1
|
Wu Z, Shi W, Yuan W, Chen Z, Xie Y, Lv Z, Xu J, Amadu AA, Qiu S, Ge S. Development and operation of indigenous microalgal-bacterial consortium system treating eutrophic lake water: Consortium identification and system demonstration. BIORESOURCE TECHNOLOGY 2025; 429:132496. [PMID: 40204026 DOI: 10.1016/j.biortech.2025.132496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/14/2025] [Accepted: 04/05/2025] [Indexed: 04/11/2025]
Abstract
Natural water bodies such as the inland lake suffers from eutrophication due to excessive nutrient, particularly nitrogen and phosphorus. This study demonstrated an indigenous microalgal-bacterial consortium (IMBC) system to treat eutrophic lake. Three IMBC were enriched from eutrophic lake water or/and sediments, exhibiting superior growth and complete nutrient removals compared to two commercial microalgal species. Particularly, the IMBC3 enriched from lake water and sediment (volume ratio of 1:1) were found to simultaneously achieve 91.0 % settling efficiency, attributed to its larger flocs and surface physical properties (e.g., higher surface hydrophobicity (78.0 %), protein/polysaccharide ratio (10.7) and zeta potential (-19.1 mV)). Subsequently, a long-term photobioreactor using IMBC3 further demonstrated stable nutrient removal and cold tolerance year-around. The microbial community's shift towards cold-tolerant genera and alleviated photoinhibition likely enhanced nitrogen cycling efficiency during colder months. These findings offer a feasible alternative using the IMBC with good environmental adaptation to eutrophication mitigation in nature water.
Collapse
Affiliation(s)
- Zhengshuai Wu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094 Jiangsu, China
| | - Weican Shi
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094 Jiangsu, China
| | - Wenqi Yuan
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094 Jiangsu, China
| | - Zhipeng Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094 Jiangsu, China
| | - Yue Xie
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094 Jiangsu, China
| | - Zhe Lv
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094 Jiangsu, China
| | - Jiajie Xu
- School of Marine Science, Ningbo University, Ningbo 315211, China
| | - Ayesha Algade Amadu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094 Jiangsu, China
| | - Shuang Qiu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094 Jiangsu, China.
| | - Shijian Ge
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094 Jiangsu, China.
| |
Collapse
|
2
|
Liu Y, Su B, Wu B. The impact of wastewater treatment plants on the composition and toxicity of pollutants in urban rivers in Nanjing, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176358. [PMID: 39306123 DOI: 10.1016/j.scitotenv.2024.176358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 11/16/2024]
Abstract
Widespread wastewater pollution is one of the biggest challenges threatening the ecological health of rivers. It is crucial to identify the toxic changes of effluents after entering urban rivers as well as the toxic substances in the complex chemical mixtures found in these urban rivers. This study used HepG2 cell line for cytotoxicity test to evaluate the ecological impact of effluents on urban rivers. Water samples were collected from the Xingwu River and Yunliang River in Nanjing, China. The bacterial communities in the lower reaches of urban rivers were altered due to the differences in total nitrogen and nitrate nitrogen. The complex chemical mixtures collected in the urban rivers were divided into 10 fractions, >100 chemicals were screened in each fraction. The substances with LC50 < 1000 mg/L were listed as toxic substances, and the number of toxic substances dominated the toxicity of urban rivers. Our study highlights toxicity as a comprehensive indicator for assessing river pollutants and reveals relationship between the number of toxic substance and river toxicity. These findings have direct implications for the monitoring and management of environmental stressors and the protection of aquatic organisms and human health.
Collapse
Affiliation(s)
- Yuxuan Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Bei Su
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
3
|
Guanglei L, Tabassum S, Li J, Altundag H. Efficient manganese ammonia oxidation (Mnammox) and its influencing factors at low temperature: Metal oxide-mediated denitrification process in water bodies. BIORESOURCE TECHNOLOGY 2024; 414:131617. [PMID: 39393647 DOI: 10.1016/j.biortech.2024.131617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
This study explores the metal oxide-mediated NH4+-N reduction process: manganese ammonia oxidation efficiency, influencing factors and its resistance to low-temperature environments in water bodies. After 177d of stabilized startup of an up-flow reactor, NH4+-N removal efficiency was 63.51 %, total nitrogen (TN) removal rate was 0.021 kg/(m3.d), and effluent Mn2+ concentration was 1.503 mg/L, which was in dynamic equilibrium. X-ray photoelectron spectroscopy exhibited manganese valence state 3.29, similar to biological manganese oxidation. High-throughput sequencing revealed that phyla's denitrification function increased relative abundance, and manganese-reducing bacterial genera appeared. The batch test showed that 5 mg MnO2 had NH4+-N removal at 85.01 %. After 44 days, NH4+-N removal efficiency was 77.47 %, effluent Mn2+ concentration was 3.280 mg/L, TN removal rate was 0.063 kg/(m3.d). The long-term effect of the influent load change on the denitrification and Mnammox efficiency at 25 ∼ 15 °C was examined. Effluent Mn2+ concentration was 1.811 mg/L was relatively stable. Manganese valence decreased from 3.29 to 3.20, Mn4+ decreased by 9.58 %, while Mn3+ and Mn2+ increased by 10.94 % and 1.37 %, respectively. A new phylum Thermotogota and genus SBR1031 appeared in the microbial community.
Collapse
Affiliation(s)
- Li Guanglei
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang 110168, China
| | - Salma Tabassum
- Department of Chemistry, Faculty of Science, Sakarya University, Sakarya 54187, Turkey; Biomedical, Magnetic and Semiconductor Materials Research Center (BIMAS-RC), Sakarya University, Sakarya 54187, Turkey.
| | - Jun Li
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang 110168, China.
| | - Huseyin Altundag
- Department of Chemistry, Faculty of Science, Sakarya University, Sakarya 54187, Turkey; Biomedical, Magnetic and Semiconductor Materials Research Center (BIMAS-RC), Sakarya University, Sakarya 54187, Turkey
| |
Collapse
|
4
|
Pathom-Aree W, Sattayawat P, Inwongwan S, Cheirsilp B, Liewtrakula N, Maneechote W, Rangseekaew P, Ahmad F, Mehmood MA, Gao F, Srinuanpan S. Microalgae growth-promoting bacteria for cultivation strategies: Recent updates and progress. Microbiol Res 2024; 286:127813. [PMID: 38917638 DOI: 10.1016/j.micres.2024.127813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/02/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
Microalgae growth-promoting bacteria (MGPB), both actinobacteria and non-actinobacteria, have received considerable attention recently because of their potential to develop microalgae-bacteria co-culture strategies for improved efficiency and sustainability of the water-energy-environment nexus. Owing to their diverse metabolic pathways and ability to adapt to diverse conditions, microalgal-MGPB co-cultures could be promising biological systems under uncertain environmental and nutrient conditions. This review proposes the recent updates and progress on MGPB for microalgae cultivation through co-culture strategies. Firstly, potential MGPB strains for microalgae cultivation are introduced. Following, microalgal-MGPB interaction mechanisms and applications of their co-cultures for biomass production and wastewater treatment are reviewed. Moreover, state-of-the-art studies on synthetic biology and metabolic network analysis, along with the challenges and prospects of opting these approaches for microalgal-MGPB co-cultures are presented. It is anticipated that these strategies may significantly improve the sustainability of microalgal-MGPB co-cultures for wastewater treatment, biomass valorization, and bioproducts synthesis in a circular bioeconomy paradigm.
Collapse
Affiliation(s)
- Wasu Pathom-Aree
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pachara Sattayawat
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sahutchai Inwongwan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Benjamas Cheirsilp
- Program of Biotechnology, Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90110, Thailand
| | - Naruepon Liewtrakula
- Program of Biotechnology, Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90110, Thailand
| | - Wageeporn Maneechote
- Program of Biotechnology, Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90110, Thailand; Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pharada Rangseekaew
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Fiaz Ahmad
- Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Muhammad Aamer Mehmood
- Bioenergy Research Center, Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Fengzheng Gao
- Sustainable Food Processing Laboratory, Institute of Food, Nutrition and Health, ETH Zurich, Zurich 8092, Switzerland; Laboratory of Nutrition and Metabolic Epigenetics, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach 8603, Switzerland
| | - Sirasit Srinuanpan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand; Biorefinery and Bioprocess Engineering Research Cluster, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
5
|
Kumar A, Mishra S, Singh NK, Yadav M, Padhiyar H, Christian J, Kumar R. Ensuring carbon neutrality via algae-based wastewater treatment systems: Progress and future perspectives. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121182. [PMID: 38772237 DOI: 10.1016/j.jenvman.2024.121182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/24/2024] [Accepted: 05/13/2024] [Indexed: 05/23/2024]
Abstract
The emergence of algal biorefineries has garnered considerable attention to researchers owing to their potential to ensure carbon neutrality via mitigation of atmospheric greenhouse gases. Algae-derived biofuels, characterized by their carbon-neutral nature, stand poised to play a pivotal role in advancing sustainable development initiatives aimed at enhancing environmental and societal well-being. In this context, algae-based wastewater treatment systems are greatly appreciated for their efficacy in nutrient removal and simultaneous bioenergy generation. These systems leverage the growth of algae species on wastewater nutrients-including carbon, nitrogen, and phosphorus-alongside carbon dioxide, thus facilitating a multifaceted approach to pollution remediation. This review seeks to delve into the realization of carbon neutrality through algae-mediated wastewater treatment approaches. Through a comprehensive analysis, this review scrutinizes the trajectory of algae-based wastewater treatment via bibliometric analysis. It subsequently examines the case studies and empirical insights pertaining to algae cultivation, treatment performance analysis, cost and life cycle analyses, and the implementation of optimization methodologies rooted in artificial intelligence and machine learning algorithms for algae-based wastewater treatment systems. By synthesizing these diverse perspectives, this study aims to offer valuable insights for the development of future engineering applications predicated on an in-depth understanding of carbon neutrality within the framework of circular economy paradigms.
Collapse
Affiliation(s)
- Amit Kumar
- School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| | - Saurabh Mishra
- Institute of Water Science and Technology, Hohai University, Nanjing China, 210098, China.
| | - Nitin Kumar Singh
- Department of Chemical Engineering, Marwadi University, Rajkot, Gujarat, India.
| | - Manish Yadav
- Central Mine Planning and Design Institute Limite, Bhubaneswar, India.
| | | | - Johnson Christian
- Environment Audit Cell, R. D. Gardi Educational Campus, Rajkot, Gujarat, India.
| | - Rupesh Kumar
- Jindal Global Business School (JGBS), O P Jindal Global University, Sonipat, 131001, Haryana, India.
| |
Collapse
|
6
|
Liang W, Yang B, Bin L, Hu Y, Fan D, Chen W, Li P, Tang B. Intensifying the simultaneous removal of nitrogen and phosphorus of an integrated aerobic granular sludge-membrane bioreactor by Acinetobacter junii. BIORESOURCE TECHNOLOGY 2024; 397:130474. [PMID: 38395234 DOI: 10.1016/j.biortech.2024.130474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/17/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024]
Abstract
This work aims at intensifying the simultaneous removal of nitrogen and phosphorus of an integrated aerobic granular sludge (AGS) - membrane bioreactor (MBR) by Acinetobacter junii. After acclimation and enrichment in a sequencing batch reactor (SBR), Acinetobacter junii, a kind of denitrifying phosphate accumulating organism (DPAO), was successfully screened in the used SBR. Then it was verified to be capable of effectively enhancing the performance in the simultaneous removal of nitrogen and phosphorus of AGS-MBR. In the system, DPAO (Acinetobacter junii) mainly occurred in AGS, and the highest ratio even reached 22.8%, but its competitive advantages highly depend on the size of AGS. The presented results can cultivate AGS and enrich DPAO simultaneously to improve the removal of nitrogen and phosphorus of an AGS-MBR, which provide an environmentally friendly approach to upgrade traditional wastewater treatment processes.
Collapse
Affiliation(s)
- Weifeng Liang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Biao Yang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Liying Bin
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yadong Hu
- Bio-Form Biotechnology (Guangdong) Co., Ltd., Foshan, 528000, PR China
| | - Depeng Fan
- Bio-Form Biotechnology (Guangdong) Co., Ltd., Foshan, 528000, PR China
| | - Weirui Chen
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Ping Li
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Bing Tang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
7
|
Zhang X, Lu Q. Cultivation of microalgae in food processing effluent for pollution attenuation and astaxanthin production: a review of technological innovation and downstream application. Front Bioeng Biotechnol 2024; 12:1365514. [PMID: 38572356 PMCID: PMC10987718 DOI: 10.3389/fbioe.2024.1365514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/06/2024] [Indexed: 04/05/2024] Open
Abstract
Valorization of food processing effluent (FPE) by microalgae cultivation for astaxanthin production is regarded as a potential strategy to solve the environmental pollution of food processing industry and promote the development of eco-friendly agriculture. In this review paper, microalgal species which have the potential to be employed for astaxanthin in FPE were identified. Additionally, in terms of CO2 emission, the performances of microalgae cultivation and traditional methods for FPE remediation were compared. Thirdly, an in-depth discussion of some innovative technologies, which may be employed to lower the total cost, improve the nutrient profile of FPE, and enhance the astaxanthin synthesis, was provided. Finally, specific effects of dietary supplementation of algal astaxanthin on the growth rate, immune response, and pigmentation of animals were discussed. Based on the discussion of this work, the cultivation of microalgae in FPE for astaxanthin production is a value-adding process which can bring environmental benefits and ecological benefits to the food processing industry and agriculture. Particularly, technological innovations in recent years are promoting the shift of this new idea from academic research to practical application. In the coming future, with the reduction of the total cost of algal astaxanthin, policy support from the governments, and further improvement of the innovative technologies, the concept of growing microalgae in FPE for astaxanthin will be more applicable in the industry.
Collapse
Affiliation(s)
- Xiaowei Zhang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Qian Lu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| |
Collapse
|
8
|
Li C, Zhang C, Ran F, Yao T, Lan X, Li H, Bai J, Lei Y, Zhou Z, Cui X. Effects of microbial deodorizer on pig feces fermentation and the underlying deodorizing mechanism. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 174:174-186. [PMID: 38056366 DOI: 10.1016/j.wasman.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 11/20/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023]
Abstract
Microbial deodorization is a novel strategy for reducing odor in livestock and poultry feces. Herein, 12 strains of ammonia (NH3) and 15 hydrogen sulfide (H2S) removing bacteria were obtained with a removal efficiency of 65.20-79.80% and 34.90-79.70%, respectively. A novel bacteria deodorant named MIX (Bacillus zhangzhouensis, Bacillus altitudinis, and Acinetobacter pittii at a ratio of 1:1:2) were obtained. MIX can shorten the temperature rising stage by 2 days and prolong the thermophilic stage by 4 days. The ability of MIX to remove NH3, H2S, and volatile fatty acids (VFAs) and the underlying removal mechanism were analyzed during pig feces fermentation. MIX can significantly reduce the concentrations of NH3 and H2S by 41.82% and 66.35% and increase the concentrations of NO3--N and SO42- by 7.80% and 8.83% (P < 0.05), respectively, on the 25th day. Moreover, the concentrations of acetic, propionate, iso-valerate, and valerate were significantly reduced. The dominant bacteria communities at the phylum level were Firmicutes, Proteobacteria, Bacteroidetes, and Spirochaetes. B. zhangzhouensis and B. altitudinis could convert NH4+-N to NO3--N, and A. pittii could transfer H2S to SO42-. This study revealed that bacteria deodorant can reduce the concentrations of NH3, H2S, and VFAs in pig feces and increase those of NH4+, NO3-, and SO42- and has excellent potential in deodorizing livestock and poultry feces composting.
Collapse
Affiliation(s)
- Changning Li
- Key Laboratory of Grassland Ecosystem, Ministry of Education, Lanzhou, 730070 Gansu, China; College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, Gansu, China
| | - Chen Zhang
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, Gansu, China
| | - Fu Ran
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, Gansu, China
| | - Tuo Yao
- Key Laboratory of Grassland Ecosystem, Ministry of Education, Lanzhou, 730070 Gansu, China; College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, Gansu, China.
| | - Xiaojun Lan
- Agricultural College, Anshun University, Anshun 561000, Guizhou, China
| | - Haiyun Li
- Collaborative Innovation Center for Western Ecological Safety, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Jie Bai
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, Gansu, China
| | - Yang Lei
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, Gansu, China
| | - Ze Zhou
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, Gansu, China
| | - Xiaoning Cui
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, Gansu, China
| |
Collapse
|
9
|
Cui J, Li J, Cui J, Ruan Y, Liang Y, Wu Y, Chang Y, Liu X, Yao D. Hippuris vulgaris could replace Myriophyllum aquaticum for efficiently removing water phosphorus under low temperature conditions in China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 339:117886. [PMID: 37084539 DOI: 10.1016/j.jenvman.2023.117886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 05/03/2023]
Abstract
Phytoremediation is widely used for the restoration of aquatic environments. However, the phytoremediation effects and mechanisms of special submerged species of native aquatic plants, especially under low-temperature conditions, are not yet clear. In this study, two typical submerged plants, Myriophyllum aquaticum (M. aquaticum; an exotic species) and Hippuris vulgaris (H. vulgaris; a native species), in China were investigated for their phosphorus (P) removal efficiencies (REp) and the related mechanisms of phytophysiology and microorganisms in a low-temperature incubator (10 °C during the day and 2 °C at night). At an initial P level of 0.5 mg L-1, the two plants exhibited similar REp, with the highest values (73.5%-92.1%) observed on days 3-6. After 18 days, the residual P concentration in the water was less than the Grade III limit value (0.2 mg L-1; GB 3838-2002). However, M. aquaticum had a faster REp velocity than H. vulgaris at an initial P level of 3.0 mg L-1, which was attributed to the mechanisms of plant and its interactions with microorganisms. Compared to the control group, the superoxide dismutase activity of H. vulgaris was significantly increased and its catalase activity was decreased, whereas for that of M. aquaticum was the opposite. Micro region X-ray fluorescence analysis revealed that there may be synergic absorption effects between P, S, and K, and antagonistic absorption action between P and Mn in H. vulgaris. In addition, Acinetobacter, Novosphingobium and Pseudomonas were enriched at 3.0 mg L-1 P level with these two plants, but Chlorophyta only accumulated with H. vulgaris, respectively. Overall, the native species, H. vulgaris, could replace the exotic M. aquaticum to efficiently remove P from polluted water at low temperatures. These findings provide a theoretical foundation for submerged plants P removal capabilities, and the protection of local ecosystem diversity at low temperatures.
Collapse
Affiliation(s)
- Jianwei Cui
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China; Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, 210014, China; Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing, 210014, China
| | - Jinfeng Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China; Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, 210014, China; Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing, 210014, China
| | - Jian Cui
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China; Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, 210014, China; Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing, 210014, China.
| | - Yang Ruan
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China; Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, 210014, China; Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing, 210014, China
| | - Yu Liang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China; Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, 210014, China; Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing, 210014, China
| | - Yue Wu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China; Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, 210014, China; Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing, 210014, China
| | - Yajun Chang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China; Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, 210014, China; Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing, 210014, China
| | - Xiaojing Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China; Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, 210014, China; Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing, 210014, China
| | - Dongrui Yao
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China; Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, 210014, China; Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing, 210014, China.
| |
Collapse
|
10
|
Abideen Z, Ansari R, Hasnain M, Flowers TJ, Koyro HW, El-Keblawy A, Abouleish M, Khan MA. Potential use of saline resources for biofuel production using halophytes and marine algae: prospects and pitfalls. FRONTIERS IN PLANT SCIENCE 2023; 14:1026063. [PMID: 37332715 PMCID: PMC10272829 DOI: 10.3389/fpls.2023.1026063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 03/20/2023] [Indexed: 06/20/2023]
Abstract
There exists a global challenge of feeding the growing human population of the world and supplying its energy needs without exhausting global resources. This challenge includes the competition for biomass between food and fuel production. The aim of this paper is to review to what extent the biomass of plants growing under hostile conditions and on marginal lands could ease that competition. Biomass from salt-tolerant algae and halophytes has shown potential for bioenergy production on salt-affected soils. Halophytes and algae could provide a bio-based source for lignoceelusic biomass and fatty acids or an alternative for edible biomass currently produced using fresh water and agricultural lands. The present paper provides an overview of the opportunities and challenges in the development of alternative fuels from halophytes and algae. Halophytes grown on marginal and degraded lands using saline water offer an additional material for commercial-scale biofuel production, especially bioethanol. At the same time, suitable strains of microalgae cultured under saline conditions can be a particularly good source of biodiesel, although the efficiency of their mass-scale biomass production is still a concern in relation to environmental protection. This review summaries the pitfalls and precautions for producing biomass in a way that limits environmental hazards and harms for coastal ecosystems. Some new algal and halophytic species with great potential as sources of bioenergy are highlighted.
Collapse
Affiliation(s)
- Zainul Abideen
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, Pakistan
| | - Raziuddin Ansari
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, Pakistan
| | - Maria Hasnain
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Timothy J. Flowers
- Department of Evolution Behaviour and Environment, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Hans-Werner Koyro
- Institute of Plant Ecology, Research Centre for Bio Systems, Land Use, and Nutrition (IFZ), Justus-Liebig-University Giessen, Giessen, Germany
| | - Ali El-Keblawy
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Mohamed Abouleish
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| | - Muhammed Ajmal Khan
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, Pakistan
| |
Collapse
|
11
|
Liu Z, Wang J, Zhang S, Hou Y, Wang J, Gao M, Chen X, Zhang A, Liu Y, Li Z. Formation characteristics of algal-bacteria granular sludge under low-light environment: From sludge characteristics, extracellular polymeric substances to microbial community. BIORESOURCE TECHNOLOGY 2023; 376:128851. [PMID: 36898567 DOI: 10.1016/j.biortech.2023.128851] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
In this study, the formation characteristics of algal-bacteria granular sludge (ABGS) under low-light environment (80, 110, and 140 μmol/m2/s) were investigated. The findings revealed that the stronger light intensity favored the improvement of sludge characteristics, nutrient removal performances, and extracellular polymeric substance (EPS) secretion at the growing stage, which were more preferential to facilitate the formation of ABGS. However, after the mature stage, the weaker light intensity ensured more stable operation of the system, as shown by contributing to sludge settlement performance, denitrification, and EPS secretion. According to the results of high-throughput sequencing, the dominant bacterial genus of the mature ABGS cultured under low light intensity were all Zoogloe, while the dominant algal genus was different. For the mature ABGS, the 140 and 80 μmol/m2/s light intensity had the most significant activation effect to the functional genes related to carbohydrate metabolism and amino acid metabolism, respectively.
Collapse
Affiliation(s)
- Zhe Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road, No. 13, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China; Yulin Ecological Environment Monitoring Station, High-tech Zone Xingda Road, Yulin 719000, China.
| | - Jingwen Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road, No. 13, Xi'an 710055, China
| | - Shumin Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road, No. 13, Xi'an 710055, China
| | - Yiwen Hou
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road, No. 13, Xi'an 710055, China
| | - Jiaxuan Wang
- School of Architecture and Civil Engineering, Xi'an University of Science and Technology, Yan Ta Road, No. 58, Xi'an 710054, China
| | - Min Gao
- School of Environmental and Chemical Engineering, Xi an Polytechnic University, Jin Hua Nan Road, No. 19, Xi'an 710048, China
| | - Xingdu Chen
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road, No. 13, Xi'an 710055, China
| | - Aining Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road, No. 13, Xi'an 710055, China
| | - Yongjun Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road, No. 13, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhihua Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road, No. 13, Xi'an 710055, China
| |
Collapse
|
12
|
Sousa H, Sousa CA, Vale F, Santos L, Simões M. Removal of parabens from wastewater by Chlorella vulgaris-bacteria co-cultures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 884:163746. [PMID: 37121314 DOI: 10.1016/j.scitotenv.2023.163746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/08/2023] [Accepted: 04/22/2023] [Indexed: 05/07/2023]
Abstract
Anthropogenic activities have increased the dispersal of emerging contaminants (ECs), particularly of parabens, causing an escalation of their presence in wastewater (WW). Current WW technologies do not present satisfactory efficiency or sustainability in removing these contaminants. However, bioremediation with microalgae-based systems is proving to be a relevant technology for WW polishing, and the use of microalgae-bacteria consortia can improve the efficiency of WW treatment. This work aimed to study dual cultures of selected bacteria (Raoultella ornithinolytica, Acidovorax facilis, Acinetobacter calcoaceticus, Leucobacter sp. or Rhodococcus fascians) and the microalga Chlorella vulgaris in microbial growth and WW bioremediation - removal of methylparaben (MetP) and nutrients. The association with the bacteria was antagonistic for C. vulgaris biomass productivity as a result of the decreased growth kinetics in comparison to the axenic microalga. The presence of MetP did not disturb the growth of C. vulgaris under axenic or co-cultured conditions, except when associated with R. fascians, where growth enhancement was observed. The removal of MetP by the microalga was modest (circa 30 %, with a removal rate of 0.0343 mg/L.d), but increased remarkably when the consortia were used (> 50 %, with an average removal rate > 0.0779 mg/L.d), through biodegradation and photodegradation. For nutrient removal, the consortia were found to be less effective than the axenic microalga, except for nitrogen (N) removal by C. vulgaris w/ R. fascians. The overall results propose that C. vulgaris co-cultivation with bacteria can increase MetP removal, while negatively affecting the microalga growth and the consequent reduction of sludge production, highlighting the potential of microalgae-bacteria consortia for the effective polishing of WW contaminated with parabens.
Collapse
Affiliation(s)
- Henrique Sousa
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Cátia A Sousa
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Francisca Vale
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Lúcia Santos
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Manuel Simões
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
13
|
Kisková J, Juhás A, Galušková S, Maliničová L, Kolesárová M, Piknová M, Pristaš P. Antibiotic Resistance and Genetic Variability of Acinetobacter spp. from Wastewater Treatment Plant in Kokšov-Bakša (Košice, Slovakia). Microorganisms 2023; 11:microorganisms11040840. [PMID: 37110263 PMCID: PMC10143558 DOI: 10.3390/microorganisms11040840] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
This study investigated the genetic variability and antibiotic resistance of Acinetobacter community depending on the stage of wastewater treatment in Kokšov-Bakša for the city of Košice (Slovakia). After cultivation, bacterial isolates were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), and their sensitivity to ampicillin, kanamycin, tetracycline, chloramphenicol and ciprofloxacin was examined. Acinetobacter spp. and Aeromonas spp. dominated bacterial populations in all wastewater samples. We identified 12 different groups based on protein profiling, 14 genotypes by amplified ribosomal DNA restriction analysis and 11 Acinetobacter species using 16S rDNA sequence analysis within Acinetobacter community, which showed significant variability in their spatial distribution. While Acinetobacter population structure changed during the wastewater treatment, the prevalence of antibiotic-resistant strains did not significantly vary depending on the stage of wastewater treatment. The study highlights the role of a highly genetically diverse Acinetobacter community surviving in wastewater treatment plants as an important environmental reservoir assisting in the further dissemination of antibiotic resistance in aquatic systems.
Collapse
|
14
|
Li J, Wang Y, Cui J, Wang W, Liu X, Chang Y, Yao D, Cui J. Removal effects of aquatic plants on high-concentration phosphorus in wastewater during summer. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116434. [PMID: 36352733 DOI: 10.1016/j.jenvman.2022.116434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/26/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Aquatic plants are widely used in depth treatment of wastewater; however, the phosphorus (P) removal mechanisms of aquatic plants at high temperatures in summer are not well understood. Eight aquatic plants, including two floating species (Ludwigia peploides and Hydrocharis dubia) and six emergent species (Lythrum salicaria, Sagittaria sagittifolia, Canna indica, Sparganium stoloniferum, Rotala rotundifolia, and Ludwigia ovalis), were treated with five P solutions (3.0, 3.5, 4.0, 4.5, and 5.5 mg L-1) for 5 weeks in a greenhouse during summer at air temperatures ranging from 25 to 35 °C. H. dubia, L. peploides, L. salicaria, and S. sagittifolia showed high water P removal efficiencies (exceeded 95%). Furthermore, their corresponding residual P concentrations in water were almost lower than the limit value of 0.2 mg L-1 of Grade III in the Chinese Environmental Quality Atandards for Surface Water (GB3838-2002). Plants have different water P removal paths. For example, H. dubia enriched more P with water P concentration increasing significantly. As the culture time increased, the water pH fluctuated significantly in the fall, and then H. dubia used the produced H+ enrich P. L. peploides did not enrich P, but proliferated rapidly, to remove P from water by increasing its fresh weight (FW). L. salicaria and S. sagittifolia showed two paths of enrich-P and FW increase. During the growth process of L. salicaria, the stem diameter and leaf length increased with an increase in P concentration in water or plant or both; however, the height and root length of L. peploides were reduced. Moreover, SOD and CAT activities responded to high P concentrations in water or high temperatures or both, which protected against oxidative damage. These findings could offer theoretical foundation and practical guidance for selection of aquatic plant species in depth treatment of wastewater during summer.
Collapse
Affiliation(s)
- Jinfeng Li
- Institute of Botany, Jiangsu Province and Chinese Academy Sciences, Nanjing, 210014, China; Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing, 210014, China
| | - Yihong Wang
- Jiangsu Province Hydraulic Research Institute, Nanjing, 210017, China
| | - Jianwei Cui
- Institute of Botany, Jiangsu Province and Chinese Academy Sciences, Nanjing, 210014, China; Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing, 210014, China
| | - Wei Wang
- Institute of Botany, Jiangsu Province and Chinese Academy Sciences, Nanjing, 210014, China; Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing, 210014, China
| | - Xiaojing Liu
- Institute of Botany, Jiangsu Province and Chinese Academy Sciences, Nanjing, 210014, China; Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing, 210014, China
| | - Yajun Chang
- Institute of Botany, Jiangsu Province and Chinese Academy Sciences, Nanjing, 210014, China; Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing, 210014, China
| | - Dongrui Yao
- Institute of Botany, Jiangsu Province and Chinese Academy Sciences, Nanjing, 210014, China; Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing, 210014, China.
| | - Jian Cui
- Institute of Botany, Jiangsu Province and Chinese Academy Sciences, Nanjing, 210014, China; Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing, 210014, China.
| |
Collapse
|
15
|
Chen CY, Kuan SP, Nagarajan D, Chen JH, Ariyadasa TU, Chang JS. A novel two-stage process for the effective treatment of swine wastewater using Chlorella sorokiniana AK-1 based algal-bacterial consortium under semi-continuous operation. BIORESOURCE TECHNOLOGY 2022; 365:128119. [PMID: 36252751 DOI: 10.1016/j.biortech.2022.128119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/07/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
This study aimed at developing an eco-friendly and effective treatment for swine wastewater (SWW) using a designer microalgae-bacteria consortium. A functional algal bacterial consortium was developed with SWW-derived bacteria and Chlorella sorokiniana AK-1. Light intensity (300 µmol/m2/s) and inoculum size (0.15 and 0.2 g/L for microalgae and bacteria) were optimized. Semi-batch operation treating 50 % SWW resulted in a COD, BOD, TN, and TP removal efficiency of 81.1 ± 0.9 %, 97.0 ± 0.7 %, 90.6 ± 1.6 % and 91.3 ± 1.1 %, respectively. A novel two-stage process with an initial bacterial start-up stage followed by microalgal inoculation was applied for attaining stable organic carbon removal, in addition to satisfactory TN and TP removal. Full strength SWW was treated with this strategy with COD, BOD, TN, and TP removal efficiencies of 72.1 %, 94.9 %, 88 %, and 94.6 %, respectively. The biomass consisted of 36 % carbohydrates, indicating a potential feedstock for biochar production. In addition, the effluent met the standards for effluent discharge in Taiwan.
Collapse
Affiliation(s)
- Chun-Yen Chen
- University Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan; Research Center for Circular Economy, National Cheng Kung University, Tainan, Taiwan
| | - Shu-Ping Kuan
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Dillirani Nagarajan
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Jih-Heng Chen
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan
| | - Thilini U Ariyadasa
- Department of Chemical and Process Engineering, Faculty of Engineering, University of Moratuwa, Moratuwa 10400, Sri Lanka
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li 32003, Taiwan.
| |
Collapse
|
16
|
Zhao W, Bi X, Peng Y, Bai M. Research advances of the phosphorus-accumulating organisms of Candidatus Accumulibacter, Dechloromonas and Tetrasphaera: Metabolic mechanisms, applications and influencing factors. CHEMOSPHERE 2022; 307:135675. [PMID: 35842039 DOI: 10.1016/j.chemosphere.2022.135675] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/19/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Phosphorus-accumulating organisms (PAOs), which harbor metabolic mechanisms for phosphorus removal, are widely applied in wastewater treatment. Recently, novel PAOs and phosphorus removal metabolic pathways have been identified and studied. Specifically, Dechloromonas and Tetrasphaera can remove phosphorus via the denitrifying phosphorus removal and fermentation phosphorus removal pathways, respectively. As the main PAOs in biological phosphorus removal systems, the conventional PAO Candidatus Accumulibacter and the novel PAOs Dechloromonas and Tetrasphaera are thoroughly discussed in this paper, with a specific focus on their phosphorus removal metabolic mechanisms, process applications, community abundance and influencing factors. Dechloromonas can achieve simultaneous nitrogen and phosphorus removal in an anoxic environment through the denitrifying phosphorus removal metabolic pathway, which can further reduce carbon source requirements and aeration energy consumption. The metabolic pathways of Tetrasphaera are diverse, with phosphorus removal occurring in conjunction with macromolecular organics degradation through anaerobic fermentation. A collaborative oxic phosphorus removal pathway between Tetrasphaera and Ca. Accumulibacter, or a collaborative anoxic denitrifying phosphorus removal pathway between Tetrasphaera and Dechloromonas are future development directions for biological phosphorus removal technologies, which can further reduce carbon source and energy consumption while achieving enhanced phosphorus removal.
Collapse
Affiliation(s)
- Weihua Zhao
- State and Local Joint Engineering Research Center of Municipal Wastewater Treatment and Resource Recycling, Qingdao University of Technology, Qingdao, 266033, PR China; National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, China
| | - Xuejun Bi
- State and Local Joint Engineering Research Center of Municipal Wastewater Treatment and Resource Recycling, Qingdao University of Technology, Qingdao, 266033, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, China.
| | - Meng Bai
- State and Local Joint Engineering Research Center of Municipal Wastewater Treatment and Resource Recycling, Qingdao University of Technology, Qingdao, 266033, PR China
| |
Collapse
|
17
|
Recent Advances in Marine Microalgae Production: Highlighting Human Health Products from Microalgae in View of the Coronavirus Pandemic (COVID-19). FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8090466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Blue biotechnology can greatly help solve some of the most serious social problems due to its wide biodiversity, which includes marine environments. Microalgae are important resources for human needs as an alternative to terrestrial plants because of their rich biodiversity, rapid growth, and product contributions in many fields. The production scheme for microalgae biomass mainly consists of two processes: (I) the Build-Up process and (II) the Pull-Down process. The Build-Up process consists of (1) the super strain concept and (2) cultivation aspects. The Pull-Down process includes (1) harvesting and (2) drying algal biomass. In some cases, such as the manufacture of algal products, the (3) extraction of bioactive compounds is included. Microalgae have a wide range of commercial applications, such as in aquaculture, biofertilizer, bioenergy, pharmaceuticals, and functional foods, which have several industrial and academic applications around the world. The efficiency and success of biomedical products derived from microalgal biomass or its metabolites mainly depend on the technologies used in the cultivation, harvesting, drying, and extraction of microalgae bioactive molecules. The current review focuses on recent advanced technologies that enhance microalgae biomass within microalgae production schemes. Moreover, the current work highlights marine drugs and human health products derived from microalgae that can improve human immunity and reduce viral activities, especially COVID-19.
Collapse
|
18
|
From manure to high-value fertilizer: The employment of microalgae as a nutrient carrier for sustainable agriculture. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Collao J, García-Encina PA, Blanco S, Bolado-Rodríguez S, Fernandez-Gonzalez N. Current Concentrations of Zn, Cu, and As in Piggery Wastewater Compromise Nutrient Removals in Microalgae–Bacteria Photobioreactors Due to Altered Microbial Communities. BIOLOGY 2022; 11:biology11081176. [PMID: 36009803 PMCID: PMC9405037 DOI: 10.3390/biology11081176] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 01/04/2023]
Abstract
Simple Summary Photobioreactor systems based on consortia of microalgae and bacteria are a promising, efficient and sustainable alternative for treatment of wastewaters with high nitrogen content, such as piggery wastewater. In these biological systems, microorganisms play a key role in wastewater treatment by degradation of organic matter and accumulation of nutrients into the generated biomass. However, these wastewaters often contain high concentrations of zinc, copper and arsenic, which can severely affect the activity and growth of microorganisms, and so, the wastewater treatment performance. This article studies the effect of high concentrations of zinc, copper and arsenic on microbial communities, specifically microalgae and bacteria, in photobioreactors treating piggery wastewater, with the aim of elucidating their impact on wastewater treatment performance. For this purpose, the growth of microalgae and the composition and structure of bacterial communities exposed to these pollutants were studied. The performance of the reactors was also evaluated by determining the removal of nutrients, zinc, copper and arsenic. The results showed that high concentrations of zinc, copper and arsenic in piggery wastewater significantly affect the microbiome of the reactors without recovery after exposure to these contaminants, resulting in poorer performance of the reactors and compromising the environmental and health impact of treated effluents. Abstract The treatment of pig manure is a major environmental issue, and photobioreactors containing consortia of microalgae and bacteria have proven to be a promising and sustainable treatment alternative. This work studies the effect of Cu, Zn and As, three toxic elements frequently present in piggery wastewater, on the performance and microbiome of photobioreactors. After dopage with Zn (100 mg/L), Cu (100 mg/L), and As (500 µg/L), the high biomass uptake of Zn (69–81%) and Cu (81–83%) decreased the carbon removal in the photobioreactors, inhibited the growth of Chlorella sp., and affected heterotrophic bacterial populations. The biomass As uptake result was low (19%) and actually promoted microalgae growth. The presence of Cu and As decreased nitrogen removal, reducing the abundance of denitrifying bacterial populations. The results showed that metal(loid)s significantly affected 24 bacterial genera and that they did not recover after exposure. Therefore, this study makes an important contribution on the impact of the presence of metal(loid)s in piggery wastewater that compromises the overall performance of PBRs, and so, the environmental and health impact of treated effluents.
Collapse
Affiliation(s)
- Javiera Collao
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain
- Institute of Sustainable Processes (ISP), University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain
| | - Pedro Antonio García-Encina
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain
- Institute of Sustainable Processes (ISP), University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain
| | - Saúl Blanco
- Department of Biodiversity and Environmental Management, University of León, 24071 León, Spain
| | - Silvia Bolado-Rodríguez
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain
- Institute of Sustainable Processes (ISP), University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain
- Correspondence: ; Tel.: +34-983423958
| | - Nuria Fernandez-Gonzalez
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain
- Institute of Sustainable Processes (ISP), University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain
- Department of Systems Biology, Spanish Center for Biotechnology, CSIC, C/Darwin n°3, 28049 Madrid, Spain
| |
Collapse
|
20
|
Employment of algae-based biological soil crust to control desertification for the sustainable development: A mini-review. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Iqbal K, Saxena A, Pande P, Tiwari A, Chandra Joshi N, Varma A, Mishra A. Microalgae-bacterial granular consortium: Striding towards sustainable production of biohydrogen coupled with wastewater treatment. BIORESOURCE TECHNOLOGY 2022; 354:127203. [PMID: 35462016 DOI: 10.1016/j.biortech.2022.127203] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Anthropogenic activities have drastically affected the environment, leading to increased waste accumulation in atmospheric bodies, including water. Wastewater treatment is an energy-consuming process and typically requires thousands of kilowatt hours of energy. This enormous energy demand can be fulfilled by utilizing the microbial electrolysis route to breakdown organic pollutants in wastewater which produces clean water and biohydrogen as a by-product of the reaction. Microalgae are the promising microorganism for the biohydrogen production, and it has been investigated that the interaction between microalgae and bacteria can be used to boost the yield of biohydrogen. Consortium of algae and bacteria resulting around 50-60% more biohydrogen production compared to the biohydrogen production of algae and bacteria separately. This review summarises the recent development in different microalgae-bacteria granular consortium systems successfully employed for biohydrogen generation. We also discuss the limitations in biohydrogen production and factors affecting its production from wastewater.
Collapse
Affiliation(s)
- Khushboo Iqbal
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida 201301, India
| | - Abhishek Saxena
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201301, India
| | - Priyanshi Pande
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida 201301, India
| | - Archana Tiwari
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201301, India
| | - Naveen Chandra Joshi
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida 201301, India
| | - Ajit Varma
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida 201301, India
| | - Arti Mishra
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida 201301, India.
| |
Collapse
|
22
|
Co-culturing of microalgae and bacteria in real wastewaters alters indigenous bacterial communities enhancing effluent bioremediation. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Wang H, Deng L, Qi Z, Wang W. Constructed microalgal-bacterial symbiotic (MBS) system: Classification, performance, partnerships and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:150082. [PMID: 34525774 DOI: 10.1016/j.scitotenv.2021.150082] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
The microalgal-bacterial symbiotic (MBS) system shows great advantages in the synchronous implementation of wastewater treatment and nutrient recovery. To enhance the understanding of different MBS systems, this review summarizes reported MBS systems and proposes three patterns according to the living state of microalgae and bacteria. They are free microalgal-bacterial (FMB) system, attached microalgal-bacterial (AMB) system and bioflocculated microalgal-bacterial (BMB) system. Compared with the other two patterns, BMB system shows the advantages of microalgal biomass harvesting and application. To further understand the microalgal-bacterial partnerships in the bioflocculation of BMB system, this review discusses bioflocs characteristics, extracellular polymeric substances (EPS) properties and production, and the effect of microalgae/bacteria ratio and microalgal strains on the formation of bioflocculation. Microalgal biomass production and application are important for BMB system development in the future. Food processing wastewater characterized by high biodegradability and low toxicity should be conducive for microalgal cultivation. In addition, exogenous addition of functional bacteria for nutrient removal and bioflocculation formation would be a crucial research direction to facilitate the large-scale application of BMB system.
Collapse
Affiliation(s)
- Hong Wang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China; Chengdu National Agricultural Science and Technology Center, Chengdu 610213, China
| | - Liangwei Deng
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China; Chengdu National Agricultural Science and Technology Center, Chengdu 610213, China
| | - Zhiyong Qi
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China; Chengdu National Agricultural Science and Technology Center, Chengdu 610213, China
| | - Wenguo Wang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China; Chengdu National Agricultural Science and Technology Center, Chengdu 610213, China.
| |
Collapse
|
24
|
Song T, Zhang X, Li J, Wu X, Feng H, Dong W. A review of research progress of heterotrophic nitrification and aerobic denitrification microorganisms (HNADMs). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149319. [PMID: 34428659 DOI: 10.1016/j.scitotenv.2021.149319] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
Traditional nitrogen removal relies on the autotrophic nitrification and anaerobic denitrification process. In the system, autotrophic microorganisms achieve nitrification under aerobic condition and heterotrophic microorganisms complete the denitrification in anaerobic condition. As the two types of microorganisms have different tolerance on oxygen concentration, nitrification and denitrification are normally set in two compartments for high nitrogen removal. Therefore, large land occupying is required. In fact, there is a special type of microorganism called heterotrophic nitrification & aerobic denitrification microorganisms (HNADMs) which can oxidize ammonium nitrogen, and perform denitrification in the presence of oxygen. HNADMs have been reported in many environments. It was found that HNADMs could simultaneously achieve nitrification and denitrification. In addition, some HNADMs not only have the ability to remove nitrogen, but also have the ability to remove phosphorus. It suggests that HNADMs have great potential for pollution removal from wastewater. So far, individual work on single strain was carried out. Comprehensive summary of the HNADMs would provide a better picture for understanding and directing its application. In this paper, the studies related on HNADMs were reviewed. The nitrogen metabolism pathway of HNADMs was summarized. The impact of pH, DO, carbon source, and C/N on HNADMs growth and metabolism were discussed. In addition, the extracellular polymeric substance (EPS) production, quorum sensing (QS) secretion and P removal by HNADMs were displayed.
Collapse
Affiliation(s)
- Tao Song
- School of Civil and Environmental Engineering, Shenzhen Key Laboratory of Water Resource Application and Environmental Pollution Control, Harbin Institute of Technology, Shenzhen 518055, Guangdong, PR China
| | - Xiaolei Zhang
- School of Civil and Environmental Engineering, Shenzhen Key Laboratory of Water Resource Application and Environmental Pollution Control, Harbin Institute of Technology, Shenzhen 518055, Guangdong, PR China
| | - Ji Li
- School of Civil and Environmental Engineering, Shenzhen Key Laboratory of Water Resource Application and Environmental Pollution Control, Harbin Institute of Technology, Shenzhen 518055, Guangdong, PR China.
| | - Xinyu Wu
- School of Civil and Environmental Engineering, Shenzhen Key Laboratory of Water Resource Application and Environmental Pollution Control, Harbin Institute of Technology, Shenzhen 518055, Guangdong, PR China
| | - Haixia Feng
- Shenzhen Municipal Engineering Consulting Center CO., LTD, Shenzhen 518028, Guangdong, PR China
| | - Wenyi Dong
- School of Civil and Environmental Engineering, Shenzhen Key Laboratory of Water Resource Application and Environmental Pollution Control, Harbin Institute of Technology, Shenzhen 518055, Guangdong, PR China
| |
Collapse
|
25
|
Renuka N, Ratha SK, Kader F, Rawat I, Bux F. Insights into the potential impact of algae-mediated wastewater beneficiation for the circular bioeconomy: A global perspective. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 297:113257. [PMID: 34303940 DOI: 10.1016/j.jenvman.2021.113257] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/28/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
Algae-based technologies are one of the emerging solutions to societal issues such as accessibility to clean water and carbon-neutral energy and are a contender for the circular bioeconomy. In this review, recent developments in the use of different algal species for nutrient recovery and biomass production in wastewater, challenges, and future perspectives have been addressed. The ratio and bioavailability of nutrients in wastewater are vital parameters, which significantly impact nutrient recovery efficiency and algal biomass production. However, the optimum nutrient concentration and ratio may vary depending upon the microalgal species as well as cultivation conditions. The use of indigenous algae and algae-based consortia with other microorganisms has been proved promising in improving nutrient recovery efficiency and biomass production in pilot scale operations. However, environmental and cultivation conditions also play a significant role in determining the feasibility of the process. This review further focused on the assessment of the potential benefits of algal biomass production, renewable biofuel generation, and CO2 sequestration using wastewater in different countries on the basis of available data on wastewater generation and estimated nutrient contents. It was estimated that 5-10% replacement of fossil crude requirement with algal biofuels would require ~952-1903 billion m3 of water, 10-21 billion tons of nitrogen, and 2-4 billion tons of phosphorus fertilizers. In this context, coupling wastewater treatment and algal biomass production seem to be the most sustainable option with potential global benefits of polishing wastewater through nutrients recycling and carbon dioxide sequestration.
Collapse
Affiliation(s)
- Nirmal Renuka
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O Box 1334, Durban, 4000, South Africa
| | - Sachitra Kumar Ratha
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O Box 1334, Durban, 4000, South Africa; Phycology Laboratory, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, 226001, India
| | - Farzana Kader
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O Box 1334, Durban, 4000, South Africa
| | - Ismail Rawat
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O Box 1334, Durban, 4000, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O Box 1334, Durban, 4000, South Africa.
| |
Collapse
|
26
|
Zheng M, Dai J, Ji X, Li D, He Y, Wang M, Huang J, Chen B. An integrated semi-continuous culture to treat original swine wastewater and fix carbon dioxide by an indigenous Chlorella vulgaris MBFJNU-1 in an outdoor photobioreactor. BIORESOURCE TECHNOLOGY 2021; 340:125703. [PMID: 34371337 DOI: 10.1016/j.biortech.2021.125703] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
This work was the first time to evaluate the ability of an isolated Chlorella vulgaris MBFJNU-1 to remove nutrients of original swine wastewater (OSW) and fix carbon dioxide (CO2) under outdoor conditions in a simultaneous manner using column photobioreactors. The results showed that microalga cultivated at 3% CO2 in a batch mode achieved the highest biomass and CO2 fixation rate. Then, a semi-continuous process for OSW treatment and CO2 fixation simultaneously by microalga was established and the renewal rate of this process was deeply investigated. Microalga cultivated at 3% CO2 and 80% renewal rate gave the highest productivities of total biomass, CO2 fixation and the greatest average removal rates of total nitrogen, N-NH4+, total phosphorus and chemical oxygen demand. Taken together, C. vulgaris MBFJNU-1 was the promising microalga under outdoor conditions for swine wastewater treatment and CO2 fixation simultaneously for biofuels and biofertilizer production.
Collapse
Affiliation(s)
- Mingmin Zheng
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| | - Jingxuan Dai
- College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Xiaowei Ji
- College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Daogui Li
- College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Yongjin He
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117, China.
| | - Mingzi Wang
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| | - Jian Huang
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| | - Bilian Chen
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| |
Collapse
|
27
|
Hoareau M, Erable B, Chapleur O, Midoux C, Bureau C, Goubet A, Bergel A. Oxygen-reducing bidirectional microbial electrodes designed in real domestic wastewater. BIORESOURCE TECHNOLOGY 2021; 326:124663. [PMID: 33529981 DOI: 10.1016/j.biortech.2021.124663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 06/12/2023]
Abstract
Microbial electrodes were designed in domestic wastewaters to catalyse the oxidation of organic matter (anode) and the reduction of oxygen (cathode) alternately. The successive aeration phases (cathode) enhanced the anodic efficiency, resulting in current densities of up to 6.4 Am-2 without the addition of any substrate. Using nitrogen during the anodic phases affected the microbial populations and the electrodes showed a lower ability to subsequently turn to O2 reduction than the microbial anodes formed in open-to-air conditions did. No strong difference was observed between internal and external biofilm, both of which showed a very large variety of taxa in terms of abundance as well as variance. They comprised a mix of aerobic and anaerobic species, many of which have already been identified separately in bioelectrochemical systems. Such a large diversity, which had not been observed in aerobic bidirectional bioelectrodes so far, can explain the efficiency and robustness observed here.
Collapse
Affiliation(s)
- Morgane Hoareau
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INP, UPS, Toulouse, France
| | - Benjamin Erable
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INP, UPS, Toulouse, France
| | - Olivier Chapleur
- Université Paris-Saclay, INRAE, PRocédés biOtechnologiques au Service de l'Environnement, 92761 Antony, France
| | - Cédric Midoux
- Université Paris-Saclay, INRAE, PRocédés biOtechnologiques au Service de l'Environnement, 92761 Antony, France
| | - Chrystelle Bureau
- Université Paris-Saclay, INRAE, PRocédés biOtechnologiques au Service de l'Environnement, 92761 Antony, France
| | - Anne Goubet
- Université Paris-Saclay, INRAE, PRocédés biOtechnologiques au Service de l'Environnement, 92761 Antony, France
| | - Alain Bergel
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INP, UPS, Toulouse, France.
| |
Collapse
|
28
|
Han P, Lu Q, Zhong H, Xie J, Leng L, Li J, Fan L, Li J, Chen P, Yan Y, Wei F, Zhou W. Recycling nutrients from soy sauce wastewater to culture value-added Spirulina maxima. ALGAL RES 2021. [DOI: 10.1016/j.algal.2020.102157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
29
|
Su F, Yang YY. Microbially induced carbonate precipitation via methanogenesis pathway by a microbial consortium enriched from activated anaerobic sludge. J Appl Microbiol 2020; 131:236-256. [PMID: 33187022 DOI: 10.1111/jam.14930] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 10/14/2020] [Accepted: 11/04/2020] [Indexed: 11/28/2022]
Abstract
AIMS Various applications of microbially induced carbonate precipitation (MICP) has been proposed. However, most studies use cultured pure strains to obtain MICP, ignoring advantages of microbial consortia. The aims of this study were to: (i) test the feasibility of a microbial consortium to produce MICP; (ii) identify functional micro-organisms and their relationship; (iii) explain the MICP mechanism; (iv) propose a way of applying the MICP technique to soil media. METHODS AND RESULTS Anaerobic sludge was used as the source of the microbial consortium. A laboratory anaerobic sequencing batch reactor and beaker were used to perform precipitation experiment. The microbial consortium produced MICP with an efficiency of 96·6%. XRD and SEM analysis showed that the precipitation composed of different-size calcite crystals. According to high-throughput 16S rRNA gene sequencing, the functional micro-organisms included acetogenic bacteria, acetate-oxidizing bacteria and archaea Methanosaeta and Methanobacterium beijingense. The methanogenesis acetate degradation provides dissolved inorganic carbon and increases pH for MICP. A series of reactions catalysed by many enzymes and cofactors of methanogens and acetate-oxidizers are involved in the acetate degradation. CONCLUSION This work demonstrates the feasibility of using the microbial consortium to achieve MICP from an experimental and theoretical perspective. SIGNIFICANCE AND IMPACT OF THE STUDY A method of applying the microbial-consortium MICP to soil media is proposed. It has the advantages of low cost, low environmental impact, treatment uniformity and less limitations from natural soils. This method could be used to improve mechanical properties, plug pores and fix harmful elements of soil media, etc.
Collapse
Affiliation(s)
- F Su
- School of Engineering and Technology, China University of Geosciences (Beijing), Beijing, P. R. China
| | - Y Y Yang
- School of Engineering and Technology, China University of Geosciences (Beijing), Beijing, P. R. China
| |
Collapse
|
30
|
Li S, Zheng X, Chen Y, Song C, Lei Z, Zhang Z. Nitrite removal with potential value-added ingredients accumulation via Chlorella sp. L38. BIORESOURCE TECHNOLOGY 2020; 313:123743. [PMID: 32620368 DOI: 10.1016/j.biortech.2020.123743] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
Nitrite removal is necessary and significant for pickle and meat processing wastewater. In this study, Chlorella sp. L38 is used as an alternative to remove nitrite and reuse it as nitrogen source for potential value-added ingredients production. Based on the typical BG11 medium with and without NaNO3 (which is the conventional nitrogen source), nitrite is additionally provided, and its concentration gradient was set at 0, 50, 100, 150 and 200 μmol/L, respectively. The experimental results showed that the nitrite removal rate could achieve 57.1 μmol/L/d. In addition, the biomass variation, and value-added ingredients (polysaccharides, lipid, and protein) productivity were also measured, and their yield could achieve 4.8 mg/g/d, 3.0 mg/L/d and 5.5 mg/L/d, respectively. It indicated that Chlorella sp. L38 has the potential to be an environmentally friendly approach for nitrite removal of wastewater.
Collapse
Affiliation(s)
- Shuhong Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Xuechao Zheng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Ye Chen
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Chunfeng Song
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, PR China
| | - Zhongfang Lei
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Zhenya Zhang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| |
Collapse
|
31
|
Congestri R, Savio S, Farrotti S, Amati A, Krasojevic K, Perini N, Costa F, Migliore L. Developing a microbial consortium for removing nutrients in dishwasher wastewater: towards a biofilter for its up-cycling. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 82:1142-1154. [PMID: 33055404 DOI: 10.2166/wst.2020.325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Microbial consortia are effective biofilters to treat wastewaters, allowing for resource recovery and water remediation. To reuse and save water in the domestic cycle, we assembled a suspended biofilm, a 'biofilter' to treat dishwasher wastewater. Bacterial monocultures of both photo- and heterotrophs were assembled in an increasingly complex fashion to test their nutrient stripping capacity. This 'biofilter' is the core of an integrated system (Zero Mile System) devoted to reusing and upcycling of reconditioned wastewater, partly in subsequent dishwasher cycles and partly into a vertical garden for plant food cultivation. The biofilter was assembled based on a strain of the photosynthetic, filamentous cyanobacterium Trichormus variabilis, selected to produce an oxygen evolving scaffold, and three heterotrophic aerobic bacterial isolates coming from the dishwasher wastewater itself: Acinetobacter, Exiguobacterium and Pseudomonas spp. The consortium was constructed starting with 16 isolates tested one-to-one with T. variabilis and then selecting the heterotrophic microbes up to a final one-to-three consortium, which included two dominant and a rare component of the wastewater community. This consortium thrives in the wastewater much better than T. variabilis alone, efficiently stripping N and P in short time, a pivotal step for the reuse and saving of water in household appliances.
Collapse
Affiliation(s)
- R Congestri
- Department of Biology, University of Rome 'Tor Vergata', Via della Ricerca Scientifica, Rome 00133, Italy E-mail:
| | - S Savio
- Department of Biology, University of Rome 'Tor Vergata', Via della Ricerca Scientifica, Rome 00133, Italy E-mail:
| | - S Farrotti
- Department of Biology, University of Rome 'Tor Vergata', Via della Ricerca Scientifica, Rome 00133, Italy E-mail:
| | - A Amati
- Department of Biology, University of Rome 'Tor Vergata', Via della Ricerca Scientifica, Rome 00133, Italy E-mail: ; Department of Design, Polytechnic University of Milan, Via Durando 38/A, Milan 20158, Italy
| | - K Krasojevic
- Department of Biology, University of Rome 'Tor Vergata', Via della Ricerca Scientifica, Rome 00133, Italy E-mail: ; Department of Design, Polytechnic University of Milan, Via Durando 38/A, Milan 20158, Italy
| | - N Perini
- Department of Biology, University of Rome 'Tor Vergata', Via della Ricerca Scientifica, Rome 00133, Italy E-mail:
| | - F Costa
- Department of Design, Polytechnic University of Milan, Via Durando 38/A, Milan 20158, Italy
| | - L Migliore
- Department of Biology, University of Rome 'Tor Vergata', Via della Ricerca Scientifica, Rome 00133, Italy E-mail:
| |
Collapse
|
32
|
Chen F, Xiao Y, Wu X, Zhong Y, Lu Q, Zhou W. Replacement of feed by fresh microalgae as a novel technology to alleviate water deterioration in aquaculture. RSC Adv 2020; 10:20794-20800. [PMID: 35517726 PMCID: PMC9054309 DOI: 10.1039/d0ra03090b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/12/2020] [Indexed: 11/21/2022] Open
Abstract
The main aim of this work was to evaluate the feasibility of microalgae-assisted aquaculture and explore the relevant mechanisms. In this regard, our work explored the pollution problems in traditional aquaculture and studied the contribution of microalgae to eutrophication control, oxygen gas production and feed replacement. Besides, potential protection mechanisms of microalgae-assisted aquaculture were studied by bacterial community profile analysis and microscope observation. The results showed that microalgae performed well in nutrient assimilation and oxygen production, thus slowing down the eutrophication and preventing oxygen depletion in aquaculture. Study of the mechanisms revealed that microalgae-assisted aquaculture contained much fewer pathogens and a microalgal biofilm was formed to prevent the eutrophication caused by sludge degradation. It is expected that the findings in this work can support the further development of microalgae-assisted aquaculture and promote the industry upgrade.
Collapse
Affiliation(s)
- Fufeng Chen
- School of Resources, Environmental & Chemical Engineering, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University Nanchang 330031 China
| | - Yan Xiao
- School of Resources, Environmental & Chemical Engineering, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University Nanchang 330031 China
| | - Xiongwei Wu
- School of Resources, Environmental & Chemical Engineering, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University Nanchang 330031 China
| | - Yuqing Zhong
- School of Resources, Environmental & Chemical Engineering, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University Nanchang 330031 China
| | - Qian Lu
- School of Resources, Environmental & Chemical Engineering, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University Nanchang 330031 China
| | - Wenguang Zhou
- School of Resources, Environmental & Chemical Engineering, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University Nanchang 330031 China
| |
Collapse
|
33
|
Li R, Pan J, Yan M, Yang J, Qin W. Effects of mixotrophic cultivation on antioxidation and lipid accumulation of Chlorella vulgaris in wastewater treatment. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 22:638-643. [PMID: 31847537 DOI: 10.1080/15226514.2019.1701982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The effects of mixotrophic cultivation on antioxidation and lipid production of Chlorella vulgaris in wastewater treatment were analyzed. The biomass and lipid content of the mixotrophic C. vulgaris cultured in wastewater were higher compared with the autotrophic C. vulgaris cultured in BG-11. The mixotrophic C. vulgaris provided more fatty acids as the contents of total fatty acids rose. The unsaturated fatty acid/total fatty acid ratio under mixotrophic cultivation was up to 0.91, indicating the mixotrophic cultivation system was applicable for the generation of unsaturated fatty acids. Activities of antioxidant enzymes such as superoxide dismutase and glutathione peroxidase were improved after the addition of wastewater to algal cultures. Moreover, the activity and starch formation of ADP-glucose pyrophosphorylase decreased and the activity of acetyl-CoA carboxylase was enhanced, which contributed to the lipid production in the mixotrophic C. vulgaris in wastewater. This study suggests mixotrophic cultivation of microalgae in wastewater is an efficient way to improve lipid production.
Collapse
Affiliation(s)
- Ran Li
- College of Petroleum Engineering, Xi'an Shiyou University, Xi'an, China
- Technology Center of High Energy Gas Fracturing, CNPC, Xi'an Shiyou University, Xi'an, China
| | - Jie Pan
- College of Petroleum Engineering, Xi'an Shiyou University, Xi'an, China
| | - Minmin Yan
- PetroChina Qinghai Oilfield Company, Haixi, China
| | - Jiang Yang
- College of Petroleum Engineering, Xi'an Shiyou University, Xi'an, China
| | - Wenlong Qin
- College of Petroleum Engineering, Xi'an Shiyou University, Xi'an, China
| |
Collapse
|
34
|
Wang Q, Li S, Zhong Y, Liu H, Liu J, Liu H, Cheng J, Huang Y, Cai X, Liu H. Protein extracted from symbiotic culture of Chlorella pyrenoidosa and Yarrowia lipolytica shows structure-related detoxifying effects against 2, 2’-azobis (2-methyl-propanimidamidine) dihydrochloride induced oxidative stress. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Li R, Pan J, Yan M, Yang J, Qin W, Liu Y. Treatment of fracturing wastewater using microalgae‐bacteria consortium. CAN J CHEM ENG 2019. [DOI: 10.1002/cjce.23631] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Ran Li
- College of Petroleum EngineeringXi'an Shiyou University Xi'an China
- Technology Center of High Energy Gas FracturingCNPC, Xi'an Shiyou University Xi'an China
- Department of Civil and Environmental EngineeringUniversity of Alberta Edmonton Canada
| | - Jie Pan
- College of Petroleum EngineeringXi'an Shiyou University Xi'an China
| | - Minmin Yan
- College of Petroleum EngineeringXi'an Shiyou University Xi'an China
| | - Jiang Yang
- College of Petroleum EngineeringXi'an Shiyou University Xi'an China
| | - Wenlong Qin
- College of Petroleum EngineeringXi'an Shiyou University Xi'an China
| | - Yang Liu
- College of Petroleum EngineeringXi'an Shiyou University Xi'an China
- Department of Civil and Environmental EngineeringUniversity of Alberta Edmonton Canada
| |
Collapse
|
36
|
Abstract
Traditional aquaculture provides food for humans, but produces a large amount of wastewater, threatening global sustainability. The antibiotics abuse and the water replacement or treatment causes safety problems and increases the aquaculture cost. To overcome environmental and economic problems in the aquaculture industry, a lot of efforts have been devoted into the application of microalgae for wastewater remediation, biomass production, and water quality control. In this review, the systematic description of the technologies required for microalgae-assisted aquaculture and the recent progress were discussed. It deeply reviews the problems caused by the discharge of aquaculture wastewater and introduces the principles of microalgae-assisted aquaculture. Some interesting aspects, including nutrients assimilation mechanisms, algae cultivation systems (raceway pond and revolving algal biofilm), wastewater pretreatment, algal-bacterial cooperation, harvesting technologies (fungi-assisted harvesting and flotation), selection of algal species, and exploitation of value-added microalgae as aquaculture feed, were reviewed in this work. In view of the limitations of recent studies, to further reduce the negative effects of aquaculture wastewater on global sustainability, the future directions of microalgae-assisted aquaculture for industrial applications were suggested.
Collapse
|
37
|
Perera IA, Abinandan S, Subashchandrabose SR, Venkateswarlu K, Naidu R, Megharaj M. Advances in the technologies for studying consortia of bacteria and cyanobacteria/microalgae in wastewaters. Crit Rev Biotechnol 2019; 39:709-731. [PMID: 30971144 DOI: 10.1080/07388551.2019.1597828] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The excessive generation and discharge of wastewaters have been serious concerns worldwide in the recent past. From an environmental friendly perspective, bacteria, cyanobacteria and microalgae, and the consortia have been largely considered for biological treatment of wastewaters. For efficient use of bacteria‒cyanobacteria/microalgae consortia in wastewater treatment, detailed knowledge on their structure, behavior and interaction is essential. In this direction, specific analytical tools and techniques play a significant role in studying these consortia. This review presents a critical perspective on physical, biochemical and molecular techniques such as microscopy, flow cytometry with cell sorting, nanoSIMS and omics approaches used for systematic investigations of the structure and function, particularly nutrient removal potential of bacteria‒cyanobacteria/microalgae consortia. In particular, the use of specific molecular techniques of genomics, transcriptomics, proteomics metabolomics and genetic engineering to develop more stable consortia of bacteria and cyanobacteria/microalgae with their improved biotechnological capabilities in wastewater treatment has been highlighted.
Collapse
Affiliation(s)
- Isiri Adhiwarie Perera
- a Global Centre for Environmental Remediation (GCER), Faculty of Science , The University of Newcastle , Callaghan , New South Wales , Australia
| | - Sudharsanam Abinandan
- a Global Centre for Environmental Remediation (GCER), Faculty of Science , The University of Newcastle , Callaghan , New South Wales , Australia
| | - Suresh R Subashchandrabose
- a Global Centre for Environmental Remediation (GCER), Faculty of Science , The University of Newcastle , Callaghan , New South Wales , Australia.,b Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE) , The University of Newcastle , Callaghan , New South Wales , Australia
| | - Kadiyala Venkateswarlu
- c Formerly Department of Microbiology , Sri Krishnadevaraya University , Anantapuramu , Andhra Pradesh , India
| | - Ravi Naidu
- a Global Centre for Environmental Remediation (GCER), Faculty of Science , The University of Newcastle , Callaghan , New South Wales , Australia.,b Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE) , The University of Newcastle , Callaghan , New South Wales , Australia
| | - Mallavarapu Megharaj
- a Global Centre for Environmental Remediation (GCER), Faculty of Science , The University of Newcastle , Callaghan , New South Wales , Australia.,b Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE) , The University of Newcastle , Callaghan , New South Wales , Australia
| |
Collapse
|
38
|
Yang L, Li H, Wang Q. A novel one-step method for oil-rich biomass production and harvesting by co-cultivating microalgae with filamentous fungi in molasses wastewater. BIORESOURCE TECHNOLOGY 2019; 275:35-43. [PMID: 30576912 DOI: 10.1016/j.biortech.2018.12.036] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 06/09/2023]
Abstract
Aiming at simplifying the harvesting procedure, reducing the production cost, and improving the quality of microalgae-based biodiesel, herein, a novel one-step method for oil-rich biomass production and harvesting was proposed by growing Chlorella sp. with Aspergillus sp. in molasses wastewater. Lipid content and fatty acid profile were measured to assess the suitability of microalgal-fungal biomass for biodiesel production. The results showed that the highest biomass yield (4.215 g/L) was obtained when the inoculation ratio of fungi and microalgae was 100. Activities of fungi positive impacted the decolorization of wastewater and the removal of suspended solids. Thus, co-cultivation system had better performance than mono-system of microalgae in the removal of nutrients in wastewater. Analysis of biomass compositions showed that compared with mono-system of microalgae, co-cultivation system produced biomass with higher lipid content (35.2%) and yield microbial cell oil with lower unsaturation degree, potentially increasing the quality of microbial-cell-lipid based biodiesel.
Collapse
Affiliation(s)
- Limin Yang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing 210061, China
| | - Huankai Li
- Department of Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Qin Wang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing 210061, China; Department of Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| |
Collapse
|
39
|
Wang M, Keeley R, Zalivina N, Halfhide T, Scott K, Zhang Q, van der Steen P, Ergas SJ. Advances in algal-prokaryotic wastewater treatment: A review of nitrogen transformations, reactor configurations and molecular tools. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 217:845-857. [PMID: 29660710 DOI: 10.1016/j.jenvman.2018.04.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 03/19/2018] [Accepted: 04/04/2018] [Indexed: 05/21/2023]
Abstract
The synergistic activity of algae and prokaryotic microorganisms can be used to improve the efficiency of biological wastewater treatment, particularly with regards to nitrogen removal. For example, algae can provide oxygen through photosynthesis needed for aerobic degradation of organic carbon and nitrification and harvested algal-prokaryotic biomass can be used to produce high value chemicals or biogas. Algal-prokaryotic consortia have been used to treat wastewater in different types of reactors, including waste stabilization ponds, high rate algal ponds and closed photobioreactors. This review addresses the current literature and identifies research gaps related to the following topics: 1) the complex interactions between algae and prokaryotes in wastewater treatment; 2) advances in bioreactor technologies that can achieve high nitrogen removal efficiencies in small reactor volumes, such as algal-prokaryotic biofilm reactors and enhanced algal-prokaryotic treatment systems (EAPS); 3) molecular tools that have expanded our understanding of the activities of algal and prokaryotic communities in wastewater treatment processes.
Collapse
Affiliation(s)
- Meng Wang
- Department of Civil & Environmental Engineering, University of South Florida, 4202 E. Fowler Ave, ENB 118, Tampa, FL 33620, USA.
| | - Ryan Keeley
- Department of Integrative Biology, University of South Florida, 4202 E. Fowler Avenue, BSF 132, Tampa, FL 33620-5200, USA.
| | - Nadezhda Zalivina
- Department of Civil & Environmental Engineering, University of South Florida, 4202 E. Fowler Ave, ENB 118, Tampa, FL 33620, USA.
| | - Trina Halfhide
- Department of Life Sciences, The University of The West Indies, Natural Sciences Building, New Wing, Room 225, St. Augustine, Trinidad and Tobago.
| | - Kathleen Scott
- Department of Integrative Biology, University of South Florida, 4202 E. Fowler Avenue, BSF 132, Tampa, FL 33620-5200, USA.
| | - Qiong Zhang
- Department of Civil & Environmental Engineering, University of South Florida, 4202 E. Fowler Ave, ENB 118, Tampa, FL 33620, USA.
| | - Peter van der Steen
- Department of Environmental Engineering and Water Technology, IHE Institute for Water Education, PO Box 3015, 2601 DA, Delft, The Netherlands.
| | - Sarina J Ergas
- Department of Civil & Environmental Engineering, University of South Florida, 4202 E. Fowler Ave, ENB 118, Tampa, FL 33620, USA.
| |
Collapse
|
40
|
Vo Hoang Nhat P, Ngo HH, Guo WS, Chang SW, Nguyen DD, Nguyen PD, Bui XT, Zhang XB, Guo JB. Can algae-based technologies be an affordable green process for biofuel production and wastewater remediation? BIORESOURCE TECHNOLOGY 2018; 256:491-501. [PMID: 29472123 DOI: 10.1016/j.biortech.2018.02.031] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/04/2018] [Accepted: 02/05/2018] [Indexed: 06/08/2023]
Abstract
Algae is a well-known organism that its characteristic is prominent for biofuel production and wastewater remediation. This critical review aims to present the applicability of algae with in-depth discussion regarding three key aspects: (i) characterization of algae for its applications; (ii) the technical approaches and their strengths and drawbacks; and (iii) future perspectives of algae-based technologies. The process optimization and combinations with other chemical and biological processes have generated efficiency, in which bio-oil yield is up to 41.1%. Through life cycle assessment, algae bio-energy achieves high energy return than fossil fuel. Thus, the algae-based technologies can reasonably be considered as green approaches. Although selling price of algae bio-oil is still high (about $2 L-1) compared to fossil fuel's price of $1 L-1, it is expected that the algae bio-oil's price will become acceptable in the next coming decades and potentially dominate 75% of the market.
Collapse
Affiliation(s)
- P Vo Hoang Nhat
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia and Department of Environmental and Municipal Engineering, TianjinChengjian University, Tianjin 300384, China
| | - H H Ngo
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia and Department of Environmental and Municipal Engineering, TianjinChengjian University, Tianjin 300384, China.
| | - W S Guo
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia and Department of Environmental and Municipal Engineering, TianjinChengjian University, Tianjin 300384, China
| | - S W Chang
- Department of Environmental Energy & Engineering, Kyonggi University, 442-760, Republic of Korea
| | - D D Nguyen
- Department of Environmental Energy & Engineering, Kyonggi University, 442-760, Republic of Korea; Institution of Research and Development, Duy Tan University, Da Nang, Viet Nam
| | - P D Nguyen
- Faculty of Environment and Natural Resources, University of Technology, Vietnam National University-Ho Chi Minh, District 10, Ho Chi Minh City, Viet Nam
| | - X T Bui
- Faculty of Environment and Natural Resources, University of Technology, Vietnam National University-Ho Chi Minh, District 10, Ho Chi Minh City, Viet Nam
| | - X B Zhang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia and Department of Environmental and Municipal Engineering, TianjinChengjian University, Tianjin 300384, China
| | - J B Guo
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia and Department of Environmental and Municipal Engineering, TianjinChengjian University, Tianjin 300384, China
| |
Collapse
|
41
|
|
42
|
Ren H, Tuo J, Addy MM, Zhang R, Lu Q, Anderson E, Chen P, Ruan R. Cultivation of Chlorella vulgaris in a pilot-scale photobioreactor using real centrate wastewater with waste glycerol for improving microalgae biomass production and wastewater nutrients removal. BIORESOURCE TECHNOLOGY 2017; 245:1130-1138. [PMID: 28962086 DOI: 10.1016/j.biortech.2017.09.040] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/04/2017] [Accepted: 09/06/2017] [Indexed: 06/07/2023]
Abstract
To improve nutrients removal from real centrate wastewater and enhance the microalgae biomass production, cultivation of Chlorella vulgaris in lab and a pilot-scale photobioreactor with waste glycerol was studied. The results showed the optimal concentration of the crude glycerol was 1.0gL-1 with the maximum biomass productivity of 460mgL-1d-1 TVS, the maximum lipid content of 27%, the nutrient removal efficiency of all above 86%, due to more balanced C/N ratio. The synergistic relationship between the wastewater-borne bacteria and the microalgae had significant good influence on nutrient removal. In pilot-scale wastewater-based algae cultivation, with 1gL-1 waste glycerol addition, the average biomass production of 16.7gm-2d-1, lipid content of 23.6%, and the removal of 2.4gm-2d-1 NH4+-N, 2.7gm-2d-1 total nitrogen, 3.0gm-2d-1 total phosphorous, and 103.0gm-2d-1 of COD were attained for 34days semi-continuous mode.
Collapse
Affiliation(s)
- Hongyan Ren
- School of Environmental and Civil Engineering, Jiangnan University, China; Department of Bioproducts and Biosystems Engineering, and Center for Biorefining, University of Minnesota, United States
| | - Jinhua Tuo
- School of Environmental and Civil Engineering, Jiangnan University, China
| | - Min M Addy
- Department of Bioproducts and Biosystems Engineering, and Center for Biorefining, University of Minnesota, United States
| | - Renchuan Zhang
- Department of Bioproducts and Biosystems Engineering, and Center for Biorefining, University of Minnesota, United States
| | - Qian Lu
- Department of Bioproducts and Biosystems Engineering, and Center for Biorefining, University of Minnesota, United States
| | - Erik Anderson
- Department of Bioproducts and Biosystems Engineering, and Center for Biorefining, University of Minnesota, United States
| | - Paul Chen
- Department of Bioproducts and Biosystems Engineering, and Center for Biorefining, University of Minnesota, United States
| | - Roger Ruan
- Department of Bioproducts and Biosystems Engineering, and Center for Biorefining, University of Minnesota, United States.
| |
Collapse
|
43
|
Chen Y, Sun LP, Liu ZH, Martin G, Sun Z. Integration of Waste Valorization for Sustainable Production of Chemicals and Materials via Algal Cultivation. Top Curr Chem (Cham) 2017; 375:89. [DOI: 10.1007/s41061-017-0175-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 10/20/2017] [Indexed: 10/18/2022]
|
44
|
Lu Q, Li J, Wang J, Li K, Li J, Han P, Chen P, Zhou W. Exploration of a mechanism for the production of highly unsaturated fatty acids in Scenedesmus sp. at low temperature grown on oil crop residue based medium. BIORESOURCE TECHNOLOGY 2017; 244:542-551. [PMID: 28803104 DOI: 10.1016/j.biortech.2017.08.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 06/07/2023]
Abstract
The ability of algae to produce lipids comprising of unsaturated fatty acids varies with strains and culture conditions. This study investigates the effect of temperature on the production of unsaturated fatty acids in Scenedesmus sp. grown on oil crop residue based medium. At low temperature (10°C), synthesis of lipids compromising of high contents of unsaturated fatty acids took place primarily in the early stage while protein accumulation mainly occurred in the late stage. This stepwise lipid-protein synthesis process was found to be associated with the contents of acetyl-CoA and α-KG in the algal cells. A mechanism was proposed and tested through simulation experiments which quantified the carbon flux allocation in algal cells at different cultivation stages. It is concluded that low culture temperature such as 10°C is suitable for the production of lipids comprising of unsaturated fatty acids.
Collapse
Affiliation(s)
- Qian Lu
- School of Resources, Environmental & Chemical Engineering and Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang, China
| | - Jun Li
- School of Resources, Environmental & Chemical Engineering and Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang, China
| | - Jinghan Wang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, China
| | - Kun Li
- School of Resources, Environmental & Chemical Engineering and Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang, China
| | - Jingjing Li
- School of Resources, Environmental & Chemical Engineering and Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang, China
| | - Pei Han
- School of Resources, Environmental & Chemical Engineering and Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang, China
| | - Paul Chen
- Center for Biorefining, Bioproducts and Biosystems Engineering Department, University of Minnesota, Saint Paul, United States
| | - Wenguang Zhou
- School of Resources, Environmental & Chemical Engineering and Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang, China.
| |
Collapse
|
45
|
Lu Q, Liu H, Liu W, Zhong Y, Ming C, Qian W, Wang Q, Liu J. Pretreatment of brewery effluent to cultivate Spirulina sp. for nutrients removal and biomass production. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2017; 76:1852-1866. [PMID: 28991800 DOI: 10.2166/wst.2017.363] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Due to the low concentration of nitrate and high contents of organics, brewery effluent was not suitable for the cultivation of Spirulina sp. This work changed the nutrient profile of brewery effluent effectively by dilution, addition of nitrate, and anaerobic digestion. The result showed that the optimum dilution rate and NaNO3 addition for brewery effluent were 20% and 0.5 g/L, respectively. Spirulina sp. grown in pretreated brewery effluent produced 1.562 mg/L biomass and reduced concentrations of nutrients to reach the permissible dischargeable limits. In addition, Spirulina sp. grown in pretreated brewery effluent had much higher protein content and oil content. So the appropriate treatment converted brewery effluent into a nutrient balanced medium for algae cultivation and alleviated the potential environmental problems. Pretreatment procedure developed in this work is an effective way to realize the sustainable utilization of brewery effluent and produce algal biomass with valuable nutrients.
Collapse
Affiliation(s)
- Qian Lu
- Department of Environment Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; First two authors contributed equally to this work
| | - Hui Liu
- Department of Environment Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Engineering and Technology Research Center for Agricultural Land Pollution Prevention and Control, Guangzhou 510225, China; First two authors contributed equally to this work
| | - Wen Liu
- Department of Environment Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yuming Zhong
- Department of Environment Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Caibing Ming
- Department of Environment Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Wei Qian
- Department of Environment Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Qin Wang
- Guangdong Provincial Engineering and Technology Research Center for Fruit Tree, Guangzhou 510225, China E-mail:
| | - Jianliang Liu
- Department of Environment Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| |
Collapse
|