1
|
Costa CE, Romaní A, Domingues L. Overview of resveratrol properties, applications, and advances in microbial precision fermentation. Crit Rev Biotechnol 2025; 45:788-804. [PMID: 39582165 DOI: 10.1080/07388551.2024.2424362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/03/2024] [Accepted: 07/13/2024] [Indexed: 11/26/2024]
Abstract
Resveratrol is an antioxidant abundant in plants like grapes and peanuts and has garnered significant attention for its potential therapeutic applications. This review explores its chemical attributes, stability, and solubility, influencing its diverse applications and bioavailability. Resveratrol's multifaceted therapeutic roles encompass: antioxidant, cardioprotective, anti-inflammatory, neuroprotective, anti-aging, and anticancer properties. While traditionally studied in preclinical settings, a surge in clinical trials underscores resveratrol's promise for human health. Over 250 recent clinical trials investigate its effects alone and in combination with other compounds. Commercially utilized in food, cosmetics, supplements, and pharmaceuticals, the resveratrol market is expanding, driven by microbial fermentation. Microbes offer advantages over plant extraction and chemical synthesis, providing cost-effective, pure, and sustainable production. Microbial biosynthesis can be attained from carbon sources, such as glucose or xylose, among others, which can be obtained from renewable resources or agro-industrial wastes. While Saccharomyces cerevisiae has been the most used host, non-conventional yeasts like Yarrowia lipolytica and bacteria like Escherichia coli have also demonstrated potential. Genetic modifications such as increasing acetyl-CoA/malonyl-CoA pools, boosting the shikimate pathway, or multi-copy expression of pathway genes, allied to the optimization of fermentation strategies have been promising in increasing titers. Microbial biosynthesis of resveratrol aligns with the shift toward sustainable and renewable bio-based compounds, exemplifying a circular bioeconomy. Concluding, microbial fermentation presents a promising avenue for efficient resveratrol production, driven by genetic engineering, pathway optimization, and fermentation strategies. These advances hold the key to unlocking the potential of resveratrol for diverse therapeutic applications, contributing to a greener and sustainable future.
Collapse
Affiliation(s)
- Carlos E Costa
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Aloia Romaní
- Department of Chemical Engineering, Faculty of Science, University of Vigo (Campus Ourense), Ourense, Spain
| | - Lucília Domingues
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
2
|
Santos AA, Kretzer LG, Dourado EDR, Rosa CA, Stambuk BU, Alves SL. Expression of a periplasmic β-glucosidase from Yarrowia lipolytica allows efficient cellobiose-xylose co-fermentation by industrial xylose-fermenting Saccharomyces cerevisiae strains. Braz J Microbiol 2025; 56:91-104. [PMID: 39739240 PMCID: PMC11885199 DOI: 10.1007/s42770-024-01609-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 12/26/2024] [Indexed: 01/02/2025] Open
Abstract
This study aimed to compare the effects of cellobiose hydrolysis, whether occurring inside or outside the cell, on the ability of Saccharomyces cerevisiae strains to ferment this sugar and then apply the most effective strategy to industrial S. cerevisiae strains. Firstly, two recombinant laboratory S. cerevisiae strains were engineered: CEN.PK-X-Bgl1YL, expressing the periplasmic β-glucosidase BGL1 from Yarrowia lipolytica; and CEN.PK-X-B7-T2, co-expressing the intracellular β-glucosidase SpBGL7 from Spathaspora passalidarum and the cellobiose transporter MgCBT2 from Meyerozyma guilliermondii. Both engineered strains were able to grown in media with cellobiose and to ferment this disaccharide. However, CEN.PK-X-Bgl1YL, which hydrolyzes cellobiose extracellularly, exhibited faster growth and superior batch fermentation performance. Furthermore, enzymatic and transport activities revealed that sugar uptake was possibly the limiting factor in cellobiose fermentation by CEN.PK-X-B7-T2. Since extracellular hydrolysis with the periplasmic β-glucosidase was more efficient for cellobiose fermentation, we integrated the BGL1 gene into two industrial xylose-fermenting S. cerevisiae strains. The resulting strains (MP-C5H1-Bgl1YL and MP-P5-Bgl1YL) efficiently co-consumed ∼ 22 g L- 1 of cellobiose and ∼ 22 g L- 1 of xylose in 24 h, achieving high ethanol production levels (∼ 17 g L- 1 titer, ∼ 0.50 g L- 1 h- 1 volumetric productivity, and 0.40 g g- 1 ethanol yield). Our findings suggest that the expression of periplasmic β-glucosidases in S. cerevisiae could be an effective strategy to overcome the disaccharide transport problem, thus enabling efficient cellobiose fermentation or even cellobiose-xylose co-fermentation.
Collapse
Affiliation(s)
- Angela A Santos
- Laboratory of Yeast Biochemistry (LabBioLev), Federal University of Fronteira Sul, Campus Chapecó, Chapecó, SC, Brazil
- Laboratory of Yeast Biotechnology and Molecular Biology (LBMBL), Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Leonardo G Kretzer
- Laboratory of Yeast Biotechnology and Molecular Biology (LBMBL), Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Erika D R Dourado
- Laboratory of Yeast Biochemistry (LabBioLev), Federal University of Fronteira Sul, Campus Chapecó, Chapecó, SC, Brazil
- Laboratory of Yeast Biotechnology and Molecular Biology (LBMBL), Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
- Postgraduate Program in Biotechnology and Biosciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Carlos A Rosa
- Department of Microbiology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Boris U Stambuk
- Laboratory of Yeast Biotechnology and Molecular Biology (LBMBL), Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil.
| | - Sérgio L Alves
- Laboratory of Yeast Biochemistry (LabBioLev), Federal University of Fronteira Sul, Campus Chapecó, Chapecó, SC, Brazil.
- Postgraduate Program in Biotechnology and Biosciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
3
|
Cunha JT, Romaní A, Domingues L. Production of HMF-derivatives from wine residues using Saccharomyces cerevisiae as whole-cell biocatalyst. BIORESOUR BIOPROCESS 2025; 12:8. [PMID: 39888545 PMCID: PMC11785874 DOI: 10.1186/s40643-025-00840-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/21/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND There is an urgent need to develop bioprocesses independent of fossil resources to address resource depletion and mitigate environmental harm. Transitioning to a bio-based economy requires prioritizing chemical production processes that utilize renewable resources, ensuring sustainability and environmental responsibility. 5-Hydroxymethylfurfural (HMF) and its derivatives are promising building blocks, ranked among the top 12 bio-based molecules derived from biomass. This study investigates the potential of wine residues as substrates for HMF production and explores the yeast Saccharomyces cerevisiae, a robust industrial microbial cell factory, as a whole-cell biocatalyst for converting HMF into high-value compounds, offering an alternative to chemical synthesis. FINDINGS Several S. cerevisiae strains were compared for their ability to convert HMF, demonstrating varying capacities for oxidation or reduction. For the first time, HMF derivatives with potential industrial applications were produced using an HMF-rich hydrolysate obtained from sustainable processing of wine-growing waste, such as grape pomace and must surplus. The selected yeast strain was engineered to express the oxidoreductase enzyme of HMF/Furfural from Cupriavidua basilensis strain HMF14, resulting in a 15-fold increase in the accumulation of oxidized derivatives such as 2,5-furandicarboxylic acid (FDCA). CONCLUSIONS These findings highlight the potential of leveraging wine residues and engineered S. cerevisiae strains to develop sustainable bioprocesses for producing valuable HMF derivatives, thereby contributing to the advancement of bio-based chemical production.
Collapse
Affiliation(s)
- Joana T Cunha
- CEB - Centre of Biological Engineering, University of Minho, Campus Gualtar, Braga, 4710-057, Portugal
| | - Aloia Romaní
- Departamento de Enxeñaría Química, Facultade de Ciencias, Universidade de Vigo, Ourense, 32004, Spain
- Instituto de Agroecoloxía e Alimentación (IAA), Universidade de Vigo, Campus Auga, Ourense, 32004, Spain
| | - Lucília Domingues
- CEB - Centre of Biological Engineering, University of Minho, Campus Gualtar, Braga, 4710-057, Portugal.
- LABBELS -Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
4
|
Baptista M, Costa CE, Domingues L. Engineering thermotolerant Kluyveromyces marxianus strains for resveratrol production by simultaneous saccharification and fermentation of whole slurry corn cob. BIORESOURCE TECHNOLOGY 2025; 416:131755. [PMID: 39510357 DOI: 10.1016/j.biortech.2024.131755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/25/2024] [Accepted: 11/05/2024] [Indexed: 11/15/2024]
Abstract
The microbial biosynthesis of the antioxidant compound resveratrol offers an eco-friendly and sustainable alternative to chemical synthesis or plant extraction. Here, we showed that Kluyveromyces marxianus strains produce p-coumaric acid, a key precursor of resveratrol, with higher titres achieved under increased agitation conditions. Through further strain engineering, resveratrol production was achieved using glucose, xylose, and/or ethanol as substrates. Xylose emerged as the most favourable carbon source for resveratrol production, with ethanol supplementation during xylose culture resulting in increased resveratrol titres by limiting the accumulation of the by-product xylitol. At 37 ◦C, resveratrol production from corn cob hydrolysate and whole slurry substantially increased the yield of resveratrol per sugar, reaching titres of up to 69.26 mg/L. This work shows, for the first time, resveratrol production by K. marxianus and from corn cob whole slurry, establishing foundations for the development of an integrated sustainable process for resveratrol production from lignocellulosic materials.
Collapse
Affiliation(s)
- Marlene Baptista
- Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | - Carlos E Costa
- Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; LABBELS -Associate Laboratory, Braga/Guimarães, Portugal
| | - Lucília Domingues
- Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; LABBELS -Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
5
|
Huang M, Cui X, Zhang P, Jin Z, Li H, Liu J, Jiang Z. Engineered Saccharomyces cerevisiae harbors xylose isomerase and xylose transporter improves co-fermentation of xylose and glucose for ethanol production. Prep Biochem Biotechnol 2024; 54:1058-1067. [PMID: 38349751 DOI: 10.1080/10826068.2024.2315479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Saccharomyces cerevisiae cannot assimilate xylose, second to glucose derived from lignocellulosic biomass. Here, the engineered S. cerevisiae strains INVSc-XI and INVSc-XI/XT were constructed using xylA and Xltr1p to co-utilize xylose and glucose, achieving economic viability and sustainable production of fuels. The xylose utilization rate of INVSc-XI/XT was 2.3-fold higher than that of INVSc-XI, indicating that overexpressing Xltr1p could further enhance xylose utilization. In mixed sugar media, a small amount of glucose enhanced the consumption of xylose by INVSc-XI/XT. Transcriptome analysis showed that glucose increased the upregulation of acetate of coenzyme A synthetase (ACS), alcohol dehydrogenase (ADH), and transketolase (TKL) gene expression in INVSc-XI/XT, further promoting xylose utilization and ethanol yield. The highest ethanol titer of 2.91 g/L with a yield of 0.29 g/g at 96 h by INVSc-XI/XT was 56.9% and 63.0% of the theoretical ethanol yield from glucose and xylose, respectively. These results showed overexpression of xylA and Xltr1p is a promising strategy for improving xylose and glucose conversion to ethanol. Although the ability of strain INVSc-XI/XT to produce ethanol was not very satisfactory, glucose was discovered to influence xylose utilization in strain INVSc-XI/XT. Altering the glucose concentration is a promising strategy to improve the xylose and glucose co-utilization.
Collapse
Affiliation(s)
- Mengtian Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, P.R. China
- College of Life Science and Technology, Hubei Engineering University, Xiaogan, P.R. China
| | - Xinxin Cui
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, P.R. China
| | - Peining Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, P.R. China
| | - Zhuocheng Jin
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, P.R. China
| | - Huanan Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, P.R. China
| | - Jiashu Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, P.R. China
| | - Zhengbing Jiang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, P.R. China
| |
Collapse
|
6
|
Demeke MM, Echemendia D, Belo E, Foulquié-Moreno MR, Thevelein JM. Enhancing xylose-fermentation capacity of engineered Saccharomyces cerevisiae by multistep evolutionary engineering in inhibitor-rich lignocellulose hydrolysate. FEMS Yeast Res 2024; 24:foae013. [PMID: 38604750 PMCID: PMC11062418 DOI: 10.1093/femsyr/foae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/19/2024] [Accepted: 04/10/2024] [Indexed: 04/13/2024] Open
Abstract
Major progress in developing Saccharomyces cerevisiae strains that utilize the pentose sugar xylose has been achieved. However, the high inhibitor content of lignocellulose hydrolysates still hinders efficient xylose fermentation, which remains a major obstacle for commercially viable second-generation bioethanol production. Further improvement of xylose utilization in inhibitor-rich lignocellulose hydrolysates remains highly challenging. In this work, we have developed a robust industrial S. cerevisiae strain able to efficiently ferment xylose in concentrated undetoxified lignocellulose hydrolysates. This was accomplished with novel multistep evolutionary engineering. First, a tetraploid strain was generated and evolved in xylose-enriched pretreated spruce biomass. The best evolved strain was sporulated to obtain a genetically diverse diploid population. The diploid strains were then screened in industrially relevant conditions. The best performing strain, MDS130, showed superior fermentation performance in three different lignocellulose hydrolysates. In concentrated corncob hydrolysate, with initial cell density of 1 g DW/l, at 35°C, MDS130 completely coconsumed glucose and xylose, producing ± 7% v/v ethanol with a yield of 91% of the maximum theoretical value and an overall productivity of 1.22 g/l/h. MDS130 has been developed from previous industrial yeast strains without applying external mutagenesis, minimizing the risk of negative side-effects on other commercially important properties and maximizing its potential for industrial application.
Collapse
Affiliation(s)
- Mekonnen M Demeke
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Belgium
- Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
- NovelYeast bv, Bio-incubator BIO4, Gaston Geenslaan 3, 3001 Leuven-Heverlee, Belgium
| | - Dannele Echemendia
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Belgium
- Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Edgard Belo
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Belgium
- Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - María R Foulquié-Moreno
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Belgium
- Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Johan M Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Belgium
- Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
- NovelYeast bv, Bio-incubator BIO4, Gaston Geenslaan 3, 3001 Leuven-Heverlee, Belgium
| |
Collapse
|
7
|
Baptista SL, Romaní A, Cunha JT, Domingues L. Multi-feedstock biorefinery concept: Valorization of winery wastes by engineered yeast. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116623. [PMID: 36368200 DOI: 10.1016/j.jenvman.2022.116623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
The wine industry produces significant amounts of by-products and residues that are not properly managed, posing an environmental problem. Grape must surplus, vine shoots, and wine lees have the potential to be used as renewable resources for the production of energy and chemicals. Metabolic engineering efforts have established Saccharomyces cerevisiae as an efficient microbial cell factory for biorefineries. Current biorefineries designed for producing multiple products often rely on just one feedstock, but the bioeconomy would clearly benefit if these biorefineries could efficiently convert multiple feedstocks. Moreover, to reduce the environmental impact of fossil fuel consumption and maximize production economics, a biorefinery should be capable to supplement the manufacture of biofuel with the production of high-value products. This study proposes an integrated approach for the valorization of diverse wastes resulting from winemaking processes through the biosynthesis of xylitol and ethanol. Using genetically modified S. cerevisiae strains, the xylose-rich hemicellulosic fraction of hydrothermally pretreated vine shoots was converted into xylitol, and the cellulosic fraction was used to produce bioethanol. In addition, grape must, enriched in sugars, was efficiently used as a low-cost source for yeast propagation. The production of xylitol was optimized, in a Simultaneous Saccharification and Fermentation process configuration, by adjusting the inoculum size and enzyme loading. Furthermore, a yeast strain displaying cellulases in the cell surface was applied for the production of bioethanol from the glucan-rich cellulosic. With the addition of grape must and/or wine lees, high ethanol concentrations were reached, which are crucial for the economic feasibility of distillation. This integrated multi-feedstock valorization provides a synergistic alternative for converting a range of winery wastes and by-products into biofuel and an added-value chemical while decreasing waste released to the environment.
Collapse
Affiliation(s)
- Sara L Baptista
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal; LABBELS - Associate Laboratory, Braga, Guimarães, Portugal
| | - Aloia Romaní
- Department of Chemical Engineering, Faculty of Science, University of Vigo (Campus Ourense), As Lagoas, 32004, Ourense, Spain
| | - Joana T Cunha
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal; LABBELS - Associate Laboratory, Braga, Guimarães, Portugal
| | - Lucília Domingues
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal; LABBELS - Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
8
|
Coimbra L, Malan K, Fagúndez A, Guigou M, Lareo C, Fernández B, Pratto M, Batista S. Fermentation of D-xylose to Ethanol by Saccharomyces cerevisiae CAT-1 Recombinant Strains. BIOENERGY RESEARCH 2023; 16:1001-1012. [PMID: 36248719 PMCID: PMC9540035 DOI: 10.1007/s12155-022-10514-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/27/2022] [Indexed: 05/09/2023]
Abstract
Ethanol production by the D-xylose fermentation of lignocellulosic biomass would augment environmental sustainability by increasing the yield of biofuel obtained per cultivated area. A set of recombinant strains derived from the industrial strain Saccharomyces cerevisiae CAT-1 was developed for this purpose. First, two recombinant strains were obtained by the chromosomal insertion of genes involved in the assimilation and transport of D-xylose (Gal2-N376F). Strain CAT-1-XRT was developed with heterologous genes for D-xylose metabolism from the oxo-reductive pathway of Scheffersomyces stipitis (XYL1-K270R, XYL2); and strain CAT-1-XIT, with D-xylose isomerase (xylA gene, XI) from Streptomyces coelicolor. Moreover, both recombinant strains contained extra copies of homologous genes for xylulose kinase (XK) and transaldolase (TAL1). Furthermore, plasmid (pRS42K::XI) was constructed with xylA from Piromyces sp. transferred to CAT-1, CAT-1-XRT, and CAT-1-XIT, followed by an evolution protocol. After 10 subcultures, CAT-1-XIT (pRS42K::XI) consumed 74% of D-xylose, producing 12.6 g/L ethanol (0.31 g ethanol/g D-xylose). The results of this study show that CAT-1-XIT (pRS42K::XI) is a promising recombinant strain for the efficient utilization of D-xylose to produce ethanol from lignocellulosic materials.
Collapse
Affiliation(s)
- Lucía Coimbra
- Laboratorio de Microbiología Molecular, Departamento BIOGEM, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, 11600 Montevideo, CP Uruguay
| | - Karen Malan
- Laboratorio de Microbiología Molecular, Departamento BIOGEM, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, 11600 Montevideo, CP Uruguay
| | - Alejandra Fagúndez
- Laboratorio de Microbiología Molecular, Departamento BIOGEM, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, 11600 Montevideo, CP Uruguay
| | - Mairan Guigou
- Departamento de Bioingeniería, Facultad de Ingeniería, Instituto de Ingeniería Química, Universidad de La República. Julio Herrera Y Reissig 565, 11300 Montevideo, CP Uruguay
| | - Claudia Lareo
- Departamento de Bioingeniería, Facultad de Ingeniería, Instituto de Ingeniería Química, Universidad de La República. Julio Herrera Y Reissig 565, 11300 Montevideo, CP Uruguay
| | - Belén Fernández
- Laboratorio de Microbiología Molecular, Departamento BIOGEM, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, 11600 Montevideo, CP Uruguay
| | - Martín Pratto
- Departamento de Bioingeniería, Facultad de Ingeniería, Instituto de Ingeniería Química, Universidad de La República. Julio Herrera Y Reissig 565, 11300 Montevideo, CP Uruguay
| | - Silvia Batista
- Laboratorio de Microbiología Molecular, Departamento BIOGEM, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, 11600 Montevideo, CP Uruguay
| |
Collapse
|
9
|
Acetate-rich Cellulosic Hydrolysates and Their Bioconversion Using Yeasts. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0217-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Sibirny AA. Metabolic engineering of non-conventional yeasts for construction of the advanced producers of biofuels and high-value chemicals. BBA ADVANCES 2022; 3:100071. [PMID: 37082251 PMCID: PMC10074886 DOI: 10.1016/j.bbadva.2022.100071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Non-conventional yeasts, i.e. yeasts different from Saccharomyces cerevisiae, represent heterogenous group of unicellular fungi consisting of near 1500 species. Some of these species have interesting and sometimes unique properties like ability to grow on methanol, n-alkanes, ferment pentose sugars xylose and l-arabinose, grow at high temperatures (50°С and more), overproduce riboflavin (vitamin B2) and others. These unique properties are important for development of basic science; moreover, some of them possess also significant applied interest for elaboration of new biotechnologies. Current paper represents review of the recent own results and of those of other authors in the field of non-conventional yeast study for construction of the advanced producers of biofuels (ethanol, isobutanol) from lignocellulosic sugars glucose and xylose or crude glycerol (Ogataea polymorpha, Magnusiomyces magnusii) and vitamin B2 (riboflavin) from glucose and cheese whey (Candida famata).
Collapse
Affiliation(s)
- Andriy A. Sibirny
- Institute of Cell Biology, NAS of Ukraine, Drahomanov Street 14/16, Lviv 79005 Ukraine
- University of Rzeszow, Zelwerowicza 4, Rzeszow 35-601 Poland
- Corresponding author at: Institute of Cell Biology, NAS of Ukraine, Drahomanov Street 14/16, Lviv 79005 Ukraine.
| |
Collapse
|
11
|
Kövilein A, Aschmann V, Zadravec L, Ochsenreither K. Optimization of l-malic acid production from acetate with Aspergillus oryzae DSM 1863 using a pH-coupled feeding strategy. Microb Cell Fact 2022; 21:242. [DOI: 10.1186/s12934-022-01961-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/01/2022] [Indexed: 11/25/2022] Open
Abstract
Abstract
Background
Malic acid, a dicarboxylic acid mainly used in the food industry, is currently produced from fossil resources. The utilization of low-cost substrates derived from biomass could render microbial processes economic. Such feedstocks, like lignocellulosic hydrolysates or condensates of fast pyrolysis, can contain high concentrations of acetic acid. Acetate is a suitable substrate for l-malic acid production with the filamentous fungus Aspergillus oryzae DSM 1863, but concentrations obtained so far are low. An advantage of this carbon source is that it can be used for pH control and simultaneous substrate supply in the form of acetic acid. In this study, we therefore aimed to enhance l-malate production from acetate with A. oryzae by applying a pH-coupled feeding strategy.
Results
In 2.5-L bioreactor fermentations, several feeding strategies were evaluated. Using a pH-coupled feed consisting of 10 M acetic acid, the malic acid concentration was increased about 5.3-fold compared to the batch process without pH control, resulting in a maximum titer of 29.53 ± 1.82 g/L after 264 h. However, it was not possible to keep both the pH and the substrate concentration constant during this fermentation. By using 10 M acetic acid set to a pH of 4.5, or with the repeated addition of NaOH, the substrate concentration could be maintained within a constant range, but these strategies did not prove beneficial as lower maximum titers and yields were obtained. Since cessation of malic acid production was observed in later fermentation stages despite carbon availability, a possible product inhibition was evaluated in shake flask cultivations. In these experiments, malate and succinate, which is a major by-product during malic acid production, were added at concentrations of up to 50 g/L, and it was found that A. oryzae is capable of organic acid production even at high product concentrations.
Conclusions
This study demonstrates that a suitable feeding strategy is necessary for efficient malic acid production from acetate. It illustrates the potential of acetate as carbon source for microbial production of the organic acid and provides useful insights which can serve as basis for further optimization.
Collapse
|
12
|
Baptista M, Domingues L. Kluyveromyces marxianus as a microbial cell factory for lignocellulosic biomass valorisation. Biotechnol Adv 2022; 60:108027. [PMID: 35952960 DOI: 10.1016/j.biotechadv.2022.108027] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 11/02/2022]
Abstract
The non-conventional yeast Kluyveromyces marxianus is widely used for several biotechnological applications, mainly due to its thermotolerance, high growth rate, and ability to metabolise a wide range of sugars. These cell traits are strategic for lignocellulosic biomass valorisation and strain diversity prompts the development of robust chassis, either with improved tolerance to lignocellulosic inhibitors or ethanol. This review summarises bioethanol and value-added chemicals production by K. marxianus from different lignocellulosic biomasses. Moreover, metabolic engineering and process optimization strategies developed to expand K. marxianus potential are also compiled, as well as studies reporting cell mechanisms to cope with lignocellulosic-derived inhibitors. The main lignocellulosic-based products are bioethanol, representing 71% of the reports, and xylitol, representing 17% of the reports. K. marxianus also proved to be a good chassis for lactic acid and volatile compounds production from lignocellulosic biomass, although the literature on this matter is still scarce. The increasing advances in genome editing tools and process optimization strategies will widen the K. marxianus-based portfolio products.
Collapse
Affiliation(s)
- Marlene Baptista
- CEB-Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS -Associate Laboratory, Braga/Guimarães, Portugal
| | - Lucília Domingues
- CEB-Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS -Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
13
|
Genome-wide effect of non-optimal temperatures under anaerobic conditions on gene expression in Saccharomyces cerevisiae. Genomics 2022; 114:110386. [PMID: 35569731 DOI: 10.1016/j.ygeno.2022.110386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/28/2022] [Accepted: 05/07/2022] [Indexed: 12/29/2022]
Abstract
Understanding of thermal adaptation mechanisms in yeast is crucial to develop better-adapted strains to industrial processes, providing more economical and sustainable products. We have analyzed the transcriptomic responses of three Saccharomyces cerevisiae strains, a commercial wine strain, ADY5, a laboratory strain, CEN.PK113-7D and a commercial bioethanol strain, Ethanol Red, grown at non-optimal temperatures under anaerobic chemostat conditions. Transcriptomic analysis of the three strains revealed a huge complexity of cellular mechanisms and responses. Overall, cold exerted a stronger transcriptional response in the three strains comparing with heat conditions, with a higher number of down-regulating genes than of up-regulating genes regardless the strain analyzed. The comparison of the transcriptome at both sub- and supra-optimal temperatures showed the presence of common genes up- or down-regulated in both conditions, but also the presence of common genes up- or down-regulated in the three studied strains. More specifically, we have identified and validated three up-regulated genes at sub-optimal temperature in the three strains, OPI3, EFM6 and YOL014W. Finally, the comparison of the transcriptomic data with a previous proteomic study with the same strains revealed a good correlation between gene activity and protein abundance, mainly at low temperature. Our work provides a global insight into the specific mechanisms involved in temperature adaptation regarding both transcriptome and proteome, which can be a step forward in the comprehension and improvement of yeast thermotolerance.
Collapse
|
14
|
Current Options in the Valorisation of Vine Pruning Residue for the Production of Biofuels, Biopolymers, Antioxidants, and Bio-Composites following the Concept of Biorefinery: A Review. Polymers (Basel) 2022; 14:polym14091640. [PMID: 35566809 PMCID: PMC9101343 DOI: 10.3390/polym14091640] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 01/16/2023] Open
Abstract
Europe is considered the largest producer of wine worldwide, showing a high market potential. Several wastes are generated at the different stages of the wine production process, namely, vine pruning, stalks, and grape marc. Typically, these residues are not used and are commonly discarded. Portugal generates annually approximately 178 thousand metric tons of wine production waste. In this context, the interest in redirecting the use of these residues has increased due to overproduction, great availability, and low costs. The utilization of these lignocellulosic biomasses derived from the wine industry would economically benefit the producers, while mitigating impacts on the environment. These by-products can be submitted to pre-treatments (physical, chemical, and biological) for the separation of different compounds with high industrial interest, reducing the waste of agro-industrial activities and increasing industrial profitability. Particularly, vine-pruning residue, besides being a source of sugar, has high nutritional value and may serve as a source of phenolic compounds. These compounds can be obtained by bioconversion, following a concept of biorefinery. In this framework, the current routes of the valorisation of the pruning residues will be addressed and put into a circular economy context.
Collapse
|
15
|
Data mining of Saccharomyces cerevisiae mutants engineered for increased tolerance towards inhibitors in lignocellulosic hydrolysates. Biotechnol Adv 2022; 57:107947. [DOI: 10.1016/j.biotechadv.2022.107947] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 12/15/2022]
|
16
|
Hajaya MG, Shaqarin T. Multivariable advanced nonlinear controller for bioethanol production in a non-isothermal fermentation bioreactor. BIORESOURCE TECHNOLOGY 2022; 348:126810. [PMID: 35131455 DOI: 10.1016/j.biortech.2022.126810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/21/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Design for fermentation bioreactor controllers is challenged by the nonlinear process kinetics and the lack of online measurements for key variables. This work developed a multi-input, multi-output advanced nonlinear control structure for a continuous, non-isothermal, constant volume fermentation bioreactor. Utilizing feedback linearization control for the bioreactor feed to regulate glucose concentration, and backstepping control for the cooling jacket feed to regulate reactor temperature. A developed novel estimator for biomass concentration was incorporated to provide online estimates for the unmeasurable state variable. Simulation results showed the control structure ability in efficiently establishing a combination of dynamic and fixed set points, despite disturbances in the bioreactor feed temperature and glucose concentration. Expanded bioreactor control authority increased operational flexibility and enhanced the potential for performance improvements. This work illustrated the effectiveness of feedback linearization and backstepping control in designing controllers for biological systems with nonlinear dynamics, complex interactions, and input disturbances.
Collapse
Affiliation(s)
- Malek G Hajaya
- Department of Civil Engineering, Tafila Technical University, Tafila, Jordan.
| | - Tamir Shaqarin
- Department of Mechanical Engineering, Tafila Technical University, Tafila, Jordan
| |
Collapse
|
17
|
Del Río PG, Gullón B, Wu J, Saddler J, Garrote G, Romaní A. Current breakthroughs in the hardwood biorefineries: Hydrothermal processing for the co-production of xylooligosaccharides and bioethanol. BIORESOURCE TECHNOLOGY 2022; 343:126100. [PMID: 34626760 DOI: 10.1016/j.biortech.2021.126100] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
The development of lignocellulosic biorefineries requires a first stage of pretreatment which enables the efficient valorization of all fractions present in this renewable material. In this sense, this review aims to show the main advantages of hydrothermal treatment as a first step of a biorefinery infrastructure using hardwood as raw material, as well as, main drawback to overcome. Hydrothermal treatment of hardwood highlights for its high selectivity for hemicelluloses solubilization as xylooligosaccharides (XOS). Nevertheless, the suitable conditions for XOS production are inadequate to achieve an elevate cellulose to glucose conversion. Hence, several strategies namely the combination of hydrothermal treatment with delignification process, in situ modification of lignin and the mixture with another renewable resources (concretely, seaweeds, and by-products generated in the food industry with high sugar content) were pinpointed as promising alternative to increase the final ethanol concentration coupled with XOS recovery in the hydrolysate.
Collapse
Affiliation(s)
- Pablo G Del Río
- Universidade de Vigo, Departamento de Enxeñería Química, Facultade de Ciencias, 32004 Ourense, Spain
| | - Beatriz Gullón
- Universidade de Vigo, Departamento de Enxeñería Química, Facultade de Ciencias, 32004 Ourense, Spain
| | - Jie Wu
- Forest Product Biotechnology/Bioenergy Group, Department of Wood Science, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Jack Saddler
- Forest Product Biotechnology/Bioenergy Group, Department of Wood Science, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Gil Garrote
- Universidade de Vigo, Departamento de Enxeñería Química, Facultade de Ciencias, 32004 Ourense, Spain
| | - Aloia Romaní
- Universidade de Vigo, Departamento de Enxeñería Química, Facultade de Ciencias, 32004 Ourense, Spain.
| |
Collapse
|
18
|
Baptista M, Cunha JT, Domingues L. Establishment of Kluyveromyces marxianus as a Microbial Cell Factory for Lignocellulosic Processes: Production of High Value Furan Derivatives. J Fungi (Basel) 2021; 7:1047. [PMID: 34947029 PMCID: PMC8708846 DOI: 10.3390/jof7121047] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 12/19/2022] Open
Abstract
The establishment of lignocellulosic biorefineries is dependent on microorganisms being able to cope with the stressful conditions resulting from the release of inhibitory compounds during biomass processing. The yeast Kluyveromyces marxianus has been explored as an alternative microbial factory due to its thermotolerance and ability to natively metabolize xylose. The lignocellulose-derived inhibitors furfural and 5-hydroxymethylfurfural (HMF) are considered promising building-block platforms that can be converted into a wide variety of high-value derivatives. Here, several K. marxianus strains, isolated from cocoa fermentation, were evaluated for xylose consumption and tolerance towards acetic acid, furfural, and HMF. The potential of this yeast to reduce furfural and HMF at high inhibitory loads was disclosed and characterized. Our results associated HMF reduction with NADPH while furfural-reducing activity was higher with NADH. In addition, furans' inhibitory effect was higher when combined with xylose consumption. The furan derivatives produced by K. marxianus in different conditions were identified. Furthermore, one selected isolate was efficiently used as a whole-cell biocatalyst to convert furfural and HMF into their derivatives, furfuryl alcohol and 2,5-bis(hydroxymethyl)furan (BHMF), with high yields and productivities. These results validate K. marxianus as a promising microbial platform in lignocellulosic biorefineries.
Collapse
Affiliation(s)
| | | | - Lucília Domingues
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.B.); (J.T.C.)
| |
Collapse
|
19
|
Costa CE, Møller-Hansen I, Romaní A, Teixeira JA, Borodina I, Domingues L. Resveratrol Production from Hydrothermally Pretreated Eucalyptus Wood Using Recombinant Industrial Saccharomyces cerevisiae Strains. ACS Synth Biol 2021; 10:1895-1903. [PMID: 34304554 DOI: 10.1021/acssynbio.1c00120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Resveratrol is a phenolic compound with strong antioxidant activity, being promising for several applications in health, food, and cosmetics. It is generally extracted from plants or chemically synthesized, in both complex and not sustainable processes, but microbial biosynthesis of resveratrol can counter these drawbacks. In this work, resveratrol production by microbial biosynthesis from lignocellulosic materials was assessed. Three robust industrial Saccharomyces cerevisiae strains known for their thermotolerance and/or resistance to inhibitory compounds were identified as suitable hosts for de novo resveratrol production from glucose and ethanol. Through the CRISPR/Cas9 system, all industrial strains, and a laboratory one, were successfully engineered with the resveratrol biosynthetic pathway via the phenylalanine intermediate. All strains were further screened at 30 °C and 39 °C to evaluate thermotolerance, which is a key feature for Simultaneous Saccharification and Fermentation processes. Ethanol Red RBP showed the best performance at 39 °C, with more than 2.6-fold of resveratrol production in comparison with the other strains. This strain was then used to assess resveratrol production from glucose and ethanol. A maximum resveratrol titer of 187.07 ± 19.88 mg/L was attained from a medium with 2% glucose and 5% ethanol (w/v). Lastly, Ethanol Red RBP produced 151.65 ± 3.84 mg/L resveratrol from 2.95% of cellulose from hydrothermally pretreated Eucalyptus globulus wood, at 39 °C, in a Simultaneous Saccharification and Fermentation process. To the best of our knowledge, this is the first report of lignocellulosic resveratrol production, establishing grounds for the implementation of an integrated lignocellulose-to-resveratrol process in an industrial context.
Collapse
Affiliation(s)
- Carlos E. Costa
- Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | - Iben Møller-Hansen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Aloia Romaní
- Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | - José A. Teixeira
- Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Lucília Domingues
- Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
20
|
Adebami GE, Kuila A, Ajunwa OM, Fasiku SA, Asemoloye MD. Genetics and metabolic engineering of yeast strains for efficient ethanol production. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
| | - Arindam Kuila
- Department of Bioscience and Biotechnology Banasthali University Vanasthali India
| | - Obinna M. Ajunwa
- Department of Microbiology Modibbo Adama University of Technology Yola Nigeria
| | - Samuel A. Fasiku
- Department of Biological Sciences Ajayi Crowther University Oyo Nigeria
| | - Michael D. Asemoloye
- Department of Pharmaceutical Science and Technology Tianjin University Tianjin China
| |
Collapse
|
21
|
Monteiro de Oliveira P, Aborneva D, Bonturi N, Lahtvee PJ. Screening and Growth Characterization of Non-conventional Yeasts in a Hemicellulosic Hydrolysate. Front Bioeng Biotechnol 2021; 9:659472. [PMID: 33996782 PMCID: PMC8116571 DOI: 10.3389/fbioe.2021.659472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/30/2021] [Indexed: 11/17/2022] Open
Abstract
Lignocellulosic biomass is an attractive raw material for the sustainable production of chemicals and materials using microbial cell factories. Most of the existing bioprocesses focus on second-generation ethanol production using genetically modified Saccharomyces cerevisiae, however, this microorganism is naturally unable to consume xylose. Moreover, extensive metabolic engineering has to be carried out to achieve high production levels of industrially relevant building blocks. Hence, the use of non-Saccharomyces species, or non-conventional yeasts, bearing native metabolic routes, allows conversion of a wide range of substrates into different products, and higher tolerance to inhibitors improves the efficiency of biorefineries. In this study, nine non-conventional yeast strains were selected and screened on a diluted hemicellulosic hydrolysate from Birch. Kluyveromyces marxianus CBS 6556, Scheffersomyces stipitis CBS 5773, Lipomyces starkeyi DSM 70295, and Rhodotorula toruloides CCT 7815 were selected for further characterization, where their growth and substrate consumption patterns were analyzed under industrially relevant substrate concentrations and controlled environmental conditions in bioreactors. K. marxianus CBS 6556 performed poorly under higher hydrolysate concentrations, although this yeast was determined among the fastest-growing yeasts on diluted hydrolysate. S. stipitis CBS 5773 demonstrated a low growth and biomass production while consuming glucose, while during the xylose-phase, the specific growth and sugar co-consumption rates were among the highest of this study (0.17 h–1 and 0.37 g/gdw*h, respectively). L. starkeyi DSM 70295 and R. toruloides CCT 7815 were the fastest to consume the provided sugars at high hydrolysate conditions, finishing them within 54 and 30 h, respectively. R. toruloides CCT 7815 performed the best of all four studied strains and tested conditions, showing the highest specific growth (0.23 h–1), substrate co-consumption (0.73 ± 0.02 g/gdw*h), and xylose consumption (0.22 g/gdw*h) rates. Furthermore, R. toruloides CCT 7815 was able to produce 10.95 ± 1.37 gL–1 and 1.72 ± 0.04 mgL–1 of lipids and carotenoids, respectively, under non-optimized cultivation conditions. The study provides novel information on selecting suitable host strains for biorefinery processes, provides detailed information on substrate consumption patterns, and pinpoints to bottlenecks possible to address using metabolic engineering or adaptive evolution experiments.
Collapse
Affiliation(s)
| | - Daria Aborneva
- Institute of Technology, University of Tartu, Tartu, Estonia
| | | | | |
Collapse
|
22
|
Jeong D, Park H, Jang BK, Ju Y, Shin MH, Oh EJ, Lee EJ, Kim SR. Recent advances in the biological valorization of citrus peel waste into fuels and chemicals. BIORESOURCE TECHNOLOGY 2021; 323:124603. [PMID: 33406467 DOI: 10.1016/j.biortech.2020.124603] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
In the quest to reduce global food loss and waste, fruit processing wastes, particularly citrus peel waste (CPW), have emerged as a promising and sustainable option for biorefinery without competing with human foods and animal feeds. CPW is largely produced and, as recent studies suggest, has the industrial potential of biological valorization into fuels and chemicals. In this review, the promising aspects of CPW as an alternative biomass were highlighted, focusing on its low lignin content. In addition, specific technical difficulties in fermenting CPW are described, highlighting that citrus peel is high in pectin that consist of non-fermentable sugars, mainly galacturonic acid. Last, recent advances in the metabolic engineering of yeast and other microbial strains that ferment CPW-derived sugars to produce value-added products, such as ethanol and mucic acid, are summarized. For industrially viable CPW-based biorefinery, more studies are needed to improve fermentation efficiency and to diversify product profiles.
Collapse
Affiliation(s)
- Deokyeol Jeong
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, South Korea
| | - Heeyoung Park
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, South Korea
| | - Byeong-Kwan Jang
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, South Korea
| | - YeBin Ju
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, South Korea
| | - Min Hye Shin
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea
| | - Eun Joong Oh
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
| | - Eun Jung Lee
- Department of Chemical Engineering, School of Applied Chemical Engineering, Kyungpook National University, Daegu, South Korea
| | - Soo Rin Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, South Korea.
| |
Collapse
|
23
|
Kövilein A, Umpfenbach J, Ochsenreither K. Acetate as substrate for L-malic acid production with Aspergillus oryzae DSM 1863. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:48. [PMID: 33622386 PMCID: PMC7903783 DOI: 10.1186/s13068-021-01901-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/12/2021] [Indexed: 05/30/2023]
Abstract
BACKGROUND Microbial malic acid production is currently not able to compete economically with well-established chemical processes using fossil resources. The utilization of inexpensive biomass-based substrates containing acetate could decrease production costs and promote the development of microbial processes. Acetate is a by-product in lignocellulosic hydrolysates and fast pyrolysis products or can be synthesized by acetogens during syngas fermentation. For the fermentation of these substrates, a robust microorganism with a high tolerance for biomass-derived inhibitors is required. Aspergillus oryzae is a suitable candidate due to its high tolerance and broad substrate spectrum. To pave the path towards microbial malic acid production, the potential of acetate as a carbon source for A. oryzae is evaluated in this study. RESULTS A broad acetate concentration range was tested both for growth and malic acid production with A. oryzae. Dry biomass concentration was highest for acetic acid concentrations of 40-55 g/L reaching values of about 1.1 g/L within 48 h. Morphological changes were observed depending on the acetate concentration, yielding a pellet-like morphology with low and a filamentous structure with high substrate concentrations. For malic acid production, 45 g/L acetic acid was ideal, resulting in a product concentration of 8.44 ± 0.42 g/L after 192 h. The addition of 5-15 g/L glucose to acetate medium proved beneficial by lowering the time point of maximum productivity and increasing malic acid yield. The side product spectrum of cultures with acetate, glucose, and cultures containing both substrates was compared, showing differences especially in the amount of oxalic, succinic, and citric acid produced. Furthermore, the presence of CaCO3, a pH regulator used for malate production with glucose, was found to be crucial also for malic acid production with acetate. CONCLUSIONS This study evaluates relevant aspects of malic acid production with A. oryzae using acetate as carbon source and demonstrates that it is a suitable substrate for biomass formation and acid synthesis. The insights provided here will be useful to further microbial malic acid production using renewable substrates.
Collapse
Affiliation(s)
- Aline Kövilein
- Institute of Process Engineering in Life Sciences 2 - Technical Biology, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany.
| | - Julia Umpfenbach
- Institute of Process Engineering in Life Sciences 2 - Technical Biology, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Katrin Ochsenreither
- Institute of Process Engineering in Life Sciences 2 - Technical Biology, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| |
Collapse
|
24
|
Baptista SL, Costa CE, Cunha JT, Soares PO, Domingues L. Metabolic engineering of Saccharomyces cerevisiae for the production of top value chemicals from biorefinery carbohydrates. Biotechnol Adv 2021; 47:107697. [PMID: 33508428 DOI: 10.1016/j.biotechadv.2021.107697] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/16/2022]
Abstract
The implementation of biorefineries for a cost-effective and sustainable production of energy and chemicals from renewable carbon sources plays a fundamental role in the transition to a circular economy. The US Department of Energy identified a group of key target compounds that can be produced from biorefinery carbohydrates. In 2010, this list was revised and included organic acids (lactic, succinic, levulinic and 3-hydroxypropionic acids), sugar alcohols (xylitol and sorbitol), furans and derivatives (hydroxymethylfurfural, furfural and furandicarboxylic acid), biohydrocarbons (isoprene), and glycerol and its derivatives. The use of substrates like lignocellulosic biomass that impose harsh culture conditions drives the quest for the selection of suitable robust microorganisms. The yeast Saccharomyces cerevisiae, widely utilized in industrial processes, has been extensively engineered to produce high-value chemicals. For its robustness, ease of handling, genetic toolbox and fitness in an industrial context, S. cerevisiae is an ideal platform for the founding of sustainable bioprocesses. Taking these into account, this review focuses on metabolic engineering strategies that have been applied to S. cerevisiae for converting renewable resources into the previously identified chemical targets. The heterogeneity of each chemical and its manufacturing process leads to inevitable differences between the development stages of each process. Currently, 8 of 11 of these top value chemicals have been already reported to be produced by recombinant S. cerevisiae. While some of them are still in an early proof-of-concept stage, others, like xylitol or lactic acid, are already being produced from lignocellulosic biomass. Furthermore, the constant advances in genome-editing tools, e.g. CRISPR/Cas9, coupled with the application of innovative process concepts such as consolidated bioprocessing, will contribute for the establishment of S. cerevisiae-based biorefineries.
Collapse
Affiliation(s)
- Sara L Baptista
- CEB - Centre of Biological Engineering, University of Minho, Campus Gualtar, Braga, Portugal
| | - Carlos E Costa
- CEB - Centre of Biological Engineering, University of Minho, Campus Gualtar, Braga, Portugal
| | - Joana T Cunha
- CEB - Centre of Biological Engineering, University of Minho, Campus Gualtar, Braga, Portugal
| | - Pedro O Soares
- CEB - Centre of Biological Engineering, University of Minho, Campus Gualtar, Braga, Portugal
| | - Lucília Domingues
- CEB - Centre of Biological Engineering, University of Minho, Campus Gualtar, Braga, Portugal.
| |
Collapse
|
25
|
Abstract
In order to exploit a fast-growing Paulownia hardwood as an energy crop, a xylose-enriched hydrolysate was obtained in this work to increase the ethanol concentration using the hemicellulosic fraction, besides the already widely studied cellulosic fraction. For that, Paulownia elongata x fortunei was submitted to autohydrolysis treatment (210 °C or S0 of 4.08) for the xylan solubilization, mainly as xylooligosaccharides. Afterwards, sequential stages of acid hydrolysis, concentration, and detoxification were evaluated to obtain fermentable sugars. Thus, detoxified and non-detoxified hydrolysates (diluted or not) were fermented for ethanol production using a natural xylose-consuming yeast, Scheffersomyces stipitis CECT 1922, and an industrial Saccharomyces cerevisiae MEC1133 strain, metabolic engineered strain with the xylose reductase/xylitol dehydrogenase pathway. Results from fermentation assays showed that the engineered S. cerevisiae strain produced up to 14.2 g/L of ethanol (corresponding to 0.33 g/g of ethanol yield) using the non-detoxified hydrolysate. Nevertheless, the yeast S. stipitis reached similar values of ethanol, but only in the detoxified hydrolysate. Hence, the fermentation data prove the suitability and robustness of the engineered strain to ferment non-detoxified liquor, and the appropriateness of detoxification of liquor for the use of less robust yeast. In addition, the success of hemicellulose-to-ethanol production obtained in this work shows the Paulownia biomass as a suitable renewable source for ethanol production following a suitable fractionation process within a biorefinery approach.
Collapse
|
26
|
Nagamatsu ST, Coutouné N, José J, Fiamenghi MB, Pereira GAG, Oliveira JVDC, Carazzolle MF. Ethanol production process driving changes on industrial strains. FEMS Yeast Res 2021; 21:6070656. [PMID: 33417685 DOI: 10.1093/femsyr/foaa071] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/04/2021] [Indexed: 12/16/2022] Open
Abstract
Ethanol production has key differences between the two largest producing countries of this biofuel, Brazil and the USA, such as feedstock source, sugar concentration and ethanol titers in industrial fermentation. Therefore, it is highly probable that these specificities have led to genome adaptation of the Saccharomyces cerevisiae strains employed in each process to tolerate different environments. In order to identify particular adaptations, in this work, we have compared the genomes of industrial yeast strains widely used to produce ethanol from sugarcane, corn and sweet sorghum, and also two laboratory strains as reference. The genes were predicted and then 4524 single-copy orthologous were selected to build the phylogenetic tree. We found that the geographic location and industrial process were shown as the main evolutionary drivers: for sugarcane fermentation, positive selection was identified for metal homeostasis and stress response genes, whereas genes involved in membrane modeling have been connected with corn fermentation. In addition, the corn specialized strain Ethanol Red showed an increased number of copies of MAL31, a gene encoding a maltose transporter. In summary, our work can help to guide new strain chassis selection for engineering strategies, to produce more robust strains for biofuel production and other industrial applications.
Collapse
Affiliation(s)
- Sheila Tiemi Nagamatsu
- Division of Human Genetics, Department of Psychiatry, Yale School of Medicine, 333 Cedar St, New Haven, CT, 06510, USA.,Laboratório de Genômica e BioEnergia, Departamento de Genética, Evolução, Microbiologia e Imunologia, Universidade Estadual de Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Campinas, São Paulo, 13083-970, Brazil
| | - Natalia Coutouné
- Laboratório Nacional de Biorrenováveis (LNBR), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), CEP 13083-970, Campinas, São Paulo, Brazil
| | - Juliana José
- Laboratório de Genômica e BioEnergia, Departamento de Genética, Evolução, Microbiologia e Imunologia, Universidade Estadual de Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Campinas, São Paulo, 13083-970, Brazil
| | - Mateus Bernabe Fiamenghi
- Laboratório de Genômica e BioEnergia, Departamento de Genética, Evolução, Microbiologia e Imunologia, Universidade Estadual de Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Campinas, São Paulo, 13083-970, Brazil
| | - Gonçalo Amarante Guimarães Pereira
- Laboratório de Genômica e BioEnergia, Departamento de Genética, Evolução, Microbiologia e Imunologia, Universidade Estadual de Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Campinas, São Paulo, 13083-970, Brazil
| | - Juliana Velasco de Castro Oliveira
- Laboratório Nacional de Biorrenováveis (LNBR), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), CEP 13083-970, Campinas, São Paulo, Brazil
| | - Marcelo Falsarella Carazzolle
- Laboratório de Genômica e BioEnergia, Departamento de Genética, Evolução, Microbiologia e Imunologia, Universidade Estadual de Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Campinas, São Paulo, 13083-970, Brazil
| |
Collapse
|
27
|
Ruchala J, Sibirny AA. Pentose metabolism and conversion to biofuels and high-value chemicals in yeasts. FEMS Microbiol Rev 2020; 45:6034013. [PMID: 33316044 DOI: 10.1093/femsre/fuaa069] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
Pentose sugars are widespread in nature and two of them, D-xylose and L-arabinose belong to the most abundant sugars being the second and third by abundance sugars in dry plant biomass (lignocellulose) and in general on planet. Therefore, it is not surprising that metabolism and bioconversion of these pentoses attract much attention. Several different pathways of D-xylose and L-arabinose catabolism in bacteria and yeasts are known. There are even more common and really ubiquitous though not so abundant pentoses, D-ribose and 2-deoxy-D-ribose, the constituents of all living cells. Thus, ribose metabolism is example of endogenous metabolism whereas metabolism of other pentoses, including xylose and L-arabinose, represents examples of the metabolism of foreign exogenous compounds which normally are not constituents of yeast cells. As a rule, pentose degradation by the wild-type strains of microorganisms does not lead to accumulation of high amounts of valuable substances; however, productive strains have been obtained by random selection and metabolic engineering. There are numerous reviews on xylose and (less) L-arabinose metabolism and conversion to high value substances; however, they mostly are devoted to bacteria or the yeast Saccharomyces cerevisiae. This review is devoted to reviewing pentose metabolism and bioconversion mostly in non-conventional yeasts, which naturally metabolize xylose. Pentose metabolism in the recombinant strains of S. cerevisiae is also considered for comparison. The available data on ribose, xylose, L-arabinose transport, metabolism, regulation of these processes, interaction with glucose catabolism and construction of the productive strains of high-value chemicals or pentose (ribose) itself are described. In addition, genome studies of the natural xylose metabolizing yeasts and available tools for their molecular research are reviewed. Metabolism of other pentoses (2-deoxyribose, D-arabinose, lyxose) is briefly reviewed.
Collapse
Affiliation(s)
- Justyna Ruchala
- Department of Microbiology and Molecular Genetics, University of Rzeszow, Zelwerowicza 4, Rzeszow 35-601, Poland.,Department of Molecular Genetics and Biotechnology, Institute of Cell Biology NAS of Ukraine, Drahomanov Street, 14/16, Lviv 79005, Ukraine
| | - Andriy A Sibirny
- Department of Microbiology and Molecular Genetics, University of Rzeszow, Zelwerowicza 4, Rzeszow 35-601, Poland.,Department of Molecular Genetics and Biotechnology, Institute of Cell Biology NAS of Ukraine, Drahomanov Street, 14/16, Lviv 79005, Ukraine
| |
Collapse
|
28
|
Romaní A, Morais ES, Soares PO, Freire MG, Freire CSR, Silvestre AJD, Domingues L. Aqueous solutions of deep eutectic systems as reaction media for the saccharification and fermentation of hardwood xylan into xylitol. BIORESOURCE TECHNOLOGY 2020; 311:123524. [PMID: 32447229 DOI: 10.1016/j.biortech.2020.123524] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
The aim of this study was to evaluate the effect of aqueous solutions of deep eutectic solvent, Cholinium Chloride:Urea ([Ch]Cl:U) at 50 wt% and 20 wt%, using different molar ratios (1:1, 2:1 and 1:2) on the enzymatic hydrolysis of xylan for xylose production and its subsequent bioconversion into xylitol using a recombinant yeast strain. The lowest xylan conversion into xylose (45%) was obtained using 1:2 [Ch]Cl:U molar ratio. On the other hand, the 1:1 [Ch]Cl:U molar ratio, at 20 wt% in water, improved this conversion, achieving the highest xylose yield (81.4%). The xylitol production was then optimized with [Ch]Cl:U (1:1) at 20 wt% by simultaneous saccharification and fermentation process, attaining 23.67 g/L, corresponding to 66.04% of xylitol yield. This study reveals the possibility of using xylan solubilized in DES aqueous solutions directly for xylitol production, thus assembling a one-step process.
Collapse
Affiliation(s)
- Aloia Romaní
- CEB - Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal.
| | - Eduarda S Morais
- CICECO-Aveiro Institute of Materials and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Pedro O Soares
- CEB - Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | - Mara G Freire
- CICECO-Aveiro Institute of Materials and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carmen S R Freire
- CICECO-Aveiro Institute of Materials and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Armando J D Silvestre
- CICECO-Aveiro Institute of Materials and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Lucília Domingues
- CEB - Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
29
|
Cunha JT, Soares PO, Baptista SL, Costa CE, Domingues L. Engineered Saccharomyces cerevisiae for lignocellulosic valorization: a review and perspectives on bioethanol production. Bioengineered 2020; 11:883-903. [PMID: 32799606 PMCID: PMC8291843 DOI: 10.1080/21655979.2020.1801178] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The biorefinery concept, consisting in using renewable biomass with economical and energy goals, appeared in response to the ongoing exhaustion of fossil reserves. Bioethanol is the most prominent biofuel and has been considered one of the top chemicals to be obtained from biomass. Saccharomyces cerevisiae, the preferred microorganism for ethanol production, has been the target of extensive genetic modifications to improve the production of this alcohol from renewable biomasses. Additionally, S. cerevisiae strains from harsh industrial environments have been exploited due to their robust traits and improved fermentative capacity. Nevertheless, there is still not an optimized strain capable of turning second generation bioprocesses economically viable. Considering this, and aiming to facilitate and guide the future development of effective S. cerevisiae strains, this work reviews genetic engineering strategies envisioning improvements in 2nd generation bioethanol production, with special focus in process-related traits, xylose consumption, and consolidated bioprocessing. Altogether, the genetic toolbox described proves S. cerevisiae to be a key microorganism for the establishment of a bioeconomy, not only for the production of lignocellulosic bioethanol, but also having potential as a cell factory platform for overall valorization of renewable biomasses.
Collapse
Affiliation(s)
- Joana T Cunha
- CEB - Centre of Biological Engineering, University of Minho, Campus Gualtar , Braga, Portugal
| | - Pedro O Soares
- CEB - Centre of Biological Engineering, University of Minho, Campus Gualtar , Braga, Portugal
| | - Sara L Baptista
- CEB - Centre of Biological Engineering, University of Minho, Campus Gualtar , Braga, Portugal
| | - Carlos E Costa
- CEB - Centre of Biological Engineering, University of Minho, Campus Gualtar , Braga, Portugal
| | - Lucília Domingues
- CEB - Centre of Biological Engineering, University of Minho, Campus Gualtar , Braga, Portugal
| |
Collapse
|
30
|
Cunha JT, Romaní A, Inokuma K, Johansson B, Hasunuma T, Kondo A, Domingues L. Consolidated bioprocessing of corn cob-derived hemicellulose: engineered industrial Saccharomyces cerevisiae as efficient whole cell biocatalysts. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:138. [PMID: 32782474 PMCID: PMC7414751 DOI: 10.1186/s13068-020-01780-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 07/29/2020] [Indexed: 05/24/2023]
Abstract
BACKGROUND Consolidated bioprocessing, which combines saccharolytic and fermentative abilities in a single microorganism, is receiving increased attention to decrease environmental and economic costs in lignocellulosic biorefineries. Nevertheless, the economic viability of lignocellulosic ethanol is also dependent of an efficient utilization of the hemicellulosic fraction, which contains xylose as a major component in concentrations that can reach up to 40% of the total biomass in hardwoods and agricultural residues. This major bottleneck is mainly due to the necessity of chemical/enzymatic treatments to hydrolyze hemicellulose into fermentable sugars and to the fact that xylose is not readily consumed by Saccharomyces cerevisiae-the most used organism for large-scale ethanol production. In this work, industrial S. cerevisiae strains, presenting robust traits such as thermotolerance and improved resistance to inhibitors, were evaluated as hosts for the cell-surface display of hemicellulolytic enzymes and optimized xylose assimilation, aiming at the development of whole-cell biocatalysts for consolidated bioprocessing of corn cob-derived hemicellulose. RESULTS These modifications allowed the direct production of ethanol from non-detoxified hemicellulosic liquor obtained by hydrothermal pretreatment of corn cob, reaching an ethanol titer of 11.1 g/L corresponding to a yield of 0.328 g/g of potential xylose and glucose, without the need for external hydrolytic catalysts. Also, consolidated bioprocessing of pretreated corn cob was found to be more efficient for hemicellulosic ethanol production than simultaneous saccharification and fermentation with addition of commercial hemicellulases. CONCLUSIONS These results show the potential of industrial S. cerevisiae strains for the design of whole-cell biocatalysts and paves the way for the development of more efficient consolidated bioprocesses for lignocellulosic biomass valorization, further decreasing environmental and economic costs.
Collapse
Affiliation(s)
- Joana T. Cunha
- CEB–Centre of Biological Engineering, University of Minho, Campus Gualtar, Braga, Portugal
| | - Aloia Romaní
- CEB–Centre of Biological Engineering, University of Minho, Campus Gualtar, Braga, Portugal
| | - Kentaro Inokuma
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501 Japan
| | - Björn Johansson
- Center of Molecular and Environmental Biology (CBMA), University of Minho, Braga, Portugal
| | - Tomohisa Hasunuma
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501 Japan
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501 Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501 Japan
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501 Japan
| | - Lucília Domingues
- CEB–Centre of Biological Engineering, University of Minho, Campus Gualtar, Braga, Portugal
| |
Collapse
|
31
|
Del Río PG, Gomes-Dias JS, Rocha CMR, Romaní A, Garrote G, Domingues L. Recent trends on seaweed fractionation for liquid biofuels production. BIORESOURCE TECHNOLOGY 2020; 299:122613. [PMID: 31870706 DOI: 10.1016/j.biortech.2019.122613] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 05/18/2023]
Abstract
Concerns about fossil fuels depletion has led to seek for new sources of energy. The use of marine biomass (seaweed) to produce biofuels presents widely recognized advantages over terrestrial biomasses such as higher production ratio, higher photosynthetic efficiency or carbon-neutral emissions. In here, interesting seaweed sources as a whole or as a residue from seaweed processing industries for biofuel production were identified and their diverse composition and availability compiled. In addition, the pretreatments used for seaweed fractionation were thoroughly revised as this step is pivotal in a seaweed biorefinery for integral biomass valorization and for enabling biomass-to-biofuel economic feasibility processes. Traditional and emerging technologies were revised, with particular emphasis on green technologies, relating pretreatment not only with the type of biomass but also with the final target product(s) and yields. Current hurdles of marine biomass-to-biofuel processes were pinpointed and discussed and future perspectives on the development of these processes given.
Collapse
Affiliation(s)
- Pablo G Del Río
- Department of Chemical Engineering, Faculty of Science, University of Vigo Campus Ourense, As Lagoas, 32004 Ourense, Spain
| | - Joana S Gomes-Dias
- CEB-Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | - Cristina M R Rocha
- CEB-Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | - Aloia Romaní
- CEB-Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal.
| | - Gil Garrote
- Department of Chemical Engineering, Faculty of Science, University of Vigo Campus Ourense, As Lagoas, 32004 Ourense, Spain
| | - Lucília Domingues
- CEB-Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
32
|
Xylose utilization in Saccharomyces cerevisiae during conversion of hydrothermally pretreated lignocellulosic biomass to ethanol. Appl Microbiol Biotechnol 2020; 104:3245-3252. [DOI: 10.1007/s00253-020-10427-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/21/2020] [Accepted: 02/03/2020] [Indexed: 10/25/2022]
|
33
|
Myburgh MW, Cripwell RA, Favaro L, van Zyl WH. Application of industrial amylolytic yeast strains for the production of bioethanol from broken rice. BIORESOURCE TECHNOLOGY 2019; 294:122222. [PMID: 31683453 DOI: 10.1016/j.biortech.2019.122222] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/27/2019] [Accepted: 09/28/2019] [Indexed: 06/10/2023]
Abstract
Amylolytic Saccharomyces cerevisiae derivatives of Ethanol Red™ Version 1 (ER T12) and M2n (M2n T1) were assessed through enzyme assays, hydrolysis trials, electron microscopy and fermentation studies using broken rice. The heterologous enzymes hydrolysed broken rice at a similar rate compared to commercial granular starch-hydrolysing enzyme cocktail. During the fermentation of 20% dw/v broken rice, the amylolytic strains converted rice starch to ethanol in a single step and yielded high ethanol titers. The best-performing strain (ER T12) produced 93% of the theoretical ethanol yield after 96 h of consolidated bioprocessing (CBP) fermentation at 32 °C. Furthermore, the addition of commercial enzyme cocktail (10% of the recommended dosage) in combination with ER T12 did not significantly improve the maximum ethanol concentration, confirming the superior ability of ER T12 to hydrolyse raw starch. The ER T12 strain was therefore identified as an ideal candidate for the CBP of starch-rich waste streams.
Collapse
Affiliation(s)
- Marthinus W Myburgh
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Rosemary A Cripwell
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Lorenzo Favaro
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), Padova University, Agripolis, Viale dell'Università 16, 35020 Legnaro, Padova, Italy.
| | - Willem H van Zyl
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| |
Collapse
|
34
|
Pinheiro T, Coelho E, Romaní A, Domingues L. Intensifying ethanol production from brewer’s spent grain waste: Use of whole slurry at high solid loadings. N Biotechnol 2019; 53:1-8. [DOI: 10.1016/j.nbt.2019.06.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/28/2019] [Accepted: 06/08/2019] [Indexed: 12/29/2022]
|
35
|
Martínez-Cartas ML, Olivares MI, Sánchez S. Production of bioalcohols and antioxidant compounds by acid hydrolysis of lignocellulosic wastes and fermentation of hydrolysates with Hansenula polymorpha. Eng Life Sci 2019; 19:522-536. [PMID: 32625029 DOI: 10.1002/elsc.201900011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/04/2019] [Accepted: 05/21/2019] [Indexed: 11/12/2022] Open
Abstract
The effect of the H2SO4 concentration in the hydrolysis of sunflower-stalk waste, at 95ºC and using a liquid/solid relation of 20, was studied. In a later stage, the hydrolysates were fermented at different temperatures with the aim of ethanol and xylitol production. A total conversion of the hemicellulose at the acid concentration of 0.5 mol/L was achieved; whereas an acid concentration of 2.5 mol/L was needed to reach the maximum value in the conversion of the cellulose fraction. The analysis of the hydrolysis kinetics has enabled to determine the apparent reaction order, which was 1.3. The hydrolysates from hydrolysis process with H2SO4 0.5 mol/L, once detoxified, were fermented at pH 5.5, temperatures 30, 40, and 50ºC with the yeast Hansenula polymorpha (ATCC 34438), resulting in a sequential uptake of sugars. In relation to ethanol and xylitol yields, the best results were observed at 50°C ( Y E / s O = 0.11 g/g; Y X y / s O = 0.12 g/g). Instantaneous xylitol yields were higher than in ethanol, at the three temperatures essayed. Different phenolic compounds were analyzed in the hydrolysates; hydroxytyrosol was the most abundant (3.79 mg/L). The recovery of these compounds entails the elimination of inhibitors in the fermentation process and the production of high value-added antioxidant products.
Collapse
Affiliation(s)
| | - Mª Inmaculada Olivares
- Department of Chemical Environmental and Materials Engineering University of Jaén Linares Jaén Spain
| | - Sebastián Sánchez
- Department of Chemical Environmental and Materials Engineering University of Jaén Linares Jaén Spain
| |
Collapse
|
36
|
Cunha JT, Soares PO, Romaní A, Thevelein JM, Domingues L. Xylose fermentation efficiency of industrial Saccharomyces cerevisiae yeast with separate or combined xylose reductase/xylitol dehydrogenase and xylose isomerase pathways. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:20. [PMID: 30705706 PMCID: PMC6348659 DOI: 10.1186/s13068-019-1360-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/18/2019] [Indexed: 05/12/2023]
Abstract
BACKGROUND Xylose isomerase (XI) and xylose reductase/xylitol dehydrogenase (XR/XDH) pathways have been extensively used to confer xylose assimilation capacity to Saccharomyces cerevisiae and tackle one of the major bottlenecks in the attainment of economically viable lignocellulosic ethanol production. Nevertheless, there is a lack of studies comparing the efficiency of those pathways both separately and combined. In this work, the XI and/or XR/XDH pathways were introduced into two robust industrial S. cerevisiae strains, evaluated in synthetic media and corn cob hemicellulosic hydrolysate and the results were correlated with the differential enzyme activities found in the xylose-pathway engineered strains. RESULTS The sole expression of XI was found to increase the fermentative capacity of both strains in synthetic media at 30 °C and 40 °C: decreasing xylitol accumulation and improving xylose consumption and ethanol production. Similar results were observed in fermentations of detoxified hydrolysate. However, in the presence of lignocellulosic-derived inhibitors, a positive synergistic effect resulted from the expression of both XI and XR/XDH, possibly caused by a cofactor equilibrium between the XDH and furan detoxifying enzymes, increasing the ethanol yield by more than 38%. CONCLUSIONS This study clearly shows an advantage of using the XI from Clostridium phytofermentans to attain high ethanol productivities and yields from xylose. Furthermore, and for the first time, the simultaneous utilization of XR/XDH and XI pathways was compared to the single expression of XR/XDH or XI and was found to improve ethanol production from non-detoxified hemicellulosic hydrolysates. These results extend the knowledge regarding S. cerevisiae xylose assimilation metabolism and pave the way for the construction of more efficient strains for use in lignocellulosic industrial processes.
Collapse
Affiliation(s)
- Joana T. Cunha
- CEB-Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Pedro O. Soares
- CEB-Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Aloia Romaní
- CEB-Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Johan M. Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven-Heverlee, Flanders Belgium
- Center for Microbiology, VIB, Kasteelpark Arenberg 31, 3001 Leuven-Heverlee, Flanders Belgium
| | - Lucília Domingues
- CEB-Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
37
|
Silva PC, Domingues L, Collins T, Oliveira R, Johansson B. Quantitative assessment of DNA damage in the industrial ethanol production strain Saccharomyces cerevisiae PE-2. FEMS Yeast Res 2018; 18:5097783. [PMID: 30219865 DOI: 10.1093/femsyr/foy101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/12/2018] [Indexed: 11/14/2022] Open
Abstract
Lignocellulosic hydrolysates remain one of the most abundantly used substrates for the sustainable production of second generation fuels and chemicals with Saccharomyces cerevisiae. Nevertheless, fermentation inhibitors such as acetic acid, furfural and hydroxymethylfurfural are formed during the process and can lead to slow or stuck fermentations and/or act as genotoxic agents leading to production strain genetic instability. We have developed a novel dominant deletion (DEL) cassette assay for quantification of DNA damage in both wild-type and industrial yeast strains. Using this assay, the ethanol production strain S. cerevisiae PE-2 was shown to be more resistant to hydrogen peroxide and furfural than the laboratory DEL strain RS112. Indeed, the PE-2 strain also showed a lower tendency for recombination, consistent with a more efficient DNA protection. The dominant DEL assay presented herein should prove to be a useful tool in the selection of robust yeast strains and process conditions for second generation feedstock fermentations.
Collapse
Affiliation(s)
| | - Lucília Domingues
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - Tony Collins
- CBMA - Center of Molecular and Environmental Biology
| | - Rui Oliveira
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal.,Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | | |
Collapse
|
38
|
Cunha JT, Romaní A, Costa CE, Sá-Correia I, Domingues L. Molecular and physiological basis of Saccharomyces cerevisiae tolerance to adverse lignocellulose-based process conditions. Appl Microbiol Biotechnol 2018; 103:159-175. [PMID: 30397768 DOI: 10.1007/s00253-018-9478-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 11/27/2022]
Abstract
Lignocellulose-based biorefineries have been gaining increasing attention to substitute current petroleum-based refineries. Biomass processing requires a pretreatment step to break lignocellulosic biomass recalcitrant structure, which results in the release of a broad range of microbial inhibitors, mainly weak acids, furans, and phenolic compounds. Saccharomyces cerevisiae is the most commonly used organism for ethanol production; however, it can be severely distressed by these lignocellulose-derived inhibitors, in addition to other challenging conditions, such as pentose sugar utilization and the high temperatures required for an efficient simultaneous saccharification and fermentation step. Therefore, a better understanding of the yeast response and adaptation towards the presence of these multiple stresses is of crucial importance to design strategies to improve yeast robustness and bioconversion capacity from lignocellulosic biomass. This review includes an overview of the main inhibitors derived from diverse raw material resultants from different biomass pretreatments, and describes the main mechanisms of yeast response to their presence, as well as to the presence of stresses imposed by xylose utilization and high-temperature conditions, with a special emphasis on the synergistic effect of multiple inhibitors/stressors. Furthermore, successful cases of tolerance improvement of S. cerevisiae are highlighted, in particular those associated with other process-related physiologically relevant conditions. Decoding the overall yeast response mechanisms will pave the way for the integrated development of sustainable yeast cell-based biorefineries.
Collapse
Affiliation(s)
- Joana T Cunha
- Centre of Biological Engineering (CEB), University of Minho, 4710-057, Braga, Portugal
| | - Aloia Romaní
- Centre of Biological Engineering (CEB), University of Minho, 4710-057, Braga, Portugal
| | - Carlos E Costa
- Centre of Biological Engineering (CEB), University of Minho, 4710-057, Braga, Portugal
| | - Isabel Sá-Correia
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Lucília Domingues
- Centre of Biological Engineering (CEB), University of Minho, 4710-057, Braga, Portugal.
| |
Collapse
|
39
|
Baptista SL, Cunha JT, Romaní A, Domingues L. Xylitol production from lignocellulosic whole slurry corn cob by engineered industrial Saccharomyces cerevisiae PE-2. BIORESOURCE TECHNOLOGY 2018; 267:481-491. [PMID: 30041142 DOI: 10.1016/j.biortech.2018.07.068] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 06/08/2023]
Abstract
In this work, the industrial Saccharomyces cerevisiae PE-2 strain, presenting innate capacity for xylitol accumulation, was engineered for xylitol production by overexpression of the endogenous GRE3 gene and expression of different xylose reductases from Pichia stipitis. The best-performing GRE3-overexpressing strain was capable to produce 148.5 g/L of xylitol from high xylose-containing media, with a 0.95 g/g yield, and maintained close to maximum theoretical yields (0.89 g/g) when tested in non-detoxified corn cob hydrolysates. Furthermore, a successful integrated strategy was developed for the production of xylitol from whole slurry corn cob in a presaccharification and simultaneous saccharification and fermentation process (15% solid loading and 36 FPU) reaching xylitol yield of 0.93 g/g and a productivity of 0.54 g/L·h. This novel approach results in an intensified valorization of lignocellulosic biomass for xylitol production in a fully integrated process and represents an advance towards a circular economy.
Collapse
Affiliation(s)
- Sara L Baptista
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Joana T Cunha
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Aloia Romaní
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Lucília Domingues
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal.
| |
Collapse
|
40
|
Mokomele T, da Costa Sousa L, Balan V, van Rensburg E, Dale BE, Görgens JF. Ethanol production potential from AFEX™ and steam-exploded sugarcane residues for sugarcane biorefineries. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:127. [PMID: 29755586 PMCID: PMC5934847 DOI: 10.1186/s13068-018-1130-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/25/2018] [Indexed: 05/05/2023]
Abstract
BACKGROUND Expanding biofuel markets are challenged by the need to meet future biofuel demands and mitigate greenhouse gas emissions, while using domestically available feedstock sustainably. In the context of the sugar industry, exploiting under-utilized cane leaf matter (CLM) in addition to surplus sugarcane bagasse as supplementary feedstock for second-generation ethanol production has the potential to improve bioenergy yields per unit land. In this study, the ethanol yields and processing bottlenecks of ammonia fibre expansion (AFEX™) and steam explosion (StEx) as adopted technologies for pretreating sugarcane bagasse and CLM were experimentally measured and compared for the first time. RESULTS Ethanol yields between 249 and 256 kg Mg-1 raw dry biomass (RDM) were obtained with AFEX™-pretreated sugarcane bagasse and CLM after high solids loading enzymatic hydrolysis and fermentation. In contrast, StEx-pretreated sugarcane bagasse and CLM resulted in substantially lower ethanol yields that ranged between 162 and 203 kg Mg-1 RDM. The ethanol yields from StEx-treated sugarcane residues were limited by the aggregated effect of sugar degradation during pretreatment, enzyme inhibition during enzymatic hydrolysis and microbial inhibition of S. cerevisiae 424A (LNH-ST) during fermentation. However, relatively high enzyme dosages (> 20 mg g-1 glucan) were required irrespective of pretreatment method to reach 75% carbohydrate conversion, even when optimal combinations of Cellic® CTec3, Cellic® HTec3 and Pectinex Ultra-SP were used. Ethanol yields per hectare sugarcane cultivation area were estimated at 4496 and 3416 L ha-1 for biorefineries using AFEX™- or StEx-treated sugarcane residues, respectively. CONCLUSIONS AFEX™ proved to be a more effective pretreatment method for sugarcane residues relative to StEx due to the higher fermentable sugar recovery and enzymatic hydrolysate fermentability after high solids loading enzymatic hydrolysis and fermentation by S. cerevisiae 424A (LNH-ST). The identification of auxiliary enzyme activities, adequate process integration and the use of robust xylose-fermenting ethanologens were identified as opportunities to further improve ethanol yields from AFEX™- and StEx-treated sugarcane residues.
Collapse
Affiliation(s)
- Thapelo Mokomele
- Department of Process Engineering, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch, South Africa
- Biomass Conversion Research Laboratory, Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, USA
| | - Leonardo da Costa Sousa
- Biomass Conversion Research Laboratory, Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, USA
- Great Lakes Bioenergy Research Center (GLBRC), Michigan State University, East Lansing, MI USA
| | - Venkatesh Balan
- Biomass Conversion Research Laboratory, Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, USA
- Department of Engineering Technology, Biotechnology Program, School of Technology, University of Houston, 4800 Calhoun, Road, Houston, TX 77004 USA
| | - Eugéne van Rensburg
- Department of Process Engineering, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch, South Africa
| | - Bruce E. Dale
- Biomass Conversion Research Laboratory, Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, USA
- Great Lakes Bioenergy Research Center (GLBRC), Michigan State University, East Lansing, MI USA
| | - Johann F. Görgens
- Department of Process Engineering, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch, South Africa
| |
Collapse
|
41
|
Gomes D, Gama M, Domingues L. Determinants on an efficient cellulase recycling process for the production of bioethanol from recycled paper sludge under high solid loadings. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:111. [PMID: 29686729 PMCID: PMC5901881 DOI: 10.1186/s13068-018-1103-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/31/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND In spite of the continuous efforts and investments in the last decades, lignocellulosic ethanol is still not economically competitive with fossil fuels. Optimization is still required in different parts of the process. Namely, the cost effective usage of enzymes has been pursued by different strategies, one of them being recycling. RESULTS Cellulase recycling was analyzed on recycled paper sludge (RPS) conversion into bioethanol under intensified conditions. Different cocktails were studied regarding thermostability, hydrolysis efficiency, distribution in the multiphasic system and recovery from solid. Celluclast showed inferior stability at higher temperatures (45-55 °C), nevertheless its performance at moderate temperatures (40 °C) was slightly superior to other cocktails (ACCELLERASE®1500 and Cellic®CTec2). Celluclast distribution in the solid-liquid medium was also more favorable, enabling to recover 88% of final activity at the end of the process. A central composite design studied the influence of solid concentration and enzyme dosage on RPS conversion by Celluclast. Solids concentration showed a significant positive effect on glucose production, no major limitations being found from utilizing high amounts of solids under the studied conditions. Increasing enzyme loading from 20 to 30 FPU/gcellulose had no significant effect on sugars production, suggesting that 22% solids and 20 FPU/gcellulose are the best operational conditions towards an intensified process. Applying these, a system of multiple rounds of hydrolysis with enzyme recycling was implemented, allowing to maintain the steady levels of enzyme activity with only 50% of enzyme on each recycling stage. Additionally, interesting levels of solid conversion (70-81%) were also achieved, leading to considerable improvements on glucose and ethanol production comparatively with the reports available so far (3.4- and 3.8-fold, respectively). CONCLUSIONS Enzyme recycling viability depends on enzyme distribution between the solid and liquid phases at the end of hydrolysis, as well as enzymes thermostability. Both are critical features to be observed for a judicious choice of enzyme cocktail. This work demonstrates that enzyme recycling in intensified biomass degradation can be achieved through simple means. The process is possibly much more effective at larger scale, hence novel enzyme formulations favoring this possibility should be developed for industrial usage.
Collapse
Affiliation(s)
- Daniel Gomes
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Miguel Gama
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Lucília Domingues
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
42
|
Cunha JT, Costa CE, Ferraz L, Romaní A, Johansson B, Sá-Correia I, Domingues L. HAA1 and PRS3 overexpression boosts yeast tolerance towards acetic acid improving xylose or glucose consumption: unravelling the underlying mechanisms. Appl Microbiol Biotechnol 2018; 102:4589-4600. [PMID: 29607452 DOI: 10.1007/s00253-018-8955-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/12/2018] [Accepted: 03/18/2018] [Indexed: 11/28/2022]
Abstract
Acetic acid tolerance and xylose consumption are desirable traits for yeast strains used in industrial biotechnological processes. In this work, overexpression of a weak acid stress transcriptional activator encoded by the gene HAA1 and a phosphoribosyl pyrophosphate synthetase encoded by PRS3 in a recombinant industrial Saccharomyces cerevisiae strain containing a xylose metabolic pathway was evaluated in the presence of acetic acid in xylose- or glucose-containing media. HAA1 or PRS3 overexpression resulted in superior yeast growth and higher sugar consumption capacities in the presence of 4 g/L acetic acid, and a positive synergistic effect resulted from the simultaneous overexpression of both genes. Overexpressing these genes also improved yeast adaptation to a non-detoxified hardwood hydrolysate with a high acetic acid content. Furthermore, the overexpression of HAA1 and/or PRS3 was found to increase the robustness of yeast cell wall when challenged with acetic acid stress, suggesting the involvement of the modulation of the cell wall integrity pathway. This study clearly shows HAA1 and/or, for the first time, PRS3 overexpression to play an important role in the improvement of industrial yeast tolerance towards acetic acid. The results expand the molecular toolbox and add to the current understanding of the mechanisms involved in higher acetic acid tolerance, paving the way for the further development of more efficient industrial processes.
Collapse
Affiliation(s)
- Joana T Cunha
- Centre of Biological Engineering (CEB), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Carlos E Costa
- Centre of Biological Engineering (CEB), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Luís Ferraz
- Centre of Biological Engineering (CEB), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Aloia Romaní
- Centre of Biological Engineering (CEB), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Björn Johansson
- Center of Molecular and Environmental Biology (CBMA), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Isabel Sá-Correia
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Lucília Domingues
- Centre of Biological Engineering (CEB), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| |
Collapse
|
43
|
Cunha M, Romaní A, Carvalho M, Domingues L. Boosting bioethanol production from Eucalyptus wood by whey incorporation. BIORESOURCE TECHNOLOGY 2018; 250:256-264. [PMID: 29174903 DOI: 10.1016/j.biortech.2017.11.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 06/07/2023]
Abstract
The mixture of Eucalyptus globulus wood (EGW) and cheese whey powder (CWP) was proposed for intensification of simultaneous saccharification and fermentation (SSF) at high temperature and solid loadings using the industrial Saccharomyces cerevisiae Ethanol Red® strain. High ethanol concentration (93 g/L), corresponding to 94% ethanol yield, was obtained at 35 °C from 37% of solid mixture using cellulase and β-galactosidase enzymes (24.2 FPU/g and 20.0 U/g, respectively). The use of CWP mixed with pretreated EGW increased the ethanol concentration in 1.5-fold, in comparison with SSF experiments without CWP for both Ethanol Red® and CEN.PK113-7D strains. Moreover, 1.4-fold higher ethanol concentration was obtained with Ethanol Red®, in comparison with CEN.PK113-7D strain. Ethanol Red® strain was genetically engineered for β-galactosidase production in order to advance towards a fully integrated process. This work shows the feasibility of attaining high ethanol concentrations in second generation bioprocesses by a multi-waste valorization approach.
Collapse
Affiliation(s)
- Manuel Cunha
- CEB - Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | - Aloia Romaní
- CEB - Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | - Margarida Carvalho
- CEB - Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | - Lucília Domingues
- CEB - Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
44
|
Jansen MLA, Bracher JM, Papapetridis I, Verhoeven MD, de Bruijn H, de Waal PP, van Maris AJA, Klaassen P, Pronk JT. Saccharomyces cerevisiae strains for second-generation ethanol production: from academic exploration to industrial implementation. FEMS Yeast Res 2017; 17:3868933. [PMID: 28899031 PMCID: PMC5812533 DOI: 10.1093/femsyr/fox044] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 06/15/2017] [Indexed: 11/18/2022] Open
Abstract
The recent start-up of several full-scale 'second generation' ethanol plants marks a major milestone in the development of Saccharomyces cerevisiae strains for fermentation of lignocellulosic hydrolysates of agricultural residues and energy crops. After a discussion of the challenges that these novel industrial contexts impose on yeast strains, this minireview describes key metabolic engineering strategies that have been developed to address these challenges. Additionally, it outlines how proof-of-concept studies, often developed in academic settings, can be used for the development of robust strain platforms that meet the requirements for industrial application. Fermentation performance of current engineered industrial S. cerevisiae strains is no longer a bottleneck in efforts to achieve the projected outputs of the first large-scale second-generation ethanol plants. Academic and industrial yeast research will continue to strengthen the economic value position of second-generation ethanol production by further improving fermentation kinetics, product yield and cellular robustness under process conditions.
Collapse
Affiliation(s)
- Mickel L. A. Jansen
- DSM Biotechnology Centre, Alexander Fleminglaan 1, 2613 AX Delft, The
Netherlands
| | - Jasmine M. Bracher
- Department of Biotechnology, Delft University of Technology, Van der Maasweg
9, 2629 HZ Delft, The Netherlands
| | - Ioannis Papapetridis
- Department of Biotechnology, Delft University of Technology, Van der Maasweg
9, 2629 HZ Delft, The Netherlands
| | - Maarten D. Verhoeven
- Department of Biotechnology, Delft University of Technology, Van der Maasweg
9, 2629 HZ Delft, The Netherlands
| | - Hans de Bruijn
- DSM Biotechnology Centre, Alexander Fleminglaan 1, 2613 AX Delft, The
Netherlands
| | - Paul P. de Waal
- DSM Biotechnology Centre, Alexander Fleminglaan 1, 2613 AX Delft, The
Netherlands
| | - Antonius J. A. van Maris
- Department of Biotechnology, Delft University of Technology, Van der Maasweg
9, 2629 HZ Delft, The Netherlands
| | - Paul Klaassen
- DSM Biotechnology Centre, Alexander Fleminglaan 1, 2613 AX Delft, The
Netherlands
| | - Jack T. Pronk
- Department of Biotechnology, Delft University of Technology, Van der Maasweg
9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
45
|
Ali SS, Wu J, Xie R, Zhou F, Sun J, Huang M. Screening and characterizing of xylanolytic and xylose-fermenting yeasts isolated from the wood-feeding termite, Reticulitermes chinensis. PLoS One 2017; 12:e0181141. [PMID: 28704553 PMCID: PMC5509302 DOI: 10.1371/journal.pone.0181141] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/21/2017] [Indexed: 11/20/2022] Open
Abstract
The effective fermentation of xylose remains an intractable challenge in bioethanol industry. The relevant xylanase enzyme is also in a high demand from industry for several biotechnological applications that inevitably in recent times led to many efforts for screening some novel microorganisms for better xylanase production and fermentation performance. Recently, it seems that wood-feeding termites can truly be considered as highly efficient natural bioreactors. The highly specialized gut systems of such insects are not yet fully realized, particularly, in xylose fermentation and xylanase production to advance industrial bioethanol technology as well as industrial applications of xylanases. A total of 92 strains from 18 yeast species were successfully isolated and identified from the gut of wood-feeding termite, Reticulitermes chinensis. Of these yeasts and strains, seven were identified for new species: Candida gotoi, Candida pseudorhagii, Hamamotoa lignophila, Meyerozyma guilliermondii, Sugiyamaella sp.1, Sugiyamaella sp. 2, and Sugiyamaella sp.3. Based on the phylogenetic and phenotypic characterization, the type strain of C. pseudorhagii sp. nov., which was originally designated strain SSA-1542T, was the most frequently occurred yeast from termite gut samples, showed the highly xylanolytic activity as well as D-xylose fermentation. The highest xylanase activity was recorded as 1.73 and 0.98 U/mL with xylan or D-xylose substrate, respectively, from SSA-1542T. Among xylanase-producing yeasts, four novel species were identified as D-xylose-fermenting yeasts, where the yeast, C. pseudorhagii SSA-1542T, showed the highest ethanol yield (0.31 g/g), ethanol productivity (0.31 g/L·h), and its fermentation efficiency (60.7%) in 48 h. Clearly, the symbiotic yeasts isolated from termite guts have demonstrated a competitive capability to produce xylanase and ferment xylose, suggesting that the wood-feeding termite gut is a promising reservoir for novel xylanases-producing and xylose-fermenting yeasts that are potentially valued for biorefinery industry.
Collapse
Affiliation(s)
- Sameh Samir Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
- Botany Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Jian Wu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Rongrong Xie
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Feng Zhou
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
- * E-mail:
| | - Miao Huang
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|