageningen University and Research, PO Box 16, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
41
|
Liao Y, Bokhary A, Maleki E, Liao B. A review of membrane fouling and its control in algal-related membrane processes. BIORESOURCE TECHNOLOGY 2018; 264:343-358. [PMID: 29983228 DOI: 10.1016/j.biortech.2018.06.102] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 06/23/2018] [Accepted: 06/28/2018] [Indexed: 06/08/2023]
Abstract
Membrane technologies have received much attention in microalgae biorefinery for nutrients removal from wastewater, carbon dioxide abatement from the air as well as the production of value-added products and biofuel in recent years. This paper provides a state-of-the-art review on membrane fouling issues and its control in membrane photobioreactors (MPBRs) and other algal-related membrane processes (harvesting, dewatering, and biofuel production). The mechanisms of membrane fouling and factors affecting membrane fouling in algal-related membrane processes are systematically reviewed. Also, strategies to control membrane fouling in algal-related membrane processes are summarized and discussed. Finally, the gaps, challenges, and opportunities in membrane fouling control in algal-related membrane technologies are identified and discussed.
Collapse
Affiliation(s)
- Yichen Liao
- Department of Chemical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada
| | - Alnour Bokhary
- Department of Chemical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada
| | - Esmat Maleki
- Department of Chemical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada
| | - Baoqiang Liao
- Department of Chemical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada.
| |
Collapse
|
42
|
Garcia ES, van Leeuwen JJA, Safi C, Sijtsma L, van den Broek LAM, Eppink MHM, Wijffels RH, van den Berg C. Techno-Functional Properties of Crude Extracts from the Green Microalga Tetraselmis suecica. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:7831-7838. [PMID: 29976070 PMCID: PMC6150664 DOI: 10.1021/acs.jafc.8b01884] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/13/2018] [Accepted: 07/05/2018] [Indexed: 06/08/2023]
Abstract
A mild fractionation process to extract functional biomolecules from green microalgae was implemented. The process includes bead milling, centrifugation, and filtration with several membrane cut-offs. For each fraction, the corresponding composition was measured, and the surface activity and gelation behavior were determined. A maximum protein yield of 12% was obtained in the supernatant after bead milling and between 3.2 and 11.7% after filtration. Compared to whey protein isolate, most of the algae fractions exhibited comparable or enhanced functionality. Surface activity for air-water and oil-water interfaces and gelation activities were notably superior for the retentate fractions compared to the permeates. It is proposed that such functionality in the retentates is due to the presence of hydrophobic compounds and molecular complexes exhibiting a similar behavior as Pickering particles. We demonstrated that excellent functionality can be obtained with crude fractions, requiring minimum processing and, thus, constituting an interesting option for commercial applications.
Collapse
Affiliation(s)
- E. Suarez Garcia
- Bioprocess
Engineering, AlgaePARC, Wageningen University
and Research, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - J. J. A. van Leeuwen
- Wageningen
Food & Biobased Research, Wageningen
University and Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - C. Safi
- Wageningen
Food & Biobased Research, Wageningen
University and Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - L. Sijtsma
- Wageningen
Food & Biobased Research, Wageningen
University and Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - L. A. M. van den Broek
- Wageningen
Food & Biobased Research, Wageningen
University and Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - M. H. M. Eppink
- Bioprocess
Engineering, AlgaePARC, Wageningen University
and Research, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - R. H. Wijffels
- Bioprocess
Engineering, AlgaePARC, Wageningen University
and Research, P.O. Box 16, 6700 AA Wageningen, The Netherlands
- Nord
University, Faculty of Biosciences and Aquaculture, N-8049 Bodø, Norway
| | - C. van den Berg
- Bioprocess
Engineering, AlgaePARC, Wageningen University
and Research, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
43
|
Sánchez-Camargo ADP, Pleite N, Mendiola JA, Cifuentes A, Herrero M, Gilbert-López B, Ibáñez E. Development of green extraction processes for Nannochloropsis gaditana biomass valorization. Electrophoresis 2018; 39:1875-1883. [PMID: 29683520 DOI: 10.1002/elps.201800122] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 04/09/2018] [Accepted: 04/09/2018] [Indexed: 11/11/2022]
Abstract
In the present work, the valorization of Nannochloropsis gaditana biomass is proposed within the concept of biorefinery. To this aim, high-pressure homogenization (HPH) was used to break down the strong cell wall and supercritical fluid extraction (SFE) with pure CO2 was applied as a first step to extract valuable compounds (such as non-polar lipids and pigments). Extraction of the remaining residue for the recovery of bioactive compounds was studied by means of an experimental design based on response surface methodology (RSM) employing pressurized liquid extraction (PLE) with green solvents such as water and ethanol. Optimum extract was achieved with pure ethanol at 170°C for 20 min, providing an important antioxidant capacity (0.72 ± 0.03 mmol trolox eq g-1 extract). Complete chemical characterization of the optimum extract was carried out by using different chromatographic methods such as reverse-phase high-performance liquid chromatography with diode array detection (RP-HPLC-DAD), normal-phase HPLC with evaporative light scattering detection (NP-HPLC-ELSD) and gas chromatography coupled to mass spectrometry detection (GC-MS); carotenoids (e.g. violaxanthin), chlorophylls and polar lipids were the main compounds observed while palmitoleic, palmitic, myristic acids and the polyunsaturated eicosapentanoic (EPA) acid were the predominant fatty acids in all PLE extracts.
Collapse
Affiliation(s)
| | - Natalia Pleite
- Laboratory of Foodomics, Institute of Food Science Research, CIAL (CSIC-UAM), Madrid, Spain
| | - José Antonio Mendiola
- Laboratory of Foodomics, Institute of Food Science Research, CIAL (CSIC-UAM), Madrid, Spain
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research, CIAL (CSIC-UAM), Madrid, Spain
| | - Miguel Herrero
- Laboratory of Foodomics, Institute of Food Science Research, CIAL (CSIC-UAM), Madrid, Spain
| | - Bienvenida Gilbert-López
- Analytical Chemistry Research Group (FQM-323), Department of Physical and Analytical Chemistry, University of Jaén, Jaén, Spain
| | - Elena Ibáñez
- Laboratory of Foodomics, Institute of Food Science Research, CIAL (CSIC-UAM), Madrid, Spain
| |
Collapse
|
44
|
Carullo D, Abera BD, Casazza AA, Donsì F, Perego P, Ferrari G, Pataro G. Effect of pulsed electric fields and high pressure homogenization on the aqueous extraction of intracellular compounds from the microalgae Chlorella vulgaris. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.01.017] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
45
|
Balduyck L, Bruneel C, Goiris K, Dejonghe C, Foubert I. Influence of High Pressure Homogenization on Free Fatty Acid Formation in Nannochloropsis
sp. EUR J LIPID SCI TECH 2018. [DOI: 10.1002/ejlt.201700436] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Lieselot Balduyck
- KU Leuven Kulak, Research Unit Food & Lipids; E. Sabbelaan 53 8500 Kortrijk Belgium
- Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven; Kasteelpark Arenberg 20 3001 Leuven Belgium
| | - Charlotte Bruneel
- KU Leuven Kulak, Research Unit Food & Lipids; E. Sabbelaan 53 8500 Kortrijk Belgium
- Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven; Kasteelpark Arenberg 20 3001 Leuven Belgium
| | - Koen Goiris
- KU Leuven Technology Campus Gent, Faculty of Engineering Technology, Department of Microbial and Molecular Systems (M2S), Cluster for Bioengineering Technology (CBeT), Laboratory of Enzyme, Fermentation, and Brewing Technology (EFBT); Gebroeders De Smetstraat 1 9000 Gent Belgium
| | - Céline Dejonghe
- KU Leuven Kulak, Research Unit Food & Lipids; E. Sabbelaan 53 8500 Kortrijk Belgium
- Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven; Kasteelpark Arenberg 20 3001 Leuven Belgium
| | - Imogen Foubert
- KU Leuven Kulak, Research Unit Food & Lipids; E. Sabbelaan 53 8500 Kortrijk Belgium
- Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven; Kasteelpark Arenberg 20 3001 Leuven Belgium
| |
Collapse
|
46
|
't Lam G, Vermuë M, Eppink M, Wijffels R, van den Berg C. Multi-Product Microalgae Biorefineries: From Concept Towards Reality. Trends Biotechnol 2018; 36:216-227. [DOI: 10.1016/j.tibtech.2017.10.011] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/12/2017] [Accepted: 10/18/2017] [Indexed: 10/18/2022]
|
47
|
Gorry PL, Sánchez L, Morales M. Microalgae Biorefineries for Energy and Coproduct Production. ENERGY FROM MICROALGAE 2018. [DOI: 10.1007/978-3-319-69093-3_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
48
|
Systematic hydrolysis of PIM-1 and electrospinning of hydrolyzed PIM-1 ultrafine fibers for an efficient removal of dye from water. REACT FUNCT POLYM 2017. [DOI: 10.1016/j.reactfunctpolym.2017.10.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
49
|
Chua ET, Schenk PM. A biorefinery for Nannochloropsis: Induction, harvesting, and extraction of EPA-rich oil and high-value protein. BIORESOURCE TECHNOLOGY 2017. [PMID: 28624245 DOI: 10.1016/j.biortech.2017.05.124] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Microalgae have been studied as biofactories for almost four decades. Yet, even until today, many aspects of microalgae farming and processing are still considered exploratory because of the uniqueness of each microalgal species. Thus, it is important to develop the entire process of microalgae farming: from culturing to harvesting, and down to extracting the desired high-value products. Based on its rapid growth and high oil productivities, Nannochloropsis sp. is of particular interest to many industries for the production of high-value oil containing omega-3 fatty acids, specifically eicosapentaenoic acid (EPA), but also several other products. This review compares the various techniques for induction, harvesting, and extraction of EPA-rich oil and high-value protein explored by academia and industry to develop a multi-product Nannochloropsis biorefinery. Knowledge gaps and opportunities are discussed for culturing and inducing fatty acid biosynthesis, biomass harvesting, and extracting EPA-rich oil and high-value protein from the biomass of Nannochloropsis sp.
Collapse
Affiliation(s)
- Elvis T Chua
- Algae Biotechnology Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Australia
| | - Peer M Schenk
- Algae Biotechnology Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
50
|
Safi C, Cabas Rodriguez L, Mulder WJ, Engelen-Smit N, Spekking W, van den Broek LAM, Olivieri G, Sijtsma L. Energy consumption and water-soluble protein release by cell wall disruption of Nannochloropsis gaditana. BIORESOURCE TECHNOLOGY 2017; 239:204-210. [PMID: 28521230 DOI: 10.1016/j.biortech.2017.05.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 05/01/2017] [Accepted: 05/02/2017] [Indexed: 06/07/2023]
Abstract
Several cell disruption methods were tested on Nannochloropsis gaditana, to evaluate their efficiency in terms of cell disintegration, energy input and release of soluble proteins. High-pressure homogenization (HPH) and bead milling were the most efficient with >95% cell disintegration, ±50% (w/w) release of total proteins and low energy input (<0.5kWh.kg-1biomass). Enzymatic treatment required low energy input (<0.34kWh.kg-1biomass), but it only released ±35% protein (w/w). Pulsed Electric Field (PEF) was neither energy-efficient (10.44kWh.kg-1biomass) nor successful for protein release (only 10% proteins w/w) and cell disintegration. The release of proteins after applying HPH and bead milling always required less intensive operating conditions for cell disruption. The energy cost per unit of released protein ranged from 0.15-0.25 €.kgProtein-1 in case of HPH, and up to 2-20 €.kgProtein-1 in case of PEF.
Collapse
Affiliation(s)
- C Safi
- Wageningen Food & Biobased Research, AlgaePARC, PO Box 17, 6700 AA Wageningen, The Netherlands.
| | - L Cabas Rodriguez
- Wageningen Food & Biobased Research, AlgaePARC, PO Box 17, 6700 AA Wageningen, The Netherlands
| | - W J Mulder
- Wageningen Food & Biobased Research, AlgaePARC, PO Box 17, 6700 AA Wageningen, The Netherlands
| | - N Engelen-Smit
- Wageningen Food & Biobased Research, AlgaePARC, PO Box 17, 6700 AA Wageningen, The Netherlands
| | - W Spekking
- Wageningen Food & Biobased Research, AlgaePARC, PO Box 17, 6700 AA Wageningen, The Netherlands
| | - L A M van den Broek
- Wageningen Food & Biobased Research, AlgaePARC, PO Box 17, 6700 AA Wageningen, The Netherlands
| | - G Olivieri
- Bioprocess Engineering, AlgaePARC, Wageningen University & Research, PO Box 16, 6700 AA Wageningen, The Netherlands; Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Piazzale V. Tecchio 80, 80125 Napoli, Italy
| | - L Sijtsma
- Wageningen Food & Biobased Research, AlgaePARC, PO Box 17, 6700 AA Wageningen, The Netherlands
| |
Collapse
|