1
|
Tafere Abrha G, Li Q, Kuang X, Xiao D, Ayepa E, Wu J, Chen H, Zhang Z, Liu Y, Yu X, Xiang Q, Ma M. Phenotypic and comparative transcriptomics analysis of RDS1 overexpression reveal tolerance of Saccharomyces cerevisiae to furfural. J Biosci Bioeng 2023; 136:270-277. [PMID: 37544800 DOI: 10.1016/j.jbiosc.2023.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/18/2023] [Accepted: 06/28/2023] [Indexed: 08/08/2023]
Abstract
The yeast Saccharomyces cerevisiae able to tolerate lignocellulose-derived inhibitors like furfural. Yeast strain performance tolerance has been measured by the length of the lag phase for cell growth in response to the furfural inhibitor challenge. The aims of this work were to obtain RDS1 yeast tolerant strain against furfural through overexpression using a method of in vivo homologous recombination. Here, we report that the overexpressing RDS1 recovered more rapidly and displayed a lag phase at about 12 h than its parental strain. Overexpressing RDS1 strain encodes a novel aldehyde reductase with catalytic function for reduction of furfural with NAD(P)H as the co-factor. It displayed the highest specific activity (24.8 U/mg) for furfural reduction using NADH as a cofactor. Fluorescence microscopy revealed improved accumulation of reactive oxygen species resistance to the damaging effects of inhibitor in contrast to the parental. Comparative transcriptomics revealed key genes potentially associated with stress responses to the furfural inhibitor, including specific and multiple functions involving defensive reduction-oxidation reaction process and cell wall response. A significant change in expression level of log2 (fold change >1) was displayed for RDS1 gene in the recombinant strain, which demonstrated that the introduction of RDS1 overexpression promoted the expression level. Such signature expressions differentiated tolerance phenotypes of RDS1 from the innate stress response of its parental strain. Overexpression of the RDS1 gene involving diversified functional categories is accountable for stress tolerance in yeast S. cerevisiae to survive and adapt the furfural during the lag phase.
Collapse
Affiliation(s)
- Getachew Tafere Abrha
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China
| | - Qian Li
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China
| | - Xiaolin Kuang
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China
| | - Difan Xiao
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China
| | - Ellen Ayepa
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China
| | - Jinjian Wu
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China
| | - Huan Chen
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China
| | - Zhengyue Zhang
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China
| | - Yina Liu
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China
| | - Xiumei Yu
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China
| | - Quanju Xiang
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China
| | - Menggen Ma
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China; Institute of Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China.
| |
Collapse
|
2
|
Yoosefian SH, Ebrahimi R, Hosseinzadeh Samani B, Maleki A. Digestion of lignocellulosic biomass under an innovative pneu-mechanical system and optimization of process. J Biotechnol 2023; 374:70-79. [PMID: 37541624 DOI: 10.1016/j.jbiotec.2023.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/12/2023] [Accepted: 07/29/2023] [Indexed: 08/06/2023]
Abstract
In this study, an anaerobic pneumatic mechanical digester (PMD) was designed for the first time to investigate the impact of pneumatic agitator on increasing the bioethanol production and compared with a mechanical digester (MD). Fermentation was performed during an optimized pretreatment and hydrolysis process by RSM (Response Surface Method). Ultrasound optimized points (the time values, the acid concentration, and the biomass load) were 30 min, 1.95% v/v, and 6%, and hydrolysis was done within 45 min at the acid concentration of 2.04% v/v and temperature of 148.4 °C. The hydrolysis solutions were poured and the fermentation process took place within 20 days in the PMD and MD. The sampling sequence was every 5 days. According to the results, the PMD could produce bioethanol more than the MD by 27.94%. Besides, CO, H2S and O2 were measured through fermentation. In PMD, the amount of H2S and O2 was lower than the MD, but then the production of CO in the PMD was meaningfully higher. Finally, by the application of the PMD, the amount of harmful mixtures produced throughout the process can be controlled. It can be said that with the new method designed in this study, it is possible to take an important step in the biorefinery and use the biomass produced in nature in an economical and environmentally friendly way.
Collapse
Affiliation(s)
- Seyedeh Hoda Yoosefian
- Department of Mechanical Engineering of Biosystem, Shahrekord University, 8818634141 Shahrekord, Iran
| | - Rahim Ebrahimi
- Department of Mechanical Engineering of Biosystem, Shahrekord University, 8818634141 Shahrekord, Iran.
| | | | - Ali Maleki
- Department of Mechanical Engineering of Biosystem, Shahrekord University, 8818634141 Shahrekord, Iran
| |
Collapse
|
3
|
Teo SH, Chee CY, Fahmi MZ, Wibawa Sakti SC, Lee HV. Review of Functional Aspects of Nanocellulose-Based Pickering Emulsifier for Non-Toxic Application and Its Colloid Stabilization Mechanism. Molecules 2022; 27:7170. [PMID: 36363998 PMCID: PMC9657650 DOI: 10.3390/molecules27217170] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 07/27/2023] Open
Abstract
In the past few years, the research on particle-stabilized emulsion (Pickering emulsion) has mainly focused on the usage of inorganic particles with well-defined shapes, narrow size distributions, and chemical tunability of the surfaces such as silica, alumina, and clay. However, the presence of incompatibility of some inorganic particles that are non-safe to humans and the ecosystem and their poor sustainability has led to a shift towards the development of materials of biological origin. For this reason, nano-dimensional cellulose (nanocellulose) derived from natural plants is suitable for use as a Pickering material for liquid interface stabilization for various non-toxic product formulations (e.g., the food and beverage, cosmetic, personal care, hygiene, pharmaceutical, and biomedical fields). However, the current understanding of nanocellulose-stabilized Pickering emulsion still lacks consistency in terms of the structural, self-assembly, and physio-chemical properties of nanocellulose towards the stabilization between liquid and oil interfaces. Thus, this review aims to provide a comprehensive study of the behavior of nanocellulose-based particles and their ability as a Pickering functionality to stabilize emulsion droplets. Extensive discussion on the characteristics of nanocelluloses, morphology, and preparation methods that can potentially be applied as Pickering emulsifiers in a different range of emulsions is provided. Nanocellulose's surface modification for the purpose of altering its characteristics and provoking multifunctional roles for high-grade non-toxic applications is discussed. Subsequently, the water-oil stabilization mechanism and the criteria for effective emulsion stabilization are summarized in this review. Lastly, we discuss the toxicity profile and risk assessment guidelines for the whole life cycle of nanocellulose from the fresh feedstock to the end-life of the product.
Collapse
Affiliation(s)
- Shao Hui Teo
- Nanotechnology & Catalysis Research Center (NANOCAT), Institute for Advanced Studies, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Ching Yern Chee
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Mochamad Zakki Fahmi
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Campus C, Mulyorejo, Surabaya 60115, Indonesia
| | - Satya Candra Wibawa Sakti
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Campus C, Mulyorejo, Surabaya 60115, Indonesia
| | - Hwei Voon Lee
- Nanotechnology & Catalysis Research Center (NANOCAT), Institute for Advanced Studies, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Campus C, Mulyorejo, Surabaya 60115, Indonesia
| |
Collapse
|
4
|
Zheng B, Yu S, Chen Z, Huo YX. A consolidated review of commercial-scale high-value products from lignocellulosic biomass. Front Microbiol 2022; 13:933882. [PMID: 36081794 PMCID: PMC9445815 DOI: 10.3389/fmicb.2022.933882] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
For decades, lignocellulosic biomass has been introduced to the public as the most important raw material for the environmentally and economically sustainable production of high-valued bioproducts by microorganisms. However, due to the strong recalcitrant structure, the lignocellulosic materials have major limitations to obtain fermentable sugars for transformation into value-added products, e.g., bioethanol, biobutanol, biohydrogen, etc. In this review, we analyzed the recent trends in bioenergy production from pretreated lignocellulose, with special attention to the new strategies for overcoming pretreatment barriers. In addition, persistent challenges in developing for low-cost advanced processing technologies are also pointed out, illustrating new approaches to addressing the global energy crisis and climate change caused by the use of fossil fuels. The insights given in this study will enable a better understanding of current processes and facilitate further development on lignocellulosic bioenergy production.
Collapse
Affiliation(s)
- Bo Zheng
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Shengzhu Yu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Zhenya Chen
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yi-Xin Huo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
5
|
Thu Ha Tran T, Khanh Thinh Nguyen P. Enhanced hydrogen production from water hyacinth by a combination of ultrasonic-assisted alkaline pretreatment, dark fermentation, and microbial electrolysis cell. BIORESOURCE TECHNOLOGY 2022; 357:127340. [PMID: 35598775 DOI: 10.1016/j.biortech.2022.127340] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
In this study, hydrogen (H2) production from water hyacinth (WH) was enhanced by the integration of the ultrasonic-assisted alkaline (UAA) pretreatment, dark fermentation (DF), and microbial electrolysis cell (MEC). The results showed that UAA pretreatment improved around 350% in H2 production in the DF stage and nearly 400% in the whole process compared to un-pretreated. The H2 yield in the DF stage reached the maximum value of 110.4 mL/g-VS at a WH concentration of 20 g-TS/L. However, high concentrations of co-produced soluble metabolite products (SMPs) and suspended solid in DF effluent adversely affected the efficiency of the MEC stage. Consequently, a WH concentration of 5 g-TS/L was optimal for the UAA-DF-MEC process that achieved the highest H2 yield of 565.8 mL/g-VS. It suggests that other auxiliary processes (e.g., dilution, centrifugation, effective methanogen inhibition, etc.) need to be developed to further improve the H2 production from WH via the UAA-DF-MEC process.
Collapse
Affiliation(s)
- Thi Thu Ha Tran
- Faculty of Environment, Ho Chi Minh City University of Natural Resources and Environment, Tan Binh District, Ho Chi Minh City, Viet Nam
| | - Phan Khanh Thinh Nguyen
- Department of Chemical and Biological Engineering, Gachon University, Seongnam, Gyeonggi-do 13120, Republic of Korea.
| |
Collapse
|
6
|
Ultrasonic Processing of Food Waste to Generate Value-Added Products. Foods 2022; 11:foods11142035. [PMID: 35885279 PMCID: PMC9319240 DOI: 10.3390/foods11142035] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023] Open
Abstract
Ultrasonic processing has a great potential to transform waste from the food and agriculture industry into value-added products. In this review article, we discuss the use of ultrasound for the valorisation of food and agricultural waste. Ultrasonic processing is considered a green technology as compared to the conventional chemical extraction/processing methods. The influence of ultrasound pre-treatment on the soluble chemical oxygen demand (SCOD), particle size, and cell wall content of food waste is first discussed. The use of ultrasonic processing to produce/extract bioactives such as oil, polyphenolic, polysaccharides, fatty acids, organic acids, protein, lipids, and enzymes is highlighted. Moreover, ultrasonic processing in bioenergy production from food waste such as green methane, hydrogen, biodiesel, and ethanol through anaerobic digestion is also reviewed. The conversion of waste oils into biofuels with the use of ultrasound is presented. The latest developments and future prospective on the use of ultrasound in developing energy-efficient methods to convert food and agricultural waste into value-added products are summarised.
Collapse
|
7
|
Ellatif SA, Abdel Razik ES, AL-surhanee AA, Al-Sarraj F, Daigham GE, Mahfouz AY. Enhanced Production, Cloning, and Expression of a Xylanase Gene from Endophytic Fungal Strain Trichoderma harzianum kj831197.1: Unveiling the In Vitro Anti-Fungal Activity against Phytopathogenic Fungi. J Fungi (Basel) 2022; 8:jof8050447. [PMID: 35628703 PMCID: PMC9144407 DOI: 10.3390/jof8050447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/14/2022] [Accepted: 04/23/2022] [Indexed: 11/25/2022] Open
Abstract
Trichoderma sp. is extensively applied as a beneficial fungus for the management of plant diseases, plant growth promotion, induced resistance, and plays an important role in global sustainable agriculture. This study aimed to enhance the production of microbial xylanase in high titer from the endophytic fungus Trichoderma harzianum kj831197.1, and the cloning of xylanase genes in E. coli DH5α using a pUC19 vector. A combination of glucose, 0.1 mM, Tween 80 with lactose, and 2 mM galactose combined with malt extract boostedthe enzyme production. Xylanase production was maximized at a pH of 5.0, temp. of 30 °C, and agitation of 150 rpm in the presence of malt extract and bagasse as the best nitrogen source and waste, respectively, using submerged fermentation. The molecular weight of highly purified xylanase was 32 KDa, identified using SDS-PAGE. The xylanase gene of T. harzianum kj831197.1 was screened in fungal DNA using definite primers specified in the gene bank database. The identified region was excised using restriction enzymes HindIII and EcoRI and cloned into a pUC19 plasmid vector. Optimization of fermentation conditions improved xylanase production about 23.9-fold.The antifungal efficacy of xylanase toward different phytopathogenic fungi was determined. The highest inhibition was against Corynespora cassiicola, Alternaria sp., Fusarium oxysporum, and Botrytis fabae. This study offered an economical, simple, and efficient method using Trichoderma harzianum kj831197.1 for the production of the xylanase enzyme via the submerged fermentation method.
Collapse
Affiliation(s)
- Sawsan Abd Ellatif
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City for Scientific Research and Technology Applications, New Borg El-Arab 21934, Egypt
- Correspondence:
| | - Elsayed S. Abdel Razik
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City for Scientific Research and Technology Applications, New Borg El-Arab 21934, Egypt;
| | | | - Faisal Al-Sarraj
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Ghadir E. Daigham
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University (Girls Branch), Cairo 11435, Egypt; (G.E.D.); (A.Y.M.)
| | - Amira Y. Mahfouz
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University (Girls Branch), Cairo 11435, Egypt; (G.E.D.); (A.Y.M.)
| |
Collapse
|
8
|
Del Río PG, Gullón B, Wu J, Saddler J, Garrote G, Romaní A. Current breakthroughs in the hardwood biorefineries: Hydrothermal processing for the co-production of xylooligosaccharides and bioethanol. BIORESOURCE TECHNOLOGY 2022; 343:126100. [PMID: 34626760 DOI: 10.1016/j.biortech.2021.126100] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
The development of lignocellulosic biorefineries requires a first stage of pretreatment which enables the efficient valorization of all fractions present in this renewable material. In this sense, this review aims to show the main advantages of hydrothermal treatment as a first step of a biorefinery infrastructure using hardwood as raw material, as well as, main drawback to overcome. Hydrothermal treatment of hardwood highlights for its high selectivity for hemicelluloses solubilization as xylooligosaccharides (XOS). Nevertheless, the suitable conditions for XOS production are inadequate to achieve an elevate cellulose to glucose conversion. Hence, several strategies namely the combination of hydrothermal treatment with delignification process, in situ modification of lignin and the mixture with another renewable resources (concretely, seaweeds, and by-products generated in the food industry with high sugar content) were pinpointed as promising alternative to increase the final ethanol concentration coupled with XOS recovery in the hydrolysate.
Collapse
Affiliation(s)
- Pablo G Del Río
- Universidade de Vigo, Departamento de Enxeñería Química, Facultade de Ciencias, 32004 Ourense, Spain
| | - Beatriz Gullón
- Universidade de Vigo, Departamento de Enxeñería Química, Facultade de Ciencias, 32004 Ourense, Spain
| | - Jie Wu
- Forest Product Biotechnology/Bioenergy Group, Department of Wood Science, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Jack Saddler
- Forest Product Biotechnology/Bioenergy Group, Department of Wood Science, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Gil Garrote
- Universidade de Vigo, Departamento de Enxeñería Química, Facultade de Ciencias, 32004 Ourense, Spain
| | - Aloia Romaní
- Universidade de Vigo, Departamento de Enxeñería Química, Facultade de Ciencias, 32004 Ourense, Spain.
| |
Collapse
|
9
|
Qian J, Zhao F, Gao J, Qu L, He Z, Yi S. Characterization of the structural and dynamic changes of cell wall obtained by ultrasound-water and ultrasound-alkali treatments. ULTRASONICS SONOCHEMISTRY 2021; 77:105672. [PMID: 34330083 PMCID: PMC8339218 DOI: 10.1016/j.ultsonch.2021.105672] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 07/01/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
It is well-known that ultrasound has been studied for its cavitation, mechanical and thermal effects. As a pretreatment technology, ultrasonic alkali treatment has attracted much attention in the field of biomass biochemical transformation. In this study, the structural and dynamic changes of wood cell walls during ultrasound-water, alkali, and ultrasound-alkali treatments were investigated by stereoscopic microscopy, confocal Raman microscopy, Fourier-transform infrared spectroscopy, and X-ray diffraction. The results indicated that the ultrasound-water, alkali, and ultrasound-alkali treatments had the effect of removing extractives from conduits. The uniform self-shrinking samples with shrinkage conduits were obtained by the alkali and ultrasound-alkali treatments. All of the treatments affected the relative content, structure and distribution of the chemical components in the wood cell walls. Compared with water-immersion samples, the relative content of hemicellulose of the treated samples reduced from 32.31% to 7.02% for ultrasound-8% NaOH treated samples. For the signal intensity of lignin, ultrasound-water treated and ultrasound-alkali treated samples displayed a more significant reductions than the alkali treated samples in the cell wall region. The crystal zone and amorphous zone of cellulose coexisted before and after the treatment, for all of the treated samples, and particularly for the ultrasound-assisted treated samples, the crystallinity increased from 38.15% for water-immersion samples to 57.42% for ultrasound-8% NaOH treated samples.
Collapse
Affiliation(s)
- Jing Qian
- Beijing Key Laboratory of Wood Science and Engineering, College of Material Science and Technology, Beijing Forestry University, No. 35 Tsinghua East Road Haidian District, Beijing, PR China
| | - Fengbin Zhao
- Beijing Key Laboratory of Wood Science and Engineering, College of Material Science and Technology, Beijing Forestry University, No. 35 Tsinghua East Road Haidian District, Beijing, PR China
| | - Jingjing Gao
- Beijing Key Laboratory of Wood Science and Engineering, College of Material Science and Technology, Beijing Forestry University, No. 35 Tsinghua East Road Haidian District, Beijing, PR China
| | - LiJie Qu
- Beijing Key Laboratory of Wood Science and Engineering, College of Material Science and Technology, Beijing Forestry University, No. 35 Tsinghua East Road Haidian District, Beijing, PR China
| | - Zhengbin He
- Beijing Key Laboratory of Wood Science and Engineering, College of Material Science and Technology, Beijing Forestry University, No. 35 Tsinghua East Road Haidian District, Beijing, PR China.
| | - Songlin Yi
- Beijing Key Laboratory of Wood Science and Engineering, College of Material Science and Technology, Beijing Forestry University, No. 35 Tsinghua East Road Haidian District, Beijing, PR China.
| |
Collapse
|
10
|
Mankar AR, Pandey A, Modak A, Pant KK. Pretreatment of lignocellulosic biomass: A review on recent advances. BIORESOURCE TECHNOLOGY 2021; 334:125235. [PMID: 33957458 DOI: 10.1016/j.biortech.2021.125235] [Citation(s) in RCA: 254] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/24/2021] [Accepted: 04/25/2021] [Indexed: 05/10/2023]
Abstract
Depleting fossil reserves and growing energy needs have raised the demand for an alternative and clean energy source. The use of ubiquitously available lignocellulosic biomass for developing economic and eco-friendly large scale biorefinery applications has provided the much-needed impetus in this regard. The pretreatment process is a vital step for biomass transformation into added value products such as sugars, biofuels, etc. Different pretreatment approaches are employed to overcome the recalcitrance of lignocellulosic biomass and expedite its disintegration into individual components- cellulose, hemicellulose, and lignin. The conventional pretreatment methods lack sustainability and practicability for industrial scale up. The review encompasses the recent advances in selective physical and chemical pretreatment approaches such as milling, extrusion, microwave, ammonia fibre explosion, eutectic solvents etc. The study will allow a deeper understanding of these pretreatment processes and increase their scope as sustainable technologies for developing modern biorefineries.
Collapse
Affiliation(s)
- Akshay R Mankar
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Ashish Pandey
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Arindam Modak
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - K K Pant
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
11
|
Cellulose Recovery from Agri-Food Residues by Effective Cavitational Treatments. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11104693] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Residual biomass from agri-food production chain and forestry are available in huge amounts for further valorisation processes. Delignification is usually the crucial step in the production of biofuels by fermentation as well as in the conversion of cellulose into high added-value compounds. High-intensity ultrasound (US) and hydrodynamic cavitation (HC) have been widely exploited as effective pretreatment techniques for biomass conversion and in particular for cellulose recovery. Due to their peculiar mechanisms, cavitational treatments promote an effective lignocellulosic matrix dismantling with delignification at low temperature (35–50 °C). Cavitation also promotes cellulose decrystallization due to a partial depolymerization. The aim of this review is to highlight recent advances in US and HC-assisted delignification and further cellulose recovery and valorisation.
Collapse
|
12
|
Flores EMM, Cravotto G, Bizzi CA, Santos D, Iop GD. Ultrasound-assisted biomass valorization to industrial interesting products: state-of-the-art, perspectives and challenges. ULTRASONICS SONOCHEMISTRY 2021; 72:105455. [PMID: 33444940 PMCID: PMC7808943 DOI: 10.1016/j.ultsonch.2020.105455] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/15/2020] [Accepted: 12/24/2020] [Indexed: 05/04/2023]
Abstract
Nowadays, the application of ultrasound (US) energy for assisting the lignocellulosic biomass and waste materials conversion into value-added products has dramatically increased. In this sense, this review covers theoretical aspects, promising applications, challenges and perspectives about US and its use for biomass treatment. The combination of US energy with a suitable reaction time, temperature and solvent contributes to the destruction of recalcitrant lignin structure, allowing the products to be used in thermochemical and biological process. The main mechanisms related to US propagation and impact on the fragmentation of lignocellulosic materials, selectivity, and yield of conversion treatments are discussed. Moreover, the synergistic effects between US and alternative green solvents with the perspective of industrial applications are investigated. The present survey analysed the last ten years of literature, studying challenges and perspectives of US application in biorefinery. We were aiming to highlight value-added products and some new areas of research.
Collapse
Affiliation(s)
- Erico M M Flores
- Departamento de Química, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | - Giancarlo Cravotto
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Turin, Italy
| | - Cezar A Bizzi
- Departamento de Química, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Daniel Santos
- Departamento de Química, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Gabrielle D Iop
- Departamento de Química, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
13
|
Sirohi R, Kumar Gaur V, Kumar Pandey A, Jun Sim S, Kumar S. Harnessing fruit waste for poly-3-hydroxybutyrate production: A review. BIORESOURCE TECHNOLOGY 2021; 326:124734. [PMID: 33497926 DOI: 10.1016/j.biortech.2021.124734] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
Poly-3-hydroxybutyrate is a biopolymer which has shown tremendous potential for replacing conventional petroleum-based plastics for plummeting the plastic pollution problem. However, the production cost of PHB is high which makes it less attractive for commercial use. To tackle this challenge, various researchers suggest the search for low-cost substrates and energy efficient technologies for PHB production. In this regard, the waste generated from fruit processing industries or fruit wastes could be pre-processed and fermented for effectively generating PHB. Therefore, the aim of this review was to focus on the methods of fruit waste pre-processing and the effect of fermentation variables on PHB production using fruit waste as a substrate. The relevant research findings on the use of different microorganisms, PHB production conditions and fruit waste-based substrates are also covered. Analysis of various studies revealed that pineapple and mixed fruit waste are effective for PHB production.
Collapse
Affiliation(s)
- Ranjna Sirohi
- Technology Development Centre, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440 020, India; Department of Chemical & Biological Engineering, Korea University, Seoul 136713, Republic of Korea
| | - Vivek Kumar Gaur
- Environmental Biotechnology Division, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, India
| | - Ashutosh Kumar Pandey
- Technology Development Centre, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440 020, India
| | - Sang Jun Sim
- Department of Chemical & Biological Engineering, Korea University, Seoul 136713, Republic of Korea
| | - Sunil Kumar
- Technology Development Centre, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440 020, India.
| |
Collapse
|
14
|
Bhatia SK, Jagtap SS, Bedekar AA, Bhatia RK, Patel AK, Pant D, Rajesh Banu J, Rao CV, Kim YG, Yang YH. Recent developments in pretreatment technologies on lignocellulosic biomass: Effect of key parameters, technological improvements, and challenges. BIORESOURCE TECHNOLOGY 2020; 300:122724. [PMID: 31926792 DOI: 10.1016/j.biortech.2019.122724] [Citation(s) in RCA: 233] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/27/2019] [Accepted: 12/30/2019] [Indexed: 05/12/2023]
Abstract
Lignocellulosic biomass is an inexpensive renewable source that can be used to produce biofuels and bioproducts. The recalcitrance nature of biomass hampers polysaccharide accessibility for enzymes and microbes. Several pretreatment methods have been developed for the conversion of lignocellulosic biomass into value-added products. However, these pretreatment methods also produce a wide range of secondary compounds, which are inhibitory to enzymes and microorganisms. The selection of an effective and efficient pretreatment method discussed in the review and its process optimization can significantly reduce the production of inhibitory compounds and may lead to enhanced production of fermentable sugars and biochemicals. Moreover, evolutionary and genetic engineering approaches are being used for the improvement of microbial tolerance towards inhibitors. Advancements in pretreatment and detoxification technologies may help to increase the productivity of lignocellulose-based biorefinery. In this review, we discuss the recent advancements in lignocellulosic biomass pretreatment technologies and strategies for the removal of inhibitors.
Collapse
Affiliation(s)
- Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea
| | - Sujit Sadashiv Jagtap
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave, Urbana, IL 61801, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave, Urbana, IL 61801, USA
| | - Ashwini Ashok Bedekar
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave, Urbana, IL 61801, USA
| | - Ravi Kant Bhatia
- Department of Biotechnology, Himachal Pradesh University, Summer Hill-171005 (H.P), India
| | - Anil Kumar Patel
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Deepak Pant
- Department of Chemistry, Central University of Haryana, Mahendragarh, Haryana 123031, India
| | - J Rajesh Banu
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, India
| | - Christopher V Rao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave, Urbana, IL 61801, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave, Urbana, IL 61801, USA
| | - Yun-Gon Kim
- Department of Chemical Engineering, Soongsil University, 06978 Seoul, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
15
|
Bhardwaj N, Kumar B, Verma P. A detailed overview of xylanases: an emerging biomolecule for current and future prospective. BIORESOUR BIOPROCESS 2019. [DOI: 10.1186/s40643-019-0276-2] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Xylan is the second most abundant naturally occurring renewable polysaccharide available on earth. It is a complex heteropolysaccharide consisting of different monosaccharides such as l-arabinose, d-galactose, d-mannoses and organic acids such as acetic acid, ferulic acid, glucuronic acid interwoven together with help of glycosidic and ester bonds. The breakdown of xylan is restricted due to its heterogeneous nature and it can be overcome by xylanases which are capable of cleaving the heterogeneous β-1,4-glycoside linkage. Xylanases are abundantly present in nature (e.g., molluscs, insects and microorganisms) and several microorganisms such as bacteria, fungi, yeast, and algae are used extensively for its production. Microbial xylanases show varying substrate specificities and biochemical properties which makes it suitable for various applications in industrial and biotechnological sectors. The suitability of xylanases for its application in food and feed, paper and pulp, textile, pharmaceuticals, and lignocellulosic biorefinery has led to an increase in demand of xylanases globally. The present review gives an insight of using microbial xylanases as an “Emerging Green Tool” along with its current status and future prospective.
Collapse
|
16
|
|
17
|
Sahoo D, Ummalyma SB, Okram AK, Pandey A, Sankar M, Sukumaran RK. Effect of dilute acid pretreatment of wild rice grass (Zizania latifolia) from Loktak Lake for enzymatic hydrolysis. BIORESOURCE TECHNOLOGY 2018; 253:252-255. [PMID: 29353753 DOI: 10.1016/j.biortech.2018.01.048] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/06/2018] [Accepted: 01/09/2018] [Indexed: 06/07/2023]
Abstract
Zizania latifolia commonly known as wild rice grass which is available in huge quantities in Loktak Lake is a major concern as it occupies a large area of the Lake and causing a several environmental problems. The investigation of present study was to evaluate possibilities of using Zizania latifolia as feed stock for bioethanol production. The method involved the pretreatment with dilute acid or alkali followed by enzymatic hydrolysis with commercial cellulase. Acid pretreatment was performed with 10% biomass loading with different concentration of acids (0.4-2% w/v) and alkali (0.25-1.5% w/v). Maximum sugar release of 457 mg/g was obtained from 10% biomass loading and 2% w/v of acids. Alkali pretreatment is not effective for this grass. Physicochemical characterization of untreated and treated biomass was carried out by XRD, FTIR, SEM and corresponding alterations in the chemical composition were also monitored. Results showed the feasibility of this grass as biofuel (bioethanol) feed stock and can be potential approach to address the sustainable utilization phumdis grasses of Loktak Lake for the production of value added product.
Collapse
Affiliation(s)
- Dinabandhu Sahoo
- Institute of Bioresources and Sustainable Development (IBSD), A National Institute under Department of Biotechnology Govt. of India, Takyelpat, Imphal 795001, Manipur, India
| | - Sabeela Beevi Ummalyma
- Institute of Bioresources and Sustainable Development (IBSD), A National Institute under Department of Biotechnology Govt. of India, Takyelpat, Imphal 795001, Manipur, India.
| | - Aswini Kumar Okram
- Institute of Bioresources and Sustainable Development (IBSD), A National Institute under Department of Biotechnology Govt. of India, Takyelpat, Imphal 795001, Manipur, India
| | - Ashok Pandey
- CSIR-Indian Institute of Toxicology Research, Lucknow 226001, India
| | - Meena Sankar
- Centre for Biofuels, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Industrial Estate PO, Trivandrum 695019, India
| | - Rajeev K Sukumaran
- Centre for Biofuels, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Industrial Estate PO, Trivandrum 695019, India
| |
Collapse
|
18
|
Xu X, Jiang E, Lan X. Influence of pre-treatment on torrefaction of Phyllostachys edulis. BIORESOURCE TECHNOLOGY 2017; 239:97-104. [PMID: 28501688 DOI: 10.1016/j.biortech.2017.04.083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/20/2017] [Accepted: 04/21/2017] [Indexed: 06/07/2023]
Abstract
This study investigated the effects of different pre-treatments on structural changes in Phyllostachys edulis. Samples were pretreated with water, 15% ammonia water, 2% sulfuric acid, hydrothermal carbonization, and ball milling. Moreover, ultrasound was introduced. The influence of pre-treatment on the physiochemical property and composition of P. edulis were studied. Moreover, torrefaction characterization was performed and the distribution of torrefaction products of pretreated samples was determined. Results showed that pre-treatment effectively modified physiochemical structure and the torrefaction property of P. edulis. The pretreatment reduced the ash content and increased the bio-oil content of the torrefaction products. Compared with that of the raw material, the residual bio-char content of the pretreated samples decreased by 2-8%, and degradation temperature of bio-char fluctuated between 365°C and 321°C. The distribution of bio-oil contents, bio-char, and bio-gas in the torrefaction products significantly varied with pretreatments methods.
Collapse
Affiliation(s)
- Xiwei Xu
- College of Materials and Energy, South China Agricultural University, Guangzhou 510640, China; Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing 210007, China
| | - Enchen Jiang
- College of Materials and Energy, South China Agricultural University, Guangzhou 510640, China.
| | - Xiang Lan
- College of Materials and Energy, South China Agricultural University, Guangzhou 510640, China
| |
Collapse
|