1
|
Lau SH, Chang YT. Selective biodegradation of octylphenol polyethoxylates with different ethoxylate length chains by aerobic bacterial culture. CHEMOSPHERE 2024; 361:142538. [PMID: 38844102 DOI: 10.1016/j.chemosphere.2024.142538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/05/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Octylphenol polyethoxylates (OPEOn) are composed of a hydrophobic octylphenol (OP) group and a hydrophilic polyethylene oxide (EO) chain and are widely used in commercial products. Shorter EO chains and OPEOn biometabolites have been identified as endocrine-disrupting contaminants and can threaten biotic factors in the ecosystem. In this study, OPEOn at three EO lengths (TX-45, TX-114, and TX-165) were selected in monomer (MN) or micelle (MC) state for batch experiments under aerobic conditions, with results showing biodegradation rates of 90 % within 35-70 h. The pseudo-first-order constant (k) of OPEOn biodegradation was observed in the order TX-45 (0.1414 h-1) > TX-114 (0.0556 h-1) > TX-165 (0.0485 h-1), with biomineralisation reaching at least 80 % for all OPEOn. The selective biodegradation of EO chains was also measured, with initial accumulation of OPEO3 observed along with the depletion of longer EO chains for TX-45 and TX-114 in both the MN and MC states. A similar trend was observed for the MN state of TX-165, with OPEO3-OPEO9 observed to accumulate and reduced after 70 h. MC biodegradation was accomplished via the initial accumulation of OPEO3-OPEO9. The amounts of OPEO3 increased and others reduced; however, OPEO3 remained high at the end of biodegradation for TX-165. Bacterial community analysis indicated that the genera Sphingobium spp., Pseudomonas spp., Flavobacterium spp., Comamonas spp., and Sphingopyxis spp. dominate OPEOn biodegradation, and they have their roles during biodegradation, and the community-level physiological profile (CLPP) was also changed by biodegradation in both the MN and MC states.
Collapse
Affiliation(s)
- Sai Hung Lau
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Yi-Tang Chang
- Department of Microbiology, Soochow University, Taipei, 11102, Taiwan.
| |
Collapse
|
2
|
Cifre-Herrando M, Roselló-Márquez G, García-Antón J. Is photoelectrocatalysis an efficient process to degrade endocrine disruptors chemicals? ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 107:104420. [PMID: 38499263 DOI: 10.1016/j.etap.2024.104420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/14/2024] [Indexed: 03/20/2024]
Abstract
Endocrine disruptors chemicals (EDCs) pose significant health risks, including cancer, behavioral disorders, and infertility. In this study, we employed the photoelectrocatalysis (PEC) technique with optimized tungsten oxide (WO3) nanostructures as a photoanode to degrade three diverse EDCs: methiocarb, dimethyl phthalate, and 4-tert-butylphenol. PEC degradation tests were carried out for individual contaminants and a mixture of them, assessing efficiency across different EDC families. Ultra High-Performance Liquid Chromatography and Mass Spectrometry was used to control the course of the experiments. For individual solutions, 4-tert-butylphenol and methiocarb were 100% degraded at 1 hour of PEC degradation. Among the tested EDCs, dimethyl phthalate showed the highest resistance to degradation when treated individually. However, when assessed in a mixture with the other EDCs, the degradation efficiency of dimethyl phthalate increased compared to its individual treatment. Furthermore, four degradation intermediates were identified for each contaminant. Finally, toxicity tests revealed that the initial solution was more toxic than the samples treated for all the contaminants tested, except for the phthalate.
Collapse
Affiliation(s)
- M Cifre-Herrando
- Ingeniería Electroquímica y Corrosión (IEC), Instituto Universitario de Seguridad Industrial, Radiofísica y Medioambiental (ISIRYM), Universitat Politècnica de València, C/Camino de Vera, Valencia 46022, Spain
| | - G Roselló-Márquez
- Ingeniería Electroquímica y Corrosión (IEC), Instituto Universitario de Seguridad Industrial, Radiofísica y Medioambiental (ISIRYM), Universitat Politècnica de València, C/Camino de Vera, Valencia 46022, Spain
| | - J García-Antón
- Ingeniería Electroquímica y Corrosión (IEC), Instituto Universitario de Seguridad Industrial, Radiofísica y Medioambiental (ISIRYM), Universitat Politècnica de València, C/Camino de Vera, Valencia 46022, Spain.
| |
Collapse
|
3
|
Kuzikova IL, Medvedeva NG. Long-Chain Alkylphenol Biodegradation Potential of Soil Ascomycota. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2023; 511:228-234. [PMID: 37833577 DOI: 10.1134/s0012496623700515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/20/2023] [Accepted: 04/23/2023] [Indexed: 10/15/2023]
Abstract
A total of 11 ascomycete strains destructing technical nonylphenol (NP) and 4-tert-octylphenol (4-t-OP) were isolated from NP-contaminated soddy-podzolic loamy soil (Leningrad Region, Russia). The isolates proved capable of degrading NP and 4-t-OP at a high load (300 mg/L). The most efficient Fusarium solani strain 8F degraded alkylphenols (APs) both in cometabolic conditions and in the absence of additional carbon and energy sources. A decrease in APs was due to biodegradation or biotransformation by the strain and, to a minor extent, absorption by fungal cells. NP and 4-t-OP half-lives were, respectively, 3.5 and 6.4 h in cometabolic conditions and 9 and 19.7 h in the absence of additional carbon and energy sources. Amounts of the lipid peroxidation product malondialdehyde (MDA) and reduced glutathione (GSH) increased during NP and 4-t-OP biodegradation in cometabolic conditions by 1.7 and 2 times, respectively, as compared with a control. A high GSH level in F. solani 8F cells potentially implicated the metabolite in both AP biodegradation and strain resistance to oxidative stress. The study is the first to report on the NP and 4-t-OP degradation by the ascomycete F. solani in cometabolic conditions and in the absence of additional carbon and energy sources. The high AP degradation potential of soil ascomycetes was assumed to provide a basis for new environmentally safe bioremediation technologies for purification of soils and natural and waste waters contaminated with endocrine disruptors.
Collapse
Affiliation(s)
- I L Kuzikova
- St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS), 199178, St. Petersburg, Russia.
| | - N G Medvedeva
- St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS), 199178, St. Petersburg, Russia.
| |
Collapse
|
4
|
Noszczyńska M, Pacwa-Płociniczak M, Bondarczuk K, Piotrowska-Seget Z. The microbial removal of bisphenols in aquatic microcosms and associated alteration in bacterial community. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:85292-85304. [PMID: 37386218 PMCID: PMC10404205 DOI: 10.1007/s11356-023-28305-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023]
Abstract
The concept of the study resulted from numerous concerns around bisphenol A (BPA) and bisphenol S (BPS) in aquatic environments. In this study, river water and sediment microcosms highly polluted with bisphenols and bioaugmented with two BPs-removing bacterial strains were constructed. The study aimed to determine the rate of high-concentrated BPA and BPS (BPs) removal from river water and sediment microniches, and the effect of water bioaugmentation with bacterial consortium on the removal rates of these pollutants. Moreover, the impact of introduced strains and exposure to BPs on the structural and functional composition of the autochthonous bacterial communities was elucidated. Our findings indicate that the removal activity of autochthonous bacteria was sufficient for effectively BPA elimination and reducing BPS content in the microcosms. The number of introduced bacterial cells decreased continuously until day 40, and on consecutive sampling days, no bioaugmented cells were detected. Sequencing analysis of the total 16S rRNA genes revealed that the community composition in bioaugmented microcosms amended with BPs differed significantly from those treated either with bacteria or BPs. A metagenomic analysis found an increase in the abundance of proteins responsible for xenobiotics removal in BPs-amended microcosms. This study provides new insights into the effects of bioaugmentation with a bacterial consortium on bacterial diversity and BPs removal in aquatic environments.
Collapse
Affiliation(s)
- Magdalena Noszczyńska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland.
| | - Magdalena Pacwa-Płociniczak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland
| | - Kinga Bondarczuk
- Centre for Bioinformatics and Data Analysis, Medical University of Bialystok, Białystok, Poland
| | - Zofia Piotrowska-Seget
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland
| |
Collapse
|
5
|
Han JC, Ahmad M, Yousaf M, Rahman SU, Sharif HMA, Zhou Y, Yang B, Huang Y. Strategic analysis on development of simultaneous adsorption and catalytic biodegradation over advanced bio-carriers for zero-liquid discharge of industrial wastewater. CHEMOSPHERE 2023; 332:138871. [PMID: 37172628 DOI: 10.1016/j.chemosphere.2023.138871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/15/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023]
Abstract
With rapid industrial development, millions of tons of industrial wastewater are produced that contain highly toxic, carcinogenic, mutagenic compounds. These compounds may consist of high concentration of refractory organics with plentiful carbon and nitrogen. To date, a substantial proportion of industrial wastewater is discharged directly to precious water bodies due to the high operational costs associated with selective treatment methods. For example, many existing treatment processes rely on activated sludge-based treatments that only target readily available carbon using conventional microbes, with limited capacity for nitrogen and other nutrient removal. Therefore, an additional set-up is often required in the treatment chain to address residual nitrogen, but even after treatment, refractory organics persist in the effluents due to their low biodegradability. With the advancements in nanotechnology and biotechnology, novel processes such as adsorption and biodegradation have been developed, and one promising approach is integration of adsorption and biodegradation over porous substrates (bio-carriers). Regardless of recent focus in a few applied researches, the process assessment and critical analysis of this approach is still missing, and it highlights the urgency and importance of this review. This review paper discussed the development of the simultaneous adsorption and catalytic biodegradation (SACB) over a bio-carrier for the sustainable treatment of refractory organics. It provides insights into the physico-chemical characteristics of the bio-carrier, the development mechanism of SACB, stabilization techniques, and process optimization strategies. Furthermore, the most efficient treatment chain is proposed, and its technical aspects are critically analysed based on updated research. It is anticipated that this review will contribute to the knowledge of academia and industrialist for sustainable upgradation of existing industrial wastewater treatment plants.
Collapse
Affiliation(s)
- Jing-Cheng Han
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Muhammad Ahmad
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Maryam Yousaf
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Shafeeq Ur Rahman
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Hafiz Muhammad Adeel Sharif
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China; School of Electronic Science and Engineering, State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Yang Zhou
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Bo Yang
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yuefei Huang
- State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, 100084, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China.
| |
Collapse
|
6
|
Tan SW, Gooran N, Lim HM, Yoon BK, Jackman JA. Tethered Bilayer Lipid Membrane Platform for Screening Triton X-100 Detergent Replacements by Electrochemical Impedance Spectroscopy. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:874. [PMID: 36903751 PMCID: PMC10005542 DOI: 10.3390/nano13050874] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
In light of regulatory considerations, there are ongoing efforts to identify Triton X-100 (TX-100) detergent alternatives for use in the biological manufacturing industry to mitigate membrane-enveloped pathogen contamination. Until now, the efficacy of antimicrobial detergent candidates to replace TX-100 has been tested regarding pathogen inhibition in endpoint biological assays or probing lipid membrane disruption in real-time biophysical testing platforms. The latter approach has proven especially useful to test compound potency and mechanism of action, however, existing analytical approaches have been limited to studying indirect effects of lipid membrane disruption such as membrane morphological changes. A direct readout of lipid membrane disruption by TX-100 detergent alternatives would be more practical to obtain biologically relevant information to guide compound discovery and optimization. Herein, we report the use of electrochemical impedance spectroscopy (EIS) to investigate how TX-100 and selected replacement candidates-Simulsol SL 11W (Simulsol) and cetyltrimethyl ammonium bromide (CTAB)-affect the ionic permeability of tethered bilayer lipid membrane (tBLM) platforms. The EIS results revealed that all three detergents exhibited dose-dependent effects mainly above their respective critical micelle concentration (CMC) values while displaying distinct membrane-disruptive behaviors. TX-100 caused irreversible membrane disruption leading to complete solubilization, whereas Simulsol caused reversible membrane disruption and CTAB induced irreversible, partial membrane defect formation. These findings establish that the EIS technique is useful for screening the membrane-disruptive behaviors of TX-100 detergent alternatives with multiplex formatting possibilities, rapid response, and quantitative readouts relevant to antimicrobial functions.
Collapse
Affiliation(s)
- Sue Woon Tan
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Negin Gooran
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hye Min Lim
- School of Healthcare and Biomedical Engineering, Chonnam National University, Yeosu 59626, Republic of Korea
- Interdisciplinary Program of Biomedical Engineering, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Bo Kyeong Yoon
- School of Healthcare and Biomedical Engineering, Chonnam National University, Yeosu 59626, Republic of Korea
- Interdisciplinary Program of Biomedical Engineering, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Joshua A. Jackman
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
7
|
Optimized culture conditions facilitate the estrone biodegradation ability and laccase activity of Spirulina CPCC-695. Biodegradation 2023; 34:43-51. [PMID: 36396827 DOI: 10.1007/s10532-022-10005-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 11/01/2022] [Indexed: 11/19/2022]
Abstract
Endocrine disrupting compounds (EDCs) are emerging contaminants that persist and contaminate the environment. They mimic hormones, block hormones, or modulate their synthesis, metabolism, transport, and action, affecting living organisms and their progeny. Steroid hormones from exogenous sources like water bodies are important EDCs. Their biodegradation is an urgent global need. The present study is a preliminary work to maximize the estrone degradation potential of Spirulina CPCC-695 and study the effect of optimized conditions on its laccase activity. It was observed that the exponential phase culture at pH 10.0, 30 ℃, and 200 rpm of agitation speed resulted in the maximum growth, estrone degradation efficiency (93.12%), and highest laccase activity (74%) of Spirulina CPCC-695.
Collapse
|
8
|
Torres-García JL, Ahuactzin-Pérez M, Fernández FJ, Cortés-Espinosa DV. Bisphenol A in the environment and recent advances in biodegradation by fungi. CHEMOSPHERE 2022; 303:134940. [PMID: 35588877 DOI: 10.1016/j.chemosphere.2022.134940] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/03/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
Bisphenol A (BPA) is a compound used in the manufacture of a wide variety of everyday materials that, when released into the environment, causes multiple detrimental effects on humans and other organisms. The reason for this review is to provide an overview of the presence, distribution, and concentration of BPA in water, soil, sediment, and air, as well as the process of release and migration, biomagnification, and exposure mechanisms that cause various toxic effects in humans. Therefore, it is important to seek efficient and economic strategies that allow its removal from the environment and prevent it from reaching humans through food chains. Likewise, the main removal techniques are analyzed, focusing on biological treatments, particularly the most recent advances in the degradation of BPA in different environmental matrices through the use of ligninolytic fungi, non-ligninolytic fungi and yeasts, as well as the possible routes of metabolic processes that allow their biotransformation or biodegradation due to their efficient extracellular enzyme systems. This review supports the importance of the application of new biotechnological tools for the degradation of BPA.
Collapse
Affiliation(s)
- J L Torres-García
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Vicentina, 09340, Ciudad de México, México
| | - M Ahuactzin-Pérez
- Facultad de Agrobiología, Universidad Autónoma de Tlaxcala, Autopista Tlaxcala-San Martín Km 10.5, 90120, San Felipe Ixtacuixtla, Tlaxcala, Mexico
| | - F J Fernández
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Vicentina, 09340, Ciudad de México, México
| | - Diana V Cortés-Espinosa
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada. Carretera Estatal San Inés Tecuexcomac-Tepetitla Km 1.5, 90700, Tepetitla de Lardizabal, Tlaxcala, Mexico.
| |
Collapse
|
9
|
Simultaneous Quantification of Bisphenol-A and 4-Tert-Octylphenol in the Live Aquaculture Feed Artemia franciscana and in Its Culture Medium Using HPLC-DAD. Methods Protoc 2022; 5:mps5030038. [PMID: 35645346 PMCID: PMC9149995 DOI: 10.3390/mps5030038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 11/30/2022] Open
Abstract
Aquaculture, a mass supplier of seafood, relies on plastic materials that may contain the endocrine disruptors bisphenol-A (BPA) and tert-octylphenol (t-OCT). These pollutants present toxicity to Artemia, the live aquaculture feed, and are transferred through it to the larval stages of the cultured organisms. The purpose of this work is the development and validation of an analytical method to determine BPA and t-OCT in Artemia and their culture medium, using n-octylphenol as the internal standard. Extraction of the samples was performed with H2O/TFA (0.08%)–methanol (3:1), followed by SPE. Analysis was performed in a Nucleosil column with mobile phases A (95:5, v/v, 0.1% TFA in H2O:CH3CN) and B (5:95, v/v, 0.08% TFA in H2O:CH3CN). Calibration curves were constructed in the range of concentrations expected following a 24 h administration of BPA (10 μg/mL) or t-OCT (0.5 μg/mL), below their respective LC50. At the end of exposure to the pollutants, their total levels appeared reduced by about 32% for BPA and 35% for t-OCT, and this reduction could not be accounted for by photodegradation (9–19%). The developed method was validated in terms of linearity, accuracy, and precision, demonstrating the uptake of BPA and t-OCT in Artemia.
Collapse
|
10
|
Parvulescu VI, Epron F, Garcia H, Granger P. Recent Progress and Prospects in Catalytic Water Treatment. Chem Rev 2021; 122:2981-3121. [PMID: 34874709 DOI: 10.1021/acs.chemrev.1c00527] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Presently, conventional technologies in water treatment are not efficient enough to completely mineralize refractory water contaminants. In this context, the implementation of catalytic processes could be an alternative. Despite the advantages provided in terms of kinetics of transformation, selectivity, and energy saving, numerous attempts have not yet led to implementation at an industrial scale. This review examines investigations at different scales for which controversies and limitations must be solved to bridge the gap between fundamentals and practical developments. Particular attention has been paid to the development of solar-driven catalytic technologies and some other emerging processes, such as microwave assisted catalysis, plasma-catalytic processes, or biocatalytic remediation, taking into account their specific advantages and the drawbacks. Challenges for which a better understanding related to the complexity of the systems and the coexistence of various solid-liquid-gas interfaces have been identified.
Collapse
Affiliation(s)
- Vasile I Parvulescu
- Department of Organic Chemistry, Biochemistry and Catalysis, University of Bucharest, B-dul Regina Elisabeta 4-12, Bucharest 030016, Romania
| | - Florence Epron
- Université de Poitiers, CNRS UMR 7285, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), 4 rue Michel Brunet, TSA 51106, 86073 Poitiers Cedex 9, France
| | - Hermenegildo Garcia
- Instituto Universitario de Tecnología Química, Universitat Politecnica de Valencia-Consejo Superior de Investigaciones Científicas, Universitat Politencia de Valencia, Av. de los Naranjos s/n, 46022 Valencia, Spain
| | - Pascal Granger
- CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Univ. Lille, F-59000 Lille, France
| |
Collapse
|
11
|
Olaniyan LWB, Okoh AI. Determination and ecological risk assessment of two endocrine disruptors from River Buffalo, South Africa. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:750. [PMID: 33155083 PMCID: PMC7644535 DOI: 10.1007/s10661-020-08717-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
4-tert-Octylphenol (4-tOP) and triclosan (TCS) are endocrine disruptors which have been detected in environmental matrices such as air, soil and water at ultra-low levels. Exposure to endocrine disruptors may account at least in part, for the global increase in the incidence of non-communicable diseases like cancers and diabetes and may also lead to an imbalance in the aquatic ecosystem. River Buffalo is an important natural resource in the Eastern Cape of South Africa serving more than half a million people. The presence of the two compounds in the river water hitherto unknown was investigated during winter seasons using solid-phase extraction and gas chromatography-mass spectrometric techniques. The sampling points differed by some physicochemical parameters. The concentration of 4-tOP ranged 0-755 ng/L, median value 88.1 ng/L while that of TCS ranged 0-1264.2 ng/L and the median value was 82.1 ng/L. Hazard quotient as an index of exposure risk varied according to daphnids ˃ fish ˃ algae for 4-tOP exposure while HQ for TCS exposure was algae > daphnids = fish showing that both compounds were capable of causing imbalance in the aquatic ecosystem. Graphical abstract.
Collapse
Affiliation(s)
- Lamidi W B Olaniyan
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa.
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa.
- Biochemistry Department, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology Ogbomoso, Ogbomoso, Nigeria.
| | - Anthony I Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa
| |
Collapse
|
12
|
Environment-Friendly Removal Methods for Endocrine Disrupting Chemicals. SUSTAINABILITY 2020. [DOI: 10.3390/su12187615] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the past few decades, many emerging pollutants have been detected and monitored in different water sources because of their universal consumption and improper disposal. Among these, endocrine-disrupting chemicals (EDCs), a group of organic chemicals, have received global attention due to their estrogen effect, toxicity, persistence and bioaccumulation. For the removal of EDCs, conventional wastewater treatment methods include flocculation, precipitation, adsorption, etc. However, there are some limitations on these common methods. Herein, in order to enhance the public’s understanding of environmental EDCs, the definition of EDCs and the characteristics of several typical EDCs (physical and chemical properties, sources, usage, concentrations in the environment) are reviewed and summarized in this paper. In particular, the methods of EDC removal are reviewed, including the traditional methods of EDC removal, photocatalysis, biodegradation of EDCs and the latest research results of EDC removal. It is proposed that photocatalysis and biodegradation could be used as an environmentally friendly and efficient EDC removal technology. Photocatalytic technology could be one of the water treatment methods with the most potential, with great development prospects due to its high catalytic efficiency and low energy consumption. Biodegradation is expected to replace traditional water treatment methods and is also considered to be a highly promising method for efficient removal of EDCs. Besides, we summarize several photocatalysts with high catalytic activity and some fungi, bacteria and algae with strong biodegradability.
Collapse
|
13
|
Mtibaà R, Ezzanad A, Aranda E, Pozo C, Ghariani B, Moraga J, Nasri M, Manuel Cantoral J, Garrido C, Mechichi T. Biodegradation and toxicity reduction of nonylphenol, 4-tert-octylphenol and 2,4-dichlorophenol by the ascomycetous fungus Thielavia sp HJ22: Identification of fungal metabolites and proposal of a putative pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 708:135129. [PMID: 31806325 DOI: 10.1016/j.scitotenv.2019.135129] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 09/17/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Abstract
Research on the biodegradation of emerging pollutants is gained great focus regarding their detrimental effects on the environment and humans. The objective of the present study was to evaluate the ability of the ascomycetes Thielavia sp HJ22 to remove the phenolic xenobiotics nonylphenol (NP), 4-tert-octylphenol (4-tert-OP) and 2,4-dichlorophenol (2,4-DCP). The strain showed efficient degradation of NP and 4-tert-OP with 95% and 100% removal within 8 h of incubation, respectively. A removal rate of 80% was observed with 2,4-DCP within the same time. Under experimental conditions, the degradation of the tested pollutants concomitantly increased with the laccase production and cytochrome P450 monooxygenases inhibition. This study showed the involvement of laccase in pollutants removal together with biosorption mechanisms. Additionally, results demonstrated the participation of cytochrome P450 monooxygenase in the elimination of 2,4-DCP. Liquid chromatography-mass spectrometry analysis revealed several intermediates, mainly hydroxylated and oxidized compounds with less harmful effects compared to the parent compounds. A decrease in the toxicity of the identified metabolites was observed using Aliivibrio fischeri as bioindicator. The metabolic pathways of degradation were proposed based on the identified metabolites. The results point out the potential of Thielavia strains in the degradation and detoxification of phenolic xenobiotics.
Collapse
Affiliation(s)
- Rim Mtibaà
- Laboratory of Enzyme Engineering and Microbiology, Department of Biology, National School of Engineers of Sfax, University of Sfax, BP «1173», 3038 Sfax, Tunisia.
| | - Abdellah Ezzanad
- Department of Organic Chemistry, University of Sciences, University of Cádiz, Polígono Rio San Pedro 11510, Puerto Real, Cádiz, Spain
| | - Elisabet Aranda
- Institute of Water Research, Department of Microbiology, University of Granada, Ramón y Cajal 4, E-18071 Granada, Spain
| | - Clementina Pozo
- Institute of Water Research, Department of Microbiology, University of Granada, Ramón y Cajal 4, E-18071 Granada, Spain
| | - Bouthaina Ghariani
- Laboratory of Enzyme Engineering and Microbiology, Department of Biology, National School of Engineers of Sfax, University of Sfax, BP «1173», 3038 Sfax, Tunisia
| | - Javier Moraga
- Department of Organic Chemistry, University of Sciences, University of Cádiz, Polígono Rio San Pedro 11510, Puerto Real, Cádiz, Spain
| | - Moncef Nasri
- Laboratory of Enzyme Engineering and Microbiology, Department of Biology, National School of Engineers of Sfax, University of Sfax, BP «1173», 3038 Sfax, Tunisia
| | - Jesús Manuel Cantoral
- Department of Biomedicine, Biotechnology and Public Health, Facultad de Ciencias del Mar y Ambientales, University of Cádiz, Polígono Rio San Pedro 11510 Puerto Real, Cádiz, Spain
| | - Carlos Garrido
- Department of Biomedicine, Biotechnology and Public Health, Facultad de Ciencias del Mar y Ambientales, University of Cádiz, Polígono Rio San Pedro 11510 Puerto Real, Cádiz, Spain
| | - Tahar Mechichi
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, National School of Engineers of Sfax, University of Sfax, BP «1173», 3038 Sfax, Tunisia
| |
Collapse
|
14
|
Rajendran RK, Lee YW, Chou PH, Huang SL, Kirschner R, Lin CC. Biodegradation of the endocrine disrupter 4-t-octylphenol by the non-ligninolytic fungus Fusarium falciforme RRK20: Process optimization, estrogenicity assessment, metabolite identification and proposed pathways. CHEMOSPHERE 2020; 240:124876. [PMID: 31542577 DOI: 10.1016/j.chemosphere.2019.124876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 08/24/2019] [Accepted: 09/14/2019] [Indexed: 06/10/2023]
Abstract
4-t-octylphenol (4-t-OP), a well-known endocrine disrupting compound, is frequently found in various environmental compartments at levels that may cause adverse effects to the ecosystem and public health. To date, most of the studies that investigate microbial transformations of 4-t-OP have focused on the process mediated by bacteria, ligninolytic fungi, or microbial consortia. There is no report on the complete degradation mechanism of 4-t-OP by non-ligninolytic fungi. In this study, we conducted laboratory experiments to explore and characterize the non-ligninolytic fungal strain Fusarium falciforme RRK20 to degrade 4-t-OP. Using the response surface methodology, the initial biomass concentration and temperature were the factors identified to be more influential on the efficiency of the biodegradation process as compared with pH. Under the optimized conditions (i.e., 28 °C, pH 6.5 with an initial inoculum density of 0.6 g L-1), 25 mg L-1 4-t-OP served as sole carbon source was completely depleted within a 14-d incubation; addition of low dosage of glucose was shown to significantly accelerate 4-t-OP degradation. The yeast estrogenic screening assay further confirmed the loss of estrogenic activity during the biodegradation process, though a longer incubation period was required for complete removal of estrogenicity. Metabolites identified by LC-MS/MS revealed that strain RRK20 might degrade 4-t-OP as sole energy source via alkyl chain oxidation and aromatic ring hydroxylation pathways. Together, these results not only suggest the potential use of non-ligninolytic fungi like strain RRK20 in remediation of 4-t-OP contaminated environments but may also improve our understanding of the environmental fate of 4-t-OP.
Collapse
Affiliation(s)
| | - Yi-Wen Lee
- Department of Environmental Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Pei-Hsin Chou
- Department of Environmental Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Shir-Ly Huang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 11221, Taiwan
| | - Roland Kirschner
- School of Forestry and Resource Conservation, National Taiwan University, Taipei 10617, Taiwan.
| | - Chu-Ching Lin
- Institute of Environmental Engineering, National Central University, Taoyuan 32001, Taiwan.
| |
Collapse
|
15
|
Olaniyan LWB, Okoh OO, Mkwetshana NT, Okoh AI. Environmental Water Pollution, Endocrine Interference and Ecotoxicity of 4-tert-Octylphenol: A Review. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 248:81-109. [PMID: 30460491 DOI: 10.1007/398_2018_20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
4-tert-Octylphenol is a degradation product of non-ionic surfactants alkylphenol polyethoxylates as well as raw material for a number of industrial applications. It is a multimedia compound having been detected in all environmental compartments such as indoor air and surface waters. The pollutant is biodegradable, but certain degradation products are more toxic than the parent compound. Newer removal techniques from environmental waters have been presented, but they still require development for large-scale applications. Wastewater treatment by plant enzymes such as peroxidases offers promise in total removal of 4-tert-octylphenol leaving less toxic degradation products. The pollutant's endocrine interference has been well reported but more in oestrogens than in any other signalling pathways through which it is believed to exert toxicity on human and wildlife. In this paper we carried out a review of the activities of this pollutant in environmental waters, endocrine interference and relevance to its toxicities and concluded that inadequate knowledge of its endocrine activities impedes understanding of its toxicity which may frustrate current efforts at ridding the compound from the environment.
Collapse
Affiliation(s)
- Lamidi W B Olaniyan
- South Africa Medical Research Council, Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa.
| | - Omobola O Okoh
- South Africa Medical Research Council, Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Department of Pure and Applied Chemistry, University of Fort Hare, Alice, South Africa
| | - Noxolo T Mkwetshana
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| | - Anthony I Okoh
- South Africa Medical Research Council, Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| |
Collapse
|
16
|
Ortiz-Álvarez J, Vera-Ponce de León A, Trejo-Cerro O, Vu HT, Chávez-Camarillo G, Villa-Tanaca L, Hernández-Rodríguez C. Candida pseudoglaebosa and Kodamaea ohmeri are capable of degrading alkanes in the presence of heavy metals. J Basic Microbiol 2019; 59:792-806. [PMID: 31368594 DOI: 10.1002/jobm.201900027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/01/2019] [Accepted: 05/16/2019] [Indexed: 01/02/2023]
Abstract
The aim of this study was to examine four strains of two yeast species in relation to their capability for assimilating alkanes in the presence of heavy metals (HMs). The four strains tested were Candida pseudoglaebosa ENCB-7 and Kodamaea ohmeri ENCB-8R, ENCB-23, and ENCB-VIK. Determination was made of the expression of CYP52 genes involved in alkane hydroxylation. When exposed to Cu2+ , Zn2+ , Pb2+ , Cd2+ , and As3+ at pH 3 and 5, all four strains could assimilate several n-alkanes having at least six carbon atoms. The three K. ohmeri strains could also utilize branched alkanes, cycloalkanes, and n-octanol as sole carbon sources. Kinetic assays demonstrated greater biomass production and specific growth of the yeasts exposed to long-chain n-alkanes. Fragments of paralogous CYP52 genes of C. pseudoglaebosa ENCB-7 and K. ohmeri ENCB-23 were amplified, sequenced, and phylogenetically evaluated. Reverse-transcription polymerase chain reaction revealed that n-nonane and n-decane induced to CpCYP52-G3, CpCYP52-G9, and CpCYP52-G10. KoCYP52-G3 was induced with n-decane and n-octanol. Also, CpCYP52-G3 and CpCYP52-G9 were induced by glucose. In conclusion, C. pseudoglaebosa and K. ohmeri were able to degrade several alkanes in the presence of HMs and under acidic conditions. These yeasts harbor paralogous alkane-induced CYP52 genes, which display different profiles of transcriptional expression.
Collapse
Affiliation(s)
- Jossue Ortiz-Álvarez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Arturo Vera-Ponce de León
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Oscar Trejo-Cerro
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Hoa T Vu
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Griselda Chávez-Camarillo
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Lourdes Villa-Tanaca
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - César Hernández-Rodríguez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
17
|
Ortiz-Álvarez J, Vera-Ponce de León A, Trejo-Cerro O, Vu HT, Chávez-Camarillo G, Villa-Tanaca L, Hernández-Rodríguez C. Candida pseudoglaebosa and Kodamaea ohmeri are capable of degrading alkanes in the presence of heavy metals. J Basic Microbiol 2019. [PMID: 31183881 DOI: 10.1002/jobm.jobm201900027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/01/2019] [Accepted: 05/16/2019] [Indexed: 11/11/2022]
Abstract
The aim of this study was to examine four strains of two yeast species in relation to their capability for assimilating alkanes in the presence of heavy metals (HMs). The four strains tested were Candida pseudoglaebosa ENCB-7 and Kodamaea ohmeri ENCB-8R, ENCB-23, and ENCB-VIK. Determination was made of the expression of CYP52 genes involved in alkane hydroxylation. When exposed to Cu2+ , Zn2+ , Pb2+ , Cd2+ , and As3+ at pH 3 and 5, all four strains could assimilate several n-alkanes having at least six carbon atoms. The three K. ohmeri strains could also utilize branched alkanes, cycloalkanes, and n-octanol as sole carbon sources. Kinetic assays demonstrated greater biomass production and specific growth of the yeasts exposed to long-chain n-alkanes. Fragments of paralogous CYP52 genes of C. pseudoglaebosa ENCB-7 and K. ohmeri ENCB-23 were amplified, sequenced, and phylogenetically evaluated. Reverse-transcription polymerase chain reaction revealed that n-nonane and n-decane induced to CpCYP52-G3, CpCYP52-G9, and CpCYP52-G10. KoCYP52-G3 was induced with n-decane and n-octanol. Also, CpCYP52-G3 and CpCYP52-G9 were induced by glucose. In conclusion, C. pseudoglaebosa and K. ohmeri were able to degrade several alkanes in the presence of HMs and under acidic conditions. These yeasts harbor paralogous alkane-induced CYP52 genes, which display different profiles of transcriptional expression.
Collapse
Affiliation(s)
- Jossue Ortiz-Álvarez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Arturo Vera-Ponce de León
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Oscar Trejo-Cerro
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Hoa T Vu
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Griselda Chávez-Camarillo
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Lourdes Villa-Tanaca
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - César Hernández-Rodríguez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
18
|
Nowak M, Soboń A, Litwin A, Różalska S. 4-n-nonylphenol degradation by the genus Metarhizium with cytochrome P450 involvement. CHEMOSPHERE 2019; 220:324-334. [PMID: 30590298 DOI: 10.1016/j.chemosphere.2018.12.114] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/14/2018] [Accepted: 12/15/2018] [Indexed: 06/09/2023]
Abstract
In this study, the ability of 4-n-nonylphenol (4-n-NP) elimination by fungal species belonging to the genus Metarhizium was investigated. The occurrence of 35 metabolites from 4-n-NP degradation was confirmed. For the first time, based on the obtained results, the 4-n-NP biodegradation pathway distinctive for the genus Metarhizium was proposed. Principal Component Analysis (PCA) indicated that despite the similar elimination pathway in all the examined Metarhizium species, there are significant differences in the kinetics of degradation of 4-n-NP. Oxidation of the terminal methyl group of the aliphatic chain leading to the formation of carboxylic acids coupled with the removal of terminal carbon is characteristic of M. robertsii and M. guizhouense, whereas metabolites with a hydroxyl group in the distal part of the nonyl chain distinguish M. lepidiotae and M. majus. Additionally, this study verified the participation of cytochrome P450 in the elimination of the xenobiotic by Metarhizium as experimentally proven for M. robertsii.
Collapse
Affiliation(s)
- Monika Nowak
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha Street 12/16, 90-237, Łódź, Poland
| | - Adrian Soboń
- Department of Microbial Genetics, Faculty of Biology and Environmental Protection, University of Łódź, Banacha Street 12/16, 90-237, Łódź, Poland
| | - Anna Litwin
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha Street 12/16, 90-237, Łódź, Poland
| | - Sylwia Różalska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha Street 12/16, 90-237, Łódź, Poland.
| |
Collapse
|
19
|
Rajendran RK, Lin CC, Huang SL, Kirschner R. Enrichment, isolation, and biodegradation potential of long-branched chain alkylphenol degrading non-ligninolytic fungi from wastewater. MARINE POLLUTION BULLETIN 2017; 125:416-425. [PMID: 28964501 DOI: 10.1016/j.marpolbul.2017.09.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 06/07/2023]
Abstract
4-t-Octylphenol (4-t-OP) has become a serious environmental concern due to the endocrine disruption in animals and humans. The biodegradation of 4-t-OP by pure cultures has been extensively investigated only in bacteria and wood-decaying fungi. In this study we isolated and identified 14 filamentous fungal strains from wastewater samples in Taiwan using 4-t-OP as a sole carbon and energy source. The isolates were identified based on sequences from different DNA regions. Of 14 fungal isolates, 10 strains grew effectively on solid medium with a wide variety of endocrine disrupting chemicals as the sole carbon and energy source. As revealed by high-performance liquid chromatography analysis, the most effective 4-t-OP degradation (>70%) in liquid medium was observed in Fusarium falciforme after 15days. To our knowledge, this is the first report on the degradation of 4-t-OP as a sole carbon and energy source by non-ligninolytic fungi.
Collapse
Affiliation(s)
- Ranjith Kumar Rajendran
- Graduate Institute of Environmental Engineering, National Central University, No. 300, Zhongda Rd., Zhongli District, Taoyuan City 32001, Taiwan
| | - Chu-Ching Lin
- Graduate Institute of Environmental Engineering, National Central University, No. 300, Zhongda Rd., Zhongli District, Taoyuan City 32001, Taiwan
| | - Shir-Ly Huang
- Institute of Microbiology and Immunology, National Yang Ming University, Taipei, Taiwan
| | - Roland Kirschner
- Department of Biomedical Sciences and Engineering, No. 300, Zhongda Rd., Zhongli District, Taoyuan City 32001, Taiwan.
| |
Collapse
|