1
|
Mokale Kognou AL, Ngono Ngane RA, Jiang ZH, Xu CC, Qin W, Inui H. Harnessing the power of microbial consortia for the biodegradation of per- and polyfluoroalkyl substances: Challenges and opportunities. CHEMOSPHERE 2025; 374:144221. [PMID: 39985997 DOI: 10.1016/j.chemosphere.2025.144221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/03/2025] [Accepted: 02/11/2025] [Indexed: 02/24/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are persistent environmental pollutants that pose significant risks to human health and ecosystems owing to their widespread use and resistance to degradation. This study examines the potential of microbial consortia as a sustainable and effective strategy for biodegrading PFAS. It highlights how these complex communities interact with various PFAS, including perfluorocarboxylic acids, perfluorosulfonic acids, fluorotelomer alcohols, and fluorotelomer-based precursors. Despite the potential of microbial consortia, several challenges impede their application in PFAS remediation, including effective microbial species identification, inherent toxicity of PFAS compounds, co-contaminants, complications from biofilm formation, diversity of environmental matrices, and competition with native microbial populations. Future research should focus on refining characterization techniques to enhance our understanding of microbial interactions and functions within consortia. Integrating bioinformatics and system biology will enable a comprehensive understanding of microbial dynamics and facilitate the design of tailored consortia for specific PFAS compounds. Furthermore, field applications and pilot studies are essential for assessing the real-world effectiveness of microbial remediation strategies. Ultimately, advancing our understanding and methodologies will lead to efficient biodegradation processes and positioning microbial consortia as viable solutions for PFAS-contaminated environments.
Collapse
Affiliation(s)
- Aristide Laurel Mokale Kognou
- Biosignal Research Center, Kobe University, 1-1 Rokkodaicho, Nada-ku, Hyogo, Kobe, 657-8501, Japan; Department of Biology, Lakehead University, Thunder Bay, Ontario, P7B 5E1, Canada
| | - Rosalie Anne Ngono Ngane
- Laboratory of Biochemistry, Faculty of Science, University of Douala, P.O. Box 24157, Douala, Cameroon
| | - Zi-Hua Jiang
- Department of Chemistry, Lakehead University, Thunder Bay, Ontario, P7B 5E1, Canada
| | - Charles Chunbao Xu
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Wensheng Qin
- Department of Biology, Lakehead University, Thunder Bay, Ontario, P7B 5E1, Canada
| | - Hideyuki Inui
- Biosignal Research Center, Kobe University, 1-1 Rokkodaicho, Nada-ku, Hyogo, Kobe, 657-8501, Japan; Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.
| |
Collapse
|
2
|
Li R, Li H, Zhang C, Guo J, Liu Z, Hou Y, Han Y, Zhang D, Song Y. The corncobs-loaded iron nanoparticles enhanced mechanism of denitrification performance in microalgal-bacterial aggregates system when treating low COD/TN wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122547. [PMID: 39299117 DOI: 10.1016/j.jenvman.2024.122547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/24/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
To improve denitrification efficiency of microalgal-bacterial aggregates (MABAs) when treating low carbon to nitrogen (C/N) ratio wastewater, CK (the biological control), C1 (untreated corncobs), C2 (alkali-treated corncobs), CFe1 (C1 loaded iron nanoparticles) and CFe2 (C2 loaded iron nanoparticles) five groups of experiments were installed under artificial light (1600 lm). After 36 h of experiment, NO3--N was almost completely converted in CFe1 following by CFe2 when the initial concentration was 60.1 mg/L, whose NO3--N conversion rates were 6.2 and 3.4 times faster than the CK group, respectively. The result showed that the corncobs-loaded iron nanoparticles (CFe1, CFe2) had the potential to promote denitrification process and the CFe1 was more effective. Meanwhile, the CFe1 and CFe2 resulted in a decreased content in extracellular polymeric substances (EPS) secretion because iron nanoparticles (Fes) promoted electron transport and alleviated the nitrate stress. Moreover, the electrochemical analysis of EPS showed that the corncobs and corncobs-loaded iron nanoparticles improved the electron transport rate and redox active substances production. The increase in electron transport activity (ETSA), adenosine triphosphate (ATP) and nicotinamide adenine dinucleotide (NADH) also indicated that the CFe1 and CFe2 promoted microbial metabolic activity and the electron transport rate in MABAs. In addition, the CFe1 group enhanced the enrichment of Proteobacteria, Patescibacteria, Chlorophyta and Ignavibacteriae, which was contributed to the nitrogen removal performance of MABAs. In summary, the enhancement mechanism of corncobs-loaded iron nanoparticles on denitrification process of MABAs was depicted through EPS secretion, electrochemical characteristics, microbial metabolic activity and microbial community. The article provides a viable program for enhancing the denitrification performance of MABAs when treating low C/N wastewater.
Collapse
Affiliation(s)
- Renhang Li
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China
| | - Haibo Li
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China.
| | - Chao Zhang
- Tianjin Academy of Eco-Environmental Sciences, Nankai, Fukang Road 17, Tianjin, 300191, China.
| | - Jianbo Guo
- School of Civil Engineering and Architecture, Taizhou University, Shifu Avenue 1139, Taizhou, 318000, China
| | - Zhihua Liu
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China
| | - Yanan Hou
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China
| | - Yi Han
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China
| | - Daohong Zhang
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China
| | - Yuanyuan Song
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China
| |
Collapse
|
3
|
Yang Y, Li G, Li Z, Lu L. The roles of typical emerging pollutants on N 2O emissions during biological nitrogen removal from wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172851. [PMID: 38685430 DOI: 10.1016/j.scitotenv.2024.172851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
N2O as a potent greenhouse gas often generates in the biological nitrogen removal (BNR) processes during wastewater treatment, which makes BNR become an important greenhouse gas emission source. The emerging pollutants (EPs) are ubiquitous in wastewater and they have shown to influence the BNR processes. However, the deep discussion on potential impacts of EPs on N2O emissions during BNR is rare. Moreover, the experimental parameters for EPs investigation in most of literatures are generally not in line with real-world BNR processes, which calls for deep elucidating the roles of EPs on N2O production and emission. In this work, a critical review summarizes the existing literature about influences of typical EPs on N2O emissions and associated mechanisms during BNR, and it discusses the impacts of some easily overlooked factors, such as real EPs environmental concentrations, EPs bioaccumulation, and multiple EPs coexistence on N2O emissions. This review will provide an insight into exploring and mitigating threats posed by typical EPs on N2O emissions.
Collapse
Affiliation(s)
- Ying Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Guifeng Li
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Zhida Li
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Lu Lu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China.
| |
Collapse
|
4
|
Thapa BS, Pandit S, Mishra RK, Joshi S, Idris AM, Tusher TR. Emergence of per- and poly-fluoroalkyl substances (PFAS) and advances in the remediation strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170142. [PMID: 38242458 DOI: 10.1016/j.scitotenv.2024.170142] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/20/2023] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
A group of fluorinated organic molecules known as per- and poly-fluoroalkyl substances (PFAS) have been commonly produced and circulated in the environment. PFAS, owing to multiple strong CF bonds, exhibit exceptional stability and possess a high level of resistance against biological or chemical degradation. Recently, PFAS have been identified to cause numerous hazardous effects on the biotic ecosystem. As a result, extensive efforts have been made in recent years to develop effective methods to remove PFAS. Adsorption, filtration, heat treatment, chemical oxidation/reduction, and soil washing are a few of the physicochemical techniques that have shown their ability to remove PFAS from contaminated matrixes. However these methods also carry significant drawbacks, including the fact that they are expensive, energy-intensive, unsuitable for in-situ treatment, and requirement to be carried under dormant conditions. The metabolic products released upon PFAS degradation are largely unknown, despite the fact that thermal disintegration methods are widely used. In contrast to physical and chemical methods, biological degradation of PFAS has been regarded as efficient method. However, PFAS are difficult to instantly and completely metabolize through biological methods due to the limitations of biocatalytic mechanisms. Nevertheless, cost, easy-to-operate and environmentally safe are some of the advantages over its counterpart. The present review comprehensively discusses the occurrence of PFAS, the state-of-the science of remediation technologies and approaches applied, and the remediation challenges. The article also focuses on the future research directions toward the development of effective methods for PFAS-contaminated site in-situ treatment.
Collapse
Affiliation(s)
- Bhim Sen Thapa
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - Soumya Pandit
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida 201310, UP, India
| | - Rahul Kumar Mishra
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida 201310, UP, India
| | - Sanket Joshi
- Amity Institute of Microbial Technology, Amity University Rajasthan, Kant Kalwar, NH 11C, Jaipur, Rajasthan 303002, India
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 62529, Saudi Arabia
| | - Tanmoy Roy Tusher
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA; Department of Environmental Science and Resource Management, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh.
| |
Collapse
|
5
|
Ilieva Z, Hania P, Suehring R, Gilbride K, Hamza R. Impact of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) on secondary sludge microorganisms: removal, potential toxicity, and their implications on existing wastewater treatment regulations in Canada. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:1604-1614. [PMID: 37674406 DOI: 10.1039/d3em00202k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) are two of the most commonly researched per- and polyfluoroalkyl substances (PFAS). Globally, many long-chain PFAS compounds including PFOS and PFOA are highly regulated and, in some countries, PFAS use in commercial products is strictly prohibited. Despite the legal regulation of these 'forever chemicals' under the Canadian Environmental Protection Act, PFOA and PFOS compounds are still found in high concentrations in discharges from wastewater treatment plants, both from liquid and sludge streams. Yet, their potential impact on wastewater treatment effectiveness remains poorly understood. The findings of this research show that: (1) PFOS and PFOA might be hindering the overall outcome treatment performance - calling into question the efficacy of Canada's existing wastewater treatment regulatory standard (Wastewater Systems Effluent Regulations, SOR/2012-139), and (2) specific microorganisms from the Thiobacillus and Pseudomonas genera seem capable of adsorbing PFOS and PFOA onto their cell wall and even degrading the chemicals, but it is unclear as to what extent degradation occurs. The results also raise questions whether existing wastewater regulations should be expanded to include the detection and monitoring of PFAS, as well as the establishment of a regulatory wastewater treatment plant discharge standard for PFAS that is protective of human and ecological health.
Collapse
Affiliation(s)
- Zanina Ilieva
- Department of Civil Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada.
| | - Patricia Hania
- Department of Law and Business, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Roxana Suehring
- Department of Chemistry and Biology, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Kimberley Gilbride
- Department of Chemistry and Biology, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Rania Hamza
- Department of Civil Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada.
| |
Collapse
|
6
|
Wang X, Zhang Y, Zhao Y, Zhang L, Zhang X. Inhibition of aged microplastics and leachates on methane production from anaerobic digestion of sludge and identification of key components. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130717. [PMID: 36610343 DOI: 10.1016/j.jhazmat.2022.130717] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/26/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
Large amounts of microplastics (MPs) accumulate in the sludge anaerobic digestion system after being treated by the wastewater treatment plants, inevitably leading to aging and chemicals leaching. However, no information is available about the effects of aged MPs and leachates on the anaerobic digestion of sludge. In this study, the effects of different aged MPs ((polyethylene (PE), polyethylene terephthalate (PET), polyvinyl chloride (PVC), and polylactic acid (PLA)) and leachates on anaerobic methanogenesis of sludge were investigated. PLA-related treatments caused no adverse effects on anaerobic digestion. While PE-, PET-, and PVC-related treatments significantly inhibited methane production with an order of leachates (26.4-42.4 %) > MPs (16.1-22.9 %) > aged MPs (2.4-11.8 %). For different leachates, PET leachate caused the strongest inhibitory effects. The same order was found for the methane potential and hydrolysis coefficient. These results suggest that the inhibition of MPs on methanogenesis is mainly caused by the leachates. Based on biochemical and microbial community analysis, the primary mechanism is that the leachates induce oxidative stress, damaging microbial cells and reducing microbial activity, consequently inhibiting methanogenesis. Furthermore, via effect-directed analysis, methyl benzoate (MB), dimethyl phthalate (DMP), and 2,4-Di-tert-butylphenol (DTBP) were identified as key components in the PET-leachate inhibiting anaerobic methanogenesis.
Collapse
Affiliation(s)
- Xinying Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Yanping Zhao
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Lei Zhang
- Nanjing Institute of Geography & Limnology Chinese Academy of Sciences, Nanjing, Jiangsu 210008, China
| | - Xuxiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
7
|
Jagaba AH, Kutty SRM, Isa MH, Ghaleb AAS, Lawal IM, Usman AK, Birniwa AH, Noor A, Abubakar S, Umaru I, Saeed AAH, Afolabi HK, Soja UB. Toxic Effects of Xenobiotic Compounds on the Microbial Community of Activated Sludge. CHEMBIOENG REVIEWS 2022. [DOI: 10.1002/cben.202100055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Ahmad Hussaini Jagaba
- Universiti Teknologi PETRONAS Department of Civil and Environmental Engineering 32610 Bandar Seri Iskandar Perak Darul Ridzuan Malaysia
- Abubakar Tafawa Balewa University Department of Civil Engineering Bauchi Nigeria
| | - Shamsul Rahman Mohamed Kutty
- Universiti Teknologi PETRONAS Department of Civil and Environmental Engineering 32610 Bandar Seri Iskandar Perak Darul Ridzuan Malaysia
- Universiti Teknologi PETRONAS Centre of Urban Resource Sustainability Institute of Self-Sustainable Building 32610 Bandar Seri Iskandar Perak Darul Ridzuan Malaysia
| | - Mohamed Hasnain Isa
- Universiti Teknologi Brunei Civil Engineering Programme Faculty of Engineering Tungku Highway BE1410 Gadong Brunei Darussalam
| | - Aiban Abdulhakim Saeed Ghaleb
- Universiti Teknologi PETRONAS Department of Civil and Environmental Engineering 32610 Bandar Seri Iskandar Perak Darul Ridzuan Malaysia
| | - Ibrahim Mohammed Lawal
- Abubakar Tafawa Balewa University Department of Civil Engineering Bauchi Nigeria
- University of Strathclyde Department of Civil and Environmental Engineering Glasgow United Kingdom
| | | | | | - Azmatullah Noor
- Universiti Teknologi PETRONAS Department of Civil and Environmental Engineering 32610 Bandar Seri Iskandar Perak Darul Ridzuan Malaysia
| | - Sule Abubakar
- Abubakar Tafawa Balewa University Department of Civil Engineering Bauchi Nigeria
| | - Ibrahim Umaru
- Abubakar Tafawa Balewa University Department of Civil Engineering Bauchi Nigeria
| | - Anwar Ameen Hezam Saeed
- Universiti Teknologi PETRONAS Department of Civil and Environmental Engineering 32610 Bandar Seri Iskandar Perak Darul Ridzuan Malaysia
| | - Haruna Kolawole Afolabi
- Universiti Teknologi PETRONAS Department of Civil and Environmental Engineering 32610 Bandar Seri Iskandar Perak Darul Ridzuan Malaysia
| | - Usman Bala Soja
- Federal University Dutsin-Ma Department of Civil Engineering P.M.B. 5001 Dutsin-Ma Katsina State Nigeria
| |
Collapse
|
8
|
Qi Y, Cao H, Pan W, Wang C, Liang Y. The role of dissolved organic matter during Per- and Polyfluorinated Substance (PFAS) adsorption, degradation, and plant uptake: A review. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129139. [PMID: 35605500 DOI: 10.1016/j.jhazmat.2022.129139] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
The negative effects of polyfluoroalkyl substances (PFAS) on the environment and health have recently attracted much attention. This article reviews the influence of soil- and water-derived dissolved organic matter (DOM) on the environmental fate of PFAS. In addition to being co-adsorped with PFAS to increase the adsorption capacity, DOM competes with PFAS for adsorption sites on the surface of the material, thereby reducing the removal rate of PFAS or increasing water solubility, which facilitates desorption of PFAS in the soil. It can quench some active species and inhibit the degradation of PFAS. In contrast, before DOM in water self-degrades, DOM has a greater promoting effect on the degradation of PFAS because DOM can complex with iron, iodine, among others, and act as an electron shuttle to enhance electron transfer. In soil aggregates, DOM can prevent microorganisms from being poisoned by direct exposure to PFAS. In addition, DOM increases the desorption of PFAS in plant root soil, affecting its bioavailability. In general, DOM plays a bidirectional role in adsorption, degradation, and plant uptake of PFAS, which depends on the types and functional groups of DOM. It is necessary to enhance the positive role of DOM in reducing the environmental risks posed by PFAS. In future, attention should be paid to the DOM-induced reduction of PFAS and development of a green and efficient continuous defluorination technology.
Collapse
Affiliation(s)
- Yuwen Qi
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Huimin Cao
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Weijie Pan
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Cuiping Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Yanna Liang
- Department of Environmental and Sustainable Engineering, University at Albany, SUNY, Albany, NY 12222, USA
| |
Collapse
|
9
|
Xiao J, Huang J, Wang Y, Qian X, Cao M. Evaluation of the ecological impacts of short- and long-chain perfluoroalkyl acids on constructed wetland systems: Perfluorobutyric acid and perfluorooctanoic acid. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:128863. [PMID: 35650717 DOI: 10.1016/j.jhazmat.2022.128863] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/22/2022] [Accepted: 04/02/2022] [Indexed: 06/15/2023]
Abstract
Perfluoroalkyl substances (PFASs) contamination of aquatic system has attracted widespread attention in recent years. From both plant and microbial perspectives, the ecological risk of CWs by comparing PFASs with different chain lengths have not been fully understood. In this study, the influences of perfluorobutyric acid (PFBA) and perfluorooctanoic acid (PFOA) as typical of short- and long-chains on the ecological effect of CWs have been specifically studied. The results showed that plants produced oxidative stress response and the activities of superoxide dismutase (SOD) and peroxidase (POD) in leaves were stimulated by 17.23-28.13% and 10.49-14.17% upon 10 mg/L PFBA and PFOA exposure. Under the high level of PFBA and PFOA stress, the chlorophyll content was reduced by 15.20-39.40% and lipid peroxidation was observed in leaves with the accumulation of malondialdehyde (MDA) at 1.20-1.22 times of the control. Dehydrogenase (DHA) exhibited the most sensitivity in the presence of PFBA and PFOA with an inhibition ratio of over 90%. The biotoxicity of PFOA was higher than that of PFBA in terms of the inhibition degree of several substrate enzymes. The information of Illumina Miseq sequencing indicated that the diversity and structure of microbial community in CWs were significantly altered by PFBA and PFOA addition and led to an enrichment of more PFASs-tolerant bacteria.
Collapse
Affiliation(s)
- Jun Xiao
- School of Civil Engineering, Southeast University, Nanjing 211189, Jiangsu, PR China
| | - Juan Huang
- School of Civil Engineering, Southeast University, Nanjing 211189, Jiangsu, PR China.
| | - Ying Wang
- School of Civil Engineering, Southeast University, Nanjing 211189, Jiangsu, PR China
| | - Xiuwen Qian
- School of Civil Engineering, Southeast University, Nanjing 211189, Jiangsu, PR China
| | - Meifang Cao
- School of Civil Engineering, Southeast University, Nanjing 211189, Jiangsu, PR China
| |
Collapse
|
10
|
Lu B, Qian J, He F, Wang P, He Y, Tang S, Tian X. Effects of long-term perfluorooctane sulfonate (PFOS) exposure on activated sludge performance, composition, and its microbial community. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 295:118684. [PMID: 34921944 DOI: 10.1016/j.envpol.2021.118684] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 12/07/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
The widespread presence and persistence of perfluorooctane sulfonate (PFOS) in wastewater treatment plants, as well as its toxicity and bioaccumulation potential, necessitates the investigation on their impact on bioreactor performance. A 48-day exposure test was adopted to study the effects of low (10 μg L-1) and high (1000 μg L-1) PFOS concentrations in a sequencing batch reactor on the performance, composition, and microbial community of activated sludge. The results suggested that adding PFOS at low and high concentrations lowered the removal efficiency of total nitrogen by 22.48% (p < 0.01) and 16.30% (p < 0.01) respectively, while enhanced that of total phosphorus by 1.87% (p > 0.05) and 7.07% (p < 0.05) respectively, compared with the control group. The addition of PFOS also led to the deterioration of activated sludge dewatering performance. Composition and spectroscopic measurements revealed that the PFOS dosage changed the composition of the activated sludge. Furthermore, the PFOS altered the structure and function of the activated sludge microbial community as well as key enzyme activities.
Collapse
Affiliation(s)
- Bianhe Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Jin Qian
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China.
| | - Fei He
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, No.8 Jiangwangmiao Street, Nanjing, 210042, China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Yuxuan He
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Sijing Tang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Xin Tian
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| |
Collapse
|
11
|
Zhang Z, Sarkar D, Biswas JK, Datta R. Biodegradation of per- and polyfluoroalkyl substances (PFAS): A review. BIORESOURCE TECHNOLOGY 2022; 344:126223. [PMID: 34756980 DOI: 10.1016/j.biortech.2021.126223] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a group of chemicals widely manufactured for industrial and commercial applications in the past decades due to their remarkable stability as well as hydrophobic and lipophobic nature. PFAS species have been recognized as emerging environmental contaminants of concern due to their toxicity and environmental persistence, thereby attracting intensive research seeking effective technologies for their removal from the environment. The objective of this review is to provide a thorough analysis of the biodegradation of PFAS in multiple environmental matrices and offer a future outlook. By discussing targeted PFAS species, degradation intermediates, degradation efficiencies, and microbial species, a comprehensive summary of the known microbial species and their degradation pathways are presented. The biodegradation pathways for different types of PFAS species are summarized in two major categories, biodegradation with and without the cleavage of C-F bond. Existing uncertainties and future research directions for PFAS biodegradation are provided.
Collapse
Affiliation(s)
- Zhiming Zhang
- Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Dibyendu Sarkar
- Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA.
| | - Jayanta Kumar Biswas
- Enviromicrobiology, Ecotoxicology and Ecotechnology Research Laboratory, Department of Ecological Studies, University of Kalyani, Kalyani, Nadia 741235, West Bengal, India; International Centre for Ecological Engineering, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Rupali Datta
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA
| |
Collapse
|
12
|
Ji J, Peng L, Redina MM, Gao T, Khan A, Liu P, Li X. Perfluorooctane sulfonate decreases the performance of a sequencing batch reactor system and changes the sludge microbial community. CHEMOSPHERE 2021; 279:130596. [PMID: 33887592 DOI: 10.1016/j.chemosphere.2021.130596] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
The existence of perfluorooctane sulfonate (PFOS) in large quantities threatens environment biosafety. However, the fate of PFOS in a sequencing batch reactor (SBR) system and its influence in system has not yet been revealed. In this study, the fate and behavior of PFOS in an SBR processing system were investigated. Mass balance analyses revealed that PFOS removal was mainly through adsorption. After the reactors were run for 20 days, the PFOS (100 mg/L) removal rate was only 28%. Under the influence of PFOS, the removal rates of chemical oxygen demand (COD) and ammonia nitrogen dropped rapidly from 92, 98% to 23, 35% in the 20th day of system operation, respectively, while, accumulation of nitrite and nitrate was reduced. Compared with the control group, PFOS stimulates microorganisms to secrete more soluble microbial products (SMP) and extracellular polymeric substances (EPS). The adsorption of PFOS and EPS causes sludge bulking and decreases settling. The richness and diversity of microorganisms decreased significantly, affecting the system's removal of COD and ammonia nitrogen. Therefore, the SBR system is not suitable for treating wastewater containing PFOS. It is necessary to remove PFOS through pretreatment to reduce its impact on the SBR system.
Collapse
Affiliation(s)
- Jing Ji
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu, 730000, PR China
| | - Liang Peng
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu, 730000, PR China
| | - M M Redina
- Peoples' Friendship University of Russia, 117198, Moscow, Miklukho-Maklaya str., 6, Russia
| | - Tianpeng Gao
- School of Biological and Environmental Engineering, Xi'an University, Xi'an, 710065, PR China
| | - Aman Khan
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu, 730000, PR China
| | - Pu Liu
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu, 730000, PR China
| | - Xiangkai Li
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu, 730000, PR China; Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Duanjiatanlu #1272, Lanzhou, 730020, PR China.
| |
Collapse
|
13
|
Degradation and effect of 6:2 fluorotelomer alcohol in aerobic composting of sludge. Biodegradation 2021; 32:99-112. [PMID: 33481147 DOI: 10.1007/s10532-020-09924-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/22/2020] [Indexed: 10/22/2022]
Abstract
Perfluoroalkyl carboxylates (PFCAs) is toxic to the environment and human health. However, the degradation characteristics of fluorotelomer alcohols (FTOHs), precursors of PFACAs biodegradation, in the sludge during aerobic composting remain unclear. In this study, the degradation characteristics of 6:2 FTOH in sewage sludge by composting were researched and the influences of 6:2 FTOH on the composting process and microbial communities of the sludge were evaluated. After 52 days of composting, 6:2 FTOH retained only 0.73% of its original concentration, and its half-life was less than 1 d; 6:2 FTOH was degraded finally to perfluorohex unsaturated acid, perfluoropentanoic acid, 5:3 polyfluorinated acid (FTCA), 4:3 FTCA, and perfluorobutanoic acid through two pathways; and 6:2 FTCA and 6:2 fluorotel unsaturated acid were the intermediate products. Notably, dosing with 6:2 FTOH affected the composting process of sewage sludge. Additionally, 50 mg/kg 6:2 FTOH resulted in a decrease in the microbial richness and diversity of sludge compost. When compared with the compost without 6:2 FTOH, the proportion of Proteobacteria had increased, and the proportion of Firmicutes had decreased as the concentration of 6:2 FTOH increased. The negative effect of a dosage of 50 mg/kg 6:2 FTOH was more obvious than the effect of other treatments. This study expanded our understanding of the risk of sludge contaminated by 6:2 FTOH being used as a fertilizer after composting.
Collapse
|
14
|
Chen H, Zou M, Zhou Y, Zeng L, Yang X. Monitoring the nitrous oxide emissions and biological nutrient removal from wastewater treatment: Impact of perfluorooctanoic acid. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123469. [PMID: 32702618 DOI: 10.1016/j.jhazmat.2020.123469] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
The impacts of perfluorooctanoic acid (PFOA) on biological nutrient removal and nitrous oxide (N2O) emissions have been specifically studied. The experimental results show that PFOA inhibited nitrification, but promoted denitrification and reduced N2O emissions without significantly affecting phosphorus removal. The existence of 20 mg/L of PFOA increased total nitrogen removal efficiency from 78.7 ± 6.89 % to 86.8 ± 6.39 % and reduced N2O emission factor from 6.02 ± 0.24 % to 4.43 ± 0.10 %. The mechanism studies reveal that microorganisms released extracellular polymeric substances (EPS) under PFOA exposure to protect sludge cells against PFOA toxicity. The generated PFOA-EPS conjugates reduced the nitrification rate, but increased the denitrification rate by regulating the activity of oxidoreductases. In addition, PFOA reduced the activity of polyphosphate accumulating organisms and glycogen accumulating organisms to save carbon source for denitrification, which reduced the electronic competition between reductases, thereby achieving complete denitrification and N2O mitigation. The promotion of PFOA for denitrification and N2O mitigation can gain a more comprehensive cognition of the role of PFOA in wastewater treatment. The release mechanism of EPS can afford new insights for the development of effective methods to enhance nitrogen removal and reduce N2O emissions.
Collapse
Affiliation(s)
- Hongbo Chen
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Mei Zou
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Yaoyu Zhou
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Long Zeng
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Xiao Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
15
|
Ke Y, Tong T, Chen J, Huang J, Xie S. Influences of hexafluoropropylene oxide (HFPO) homologues on soil microbial communities. CHEMOSPHERE 2020; 259:127504. [PMID: 32650170 DOI: 10.1016/j.chemosphere.2020.127504] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 05/05/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
Hexafluoropropylene oxide (HFPO) homologues, as emerging perfluoroalkyl substances (PFASs) to replace legacy PFASs, have wide applications in the organofluorine industry and have been detected in the global environment. However, it is still unclear what effect HFPO homologues will exert on microbial abundance, community structure and function. The objective of this study was to assess potential impacts of HFPO homologue acids on archaea, bacteria, and ammonia-oxidizing archaea (AOA) and bacteria (AOB) in the soil environment. Grassland soil microcosms were supplemented with low (0.1 mg/kg) or high (10 mg/kg) dosages of dimer, trimer and tetramer acids of HFPO (HFPO-DA, HFPO-TA, and HFPO-TeA), respectively. The amendment of HFPO homologues acids initially decreased the abundance of archaea and bacteria but increased them in the later period. The addition of HFPO homologues acids raised AOA abundance but restrained AOB growth during the whole incubation. AOA and AOB community structures showed considerable variations. Potential nitrifying rate (PNR) showed an increase in the initial period followed by a decline in the later period. HFPO-DA had a lasting and suppressive effect on AOB and PNR even at a nearly environmental level. Overall, HFPO homologues with different carbon chain lengths had different impacts on soil microbial community and ammonia oxidation.
Collapse
Affiliation(s)
- Yanchu Ke
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Tianli Tong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Jianfei Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Jun Huang
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Tsinghua University, Beijing, 100084, China.
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
16
|
Qian Y, Zhang Y, Zuh AA, Qiao W. New application of rutin: Repair the toxicity of emerging perfluoroalkyl substance to Pseudomonas stutzeri. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110879. [PMID: 32559694 DOI: 10.1016/j.ecoenv.2020.110879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/03/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are toxic to microorganisms, thereby affecting microbial communities in sludge and soil, but how to repair the toxicity of microorganisms remains unclear. In this study, rutin, an antioxidant, was added into a culture medium with an aerobic denitrification bacteria, Pseudomonas stutzeri, under the exposure of sodium perfluorononyloxy-benzenesulfonate (OBS) to evaluate the repair mechanisms of rutin to the toxicity of OBS to the bacteria. The results showed that rutin could repair the damage of OBS to cell structures, and reduce the death rates of the bacteria under OBS exposure. The dosage of rutin reduced the effect on the inhibition of denitrification ability of P. stutzeri under OBS exposure. Compared with the bacteria exposed to single OBS, the dosage of rutin resulted in that the death rates recovered from 96.2% to 66.4%, the growth inhibition rate decreased from 46.5% to 15.8%, the total nitrogen removal rate recovered from 66.9% to 100%, and the NO2- content recovered from 34.5 mg/L to 0.22 mg/L. The expressions of key denitrification genes (napA, nirS, norB, nosZ) were recovered after adding rutin under OBS exposure. Rutin changed the positive rate of reactive oxygen species, the relative superoxide dismutase and catalase activities in the bacteria which exposed to OBS. The mechanism by which rutin repaired the toxicity of OBS to P. stutzeri related to inhibiting the activities of antioxidant and denitrification enzymes rather than affecting the expressions of genes involved in these enzymes. This study sheds light on the repair method of micro-organics and reveals the repair mechanisms under PFASs exposure.
Collapse
Affiliation(s)
- Yi Qian
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Yunhao Zhang
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Achuo Anitta Zuh
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Weichuan Qiao
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
17
|
Li S, Wu S, Ma B, Gao M, Wu Y, She Z, Zhao Y, Guo L, Jin C, Ji J. Insights into the effects of single and combined divalent copper and humic acid on the performance, microbial community and enzymatic activity of activated sludge from sequencing batch reactor. CHEMOSPHERE 2020; 249:126165. [PMID: 32078852 DOI: 10.1016/j.chemosphere.2020.126165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/23/2020] [Accepted: 02/08/2020] [Indexed: 06/10/2023]
Abstract
The performance, microbial community and enzymatic activity of activated sludge from four identical sequencing batch reactors (SBRs) were compared by treating synthetic wastewater under the single and combined divalent copper (Cu2+) at 20 mg/L and humic acid (HA) at 20 mg/L. Compared with the absence of Cu2+ and HA, the single HA slightly enhanced the oxygen uptake rate (OUR), the nitrification and denitrification rates and the activities of dehydrogenase, nitrifying enzymes and denitrifying enzymes, whereas the single Cu2+ had the opposite results. The combined Cu2+ and HA inhibited the OUR, nitrogen removal rate and enzymatic activity of activated sludge almost the same as the single Cu2+. The single HA had no obvious effect on the balance between the microbial oxidative stress and antioxidant activity. However, the variations of microbial reactive oxygen species production, peroxidase activity, catalase activity, superoxide dismutase activity, and lactate dehydrogenase release demonstrated that the combined Cu2+ and HA and single Cu2+ produced obvious toxicity to microorganisms in activated sludge. The microbial richness and diversity had some obvious changes under the single and combined Cu2+ and HA. The relative abundances of Nitrosomonas, Nitrospira and some denitrifying genera (e.g. Zoogloea, Dokdonella, Denitratisoma, Flavobacterium and Thermomonas) under the combined Cu2+ and HA were less than those under the single Cu2+.
Collapse
Affiliation(s)
- Shanshan Li
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Shuyan Wu
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Bingrui Ma
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Mengchun Gao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.
| | - Yuanyuan Wu
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Zonglian She
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yangguo Zhao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Liang Guo
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Chunji Jin
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Junyuan Ji
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
18
|
Ye J, Gao H, Wu J, Chang Y, Chen Z, Yu R. Responses of nitrogen transformation processes and N 2O emissions in biological nitrogen removal system to short-term ZnO nanoparticle stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135916. [PMID: 31822409 DOI: 10.1016/j.scitotenv.2019.135916] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/01/2019] [Accepted: 12/01/2019] [Indexed: 06/10/2023]
Abstract
Although the adverse effects of ZnO nanoparticles (ZnO NPs) on biological nitrogen removal (BNR) processes have widely been reported, the impacts of ZnO NPs on the whole nitrogen transformation processes, especially the production of nitrous oxide (N2O), a typical greenhouse gas in a BNR system have rarely been systematically studied yet. In this study, the performances of both the nitrification and denitrification processes were investigated and the N2O emission was simultaneously monitored in a sequencing batch reactor (SBR) when exposed to 1, 25 or 50 mg/L ZnO NPs for one cycle. The dose-dependent ZnO NP depression effects were generally observed on denitrification processes, total nitrogen (TN) removal efficiency and N2O emissions but not nitrification process. Meanwhile, the N2O emission was positively correlated with NO2--N accumulation in the oxic stage. Further investigation showed that the expressions of nitrate (NO3-) reduction associated narG gene were down-regulated with the increase of NP stress, and the transcript ratios of NO2-/NO reduction gene to N2O reduction one (nirK/nosZ and norB/nosZ) decreased. The released Zn2+ from ZnO NPs took an important role in the inhibition of denitrification processes. ZnO NPs addition also induced the dose-dependent variations in the superoxide dismutase (SOD) and catalase (CAT) activities, which probably contributed to the suppression of the excess reactive oxygen species (ROS) generations to mitigate nanotoxicity. The excessive secretion of protein (PN) in tightly bound EPS (TB-EPS) when ZnO NPs were no <25 mg/L further supported the system's potential self-regulation mechanism for nanotoxicity resistance. CAPSULE: The effects of ZnO NPs on the whole nitrogen transformation processes in a biological nitrogen removal sequencing batch reactor, including the N2O emissions were investigated. The system's potential self-regulation mechanism for nanotoxicity resistance was addressed.
Collapse
Affiliation(s)
- Jinyu Ye
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing, Jiangsu 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu 210009, China
| | - Huan Gao
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing, Jiangsu 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu 210009, China
| | - Junkang Wu
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing, Jiangsu 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu 210009, China
| | - Yan Chang
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing, Jiangsu 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu 210009, China
| | - Zhoukai Chen
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing, Jiangsu 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu 210009, China
| | - Ran Yu
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing, Jiangsu 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
19
|
Zhu K, Zhang L, Mu L, Ma J, Wang X, Li C, Cui Y, Li A. Antagonistic effect of zinc oxide nanoparticle and surfactant on anaerobic digestion: Focusing on the microbial community changes and interactive mechanism. BIORESOURCE TECHNOLOGY 2020; 297:122382. [PMID: 31776103 DOI: 10.1016/j.biortech.2019.122382] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/02/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
The objective of this study was to evaluate the antagonistic effect of emerging pollutants of zinc oxide nanoparticles (ZnO NPs) and sodium dodecyl sulfate (SDS) on anaerobic digestion and explore their potential mechanism. The results indicated that at a low inhibitory concentration of ZnO NPs (1.0 mM), the practical co-inhibition was decreased by 24% and 18% in co-existence of 50 mg/L SDS and 300 mg/L SDS, respectively. More importantly, the co-existence of 300 mg/L SDS greatly enhanced methanogenesis of organics in seriously inhibited case (2.0 mM of ZnO NPs). The microbial community analysis showed that co-existed SDS enhanced the growth of Methanothrix, Methanosarcina and Methanobacterium. The antagonistic enhancement could be attributed to the net charge reversal, partially agglomeration of ZnO NPs and/or reduction of Zn2+ release in the presence of SDS. These findings could provide useful information for evaluating the co-inhibition of SDS and ZnO NPs on biological processes.
Collapse
Affiliation(s)
- Kongyun Zhu
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China
| | - Lei Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China.
| | - Lan Mu
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China
| | - Jiao Ma
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China
| | - Xuexue Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China
| | - Changjing Li
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China
| | - Yubo Cui
- College of Environment and Resources, Dalian Minzu University, Dalian 116600, PR China
| | - Aimin Li
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China
| |
Collapse
|
20
|
Amariei G, Boltes K, Rosal R, Leton P. Enzyme response of activated sludge to a mixture of emerging contaminants in continuous exposure. PLoS One 2020; 15:e0227267. [PMID: 31931513 PMCID: PMC6957336 DOI: 10.1371/journal.pone.0227267] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 12/15/2019] [Indexed: 01/07/2023] Open
Abstract
The relevant information about the impacts caused by presence of emerging pollutants in mixtures on the ecological environment, especially on the more vulnerable compartments such as activated sludge (AS) is relatively limited. This study investigated the effect of ibuprofen (IBU) and triclosan (TCS), alone and in combination to the performance and enzymatic activity of AS bacterial community. The assays were carried out in a pilot AS reactor operating for two-weeks under continuous dosage of pollutants. The microbial activity was tracked by measuring oxygen uptake rate, esterase activity, oxidative stress and antioxidant enzyme activities. It was found that IBU and TCS had no acute toxic effects on reactor biomass concentration. TCS led to significant decrease of COD removal efficiency, which dropped from 90% to 35%. Continuous exposure to IBU, TCS and their mixtures increased the activities of glutathione s-transferase (GST) and esterase as a response to oxidative damage. A high increase in GST activity was associated with non-reversible toxic damage while peaks of esterase activity combined with moderate GST increase were attributed to an adaptive response.
Collapse
Affiliation(s)
- Georgiana Amariei
- Department of Chemical Engineering, University of Alcalá, Alcalá de Henares, Madrid, Spain
- * E-mail:
| | - Karina Boltes
- Department of Chemical Engineering, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Roberto Rosal
- Department of Chemical Engineering, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Pedro Leton
- Department of Chemical Engineering, University of Alcalá, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
21
|
Activated Sludge Microbial Community and Treatment Performance of Wastewater Treatment Plants in Industrial and Municipal Zones. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17020436. [PMID: 31936459 PMCID: PMC7014234 DOI: 10.3390/ijerph17020436] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/07/2020] [Accepted: 01/07/2020] [Indexed: 11/16/2022]
Abstract
Controlling wastewater pollution from centralized industrial zones is important for reducing overall water pollution. Microbial community structure and diversity can adversely affect wastewater treatment plant (WWTP) performance and stability. Therefore, we studied microbial structure, diversity, and metabolic functions in WWTPs that treat industrial or municipal wastewater. Sludge microbial community diversity and richness were the lowest for the industrial WWTPs, indicating that industrial influents inhibited bacterial growth. The sludge of industrial WWTP had low Nitrospira populations, indicating that influent composition affected nitrification and denitrification. The sludge of industrial WWTPs had high metabolic functions associated with xenobiotic and amino acid metabolism. Furthermore, bacterial richness was positively correlated with conventional pollutants (e.g., carbon, nitrogen, and phosphorus), but negatively correlated with total dissolved solids. This study was expected to provide a more comprehensive understanding of activated sludge microbial communities in full-scale industrial and municipal WWTPs.
Collapse
|
22
|
Chen J, Moe B, Zhu L, Le XC. "Waste"-ing away: Presence of Cu ions influences microbial degradation kinetics and metabolite formation of the prevalent brominated flame retardant BDE-47. J Environ Sci (China) 2020; 87:421-424. [PMID: 31791515 DOI: 10.1016/j.jes.2019.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
- Jie Chen
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Birget Moe
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, T6G 2G3, Alberta, Canada; Alberta Centre for Toxicology, Department of Physiology and Pharmacology, University of Calgary, Calgary, T2N 4N1, Alberta, Canada
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, 310058, China.
| | - X Chris Le
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, T6G 2G3, Alberta, Canada.
| |
Collapse
|
23
|
Wang X, Shen J, Kang J, Zhao X, Chen Z. Mechanism of oxytetracycline removal by aerobic granular sludge in SBR. WATER RESEARCH 2019; 161:308-318. [PMID: 31203036 DOI: 10.1016/j.watres.2019.06.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 06/04/2019] [Accepted: 06/06/2019] [Indexed: 06/09/2023]
Abstract
In this study, oxytetracycline (OTC) as a target pollutant in swine wastewater was removed by aerobic granular sludge (AGS). The removal rate of 300 μg/L OTC in aerobic granular sludge sequencing batch reactor (AGSBR) increased to 88.00% in 33 days and maintained stable. The chemical oxygen demand (COD), ammonium nitrogen (NH4+-N) and total phosphorus (TP) in wastewater were also efficiently removed. The removal of OTC mainly depended on the adsorption and biodegradation of AGS, and the biodegradation was increased obviously after AGS adaptation to OTC. The degradation products of OTC were analyzed by mass spectrometry. The analysis of metagenome sequencing revealed that the enzymes, such as glycosyl transferases (GTs), polysaccharide lyases (PLs) and auxiliary activities (AAs), may play an important role in the removal of OTC. The Lefse analysis showed that the Flavobacteriia, Flavobacteriales, Cryomorphaceae and Fluviicola were four kinds of microbes with significant difference in OTC feed reactor, which are considered to be drug-resistant bacteria in AGSBR. Furthermore, the dynamics of microbial community changed significantly at three levels, including the enrichment of drug-resistant microorganisms and the microorganisms that gradually reduced or even disappeared under the pressure of OTC.
Collapse
Affiliation(s)
- Xiaochun Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jimin Shen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jing Kang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Xia Zhao
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
| | - Zhonglin Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
24
|
Wang M, Yin H, Peng H, Feng M, Lu G, Dang Z. Degradation of 2,2',4,4'-tetrabromodiphenyl ether by Pycnoporus sanguineus in the presence of copper ions. J Environ Sci (China) 2019; 83:133-143. [PMID: 31221376 DOI: 10.1016/j.jes.2019.03.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
The degradation of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) by Pycnoporus sanguineus was investigated in order to explore the impact of the heavy metal Cu2+ on BDE-47 decomposition and the subsequent formation of metabolites, as well as to further elucidate the degradation mechanism of BDE-47. An increase in degradation rate from 18.63% to 49.76% in the first four days and its stabilization at (51.26 ± 0.08)% in the following days of BDE-47 incubation were observed. The presence of Cu2+ at 1 and 2 mg/L was found to promote the degradation rate to 56.41% and 60.79%, respectively, whereas higher level of Cu2+ (≥5 mg/L) inhibited the removal of BDE-47. The similar concentration effects of Cu2+ was also found on contents of fungal protein and amounts of metabolites. Both intracellular and extracellular enzymes played certain roles in BDE-47 transportation with the best degradation rate at 27.90% and 27.67% on the fourth and third day, individually. During the degradation of BDE-47, four types of hydroxylated polybrominated diphenyl ethers (OH-PBDEs), i.e., 6'-OH-BDE-47, 5'-OH-BDE-47, 4'-OH-BDE-17, 2'-OH-BDE-28, and two bromophenols, i.e., 2,4-DBP and 4-BP were detected and considered as degradation products. These metabolites were further removed by P. sanguineus at rates of 22.42%, 23.01%, 27.04%, 27.96%, 64.21%, and 40.62%, respectively.
Collapse
Affiliation(s)
- Meiqian Wang
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China. E-mail:
| | - Hua Yin
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China. E-mail: .
| | - Hui Peng
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Mi Feng
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China. E-mail:
| | - Guining Lu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China. E-mail:
| | - Zhi Dang
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China. E-mail:
| |
Collapse
|
25
|
Deng Z, Wang Z, Zhang P, Xia P, Ma K, Zhang D, Wang L, Yang Y, Wang Y, Chen S, Deng S. Effects of divalent copper on microbial community, enzymatic activity and functional genes associated with nitrification and denitrification at tetracycline stress. Enzyme Microb Technol 2019; 126:62-68. [DOI: 10.1016/j.enzmictec.2019.03.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/17/2019] [Accepted: 03/23/2019] [Indexed: 02/06/2023]
|
26
|
Tang C, Sun P, Yang J, Huang Y, Wu Y. Kinetics simulation of Cu and Cd removal and the microbial community adaptation in a periphytic biofilm reactor. BIORESOURCE TECHNOLOGY 2019; 276:199-203. [PMID: 30623876 DOI: 10.1016/j.biortech.2019.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/30/2018] [Accepted: 01/01/2019] [Indexed: 06/09/2023]
Abstract
Periphytic biofilm reactor (PBfR) shows great potential in pollutants removal. However, few studies were focused on mathematical model of pollutants removal in PBfR. A three-step PBfR was designed and a new model was developed to simulate the kinetics of Cu and Cd removal from simulated wastewater. The results show that the PBfR could remove 99.0% Cu and 99.7% Cd from liquid wastewater. The experiment data could be well fitted with a high correlation coefficients both for Cu and Cd. The microbial community in the PBfR could be self-adjusted to tolerate the toxicities of Cu and Cd, resulting in sustainable and high decontamination efficiencies. The eukaryote in the PBfR played a vital role in Cu and Cd removal. The prokaryote showed negative effect on Cu and Cd removal, though it had more diversity than eukaryote. This study provides a new approach for Cu and Cd removal and their kinetics simulation in photoautotrophic bioreactor.
Collapse
Affiliation(s)
- Cilai Tang
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002, China; Zigui Ecological Station for Three Gorges Dam Project, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China
| | - Pengfei Sun
- Zigui Ecological Station for Three Gorges Dam Project, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China
| | - Jiali Yang
- Zigui Ecological Station for Three Gorges Dam Project, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China
| | - Yingping Huang
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002, China
| | - Yonghong Wu
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002, China; Zigui Ecological Station for Three Gorges Dam Project, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China.
| |
Collapse
|
27
|
Tang CC, Tian Y, He ZW, Zuo W, Zhang J. Performance and mechanism of a novel algal-bacterial symbiosis system based on sequencing batch suspended biofilm reactor treating domestic wastewater. BIORESOURCE TECHNOLOGY 2018; 265:422-431. [PMID: 29933190 DOI: 10.1016/j.biortech.2018.06.033] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/08/2018] [Accepted: 06/12/2018] [Indexed: 06/08/2023]
Abstract
A novel algal-bacterial symbiosis system based on sequencing batch suspended biofilm reactor (A-SBSBR) was developed for simultaneously enhanced nitrogen (N) and phosphorus (P) removal from domestic wastewater. Results showed that the total N (TN) and P (TP) removal efficiencies in A-SBSBR increased to 69.91% and 94.78%, respectively. The mechanism analysis indicated that TN removal mainly occurred at non-aeration stage, and TP removal happened during the whole cycle in A-SBSBR. Compared to control SBSBR, TN removal by denitrification and anabolism and TP removal by anabolism in A-SBSBR increased by 12.70%, 7.64% and 50.13%, respectively. The Chlorophyll a accumulation in biofilm increased to 4.80 ± 0.08 mg/g. Algae related to Chlorella and Scenedesmus and bacteria related to Flavobacterium, Micropruina and Comamonadaceae were enriched in A-SBSBR and responsible for the enhanced nutrients removal effect. This study may provide a new solution to achieve nutrients removal enhancement from wastewater.
Collapse
Affiliation(s)
- Cong-Cong Tang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Zhang-Wei He
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wei Zuo
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jun Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
28
|
Xu X, Cui Z, Wang S. Joint toxicity on hepatic detoxication enzymes in goldfish (Carassius auratus) exposed to binary mixtures of lead and paraquat. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 62:60-68. [PMID: 29986279 DOI: 10.1016/j.etap.2018.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/17/2018] [Accepted: 06/20/2018] [Indexed: 06/08/2023]
Abstract
Compared to single exposure, chemical mixtures might induce joint toxicity including additive, synergistic and antagonistic effects on both organisms and environment. Owing to the specific toxicity of oxidative stress and binding to proteins, lead (Pb) is generally recognized a non-essential and threatening heavy metal to animals and human. Paraquat (PQ) is a widely used herbicide in agriculture and can trigger oxidative stress as well as Pb. Little information was available about joint effects of the two chemicals on toxicological responses in organisms, especially in fish. In our present study, goldfish (Carassius auratus) were randomly exposed to single and combined experiments with different concentrations of Pb and PQ for 28 days. Activities of four enzyme biomarkers in liver, ethoxyresorufin-O-deethylase (EROD), 7-benzyloxy-4-trifluoromethyl-coumarin-O-debenzyloxylase (BFCOD), glutathione-S-transferase (GST) and UDP-glucuronosyltransferase (UGT) were evaluated in each experimental group on day 14 and 28. The results showed four enzyme levels were markedly reduced with the increase of concentrations in mixtures and prolonged exposure. The inhibitory EROD and BFCOD activities were not significantly changed in goldfish following PQ-treated groups with or without 0.5 mg/L Pb, which indicated PQ has more inhibitory toxicity on CYP450 enzymes than Pb in co-exposure groups. However, the reduced values of GST were observed only in the combinations containing high doses of Pb or PQ during experimental periods. Although the responses of UGT activity were similar to GST on 14th day, all combinations of Pb and PQ generated stronger inhibitions on UGT activities compared to individual Pb and PQ-treated group. These results suggested that combined exposure of Pb and PQ have more inhibitory toxicity on phase I enzymes than phase II enzymes.
Collapse
Affiliation(s)
- Xiaoming Xu
- School of Environmental Science and Engineering, Shandong University, Jinan, 250100, China; School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Zhaojie Cui
- School of Environmental Science and Engineering, Shandong University, Jinan, 250100, China.
| | - Shanshan Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| |
Collapse
|