1
|
Mamani Condori MA, Jove MDC, Morales SFA, Llayqui NEV, Ángeles R, Lebrero R, García-Camacho F. Sustainable treatment of sugarcane vinasse using Chlorella sp. in scalable airlift flat-panel photobioreactors: nutrient removal and biomass valorization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:11708-11726. [PMID: 40237946 DOI: 10.1007/s11356-025-36416-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 04/11/2025] [Indexed: 04/18/2025]
Abstract
The global production of sugarcane ethanol generates vast amounts of vinasse, a liquid waste by-product requiring treatment to mitigate environmental impacts. Using vinasse as a feedstock for microalgae cultivation offers a sustainable alternative. This study evaluates the performance of the native strain Chlorella sp. MC18 in internal-loop airlift flat-panel photobioreactors (PBR) for treating industrial raw sugarcane vinasse (SCV) while producing biomass. Cultures were grown in diluted, centrifugation-pretreated SCV (5-25% v/v) as the sole nutrient source, with CO2 supplied by aeration. The best results were obtained with 10% SCV. Nutrient removal efficiencies reached up to 99% for nitrates and 90% for phosphates, with reduction in chemical oxygen demand (COD) exceeding 75% at 5-10% SCV. The highest specific growth rate (0.711 day-1) and biomass productivity (116 mg L-1 day-1) occurred at 10% SCV, maintaining stable pH control (8.2-8.5). The PBR design enabled scalable, reproducible growth kinetics while minimising biofouling. Biomass from 10% SCV holds significant potential for energy recovery (20.24 kJ g-1) and production of high-value product pools (lipids, carbohydrates, proteins, and carotenoids). These results demonstrate the feasibility of scaling up the PBR design for integrated vinasse treatment with Chlorella and biomass valorisation, reinforcing the concept of an agro-industrial sector biorefinery.
Collapse
Affiliation(s)
| | | | | | | | - Roxana Ángeles
- Institute of Sustainable Processes, University of Valladolid, Spain. Dr. Mergelina S/N., 47011, Valladolid, Spain
| | - Raquel Lebrero
- Institute of Sustainable Processes, University of Valladolid, Spain. Dr. Mergelina S/N., 47011, Valladolid, Spain
| | - Francisco García-Camacho
- Department of Chemical Engineering and Research Centre CIAIMBITAL, University of Almería, 04120, Almería, Spain
| |
Collapse
|
2
|
Ma J, Yang Z, Jin Z, Huang L, Wei Y, Chen W, Zuo Z. Promoting effects of NaCl and KCl stresses on astaxanthin yield in Microcystis flos-aquae. Food Chem X 2025; 27:102442. [PMID: 40248320 PMCID: PMC12005921 DOI: 10.1016/j.fochx.2025.102442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 03/08/2025] [Accepted: 04/04/2025] [Indexed: 04/19/2025] Open
Abstract
This study was to uncover the astaxanthin accumulation mechanism of Microcystis flos-aquae stressed by NaCl and KCl and select the optimal condition for astaxanthin production. Both of NaCl and KCl stresses showed inhibiting effects on M. flos-aquae growth by reducing photosynthetic abilities and causing reactive oxygen species accumulation. With raising the two salt concentrations, astaxanthin content and yield gradually increased, and the highest accumulation was under 300 mM for each salt, which should result from the up-regulation of 6 related genes promoting the precursor (β-carotene and zeaxanthin) transformation. KCl stress was more effective for improving astaxanthin yield than NaCl stress, which was strongly related with the salt concentration and astaxanthin content. Compared with other potential suitable conditions (35°C and purple light), 300 mM KCl also exhibited maximum effect on astaxanthin accumulation. Therefore, M. flos-aquae is first identified to synthesize astaxanthin, and KCl stress is more favorable to the compound production.
Collapse
Affiliation(s)
- Junjie Ma
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou 311300, China
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhehan Yang
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou 311300, China
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhuxin Jin
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou 311300, China
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Lexin Huang
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou 311300, China
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Yinggang Wei
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou 311300, China
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Wangbo Chen
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou 311300, China
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhaojiang Zuo
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou 311300, China
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
3
|
Pinto AS, Maia C, Sousa SA, Tavares T, Pires JCM. Amino Acid and Carotenoid Profiles of Chlorella vulgaris During Two-Stage Cultivation at Different Salinities. Bioengineering (Basel) 2025; 12:284. [PMID: 40150748 PMCID: PMC11939374 DOI: 10.3390/bioengineering12030284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/02/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025] Open
Abstract
Microalgae are valuable sources of bioactive compounds. However, their production requires strategies to enhance metabolic responses. This study explores how Chlorella vulgaris responds to different salinity conditions using a two-stage cultivation strategy, assessing the change in amino acid and carotenoid content on microalgae over time. First, microalgae were cultivated under optimal conditions, followed by exposure to different salinity levels (150 mM and 300 mM NaCl). Growth kinetics, nutrient uptake, and biochemical composition were analysed, revealing distinct salinity-induced responses. Similar specific growth rates were achieved across all assays, while nitrate removal improved under salinity and phosphate uptake decreased. Amino acid profiling showed significant declines in the content of several compounds and carotenoid content also presented declining trends, although moderate salinity mitigated degradation in key pigments. Principal component analysis identified high correlations between amino acids and carotenoids contents, forming groups of compounds with similar variations. These findings contribute to a better understanding of the salinity-induced response of C. vulgaris, offering insights for biotechnology applications. By optimising cultivation conditions, salinity could enhance bioactive compound retention, supporting the development of sustainable microalgae-based products.
Collapse
Affiliation(s)
- Ana S. Pinto
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (A.S.P.); (C.M.); (S.A.S.); (T.T.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Carolina Maia
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (A.S.P.); (C.M.); (S.A.S.); (T.T.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Sara A. Sousa
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (A.S.P.); (C.M.); (S.A.S.); (T.T.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Tânia Tavares
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (A.S.P.); (C.M.); (S.A.S.); (T.T.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - José C. M. Pires
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (A.S.P.); (C.M.); (S.A.S.); (T.T.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
4
|
Huang KX, Vadiveloo A, Zhou JL, Zhong H, Gao F. Construction and transcriptomic analysis of salinity-induced lipid-rich flocculent microalgae. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123982. [PMID: 39752947 DOI: 10.1016/j.jenvman.2024.123982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/12/2024] [Accepted: 12/28/2024] [Indexed: 01/15/2025]
Abstract
The lack of cost-effective nutrient sources and harvesting methods is currently a major obstacle to the production of sustainable biofuels from microalgae. In this study, Chlorella pyrenoidosa was cultured with saline wastewater in a stirred photobioreactor, and lipid-rich flocculent microalgae particles were successfully constructed. As the influent salinity of the photobioreactor increased from 0% to 3%, the particle size and sedimentation rate of flocculent microalgae particles gradually increased, and the lipid accumulation of microalgae also increased gradually. Transcriptome analysis showed that the number of differentially expressed genes (DEGs) in microalgae increased as the salinity of wastewater increased from 1% to 3%, and the number of up-expressed genes was greater than that of down-expressed genes in microalgae at different salinity levels. The enrichment analysis of DEGs showed that the up-expressed genes under salt stress mainly involved in fatty acid biosynthesis and other metabolic processes, which initially revealed the mechanism of the lipid accumulation of microalgal particles in saline wastewater. In addition, the expression and functions of genes involved in lipid and EPS synthesis pathway in microalgae were analyzed, and the key genes involved in salinity affecting lipid and EPS synthesis in microalgae were preliminarily identified. The results could provide novel insight for genetic engineering to regulate the construction of lipid-rich flocculent microalgae particles.
Collapse
Affiliation(s)
- Kai-Xuan Huang
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China; Ningbo Institute of Digital Twin, Eastern Institute of Technology, Ningbo, China
| | - Ashiwin Vadiveloo
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth, 6150, Australia
| | - Jin-Long Zhou
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China
| | - Hua Zhong
- Ningbo Institute of Digital Twin, Eastern Institute of Technology, Ningbo, China.
| | - Feng Gao
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China; National & Local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316000, China.
| |
Collapse
|
5
|
de Freitas Oliveira T, Barbosa Vaz da Costa MF, Alessandra Costa Santos T, Dos Santos Wisniewski MJ, Andrade-Vieira LF. Toxicity potential of a pyraclostrobin-based fungicide in plant and green microalgae models. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:973-987. [PMID: 39298181 DOI: 10.1080/15287394.2024.2403131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Pyraclostrobin-based fungicides play an effective role in controlling fungal diseases and are extensively used in agriculture. However, there is concern regarding the potential adverse effects attributed to exposure to these fungicides on non-target organisms and consequent influence exerted on ecosystem functioning. Thus, it is essential to conduct studies with model organisms to determine the impacts of these fungicides on different groups of living organisms. The aim of this study was to examine the ecotoxicity associated with exposure to commercial fungicides containing pyraclostrobin. The focus of the analysis involved germination and initial development of seedlings of 4 plant models (Lactuca sativa, Raphanus sativus, Pennisetum glaucum and Triticum aestivum), in addition to determining the population growth rate and total carbohydrate content in microalga Raphidocelis subcapitata. The fungicide pyraclostrobin adversely influenced growth and development of the tested plants, indicating a toxic effect. The fungicide exerted a significant impact on the initial development of seedlings of all model species examined with T. aestivum plants displaying the greatest susceptibility to pyraclostrobin. Plants of this species exhibited inhibitory effects on both aerial parts and roots when treated with a concentration of 4.75 mg/L pyraclostrobin. In addition, the green microalga R. subcapitata was also significantly affected by the fungicide, especially at relatively high concentrations as evidenced by a reduction in total carbohydrate content. This commercial fungicide demonstrated potential phytotoxicity for the tested plant models and was also considered toxic to the selected microalgae, indicating an ecotoxic effect that might affect other organisms in aquatic environments.
Collapse
|
6
|
Linares-Maurizi A, Awad R, Durbec A, Reversat G, Gros V, Galano JM, Bertrand-Michel J, Durand T, Pradelles R, Oger C, Vigor C. Stress-Induced Production of Bioactive Oxylipins in Marine Microalgae. Mar Drugs 2024; 22:406. [PMID: 39330287 PMCID: PMC11432788 DOI: 10.3390/md22090406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
Microalgae, stemming from a complex evolutionary lineage, possess a metabolic composition influenced by their evolutionary journey. They have the capacity to generate diverse polyunsaturated fatty acids (PUFAs), akin to those found in terrestrial plants and oily fish. Also, because of their numerous double bonds, these metabolic compounds are prone to oxidation processes, leading to the creation of valuable bioactive molecules called oxylipins. Moreover, owing to their adaptability across various environments, microalgae offer an intriguing avenue for biosynthesizing these compounds. Thus, modifying the culture conditions could potentially impact the profiles of oxylipins. Indeed, the accumulation of oxylipins in microalgae is subject to the influence of growth conditions, nutrient availability, and stressors, and adjusting these factors can enhance their production in microalgae culture. Consequently, the present study scrutinized the LC-MS/MS profiles of oxylipins from three marine microalgae species (two Haptagophytes and one Chlorophyte) cultivated in 1 L of photobioreactors under varying stress-inducing conditions, such as the introduction of H2O2, EtOAc, and NaCl, during their exponential growth phase. Approximately 50 oxylipins were identified, exhibiting different concentrations depending on the species and growth circumstances. This research suggests that microalgae metabolisms can be steered toward the production of bioactive oxylipins through modifications in the culture conditions. In this instance, the application of a low dose of hydrogen peroxide to Mi 124 appears to stimulate the production of nonenzymatic oxylipins. For Mi136, it is the application of salt stress that seems to increase the overall production of oxylipins. In the case of Mi 168, either a low concentration of H2O2 or a high concentration of AcOEt appears to have this effect.
Collapse
Affiliation(s)
- Amandyne Linares-Maurizi
- Institut des Biomolécules Max Mousseron, IBMM, Université de Montpellier, CNRS, ENSCM, 34093 Montpellier, France (R.A.); (G.R.); (V.G.); (J.-M.G.); (T.D.); (C.O.)
- Microphyt, 713 Route de Mudaison, 34670 Baillargues, France;
| | - Rana Awad
- Institut des Biomolécules Max Mousseron, IBMM, Université de Montpellier, CNRS, ENSCM, 34093 Montpellier, France (R.A.); (G.R.); (V.G.); (J.-M.G.); (T.D.); (C.O.)
| | - Anaelle Durbec
- MetaToul, MetaboHUB, Inserm/UPS UMR 1048, I2MC, Institut des Maladies Métaboliques et Cardiovasculaires, 31077 Toulouse, France; (A.D.); (J.B.-M.)
| | - Guillaume Reversat
- Institut des Biomolécules Max Mousseron, IBMM, Université de Montpellier, CNRS, ENSCM, 34093 Montpellier, France (R.A.); (G.R.); (V.G.); (J.-M.G.); (T.D.); (C.O.)
| | - Valérie Gros
- Institut des Biomolécules Max Mousseron, IBMM, Université de Montpellier, CNRS, ENSCM, 34093 Montpellier, France (R.A.); (G.R.); (V.G.); (J.-M.G.); (T.D.); (C.O.)
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron, IBMM, Université de Montpellier, CNRS, ENSCM, 34093 Montpellier, France (R.A.); (G.R.); (V.G.); (J.-M.G.); (T.D.); (C.O.)
| | - Justine Bertrand-Michel
- MetaToul, MetaboHUB, Inserm/UPS UMR 1048, I2MC, Institut des Maladies Métaboliques et Cardiovasculaires, 31077 Toulouse, France; (A.D.); (J.B.-M.)
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, IBMM, Université de Montpellier, CNRS, ENSCM, 34093 Montpellier, France (R.A.); (G.R.); (V.G.); (J.-M.G.); (T.D.); (C.O.)
| | - Rémi Pradelles
- Microphyt, 713 Route de Mudaison, 34670 Baillargues, France;
| | - Camille Oger
- Institut des Biomolécules Max Mousseron, IBMM, Université de Montpellier, CNRS, ENSCM, 34093 Montpellier, France (R.A.); (G.R.); (V.G.); (J.-M.G.); (T.D.); (C.O.)
| | - Claire Vigor
- Institut des Biomolécules Max Mousseron, IBMM, Université de Montpellier, CNRS, ENSCM, 34093 Montpellier, France (R.A.); (G.R.); (V.G.); (J.-M.G.); (T.D.); (C.O.)
| |
Collapse
|
7
|
Yuan S, Du M, Li X, Xu K, Zhang K, Liu X, Wang J. Adaptability and nutritional analysis of a newly isolated Chlorella sp. NeZha in brackish and marine environments with potential bioeconomic impacts. Front Nutr 2024; 11:1460675. [PMID: 39206305 PMCID: PMC11349555 DOI: 10.3389/fnut.2024.1460675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction The microalga Chlorella sp. NeZha, recently isolated from a balcony environment, shows significant adaptability across various salinity conditions, including seawater (SeaW), freshwater (FreshW), and high salinity levels (45‰). This study investigates its potential for sustainable aquaculture and biotechnological applications. Methods Morphological and genetic identification were conducted using optical microscopy and DNA sequencing. The microalga was cultivated in a 400 L outdoor photobioreactor, and its biochemical composition, including chlorophyll a, carbohydrate, protein, and lipid content, was analyzed. Its compatibility with zooplankton and growth in aquaculture wastewater were also evaluated. Results Chlorella sp. NeZha produced chlorophyll a at concentrations exceeding seaweed and Spirulina by 10- and 5-fold, respectively, with a dry weight chlorophyll a content of 34.25 mg/g and 25 pg./cell. The microalga also contained carbohydrate (~33%), protein (~20%), and lipids (~14%). It was compatible with zooplankton species, such as rotifers and brine shrimp, and showed promising growth in aquaculture wastewater. Discussion The findings suggest that Chlorella sp. NeZha is a viable candidate for sustainable aquaculture and biotechnological applications, offering high nutritional value and environmental resilience. Its adaptability to diverse salinity conditions and ability to thrive in wastewater highlight its potential for bioremediation and use as feedstock for zooplankton. Further research is recommended to optimize its cultivation and explore broader applications.
Collapse
Affiliation(s)
- Shuai Yuan
- School of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Hainan Chenhai Aquatic Co., Ltd., Sanya City, Hainan, China
| | - Ming Du
- School of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Xianhui Li
- Hainan Chenhai Aquatic Co., Ltd., Sanya City, Hainan, China
| | - Ke Xu
- School of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Kaining Zhang
- PingYi County Hospital of Traditional Chinese Medicine, LinYi, Shangdong, China
| | - Xiaoya Liu
- PingYi County Hospital of Traditional Chinese Medicine, LinYi, Shangdong, China
| | - Jiangxin Wang
- School of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| |
Collapse
|
8
|
Huang L, Du X, Jin Z, Ma J, Zuo Z. Accumulation of astaxanthin in Microcystis aeruginosa under NaCl and KCl stresses. BIORESOURCE TECHNOLOGY 2024; 403:130898. [PMID: 38797360 DOI: 10.1016/j.biortech.2024.130898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Astaxanthin is a high-value natural antioxidant, and can be accumulated in Microcystis aeruginosa. To enhance astaxanthin accumulation in the microalgae by using salt stress, the cell growth, photosynthetic abilities, reactive oxygen species (ROS) levels, astaxanthin and its precursor content, and gene expression were investigated under NaCl and KCl stresses. The two salt stresses inhibited the cell growth by lowering photosynthetic abilities and raising ROS levels. During the 6-day treatment, the two salt stresses improved the levels of astaxanthin, precursors (β-carotene and zeaxanthin) and carotenoids, which might be caused by the raised ROS up-regulating expression of 7 related genes. At the same concentration, KCl stress showed stronger inducing effect on astaxanthin and its precursor production than NaCl stress, due to higher expression of related genes. Therefore, NaCl and KCl stresses have obvious ion differences on astaxanthin accumulation, of which KCl stress is more suitable for the high-value antioxidant production from microalgae.
Collapse
Affiliation(s)
- Lexin Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou 311300, China
| | - Xianmin Du
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhuxin Jin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou 311300, China
| | - Junjie Ma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhaojiang Zuo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
9
|
Miller IR, Bui H, Wood JB, Fields MW, Gerlach R. Understanding phycosomal dynamics to improve industrial microalgae cultivation. Trends Biotechnol 2024; 42:680-698. [PMID: 38184438 DOI: 10.1016/j.tibtech.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 01/08/2024]
Abstract
Algal-bacterial interactions are ubiquitous in both natural and industrial systems, and the characterization of these interactions has been reinvigorated by potential applications in biosystem productivity. Different growth conditions can be used for operational functions, such as the use of low-quality water or high pH/alkalinity, and the altered operating conditions likely constrain microbial community structure and function in unique ways. However, research is necessary to better understand whether consortia can be designed to improve the productivity, processing, and sustainability of industrial-scale cultivations through different controls that can constrain microbial interactions for maximal light-driven outputs. The review highlights current knowledge and gaps for relevant operating conditions, as well as suggestions for near-term and longer-term improvements for large-scale cultivation and polyculture engineering.
Collapse
Affiliation(s)
- Isaac R Miller
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA; Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | - Huyen Bui
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | - Jessica B Wood
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA; Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | - Matthew W Fields
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA; Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA; Department of Civil Engineering, Montana State University, Bozeman, MT, USA; Energy Research Institute, Montana State University, Bozeman, MT, USA.
| | - Robin Gerlach
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA; Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA; Energy Research Institute, Montana State University, Bozeman, MT, USA; Department of Biological and Chemical Engineering, Bozeman, MT, USA
| |
Collapse
|
10
|
Purba LDA, Susanti H, Admirasari R, Praharyawan S, Taufikurahman, Iwamoto K. Bibliometric insights into microalgae cultivation in wastewater: Trends and future prospects for biolipid production and environmental sustainability. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:120104. [PMID: 38242026 DOI: 10.1016/j.jenvman.2024.120104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/01/2023] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
Cultivation of microalgae in wastewater stream has been extensively reported, especially for simultaneous production of biolipid and wastewater treatment process. This study aimed to derive the research trend and focus on biolipid production from microalgae cultivated in wastewater by using bibliometric approach. The search strategy used in Scopus database resulted in 1339 research articles from 1990 to November 2023. Majority of publications (46%) were affiliated to China and India, showing their predominance in this field. Keywords related to the center of attention included biodiesel, biofuel, biomass and nutrient removal. Meanwhile, keyword with recent publication year, indicating the emerging research trends, revolved around the cultivation techniques and application of the system. Co-culture involving more than one microalgae species, bacteria and yeast showed promising results, while addition of nanoparticles was also found to be beneficial. Increasing exploration on the application of microalgae for treatment of saline wastewater was also reported and the carbon fixation mechanism by microalgae has been widely investigated to promote less environmental impact. Future research on these topics were suggested based on the findings of the bibliometric analyses.
Collapse
Affiliation(s)
- Laila Dina Amalia Purba
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Cibinong, 16911, West Java, Indonesia.
| | - Hani Susanti
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Cibinong, 16911, West Java, Indonesia
| | - Rahmania Admirasari
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Cibinong, 16911, West Java, Indonesia
| | - Swastika Praharyawan
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Cibinong, 16911, West Java, Indonesia
| | - Taufikurahman
- School of Life Science and Technology, Institut Teknologi Bandung, Jalan Ganesa No. 10, Bandung, 40132, Indonesia
| | - Koji Iwamoto
- Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur, 54100, Malaysia
| |
Collapse
|
11
|
Chen L, Wu D, Chen G. Elucidating the function and potential inhibitory impact of monovalent cations on assessing the biodegradability of organic substrates in biochemical sulfide potential (BSP) assay. BIORESOURCE TECHNOLOGY 2024; 393:129939. [PMID: 37951553 DOI: 10.1016/j.biortech.2023.129939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/14/2023]
Abstract
The sulfate reagent plays a crucial role as an electron acceptor in the sulfidogenic biodegradation process of the BSP assay for assessing the anaerobic biodegradability of organic substrates. However, the specific role and influence of the monovalent cations (sodium or potassium) in the sulfate reagent remain unknown. To address this gap, a series of batch assays were conducted to investigate the mechanistic effects of Na+ and K+. The results demonstrated that sodium has inhibitory effects on BSP assay when the dosage exceeds 8500 mg/L, whereas no adverse effects were observed in the potassium tests (ranging from 1800 to 14400 mg/L). In fact, the presence of K+ even enhanced the anaerobic biodegradability of organic substrates, and the underlying mechanisms were explored. These findings confirm the influence of cations in the BSP assay for biodegradability assessment and also provide guidance on sulfate dosage strategies for BSP assay application in anaerobic biotechnologies.
Collapse
Affiliation(s)
- Lin Chen
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch), Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Di Wu
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch), Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China; Center for Environmental and Energy Research, Ghent University Global Campus, Incheon, Republic of Korea; Department of Green Chemistry and Technology, Centre for Advance Process Technology for Urban REsource Recovery, Ghent University, Ghent, Belgium
| | - Guanghao Chen
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch), Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China; Wastewater Technology Laboratory, FYT Graduate School, The Hong Kong University of Science and Technology, Nansha, Guangzhou, China.
| |
Collapse
|
12
|
Yang H, Zhang J, Li H. Strategies of NaCl Tolerance in Saline-Alkali-Tolerant Green Microalga Monoraphidium dybowskii LB50. PLANTS (BASEL, SWITZERLAND) 2023; 12:3495. [PMID: 37836235 PMCID: PMC10575140 DOI: 10.3390/plants12193495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/25/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023]
Abstract
Studying how freshwater cells modify metabolism and membrane lipids in response to salt stress is important for understanding how freshwater organisms adapt to salt stress and investigating new osmoregulatory ways. Physiological, biochemical, metabolic, and proteomic analyses were applied in a novel saline-alkali-tolerant microalga Monoraphidium dybowskii LB50 under different NaCl concentrations. Cells adopt a variety of strategies to adapt to salt stress, including increasing ion transport and osmolytes, regulating cell cycle and life history, and accumulating triacylglycerol (TAG). A large number of metabolic activities point to TAG accumulation. With increasing NaCl concentration, the C resource for TAG accumulation went from photosynthetically fixed C and a small amount of lipid remodeling to macromolecule degradation and a mass of lipid remodeling, respectively. The energy for TAG accumulation went from linear electron transfer and oxidative phosphate pentose pathway to cyclic electron flow, substrate phosphorylation, oxidation phosphorylation, and FA oxidation. Additionally, digalacturonic acid and amino acids of the N-acetyl group, which usually were the osmotica for marine organisms, were important for M. dybowskii LB50. Freshwater organisms evolved many biological ways to adapt to salt stress. This insight enriches our understanding of the adaptation mechanisms underlying abiotic stress.
Collapse
Affiliation(s)
- Haijian Yang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China;
| | - Jing Zhang
- Analysis and Testing Center of Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Hua Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China;
| |
Collapse
|
13
|
Patel AK, Vadrale AP, Singhania RR, Chen CW, Chang JS, Dong CD. Enhanced mixotrophic production of lutein and lipid from potential microalgae isolate Chlorella sorokiniana C16. BIORESOURCE TECHNOLOGY 2023; 386:129477. [PMID: 37437816 DOI: 10.1016/j.biortech.2023.129477] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
The current work aims to isolate high lutein-producing microalgae and maximize lutein production under a sustainable lutein-lipid biorefinery scheme. Lutein reduces retinitis, macular degeneration risk and improves eye health. An effective bioprocess design optimized nutrients, temperature, light, and salinity for biomass and lutein yield enhancement. 3X macro/micronutrients maximally enhanced biomass and lutein yields, 5.2 g/Land 71.13 mg/L. Temperature 32 °C exhibited maximum 17.4 mg/g lutein content and 10 k lux was most favorable for growth and lutein yield (15.47 mg/g). A 25% seawater addition led maximum of 21-27% lipid that could be used for biodiesel. Isolate was identified as Chlorella sorokiniana C16, which exhibited one of the highest lutein yields reported among recent studies, positioning it as a promising candidate for commercial lutein production. This study provides valuable insights into an effective bioprocess design and highlights the C16 strain potential as a sustainable platform for high-value lutein production under a biorefinery scheme.
Collapse
Affiliation(s)
- Anil Kumar Patel
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Akash Pralhad Vadrale
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Reeta-Rani Singhania
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Jo Shu Chang
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Taiwan
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan.
| |
Collapse
|
14
|
Mahmoud MS, Wang JH, Shen Y, Guo ZW, Yang Y, Zhu DC, Peters RW, Mostafa MK, Mahmoud AS. Performance of the Dual-Chamber Fungal Fuel Cell in Treating Tannery Wastewater. APPLIED SCIENCES 2023; 13:10710. [DOI: 10.3390/app131910710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Fungi are typically expressed as excellent microorganisms that produce extracellular enzymes used in the bioaccumulation phenomenon. In this study, laboratory-scale dual-chamber fungal fuel cells (FFCs) were applied as an alternate approach for the available degradation of complex organic pollutants represented in chemical oxygen demand (COD) and total nitrogen (TN), as well as inorganic pollutants represented as total chromium (Cr), and the generation of bioenergy represented in output voltages (V), power density (PD) and current density (CD), as applied to tannery effluent. Aspergillus niger strain, (A. niger), which makes up 40% of the fungal population in tannery effluent was examined in a training study for efficient hexavalent chromium bioaccumulation, especially in high concentrations. The trained A. niger showed a faster growth rate than the untrained one in broth media containing different loaded chromium concentrations. For an external resistance of 1000 Ω, two FFCs were utilized, one with electrolytic matrices including phosphate buffer solution (PBS) and bicarbonate buffer solution (BBS), and the other without electrolytic matrices, where the energy generation and treatment efficacy of the two dual-chamber FFCs were evaluated for a period of 165 h. At 15 h, the electrolytic FFCs showed a high voltage output of 0.814 V, a power density of 0.097 mW·m−2, and a current density of 0.119 mAm−2 compared to the non-electrolytic FFC. At 165 h, the electrolytic FFCs showed high removal efficiency percentages for COD, TN, and total Cr of up to 77.9%, 94.2%, and 73%, respectively, compared to the non-electrolytic FFC.
Collapse
Affiliation(s)
- Mohamed S. Mahmoud
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China
- Housing and Building National Research Center (HBRC), Sanitary and Environmental Institute (SEI), Cairo 12311, Egypt
| | - Jian-Hui Wang
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China
| | - Yu Shen
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China
| | - Zhi-Wei Guo
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China
| | - Yan Yang
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China
| | - Dao-Chen Zhu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Robert W. Peters
- Department of Civil, Construction, and Environmental Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Mohamed K. Mostafa
- Faculty of Engineering and Technology, Badr University in Cairo (BUC), Badr 11829, Egypt
| | - Ahmed S. Mahmoud
- Scientific Research Development Unit, Egyptian Russian University (ERU), Badr 11829, Egypt
- Institute of Environmental Studies, Arish University, Al Arish 45511, Egypt
| |
Collapse
|
15
|
Mofijur M, Hasan MM, Sultana S, Kabir Z, Djavanroodi F, Ahmed SF, Jahirul MI, Badruddin IA, Khan TMY. Advancements in algal membrane bioreactors: Overcoming obstacles and harnessing potential for eliminating hazardous pollutants from wastewater. CHEMOSPHERE 2023:139291. [PMID: 37353165 DOI: 10.1016/j.chemosphere.2023.139291] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/11/2023] [Accepted: 06/19/2023] [Indexed: 06/25/2023]
Abstract
This paper offers a comprehensive analysis of algal-based membrane bioreactors (AMBRs) and their potential for removing hazardous and toxic contaminants from wastewater. Through an identification of contaminant types and sources, as well as an explanation of AMBR operating principles, this study sheds light on the promising capabilities of AMBRs in eliminating pollutants like nitrogen, phosphorus, and organic matter, while generating valuable biomass and energy. However, challenges and limitations, such as the need for process optimization and the risk of algal-bacterial imbalance, have been identified. To overcome these obstacles, strategies like mixed cultures and bioaugmentation techniques have been proposed. Furthermore, this study explores the wider applications of AMBRs beyond wastewater treatment, including the production of value-added products and the removal of emerging contaminants. The findings underscore the significance of factors such as appropriate algal-bacterial consortia selection, hydraulic and organic loading rate optimization, and environmental factor control for the success of AMBRs. A comprehensive understanding of these challenges and opportunities can pave the way for more efficient and effective wastewater treatment processes, which are crucial for safeguarding public health and the environment.
Collapse
Affiliation(s)
- M Mofijur
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Mechanical Engineering Department, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia.
| | - M M Hasan
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia; School of Engineering and Technology, Central Queensland University, QLD, 4701, Australia
| | - Sabrina Sultana
- Department of Soil, Water and Environment, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Zobaidul Kabir
- School of Environmental and Life Sciences, University of Newcastle, NSW, 2258, Australia
| | - F Djavanroodi
- Mechanical Engineering Department, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia
| | - Shams Forruque Ahmed
- Science and Math Program, Asian University for Women, Chattogram, 4000, Bangladesh
| | - M I Jahirul
- School of Engineering and Technology, Central Queensland University, QLD, 4701, Australia
| | - Irfan Anjum Badruddin
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
| | - T M Yunus Khan
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
| |
Collapse
|
16
|
Jung M, Kim YE, Lee N, Yu H, Lee J, Lee SY, Lee YC, Oh YK. Simultaneous enhancement of lipid biosynthesis and solvent extraction of Chlorella using aminoclay nanoparticles. BIORESOURCE TECHNOLOGY 2023; 384:129314. [PMID: 37311525 DOI: 10.1016/j.biortech.2023.129314] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/15/2023]
Abstract
Magnesium aminoclay nanoparticles (MgANs) exert opposing effects on photosynthetic microalgae by promoting carbon dioxide (CO2) uptake and inducing oxidative stress. This study explored the potential application of MgAN in the production of algal lipids under high CO2 concentrations. The impact of MgAN (0.05-1.0 g/L) on cell growth, lipid accumulation, and solvent extractability varied among three tested oleaginous Chlorella strains (N113, KR-1, and M082). Among them, only KR-1 exhibited significant improvement in both total lipid content (379.4 mg/g cell) and hexane lipid extraction efficiency (54.5%) in the presence of MgAN compared to those of controls (320.3 mg/g cell and 46.1%, respectively). This improvement was attributed to the increased biosynthesis of triacylglycerols and a thinner cell wall based on thin-layer chromatography and electronic microscopy, respectively. These findings suggest that using MgAN with robust algal strains can enhance the efficiency of cost-intensive extraction processes while simultaneously increasing the algal lipid content.
Collapse
Affiliation(s)
- Mikyoung Jung
- School of Chemical Engineering, Pusan National University, Busan 46241, South Korea
| | - Young-Eun Kim
- School of Chemical Engineering, Pusan National University, Busan 46241, South Korea; Environmental Measurement and Analysis Center, National Institute of Environmental Research, Incheon 22689, South Korea
| | - Nakyeong Lee
- Institute for Environment & Energy, Pusan National University, Busan 46241, South Korea; Division of Environmental Materials, Honam National Institute of Biological Resources, Mokpo 58762, South Korea
| | - Hyoji Yu
- School of Chemical Engineering, Pusan National University, Busan 46241, South Korea
| | - Jiye Lee
- Gwangju Clean Energy Research Center, Korea Institute of Energy Research, Daejeon 34129, South Korea
| | - Soo Youn Lee
- Gwangju Clean Energy Research Center, Korea Institute of Energy Research, Daejeon 34129, South Korea
| | - Young-Chul Lee
- Department of BioNano Technology, Gachon University, Seongnam-si 13120, South Korea
| | - You-Kwan Oh
- School of Chemical Engineering, Pusan National University, Busan 46241, South Korea; Institute for Environment & Energy, Pusan National University, Busan 46241, South Korea.
| |
Collapse
|
17
|
Jaiswal TP, Chakraborty S, Sharma S, Mishra A, Mishra AK, Singh SS. Prospects of a hot spring-originated novel cyanobacterium, Scytonema ambikapurensis, for wastewater treatment and exopolysaccharide-enriched biomass production. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:53424-53444. [PMID: 36856995 DOI: 10.1007/s11356-023-26032-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
The present work performs the polyphasic characterization of a novel cyanobacterial species Scytonema ambikapurensis isolated from an Indian hot spring and evaluates its wastewater bioremediation potential. While the physicochemical analyses of the wastewater indicated high load of nutrients and metals, the wastewater bioremediation experiment performed using the test cyanobacterium denoted the removal of 70 and 86% phosphate, 49 and 66% sulfate, 96 and 98% nitrate, 91 and 92% nitrite, 95 and 96% ammonia, 66 and 72% chloride, 79 and 81% zinc, 68 and 80% nickel, 81 and 90% calcium, and 80 and 90% potassium from the autoclaved and un-autoclaved wastewater, respectively, after 20 days of culturing. The kinetics study of zinc and nickel removal from wastewater revealed that the cyanobacterium employed sequential biosorption (by following pseudo-second-order kinetics model) and bioaccumulation methods to remove these two metals. The quality of the autoclaved and un-autoclaved wastewater was further improved by the cyanobacterium through reduction of hardness by 74 and 81%, respectively. In wastewater, the cyanobacterium not only enhanced its biomass, chlorophyll and carbohydrate contents, but also produced small amount of released and high capsular exopolysaccharide (EPS). The FTIR and TGA analyses of capsular EPS unraveled that it was a negatively charged sulfated biomolecule having thermostability up to 240 °C, which suggested its possible use as excellent emulsifying, viscosifying, and biosorption agent. The credibility of this EPS as biosorption agent was ascertained by evaluating its metal chelating ability. Finally, the experimental data denoting the ability of S. ambikapurensis to bioremediate wastewater and simultaneously produce EPS was statistically validated by PCA1-pollutant removal model and the PCA2-cellular constituent model, respectively. Briefly, the study discloses that the cyanobacterium has huge biotechnological and industrial importance as it bioremediates wastewater and simultaneously produces thermostable exopolysaccharide.
Collapse
Affiliation(s)
- Tameshwar Prasad Jaiswal
- Laboratory of Cyanobacterial Systematics and Stress Biology, Department of Botany, Banaras Hindu University, Varanasi, 221005, India
| | - Sindhunath Chakraborty
- Laboratory of Microbial Genetics, Department of Botany, Banaras Hindu University, Varanasi, India
| | - Sanjay Sharma
- Laboratory of Cyanobacterial Systematics and Stress Biology, Department of Botany, Banaras Hindu University, Varanasi, 221005, India
| | - Aditi Mishra
- Laboratory of Cyanobacterial Systematics and Stress Biology, Department of Botany, Banaras Hindu University, Varanasi, 221005, India
| | - Arun Kumar Mishra
- Laboratory of Microbial Genetics, Department of Botany, Banaras Hindu University, Varanasi, India
| | - Satya Shila Singh
- Laboratory of Cyanobacterial Systematics and Stress Biology, Department of Botany, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
18
|
Xiao X, An X, Jiang Y, Wang L, Li Z, Lai F, Zhang Q. A newly developed consortium with a highly efficient thiocyanate degradation capacity: A comprehensive investigation of the degradation and detoxification potential. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120878. [PMID: 36526057 DOI: 10.1016/j.envpol.2022.120878] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Thiocyanate-containing wastewater harms ecosystems and can cause serious damage to animals and plants, so it is urgent to treat it effectively. In this study, a new efficient thiocyanate-degrading consortium was developed and its degradation characteristics were studied. It was found that up to 154.64 mM thiocyanate could be completely degraded by this consortium over 6 days of incubation, with a maximum degradation rate of 1.53 mM h-1. High-throughput sequencing analysis showed that Thiobacillus (77.78%) was the predominant thiocyanate-degrading bacterial genus. Plant toxicology tests showed that the germination index of mung bean and rice seeds cultured with media obtained after thiocyanate degradation by the consortium increased by 94% and 84.83%, respectively, compared with the control group without thiocyanate degradation. Cytotoxicity tests showed that thiocyanate without degradation significantly decreased the Neuro-2a cell activity and mitochondrial membrane potential; induced reactive oxygen species generation and apoptosis; increased the cellular Ca2+ concentration; and damaged the cell nucleus and DNA. Furthermore, the thiocyanate degradation products produced the consortium were almost totally non-toxic, revealing the same characteristics as those of the control using distilled water. This study shows that the consortium has a high degradation efficiency and detoxification characteristics, as well as great application potential in bioremediation of industrial thiocyanate-containing wastewater.
Collapse
Affiliation(s)
- Xiaoshuang Xiao
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, PR China.
| | - Xuejiao An
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Yuling Jiang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Liuwei Wang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Zelin Li
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Fenju Lai
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Qinghua Zhang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, PR China.
| |
Collapse
|
19
|
Sero ET, Siziba N, Bunhu T, Shoko R. Light filtration technology for sustainable microalgal biomass production. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2144455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Emmanuel Tapiwa Sero
- Department of Biology, Faculty of Natural Sciences and Mathematics, Chinhoyi University of Technology, Chinhoyi, Zimbabwe
| | - Nqobizitha Siziba
- Department of Biology, Faculty of Natural Sciences and Mathematics, Chinhoyi University of Technology, Chinhoyi, Zimbabwe
| | - Tavengwa Bunhu
- Department of Chemistry, Faculty of Natural Sciences and Mathematics, Chinhoyi University of Technology, Chinhoyi, Zimbabwe
| | - Ryman Shoko
- Department of Biology, Faculty of Natural Sciences and Mathematics, Chinhoyi University of Technology, Chinhoyi, Zimbabwe
| |
Collapse
|
20
|
Cao TND, Bui XT, Le LT, Dang BT, Tran DPH, Vo TKQ, Tran HT, Nguyen TB, Mukhtar H, Pan SY, Varjani S, Ngo HH, Vo TDH. An overview of deploying membrane bioreactors in saline wastewater treatment from perspectives of microbial and treatment performance. BIORESOURCE TECHNOLOGY 2022; 363:127831. [PMID: 36029979 DOI: 10.1016/j.biortech.2022.127831] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
The discharged saline wastewater has severely influenced the aquatic environment as the treatment performance of many wastewater treatment techniques is limited. In addition, the sources of saline wastewater are also plentiful from agricultural and various industrial fields such as food processing, tannery, pharmaceutical, etc. Although high salinity levels negatively impact the performance of both physicochemical and biological processes, membrane bioreactor (MBR) processes are considered as a potential technology to treat saline wastewater under different salinity levels depending on the adaption of the microbial community. Therefore, this study aims to systematically review the application of MBR widely used in the saline wastewater treatment from the perspectives of microbial structure and treatment efficiencies. At last, the concept of carbon dioxide capture and storage will be proposed for the MBR-treating saline wastewater technologies and considered toward the circular economy with the target of zero emission.
Collapse
Affiliation(s)
- Thanh Ngoc-Dan Cao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan ROC
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, district 10, Ho Chi Minh City 700000, Viet Nam; Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam.
| | - Linh-Thy Le
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, district 10, Ho Chi Minh City 700000, Viet Nam; Faculty of Public Health, University of Medicine and Pharmacy at Ho Chi Minh City (UMP), Ward 11, District 5, Ho Chi Minh City 72714, Viet Nam
| | - Bao-Trong Dang
- Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam; Faculty of Chemical Engineering, Ho Chi Minh University of Technology (HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City 700000, Viet Nam
| | - Duyen Phuc-Hanh Tran
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, district 10, Ho Chi Minh City 700000, Viet Nam; Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam
| | - Thi-Kim-Quyen Vo
- Faculty of Biology and Environment, Ho Chi Minh City University of Food Industry (HUFI), 140 Le Trong Tan street, Tay Thanh ward, Tan Phu district, Ho Chi Minh City 700000, Viet Nam
| | - Huu-Tuan Tran
- Department of Civil, Environmental & Architectural Engineering, The University of Kansas, Lawrence, KS 66045, United States
| | - Thanh-Binh Nguyen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Hussnain Mukhtar
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan ROC
| | - Shu-Yuan Pan
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan ROC
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382010, Gujarat, India
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Thi-Dieu-Hien Vo
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| |
Collapse
|
21
|
Ghalhari MA, Mafigholami R, Takdastan A, Khoshmaneshzadeh B. Optimization of the biological salt removal process from artificial industrial wastewater with high TDS by Spirulina microalga using the response surface method. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:1168-1180. [PMID: 36358053 DOI: 10.2166/wst.2022.270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
This study aimed to examine the direct applicability of Spirulina maxima as a new conceptual method for removing total dissolved solids (TDS) from artificial industrial wastewater (AIW). In this study, live microalgal cells were used in a photobioreactor for TDS removal. The effects of TDS levels, pH, light intensity, and light retention time on microalgal growth and TDS removal were investigated, and optimal conditions were determined using the response surface method and Box-Behnken Design (RSM-BBD). The calculated values of coefficient of determination (R2), adjusted R2, and predicted R2 were 0.9754, 0.9508, and 0.636, respectively, which are close to the R2 values and validated the proposed statistical model. A second-order model could optimally determine the interactions between the studied variables according to the one-way analysis of variance (ANOVA). The results showed that increasing TDS levels reduced microalgal growth and TDS removal efficiency in AIW. S. maxima reduced TDS by 76% and 47% at TDS concentrations of 2,000-4,000 mg/L, respectively, when used in AIW. Maximum biomass efficiency (1.8 g/L) was obtained at a TDS concentration of 2,000 mg/L with other parameters optimized.
Collapse
Affiliation(s)
- Maryam Asadi Ghalhari
- Department of Environmental Science and Engineering, West Tehran Branch, Islamic Azad University, Tehran, Iran E-mail:
| | - Roya Mafigholami
- Department of Environmental Science and Engineering, West Tehran Branch, Islamic Azad University, Tehran, Iran E-mail:
| | - Afshin Takdastan
- Environmental Technology Research Center, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| | - Behnoosh Khoshmaneshzadeh
- Department of Environmental Science and Engineering, West Tehran Branch, Islamic Azad University, Tehran, Iran E-mail:
| |
Collapse
|
22
|
Paquette AJ, Vadlamani A, Demirkaya C, Strous M, De la Hoz Siegler H. Nutrient management and medium reuse for cultivation of a cyanobacterial consortium at high pH and alkalinity. Front Bioeng Biotechnol 2022; 10:942771. [PMID: 36032714 PMCID: PMC9402938 DOI: 10.3389/fbioe.2022.942771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Alkaliphilic cyanobacteria have gained significant interest due to their robustness, high productivity, and ability to convert CO2 into bioenergy and other high value products. Effective nutrient management, such as re-use of spent medium, will be essential to realize sustainable applications with minimal environmental impacts. In this study, we determined the solubility and uptake of nutrients by an alkaliphilic cyanobacterial consortium grown at high pH and alkalinity. Except for Mg, Ca, Co, and Fe, all nutrients are in fully soluble form. The cyanobacterial consortium grew well without any inhibition and an overall productivity of 0.15 g L−1 d−1 (AFDW) was achieved. Quantification of nutrient uptake during growth resulted in the empirical formula CH1.81N0.17O0.20P0.013S0.009 for the consortium biomass. We showed that spent medium can be reused for at least five growth/harvest cycles. After an adaptation period, the cyanobacterial consortium fully acclimatized to the spent medium, resulting in complete restoration of biomass productivity.
Collapse
Affiliation(s)
- Alexandre J. Paquette
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
- *Correspondence: Alexandre J. Paquette,
| | | | - Cigdem Demirkaya
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB, Canada
| | - Marc Strous
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | | |
Collapse
|
23
|
Nitrogen Removal from the High Nitrate Content Saline Denitration Solution of a Coal-Fired Power Plant by MFC. Processes (Basel) 2022. [DOI: 10.3390/pr10081540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Oxidation denitration is one of the most efficient ways to remove NOx from flue gas in a coal-fired power plant. However, this oxidation denitration produces saline solution containing a high concentration of nitrate, which needs to be well treated. In this paper, MFC was firstly used to treat the high nitrate content saline denitration solution from ozone oxidation denitration of a coal-fired power plant. The influences of chemical oxygen demand (COD) and initial nitrate concentration on the nitrate removal and electricity generation of MFC were investigated by sequencing batch mode. The results showed that using MFCs could efficiently remove nitrate from coal-fired power plant saline denitration solution with nitrate nitrogen (NO3−-N) concentration up to 1510 mg/L. The average nitrate nitrogen removal rate was as high as 248.3 mg/(L·h) at initial nitrate nitrogen concentration of 745 mg/L and COD concentration of 6.5 g/L, which was eight times as high as that of the conventional biological method. Furthermore, the MFC required an average COD consumption of 3.42 g/g-NO3−-N which was lower than most of the conventional biological methods. In addition, MFC could produce a maximum power density of 241.1 mW/m2 while treating this saline denitration solution.
Collapse
|
24
|
Saxena A, Mishra B, Tiwari A. Mass cultivation of marine diatoms using local salts and its impact on growth and productivity. BIORESOURCE TECHNOLOGY 2022; 352:127128. [PMID: 35398539 DOI: 10.1016/j.biortech.2022.127128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Diatoms are of great interest for many biotechnological applications. The present study highlights the comparative analysis for mass cultivation under the effect of seawater made from table salt (TS), rock salt (RS), and synthetic seawater in the presence of normal silica and induction coupled plasma (ICP) nanosilica (Nano Si) for inducing diatom growth. Out of all the test formulations, RS-f/2 Nano Si showed the best results with maximum cell density (3.16x107±0.04 and 3.24x107±0.05 cells mL-1), carbohydrate (403.0±3.4 and 398.0±8.1 mg g-1), and chrysolaminarin yield (66.2±5.5 and 49.3±5.1 mg g-1) in both Chaetoceros gracilis and Thalassiosira weissflogii respectively. The presence of a rich pigment profile and lipids further highlights the importance of TS and RS for cost-effective mass culturing. Results reveal that mass cultivation of marine diatoms with TS and RS in the presence of nanosilica not only reduces costs but also enhances metabolite production.
Collapse
Affiliation(s)
- Abhishek Saxena
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201301, India
| | - Bharti Mishra
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201301, India
| | - Archana Tiwari
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201301, India.
| |
Collapse
|
25
|
Sharma P, Gujjala LKS, Varjani S, Kumar S. Emerging microalgae-based technologies in biorefinery and risk assessment issues: Bioeconomy for sustainable development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152417. [PMID: 34923013 DOI: 10.1016/j.scitotenv.2021.152417] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Industrial wastewater treatment is of paramount importance considering the safety of the aquatic ecosystem and its associated health risk to humankind inhabiting near the water bodies. Microalgae-based technologies for remediation of environmental pollutants present avenues for bioenergy applications and production of value-added biochemicals having pharmaceutical, nutraceutical, antioxidants, carbohydrate, phenolics, long-chain multi-faceted fatty acids, enzymes, and proteins which are considered healthy supplements for human health. Such a wide range of products put up a good case for the biorefinery concept. Microalgae play a pivotal role in degrading complex pollutants, such as organic and inorganic contaminants thereby efficiently removing them from the environment. In addition, microalgal species, such as Botryococcus braunii, Tetraselmis suecica, Phaeodactylum tricornutum, Neochloris oleoabundans, Chlorella vulgaris, Arthrospira, Chlorella, and Tetraselmis sp., etc., are also reported for generation of value-added products. This review presents a holistic view of microalgae based biorefinery starting from cultivation and harvesting of microalgae, the potential for remediation of environmental pollutants, bioenergy application, and production of value-added biomolecules. Further, it summarizes the current understanding of microalgae-based technologies and discusses the risks involved, potential for bioeconomy, and outlines future research directions.
Collapse
Affiliation(s)
- Pooja Sharma
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur 440 020, India
| | | | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382 010, Gujarat, India
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur 440 020, India.
| |
Collapse
|
26
|
Liu T, Chen Z, Xiao Y, Yuan M, Zhou C, Liu G, Fang J, Yang B. Biochemical and Morphological Changes Triggered by Nitrogen Stress in the Oleaginous Microalga Chlorella vulgaris. Microorganisms 2022; 10:microorganisms10030566. [PMID: 35336142 PMCID: PMC8949318 DOI: 10.3390/microorganisms10030566] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/20/2022] [Accepted: 02/25/2022] [Indexed: 02/06/2023] Open
Abstract
Oleaginous microalgae have been considered promising sources of biodiesel due to their high lipid content. Nitrogen limitation/starvation is one of the most prominent strategies to induce lipid accumulation in microalgae. Nonetheless, despite numerous studies, the mechanism underlying this approach is not well understood. The aim of this study was to investigate the effect of nitrogen limitation and starvation on biochemical and morphological changes in the microalga Chlorella vulgaris FACHB-1068, thereby obtaining the optimal nitrogen stress strategy for maximizing the lipid productivity of microalgal biomass. The results showed that nitrogen limitation (nitrate concentration < 21.66 mg/L) and starvation enhanced the lipid content but generally decreased the biomass productivity, pigment concentration, and protein content in algal cells. Comparatively, 3-day nitrogen starvation was found to be a more suitable strategy to produce lipid-rich biomass. It resulted in an increased biomass production and satisfactory lipid content of 266 mg/L and 31.33%, respectively. Besides, nitrogen starvation caused significant changes in cell morphology, with an increase in numbers and total size of lipid droplets and starch granules. Under nitrogen starvation, saturated fatty acids (C-16:0, C-20:0, and C-18:0) accounted for the majority of the total fatty acids (~80%), making C. vulgaris FACHB-1068 a potential feedstock for biodiesel production. Our work may contribute to a better understanding of the biochemical and morphological changes in microalgae under nitrogen stress. Besides, our work may provide valuable information on increasing the lipid productivity of oleaginous microalgae by regulating nitrogen supply.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bo Yang
- Correspondence: (J.F.); (B.Y.)
| |
Collapse
|
27
|
Bezerra PQM, Moraes L, Silva TNM, Cardoso LG, Druzian JI, Morais MG, Nunes IL, Costa JAV. Innovative application of brackish groundwater without the addition of nutrients in the cultivation of Spirulina and Chlorella for carbohydrate and lipid production. BIORESOURCE TECHNOLOGY 2022; 345:126543. [PMID: 34902481 DOI: 10.1016/j.biortech.2021.126543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Brackish groundwater is promising for the cultivation of economically important microalgae; however, its effects have been evaluated only after nutrient supplementation. In this study, 100% brackish groundwater was evaluated as a culture medium for Spirulina sp. (BGWS) and Chlorella fusca (BGWC). In addition, the effects of supplementation with 25% of the nutrients from Zarrouk (BGWS25) and BG-11 (BGWC25) culture media were evaluated. BGWS and BGWC increased the concentration (68.1% w w-1) and productivity of carbohydrate (35.3 mg L-1 d-1) in Spirulina sp. and increased the concentration (56.4% w w-1) and productivity (13.5 mg L-1 d-1) of lipids in C. fusca biomass, when compared to that in the respective controls. The use of brackish groundwater as the sole culture medium is an innovative alternative for the economic production of biomass rich in carbohydrates and lipids. This has potential applications for biofuel production.
Collapse
Affiliation(s)
- P Q M Bezerra
- Laboratory of Biochemical Engineering, College of Chemistry and Food Engineering, Federal University of Rio Grande, Rio Grande-RS 96203-900, Brazil
| | - L Moraes
- Laboratory of Biochemical Engineering, College of Chemistry and Food Engineering, Federal University of Rio Grande, Rio Grande-RS 96203-900, Brazil
| | - T N M Silva
- Laboratory of Biochemical Engineering, College of Chemistry and Food Engineering, Federal University of Rio Grande, Rio Grande-RS 96203-900, Brazil
| | - L G Cardoso
- Department of Bromatological Analysis, Faculty of Pharmacy, Federal University of Bahia, Salvador-BA 40170-115, Brazil
| | - J I Druzian
- Department of Bromatological Analysis, Faculty of Pharmacy, Federal University of Bahia, Salvador-BA 40170-115, Brazil
| | - M G Morais
- Laboratory of Microbiology and Biochemistry, College of Chemistry and Food Engineering, Federal University of Rio Grande, Rio Grande-RS 96203-900, Brazil
| | - I L Nunes
- Department of Food Science and Technology, Center for Agrarian Sciences, Federal University of Santa Catarina, Florianópolis-SC 88034-000, Brazil
| | - J A V Costa
- Laboratory of Biochemical Engineering, College of Chemistry and Food Engineering, Federal University of Rio Grande, Rio Grande-RS 96203-900, Brazil.
| |
Collapse
|
28
|
Biological-Based Produced Water Treatment Using Microalgae: Challenges and Efficiency. SUSTAINABILITY 2022. [DOI: 10.3390/su14010499] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Produced water (PW) is the most significant waste stream generated in the oil and gas industries. The generated PW has the potential to be a useful water source rather than waste. While a variety of technologies can be used for the treatment of PW for reuse, biological-based technologies are an effective and sustainable remediation method. Specifically, microalgae, which are a cost-effective and sustainable process that use nutrients to eliminate organic pollutants from PW during the bioremediation process. In these treatment processes, microalgae grow in PW free of charge, eliminate pollutants, and generate clean water that can be recycled and reused. This helps to reduce CO2 levels in the atmosphere while simultaneously producing biofuels, other useful chemicals, and added-value products. As such, this review focuses on PW generation in the oil and gas industry, PW characteristics, and examines the available technologies that can be used for PW remediation, with specific attention to algal-based technologies. In addition, the various aspects of algae growth and cultivation in PW, the effect of growth conditions, water quality parameters, and the corresponding treatment performance are presented. Lastly, this review emphasizes the bioremediation of PW using algae and highlights how to harvest algae that can be processed to generate biofuels for added-value products as a sustainable approach.
Collapse
|
29
|
Beneficial use of the aqueous phase generated during hydrothermal carbonization of algae as nutrient source for algae cultivation. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102485] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
BOD and COD removal in vinasses from sugarcane alcoholic distillation by Chlorella vulgaris: Environmental evaluation. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
31
|
Parichehreh R, Gheshlaghi R, Mahdavi MA, Kamyab H. Investigating the effects of eleven key physicochemical factors on growth and lipid accumulation of Chlorella sp. as a feedstock for biodiesel production. J Biotechnol 2021; 340:64-74. [PMID: 34454961 DOI: 10.1016/j.jbiotec.2021.08.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 08/08/2021] [Accepted: 08/21/2021] [Indexed: 01/22/2023]
Abstract
Biodiesel, as a renewable and eco-friendly energy source that can be produced through algae oil esterification, has recently received much attention. Maximization of algal biomass and lipid content is crucial for commercial biodiesel production. In this study, Chlorella sp. PG96, a microalgal strain isolated from urban wastewater, was identified considering its morphological and molecular characteristics. Fractional factorial design (211-7) was employed to screen medium and environmental factors for achieving high lipid productivity. The effects of eleven factors including light intensity, light spectrum, aeration rate, temperature, salinity, NaHCO3, CO2, NaNO3, NH4Cl, MgSO4.7H2O, and K2HPO4 and their interactions on growth characteristics of Chlorella sp. PG96 (biomass and lipid production) were statistically assessed. Based on the experimental results, lipid productivity was at its maximum (54.19 ± 8.40 mglipid L-1 day-1) under a combination of high levels of all factors. The analysis also showed that physical parameters of light intensity and temperature were more effective on algal growth compared to nutritional parameters. Furthermore, nitrogen source of ammonium and carbon source of bicarbonate played more significant roles in biomass and lipid production, compared with nitrate and CO2, respectively. Although the effect of sulfur limitation on cellular growth was similar to phosphorus deficiency, S-limitation had a greater impact on lipid accumulation. The interaction between NaHCO3 and NH4Cl was the most prominent interaction affecting all responses. It is concluded that Chlorella sp. PG96 at a high level of light intensity and temperature (22500 Lux and 32 °C, respectively) can be a prospective candidate for biodiesel production.
Collapse
Affiliation(s)
- Roya Parichehreh
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Azadi Square, Pardis Campus, Mashhad, Khorasan Razavi, Iran, Postal Code 9177948944.
| | - Reza Gheshlaghi
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Azadi Square, Pardis Campus, Mashhad, Khorasan Razavi, Iran, Postal Code 9177948944.
| | - Mahmood Akhavan Mahdavi
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Azadi Square, Pardis Campus, Mashhad, Khorasan Razavi, Iran, Postal Code 9177948944.
| | - Hesam Kamyab
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia.
| |
Collapse
|
32
|
The immediate effect of riboflavin and lumichrome on the mitigation of saline stress in the microalga Chlorella sorokiniana by the plant-growth-promoting bacterium Azospirillum brasilense. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Soleimani khorramdashti M, Samipoor Giri M, Majidian N. Extraction lipids from chlorella vulgaris by supercritical CO2 for biodiesel production. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2021. [DOI: 10.1016/j.sajce.2021.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
34
|
Zhao Z, Xu W, Wang Z, Qin W, Lei J, Guo X, Long J. Investigation of organic impurity and its occurrence in industrial waste salt produced by physicochemical process. PLoS One 2021; 16:e0256101. [PMID: 34415952 PMCID: PMC8378702 DOI: 10.1371/journal.pone.0256101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/31/2021] [Indexed: 11/18/2022] Open
Abstract
Industrial waste salt is classified as hazardous waste to the environment. The organic impurity and its occurrence in industrial waste salt affect the salt resource utilization. In this paper, composition quantitative analysis, XRD, TG-DSC, SEM/FIB-SEM coupled with EDS, FTIR, XPS and GC-Ms were chosen to investigate the organic impurity and its occurrence in industrial waste salt. The organic impurities owe small proportion (1.77%) in the specimen and exhibit weak thermal stability within the temperature of 600°C. A clear definition of organic impurity, including 11 kinds of organic compounds, including aldehyde, benzene and its derivatives etc., were detected in the industrial waste salt. These organic impurities, owing (C-O/C-O-C, C-OH/C = O, C–C/CHx/C = C etc.)-containing function group substance, are mainly distributed both on the surface and inside of the salt particles. Meanwhile, the organic substance may combine with metal cations (Ni2+, Mg2+, Cu2+ etc.) through functional groups, such as hydroxide, carbonyl etc., which increases its stability in the industrial waste salt. These findings provide comprehensive information for the resource utilization of industrial waste salt from chemical industry etc.
Collapse
Affiliation(s)
- Zongwen Zhao
- School of Metallurgy & Environment, Central South University, Changsha, Hunan, China
- Postdoctoral Mobile Station of Central South University, Changsha, Hunan, China
- Dongjiang Environmental Co., Ltd., Shenzhen, Guangdong, China
- * E-mail:
| | - Wenbin Xu
- Dongjiang Environmental Co., Ltd., Shenzhen, Guangdong, China
| | - Zhongbing Wang
- School of Metallurgy & Environment, Central South University, Changsha, Hunan, China
- Postdoctoral Mobile Station of Central South University, Changsha, Hunan, China
- Dongjiang Environmental Co., Ltd., Shenzhen, Guangdong, China
| | - Weining Qin
- Dongjiang Environmental Co., Ltd., Shenzhen, Guangdong, China
| | - Jie Lei
- Green Eco-Manufacture Co., Ltd., Shenzhen, Guangdong, China
| | - Xinglin Guo
- Dongjiang Environmental Co., Ltd., Shenzhen, Guangdong, China
| | - Jiang Long
- Dongjiang Environmental Co., Ltd., Shenzhen, Guangdong, China
| |
Collapse
|
35
|
Shahid A, Usman M, Atta Z, Musharraf SG, Malik S, Elkamel A, Shahid M, Abdulhamid Alkhattabi N, Gull M, Mehmood MA. Impact of wastewater cultivation on pollutant removal, biomass production, metabolite biosynthesis, and carbon dioxide fixation of newly isolated cyanobacteria in a multiproduct biorefinery paradigm. BIORESOURCE TECHNOLOGY 2021; 333:125194. [PMID: 33910117 DOI: 10.1016/j.biortech.2021.125194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
The impact of wastewater cultivation was studied on pollutant removal, biomass production, and biosynthesis of high-value metabolites by newly isolated cyanobacteria namely Acaryochloris marina BERC03, Oscillatoria sp. BERC04, and Pleurocapsa sp. BERC06. During cultivation in urabn wastewater, its pH used to adjust from pH 8.0 to 11, offering contamination-free cultivation, and flotation-based easy harvesting. Besides, wastewater cultivation improved biomass production by 1.3-fold when compared to control along with 3.54-4.2 gL-1 of CO2 fixation, concomitantly removing suspended organic matter, total nitrogen, and phosphorus by 100%, 53%, and 88%, respectively. Biomass accumulated 26-36% carbohydrates, 15-28% proteins, 38-43% lipids, and 6.3-9.5% phycobilins, where phycobilin yield was improved by 1.6-fold when compared to control. Lipids extracted from the pigment-free biomass were trans-esterified to biodiesel where pigment extraction showed no negative impact on quality of the biodiesel. These strains demonstrated the potential to become feedstock of an integrated biorefinery using urban wastewater as low-cost growth media.
Collapse
Affiliation(s)
- Ayesha Shahid
- Bioenergy Research Center, Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Usman
- Bioenergy Research Center, Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Zahida Atta
- Bioenergy Research Center, Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Syed Ghulam Musharraf
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Sana Malik
- Bioenergy Research Center, Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Ali Elkamel
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West Waterloo, ON, N2L 3G1, Canada
| | - Muhammad Shahid
- Bioenergy Research Center, Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | | | - Munazza Gull
- Biochemistry Department, King Abdulaziz University, Jeddah 21551, Saudi Arabia
| | - Muhammad Aamer Mehmood
- School of Bioengineering, Sichuan University of Science and Engineering, Zigong, China; Bioenergy Research Center, Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan.
| |
Collapse
|
36
|
Comparison of various approaches to detect algal culture contamination: a case study of Chlorella sp. contamination in a Phaeodactylum tricornutum culture. Appl Microbiol Biotechnol 2021; 105:5189-5200. [PMID: 34146137 DOI: 10.1007/s00253-021-11396-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/24/2021] [Accepted: 06/07/2021] [Indexed: 10/21/2022]
Abstract
Microalgal contamination in algal culture is a serious problem hampering the cultivation process, which can result in considerable economic and time losses. With the field of microalgal biotechnology on the rise, development of new tools for monitoring the cultures is of high importance. Here we present a case study of the detection of fast-growing green algae Chlorella vulgaris (as contaminant) in a diatom Phaeodactylum tricornutum culture using various approaches. We prepared mixed cultures of C. vulgaris and P. tricornutum in different cell-to-cell ratios in the range from 1:103 to 1:107. We compared the sensitivity among microscopy, cultivation-based technique, PCR, and qPCR. The detection of C. vulgaris contamination using light microscopy failed in samples containing cell ratios <1:105. Our results confirmed PCR/qPCR to provide the most reliable and sensitive results, with detection sensitivity close to 75 cells/mL. The method was similarly sensitive in a pure C. vulgaris culture as well as in a mixed culture containing 107-times more P. tricornutum cells. A next-generation sequencing analysis revealed a positive discrimination of C. vulgaris during DNA extraction. The method of cultivation media exchange from sea water to fresh water, preferred by the Chlorella contaminant, demonstrated a presence of the contaminant with a sensitivity comparable to PCR approaches, albeit with a much longer detection time. The results suggest that a qPCR/PCR-based approach is the best choice for an early warning in the commercial culturing of microalgae. This method can be conveniently complemented with the substitution-cultivation method to test the proliferating potential of the contaminant. KEY POINTS: • PCR-based protocol developed for detection of Chlorella cells. • Synergy of various approaches shows deeper insight into a presence of contaminants. • Positive/negative discrimination occurs during DNA extraction in mixed cultures. • Newly developed assays ready to use as in diagnostics of contamination.
Collapse
|
37
|
Kim ZH, Kim K, Park H, Lee CS, Nam SW, Yim KJ, Jung JY, Hong SJ, Lee CG. Enhanced Fatty Acid Productivity by Parachlorella sp., a Freshwater Microalga, via Adaptive Laboratory Evolution Under Salt Stress. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-020-0001-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
38
|
Abstract
Microalgae have become an attractive natural source of a diverse range of biomolecules, including enzymatic and non-enzymatic antioxidants; nevertheless, economically sustainable production of such compounds from microalgae biomass is still challenging. The main hurdles are: (a) increasing microalgae yield; (b) achieving optimal cultivation conditions; (c) energy-efficient and cost-effective downstream processing (extraction and purification); (d) optimal storage of post-processed antioxidant molecules. This review provides a detailed overview of enzymatic and non-enzymatic antioxidants in the cellular metabolism of the commercially important microalgae Dunaliella, industrial applications of antioxidant enzymes, strategies to enhanced antioxidant accumulation in cells, and the opportunities and limitations of current technologies for antioxidant enzymes production from microalgae biomass as an alternative to common microbial sources.
Collapse
|
39
|
Mirizadeh S, Casazza AA, Converti A, Nosrati M, Shojaosadati SA. Repetitive non-destructive extraction of lipids from Chlorella vulgaris grown under stress conditions. BIORESOURCE TECHNOLOGY 2021; 326:124798. [PMID: 33556707 DOI: 10.1016/j.biortech.2021.124798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
The aim of this study was the investigation of non-destructive lipid extraction from Chlorella vulgaris grown under stress conditions of nutrient limitation and salinity. To select a suitable solvent for extraction, the performances of decane, dodecane and hexadecane were tested based on their effect on lipid extraction and cell viability. The results showed that dodecane was the most suitable solvent for the extraction process. The concentration of extracted lipids from stressed cells was 2762.52 ± 11.38 mg L-1, i.e. a value 1.75 times higher than that obtained from unstressed cells. Long-term extraction was also evaluated with continuous dodecane recirculation during five-stage extraction and a recovery time of 24 h between the extraction steps, which yielded after the fifth extraction stage a total lipid amount as high as 9811.56 mg L-1. These results showed that non-destructive lipid recovery can be effectively performed by applying stress conditions and in repetitive extractions.
Collapse
Affiliation(s)
- Shabnam Mirizadeh
- Biotechnology Group, Faculty of Chemical Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran, Iran
| | - Alessandro Alberto Casazza
- Department of Civil, Chemical and Environmental Engineering (DICCA), University of Genoa, Via Opera Pia 15, 16145 Genoa, Italy
| | - Attilio Converti
- Department of Civil, Chemical and Environmental Engineering (DICCA), University of Genoa, Via Opera Pia 15, 16145 Genoa, Italy
| | - Mohsen Nosrati
- Biotechnology Group, Faculty of Chemical Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran, Iran.
| | - Seyed Abbas Shojaosadati
- Biotechnology Group, Faculty of Chemical Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran, Iran
| |
Collapse
|
40
|
Bhatti S, Richards R, McGinn P. Screening of two freshwater green microalgae in pulp and paper mill wastewater effluents in Nova Scotia, Canada. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 83:1483-1498. [PMID: 33767052 DOI: 10.2166/wst.2021.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In recent years, the use of microalgae as feedstock for many marketable products, such as animal/aqua feeds, bioplastics and fertilizers, has gained renewed interest due to their fast growth potential coupled with relatively high lipid, carbohydrate and nutrient content. An algal biorefinery at an industrial site has the potential to sustainably and profitably convert carbon dioxide emissions into microalgal biomass and concomitantly reduce nitrogen and phosphorus from wastewaters. Industrial wastewaters are a potential alternative to traditional media used for large-scale microalgal cultivation. Pulp and paper mills are major consumers of water resources and discharge a huge amount of water to nearby lakes or rivers. This study investigated whether pulp and paper mill waste water is suitable for microalgal cultivation with the aim of achieving significant biomass production. Six different process waters from one Canadian pulp and paper mill were tested with two freshwater green microalgae. All of these waters were unable to support growth of microalgae due to inadequate nutrient concentrations, colour, turbidity and possible toxicity issues.
Collapse
Affiliation(s)
- Shabana Bhatti
- National Research Council of Canada, Aquatic and Crop Resource Development, 1411 Oxford Street, Halifax, Nova Scotia B3H 3Z1, Canada E-mail:
| | - Robert Richards
- National Research Council of Canada, Aquatic and Crop Resource Development, 1411 Oxford Street, Halifax, Nova Scotia B3H 3Z1, Canada E-mail:
| | - Patrick McGinn
- National Research Council of Canada, Aquatic and Crop Resource Development, 1411 Oxford Street, Halifax, Nova Scotia B3H 3Z1, Canada E-mail:
| |
Collapse
|
41
|
Lipid accumulation patterns and role of different fatty acid types towards mitigating salinity fluctuations in Chlorella vulgaris. Sci Rep 2021; 11:438. [PMID: 33432049 PMCID: PMC7801682 DOI: 10.1038/s41598-020-79950-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022] Open
Abstract
Mangrove-dwelling microalgae are well adapted to frequent encounters of salinity fluctuations across their various growth phases but are lesser studied. The current study explored the adaptive changes (in terms of biomass, oil content and fatty acid composition) of mangrove-isolated C. vulgaris UMT-M1 cultured under different salinity levels (5, 10, 15, 20, 30 ppt). The highest total oil content was recorded in cultures at 15 ppt salinity (63.5% of dry weight) with uncompromised biomass productivity, thus highlighting the ‘trigger-threshold’ for oil accumulation in C. vulgaris UMT-M1. Subsequently, C. vulgaris UMT-M1 was further assessed across different growth phases under 15 ppt. The various short, medium and long-chain fatty acids (particularly C20:0), coupled with a high level of C18:3n3 PUFA reported at early exponential phase represents their physiological importance during rapid cell growth. Accumulation of C18:1 and C18:2 at stationary growth phase across all salinities was seen as cells accumulating substrate for C18:3n3 should the cells anticipate a move from stationary phase into new growth phase. This study sheds some light on the possibility of ‘triggered’ oil accumulation with uninterrupted growth and the participation of various fatty acid types upon salinity mitigation in a mangrove-dwelling microalgae.
Collapse
|
42
|
Real Wastewater Treatment Using a Moving Bed and Wastewater-Borne Algal–Bacterial Consortia with a Short Hydraulic Retention Time. Processes (Basel) 2021. [DOI: 10.3390/pr9010116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Algal–bacterial consortium is a promising technology, combined with wastewater treatment plants, because algae produce molecular oxygen for nitrification and organic removal and reduce carbon dioxide emissions. However, algal–bacterial consortia based on suspended growth require a relatively long hydraulic retention time (HRT) of 4 d to 6 d for removal of organic matter and nutrients. For the algal–bacterial consortia in a photobioreactor (PBR) containing a moving bed, the organic matter and nutrient removal and the community structure of algal–bacterial consortia were investigated to determine the performance under a relatively short HRT of 2.5 d. Moving media containing algal–bacterial consortia enhanced the photosynthetic oxygen concentration (0.2 mg dissolved oxygen (DO)·L−1 to 5.9 mg DO·L−1), biochemical oxygen demand removal (88.0% to 97.2%), ammoniacal nitrogen removal (33.8% to 95.3%), total nitrogen removal (61.6% to 87.7%), total phosphate removal (66.4% to 88.7%), algal growth (149.3 mg algae·L−1 to 285.4 mg algae·L−1), and settleability (algae removal efficiency of 20.6% to 71.2%) compared with those of a PBR without moving media (SPBR). Although biomass uptake was the main mechanism for nutrient removal in the SPBR, both biomass uptake and denitrification were the main mechanisms in the PBR with moving media (MBPBR). The bacterial community also changed under the moving media condition. This study shows that moving media might be an essential parameter for PBRs with a short HRT to enhance nutrient removal and settleability.
Collapse
|
43
|
Yun J, Pierrelée M, Cho D, Kim U, Heo J, Choi D, Lee YJ, Lee B, Kim H, Habermann B, Chang YK, Kim H. Transcriptomic analysis of
Chlorella
sp. HS2 suggests the overflow of acetyl‐CoA and NADPH cofactor induces high lipid accumulation and halotolerance. Food Energy Secur 2020. [DOI: 10.1002/fes3.267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Jin‐Ho Yun
- Cell Factory Research Center KRIBB Daejeon Korea
| | | | - Dae‐Hyun Cho
- Cell Factory Research Center KRIBB Daejeon Korea
| | - Urim Kim
- Cell Factory Research Center KRIBB Daejeon Korea
- Department of Environmental Biotechnology UST Daejeon Korea
| | - Jina Heo
- Cell Factory Research Center KRIBB Daejeon Korea
- Department of Environmental Biotechnology UST Daejeon Korea
| | | | - Yong Jae Lee
- Cell Factory Research Center KRIBB Daejeon Korea
| | - Bongsoo Lee
- Department of Microbial and Nano Materials College of Science and Technology Mokwon University Daejeon Korea
| | - HyeRan Kim
- Plant Systems Engineering Research Center KRIBB Daejeon Korea
| | | | - Yong Keun Chang
- Advanced Biomass R&D Center Daejeon Korea
- Department of Chemical and Biomolecular Engineering KAIST Daejeon Korea
| | - Hee‐Sik Kim
- Cell Factory Research Center KRIBB Daejeon Korea
- Department of Environmental Biotechnology UST Daejeon Korea
| |
Collapse
|
44
|
Brennan B, Regan F. In-situ lipid and fatty acid extraction methods to recover viable products from Nannochloropsis sp. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 748:142464. [PMID: 33113682 DOI: 10.1016/j.scitotenv.2020.142464] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
Nannochloropsis sp. has received increased attention by researchers in recent years due to its complexity and abundance of lipid structures. The lipids of this microalgae species have been identified to contain large quantities of neutral lipids which are capable of producing raw materials for nutraceuticals, food additives and biofuels. The production of biodiesel has received the greatest attention as there is an increase in global demand for both more fuel and more environmentally sustainable methods to produce such resources. The greatest challenges facing industries to mass produce viable products from microalgae involve the degradation of the cell wall and extracting the fatty acid of interest due to high costs. Various studies have shown that the extraction lipids from the microalgae can greatly influence the overall fatty acid composition. Different extraction methods can result in recovering higher quantities of either saturated fatty acids, monounsaturated fatty acids or polyunsaturated fatty acids. Biodiesel production requires higher quantities of saturated fatty acids and monosaturated fatty acids as increased quantities of polyunsaturated fatty acids result in oxidation which decreases the performance of the biodiesel. Whereas, polyunsaturated fatty acids are required in order to produce pharmaceuticals and food additives such as omega 3. This review will focus on how different in-situ extraction methods for lipid and fatty acid recovery, influence the fatty acid composition of various Nannochloropsis species (oculate, gaditana, salina and oceanica). The mechanical methods (microwave, ultrasonic and supercritical‑carbon dioxide) of extraction for Nannochloropsis sp. will be critically evaluated. The use of enzymes will also be addressed, for their ability to extract fatty acids in a more environmentally friendly manner. This paper will report on the viable by-products which can be produced using different extraction methods.
Collapse
Affiliation(s)
- Brian Brennan
- DCU Water Institute, School of Chemical Science, Dublin City University, Ireland
| | - Fiona Regan
- DCU Water Institute, School of Chemical Science, Dublin City University, Ireland.
| |
Collapse
|
45
|
Sommer V, Mikhailyuk T, Glaser K, Karsten U. Uncovering Unique Green Algae and Cyanobacteria Isolated from Biocrusts in Highly Saline Potash Tailing Pile Habitats, Using an Integrative Approach. Microorganisms 2020; 8:E1667. [PMID: 33121104 PMCID: PMC7692164 DOI: 10.3390/microorganisms8111667] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/22/2020] [Accepted: 10/22/2020] [Indexed: 02/01/2023] Open
Abstract
Potash tailing piles caused by fertilizer production shape their surroundings because of the associated salt impact. A previous study in these environments addressed the functional community "biocrust" comprising various micro- and macro-organisms inhabiting the soil surface. In that previous study, biocrust microalgae and cyanobacteria were isolated and morphologically identified amongst an ecological discussion. However, morphological species identification maybe is difficult because of phenotypic plasticity, which might lead to misidentifications. The present study revisited the earlier species list using an integrative approach, including molecular methods. Seventy-six strains were sequenced using the markers small subunit (SSU) rRNA gene and internal transcribed spacer (ITS). Phylogenetic analyses confirmed some morphologically identified species. However, several other strains could only be identified at the genus level. This indicates a high proportion of possibly unknown taxa, underlined by the low congruence of the previous morphological identifications to our results. In general, the integrative approach resulted in more precise species identifications and should be considered as an extension of the previous morphological species list. The majority of taxa found were common in saline habitats, whereas some were more likely to occur in nonsaline environments. Consequently, biocrusts in saline environments of potash tailing piles contain unique microalgae and cyanobacteria that will possibly reveal several new taxa in more detailed future studies and, hence, provide new data on the biodiversity, as well as new candidates for applied research.
Collapse
Affiliation(s)
- Veronika Sommer
- Institute for Biological Sciences, Applied Ecology and Phycology, University of Rostock, 18059 Rostock, Germany; (V.S.); (K.G.)
- upi UmweltProjekt Ingenieursgesellschaft mbH, 39576 Stendal, Germany
| | - Tatiana Mikhailyuk
- National Academy of Sciences of Ukraine, M.G. Kholodny Institute of Botany, 01601 Kyiv, Ukraine;
| | - Karin Glaser
- Institute for Biological Sciences, Applied Ecology and Phycology, University of Rostock, 18059 Rostock, Germany; (V.S.); (K.G.)
| | - Ulf Karsten
- Institute for Biological Sciences, Applied Ecology and Phycology, University of Rostock, 18059 Rostock, Germany; (V.S.); (K.G.)
| |
Collapse
|
46
|
Li X, Guo L, Liu Y, Wang Y, She Z, Gao M, Zhao Y. Effect of salinity and pH on dark fermentation with thermophilic bacteria pretreated swine wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 271:111023. [PMID: 32778304 DOI: 10.1016/j.jenvman.2020.111023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
The utilization of swine wastewater is affected by salinity and pH owing to the extensive use with seawater instead of domestic water as swine farm flushing water in coastal city. Therefore, swine wastewater pretreated with thermophilic bacteria was used as fermentation substrate in this work, the effects of salinity and pH on dark fermentation under mesophilic condition were investigated. The research showed that 1.5% salinity and pH 6.0 were the optimal conditions for hydrogen production with swine wastewater. The activity of hydrogenogen was inhibited at 3.5% salinity and pH 5.0. Soluble organic matter in substrate was accumulated under high salinity and alkaline conditions. The utilization of carbohydrate during dark fermentation was up to 61.1% at 1.5% salinity and 51.5% at pH 9.0. Enhancing of salinity and pH had an advantage in accumulation of total soluble metabolites. Acetate was the main metabolite during dark fermentation, and 1.5% salinity contributed to the formation of butyrate.
Collapse
Affiliation(s)
- Xunzhou Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Liang Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environ1mental and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.
| | - Yue Liu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yi Wang
- Department of Biosystems Engineering, Auburn University, Auburn, AL, 36849, United States
| | - Zonglian She
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Mengchun Gao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yangguo Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
47
|
Isoprostanoid Profiling of Marine Microalgae. Biomolecules 2020; 10:biom10071073. [PMID: 32708411 PMCID: PMC7407139 DOI: 10.3390/biom10071073] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/09/2020] [Accepted: 07/14/2020] [Indexed: 12/23/2022] Open
Abstract
Algae result from a complex evolutionary history that shapes their metabolic network. For example, these organisms can synthesize different polyunsaturated fatty acids, such as those found in land plants and oily fish. Due to the presence of numerous double-bonds, such molecules can be oxidized nonenzymatically, and this results in the biosynthesis of high-value bioactive metabolites named isoprostanoids. So far, there have been only a few studies reporting isoprostanoid productions in algae. To fill this gap, the current investigation aimed at profiling isoprostanoids by liquid chromatography -mass spectrometry/mass spectrometry (LC-MS/MS) in four marine microalgae. A good correlation was observed between the most abundant polyunsaturated fatty acids (PUFAs) produced by the investigated microalgal species and their isoprostanoid profiles. No significant variations in the content of oxidized derivatives were observed for Rhodomonas salina and Chaetoceros gracilis under copper stress, whereas increases in the production of C18-, C20- and C22-derived isoprostanoids were monitored in Tisochrysis lutea and Phaeodactylum tricornutum. In the presence of hydrogen peroxide, no significant changes were observed for C. gracilis and for T. lutea, while variations were monitored for the other two algae. This study paves the way to further studying the physiological roles of isoprostanoids in marine microalgae and exploring these organisms as bioresources for isoprostanoid production.
Collapse
|
48
|
Characterization of Endogenous Auxins and Gibberellins Produced by Chlorella sorokiniana TH01 under Phototrophic and Mixtrophic Cultivation Modes toward Applications in Microalgal Biorefinery and Crop Research. J CHEM-NY 2020. [DOI: 10.1155/2020/4910621] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Microalgae have been reported to produce endogenous phytohormones including auxins, gibberellins, cytokinins, brassinosteroids, and abscisic acid. Methanol residual released from microalgal lipid extraction usually contains a variety of bioactive compounds including the phytohormones; however, they are poorly characterized and used for other applications. This study aimed at investigating auxin, gibberellin, and cytokinin production of C. sorokiniana TH01 under phototrophic and mixtrophic cultivations. Moreover, endogenous auxins, gibberellins, and cytokinins in methanol residual obtained from the algal lipid extraction were characterized using HPLC-ESI-MS/MS toward application for crop and biorefinery research. Data showed that endogenous indole-3-acetic acid (IAA), 3-indolepropionic acid (IPA), gibberellin A4 (GA4), and gibberellin A7 (GA7) were detected in C. sorokiniana TH01 biomass. Under the phototrophic mode, total auxin and GA levels were reduced to 0.98 and 9.65 μg/g DW under salt stress (20 g NaCl/L) from 3.59 to 24.71 μg/g DW, respectively, measured for the control. Similarly, total auxins and GAs were also decreased to 0.56 and 2.86 μg/g DW, respectively, under mixtrophic growth with 6 g glucose/L. Total auxins and GAs determined in the water algal extract were 1062.7 and 2000.1 μg/L, respectively. Treatment with higher 40% (v/v) of the algal extract triggered earlier seed germination of rice and tomato plants in 2 and 1 days, respectively. Our new findings in capability of C. sorokiniana TH01 in endogenous phytohormone production contain fundamental merits for further optimization of the algal production (i.e., cultivation modes, conditions, lipids, biomass productivity, and hormone levels) to be used for biorefinery.
Collapse
|
49
|
Li Y, Wang C, Liu H, Su J, Lan CQ, Zhong M, Hu X. Production, isolation and bioactive estimation of extracellular polysaccharides of green microalga Neochloris oleoabundans. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101883] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
50
|
Mao X, Zhang Y, Wang X, Liu J. Novel insights into salinity-induced lipogenesis and carotenogenesis in the oleaginous astaxanthin-producing alga Chromochloris zofingiensis: a multi-omics study. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:73. [PMID: 32322303 PMCID: PMC7161124 DOI: 10.1186/s13068-020-01714-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 04/09/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND Chromochloris zofingiensis, a freshwater alga capable of synthesizing both triacylglycerol (TAG) and astaxanthin, has been receiving increasing attention as a leading candidate producer. While the mechanism of oleaginousness and/or carotenogenesis has been studied under such induction conditions as nitrogen deprivation, high light and glucose feeding, it remains to be elucidated in response to salt stress, a condition critical for reducing freshwater footprint during algal production processes. RESULTS Firstly, the effect of salt concentrations on growth, lipids and carotenoids was examined for C. zofingiensis, and 0.2 M NaCl demonstrated to be the optimal salt concentration for maximizing both TAG and astaxanthin production. Then, the time-resolved lipid and carotenoid profiles and comparative transcriptomes and metabolomes were generated in response to the optimized salt concentration for congruent analysis. A global response was triggered in C. zofingiensis allowing acclimation to salt stress, including photosynthesis impairment, ROS build-up, protein turnover, starch degradation, and TAG and astaxanthin accumulation. The lipid metabolism involved a set of stimulated biological pathways that contributed to carbon precursors, energy and reductant molecules, pushing and pulling power, and storage sink for TAG accumulation. On the other hand, salt stress suppressed lutein biosynthesis, stimulated astaxanthin biosynthesis (mainly via ketolation), yet had little effect on total carotenoid flux, leading to astaxanthin accumulation at the expense of lutein. Astaxanthin was predominantly esterified and accumulated in a well-coordinated manner with TAG, pointing to the presence of common regulators and potential communication for the two compounds. Furthermore, the comparison between salt stress and nitrogen deprivation conditions revealed distinctions in TAG and astaxanthin biosynthesis as well as critical genes with engineering potential. CONCLUSIONS Our multi-omics data and integrated analysis shed light on the salt acclimation of C. zofingiensis and underlying mechanisms of TAG and astaxanthin biosynthesis, provide engineering implications into future trait improvements, and will benefit the development of this alga for production uses under saline environment, thus reducing the footprint of freshwater.
Collapse
Affiliation(s)
- Xuemei Mao
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing, 100871 China
| | - Yu Zhang
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing, 100871 China
| | - Xiaofei Wang
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing, 100871 China
| | - Jin Liu
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing, 100871 China
| |
Collapse
|