1
|
Yang W, Zhao X, Han M, Li Y, Tian Y, Rong Z, Zhang J. Recent advances in biosynthesis mechanisms and yield enhancement strategies of erythritol. Crit Rev Food Sci Nutr 2023; 64:13112-13132. [PMID: 37791716 DOI: 10.1080/10408398.2023.2260869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Erythritol is a four-carbon sugar alcohol naturally produced by microorganisms as an osmoprotectant. As a new sugar substitute, erythritol has recently been popular on the ingredient market because of its unique nutritional characteristics. Even though the history of erythritol biosynthesis dates from the turn of the twentieth century, scientific advancement has lagged behind other polyols due to the relative complexity of making it. In recent years, biosynthetic methods for erythritol have been rapidly developed due to an increase in market demand, a better understanding of metabolic pathways, and the rapid development of genetic engineering tools. This paper reviews the history of industrial strain development and focuses on the underlying mechanism of high erythritol production by strains gained through screening or mutagenesis. Meanwhile, we highlight the metabolic pathway knowledge of erythritol biosynthesis in microorganisms and summarize the metabolic engineering and research progress on critical genes involved in different stages of the synthetic pathway. Lastly, we talk about the still-contentious issues and promising future research directions that will help break the erythritol production bottleneck and make erythritol production greener and more sustainable.
Collapse
Affiliation(s)
- Wenli Yang
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xiangying Zhao
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Shandong Provincial Key Laboratory of Food and Fermentation Engineering, Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Mo Han
- Shandong Provincial Key Laboratory of Food and Fermentation Engineering, Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yuchen Li
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yanjun Tian
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Shandong Provincial Key Laboratory of Food and Fermentation Engineering, Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Zhangbo Rong
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Jiaxiang Zhang
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Shandong Provincial Key Laboratory of Food and Fermentation Engineering, Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
2
|
Juszczyk P, Rywińska A, Kosicka J, Tomaszewska-Hetman L, Rymowicz W. Sugar Alcohol Sweetener Production by Yarrowia lipolytica Grown in Media Containing Glycerol. Molecules 2023; 28:6594. [PMID: 37764370 PMCID: PMC10534813 DOI: 10.3390/molecules28186594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Most of the world's annual production of mannitol is by chemical means, but, due to increasing demand for natural sweeteners, alternative production methods are being sought. The aim of the study was to screen Yarrowia lipolytica yeast strains and select culture conditions for the efficient and selective biosynthesis of mannitol from glycerol. From 21 strains examined in the shake-flask culture for mannitol biosynthesis from glycerol (100 g/L), three strains were selected-S2, S3, and S4-and further evaluated in batch bioreactor cultures with technical and raw glycerol (150 g/L). The best production parameters were observed for strain S3, which additionally was found to be the most resistant to NaCl concentration. Next, strain S3 was examined in batch culture with regard to the initial glycerol concentration (from 50 to 250 g/L). It was found that the substrate concentrations of 50 and 75 g/L resulted in the highest mannitol selectivity, about 70%. The fed-batch culture system proposed in this paper (performed in two variants in which glycerol was dosed in four portions of about 50 or 75 g/L) resulted in increased mannitol production, up to 78.5 g/L.
Collapse
Affiliation(s)
- Piotr Juszczyk
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, Chełmońskiego St. 37, 51-630 Wrocław, Poland; (A.R.); (J.K.); (L.T.-H.); (W.R.)
| | | | | | | | | |
Collapse
|
3
|
Szczepańczyk M, Rzechonek DA, Neuvéglise C, Mirończuk AM. In-depth analysis of erythrose reductase homologs in Yarrowia lipolytica. Sci Rep 2023; 13:9129. [PMID: 37277427 DOI: 10.1038/s41598-023-36152-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/30/2023] [Indexed: 06/07/2023] Open
Abstract
The unconventional yeast Yarrowia lipolytica produces erythritol as an osmoprotectant to adapt to osmotic stress. In this study, the array of putative erythrose reductases, responsible for the conversion of d-erythrose to erythritol, was analyzed. Single knockout and multiple knockout strains were tested for their ability to produce polyols in osmotic stress conditions. Lack of six of the reductase genes does not affect erythritol significantly, as the production of this polyol is comparable to the control strain. Deletion of eight of the homologous erythrose reductase genes resulted in a 91% decrease in erythritol synthesis, a 53% increase in mannitol synthesis, and an almost 8-fold increase in arabitol synthesis as compared to the control strain. Additionally, the utilization of glycerol was impaired in the media with induced higher osmotic pressure. The results of this research may shed new light on the production of arabitol and mannitol from glycerol by Y. lipolytica and help to develop strategies for further modification in polyol pathways in these microorganisms.
Collapse
Affiliation(s)
- Mateusz Szczepańczyk
- Laboratory for Biosustainability, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, 5B Kozuchowska St., 51-631, Wroclaw, Poland
| | - Dorota A Rzechonek
- Laboratory for Biosustainability, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, 5B Kozuchowska St., 51-631, Wroclaw, Poland
| | - Cécile Neuvéglise
- INRAE, Institut Agro, SPO, University Montpellier, 34060, Montpellier, France
| | - Aleksandra M Mirończuk
- Laboratory for Biosustainability, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, 5B Kozuchowska St., 51-631, Wroclaw, Poland.
| |
Collapse
|
4
|
Liang P, Cao M, Li J, Wang Q, Dai Z. Expanding sugar alcohol industry: Microbial production of sugar alcohols and associated chemocatalytic derivatives. Biotechnol Adv 2023; 64:108105. [PMID: 36736865 DOI: 10.1016/j.biotechadv.2023.108105] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 01/28/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023]
Abstract
Sugar alcohols are polyols that are widely employed in the production of chemicals, pharmaceuticals, and food products. Chemical synthesis of polyols, however, is complex and necessitates the use of hazardous compounds. Therefore, the use of microbes to produce polyols has been proposed as an alternative to traditional synthesis strategies. Many biotechnological approaches have been described to enhancing sugar alcohols production and microbe-mediated sugar alcohol production has the potential to benefit from the availability of inexpensive substrate inputs. Among of them, microbe-mediated erythritol production has been implemented in an industrial scale, but microbial growth and substrate conversion rates are often limited by harsh environmental conditions. In this review, we focused on xylitol, mannitol, sorbitol, and erythritol, the four representative sugar alcohols. The main metabolic engineering strategies, such as regulation of key genes and cofactor balancing, for improving the production of these sugar alcohols were reviewed. The feasible strategies to enhance the stress tolerance of chassis cells, especially thermotolerance, were also summarized. Different low-cost substrates like glycerol, molasses, cellulose hydrolysate, and CO2 employed for producing these sugar alcohols were presented. Given the value of polyols as precursor platform chemicals that can be leveraged to produce a diverse array of chemical products, we not only discuss the challenges encountered in the above parts, but also envisioned the development of their derivatives for broadening the application of sugar alcohols.
Collapse
Affiliation(s)
- Peixin Liang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Mingfeng Cao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jing Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Qinhong Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China.
| | - Zongjie Dai
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China.
| |
Collapse
|
5
|
Ziuzia P, Janiec Z, Wróbel-Kwiatkowska M, Lazar Z, Rakicka-Pustułka M. Honey's Yeast-New Source of Valuable Species for Industrial Applications. Int J Mol Sci 2023; 24:ijms24097889. [PMID: 37175595 PMCID: PMC10178026 DOI: 10.3390/ijms24097889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Honey is a rich source of compounds with biological activity; moreover, it is a valuable source of various microorganisms. The aim of this study was to isolate and identify yeast from a sample of lime honey from Poland as well as to assess its ability to biosynthesize value-added chemicals such as kynurenic acid, erythritol, mannitol, and citric acid on common carbon sources. Fifteen yeast strains belonging to the species Yarrowia lipolytica, Candida magnolia, and Starmerella magnoliae were isolated. In shake-flask screening, the best value-added compound producers were chosen. In the last step, scaling up of the culture in the bioreactor was performed. A newly isolated strain of Y. lipolytica No. 12 produced 3.9 mg/L of kynurenic acid growing on fructose. Strain Y. lipolytica No. 9 synthesized 32.6 g/L of erythritol on technical glycerol with a low concentration of byproducts. Strain Y. lipolytica No. 5 produced 15.1 g/L of mannitol on technical glycerol, and strain No. 3 produced a very high amount of citric acid (76.6 g/L) on technical glycerol. In conclusion, to the best of our knowledge this is the first study to report the use of yeast isolates from honey to produce valuable chemicals. This study proves that natural products such as lime honey can be an excellent source of wild-type yeasts with valuable production properties.
Collapse
Affiliation(s)
- Patrycja Ziuzia
- Department of Biochemistry and Molecular Biology, Wroclaw University of Environmental and Life Sciences, 31 Norwida St., 50-375 Wroclaw, Poland
| | - Zuzanna Janiec
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, 37 Chełmońskiego St., 51-630 Wroclaw, Poland
| | - Magdalena Wróbel-Kwiatkowska
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, 37 Chełmońskiego St., 51-630 Wroclaw, Poland
| | - Zbigniew Lazar
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, 37 Chełmońskiego St., 51-630 Wroclaw, Poland
| | - Magdalena Rakicka-Pustułka
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, 37 Chełmońskiego St., 51-630 Wroclaw, Poland
| |
Collapse
|
6
|
Theodosiou E. Engineering Strategies for Efficient Bioconversion of Glycerol to Value-Added Products by Yarrowia lipolytica. Catalysts 2023. [DOI: 10.3390/catal13040657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
Yarrowia lipolytica has been a valuable biotechnological workhorse for the production of commercially important biochemicals for over 70 years. The knowledge gained so far on the native biosynthetic pathways, as well as the availability of numerous systems and synthetic biology tools, enabled not only the regulation and the redesign of the existing metabolic pathways, but also the introduction of novel synthetic ones; further consolidating the position of the yeast in industrial biotechnology. However, for the development of competitive and sustainable biotechnological production processes, bioengineering should be reinforced by bioprocess optimization strategies. Although there are many published reviews on the bioconversion of various carbon sources to value-added products by Yarrowia lipolytica, fewer works have focused on reviewing up-to-date strain, medium, and process engineering strategies with an aim to emphasize the significance of integrated engineering approaches. The ultimate goal of this work is to summarize the necessary knowledge and inspire novel routes to manipulate at a systems level the yeast biosynthetic machineries by combining strain and bioprocess engineering. Due to the increasing surplus of biodiesel-derived waste glycerol and the favored glycerol-utilization metabolic pathways of Y. lipolytica over other carbon sources, the present review focuses on pure and crude glycerol-based biomanufacturing.
Collapse
|
7
|
Upgrading Major Waste Streams Derived from the Biodiesel Industry and Olive Mills via Microbial Bioprocessing with Non-Conventional Yarrowia lipolytica Strains. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
This study reports the development of a bioprocess involving the valorization of biodiesel-derived glycerol as the main carbon source for cell proliferation of Yarrowia lipolytica strains and production of metabolic compounds, i.e., citric acid (Cit), polyols, and other bio-metabolites, the substitution of process tap water with olive mill wastewater (OMW) in batch fermentations, and partial detoxification of OMW (up to 31.1% decolorization). Increasing initial phenolics (Phen) of OMW-glycerol blends led to substantial Cit secretion. Maximum Cit values, varying between 64.1–65.1 g/L, combined with high yield (YCit/S = 0.682–0.690 g Cit/g carbon sources) and productivity (0.335–0.344 g/L/h) were achieved in the presence of Phen = 3 g/L. The notable accumulation of endopolysaccharides (EPs) on the produced biomass was determined when Y. lipolytica LMBF Y-46 (51.9%) and ACA-YC 5033 (61.5%) were cultivated on glycerol-based media. Blending with various amounts of OMW negatively affected EPs and polyols biosynthesis. The ratio of mannitol:arabitol:erythritol was significantly affected (p < 0.05) by the fermentation media. Erythritol was the major polyol in the absence of OMW (53.5–62.32%), while blends of OMW-glycerol (with Phen = 1–3 g/L) promoted mannitol production (54.5–76.6%). Nitrogen-limited conditions did not favor the production of cellular lipids (up to 16.6%). This study addressed sustainable management and resource efficiency enabling the bioconversion of high-organic-load and toxic waste streams into valuable products within a circular bioeconomy approach.
Collapse
|
8
|
Yu Y, Zhou Y, Wang K, Sun T, Lin L, Ledesma-Amaro R, Ji XJ. Metabolic and Process Engineering for Producing the Peach-Like Aroma Compound γ-Decalactone in Yarrowia lipolytica. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:110-120. [PMID: 36579964 DOI: 10.1021/acs.jafc.2c07356] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Due to its strong and unique peach-like aroma, γ-decalactone is widely used in dairy products and other foods or beverages. The oleaginous yeast Yarrowia lipolytica, which is generally regarded as safe, has shown great potential in the production of this flavor compound. Recently, the development of metabolic and process engineering has enabled the application of Y. lipolytica for the production of γ-decalactone. This Review summarizes the relevant biosynthesis and degradation pathways of Y. lipolytica, after which the related metabolic engineering strategies to increase the accumulation of γ-decalactone are summarized. In addition, the factors affecting γ-decalactone accumulation in Y. lipolytica are introduced, and corresponding process optimization strategies are discussed. Finally, the current research needs are analyzed to search for remaining challenges and future directions in this field.
Collapse
Affiliation(s)
- Yizi Yu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Yufan Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Kaifeng Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Tao Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Lu Lin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| |
Collapse
|
9
|
Khatape AB, Dastager SG, Rangaswamy V. An overview of erythritol production by yeast strains. FEMS Microbiol Lett 2022; 369:6819949. [PMID: 36354105 DOI: 10.1093/femsle/fnac107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/26/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
Erythritol is a 4-carbon polyol produced with the aid of microbes in presence of hyper-osmotic stress. It is the most effective sugar alcohol that is produced predominantly by fermentation. In comparison to various polyols, it has many precise functions and is used as a flavor enhancer, sequestrant, humectant, nutritive sweetener, stabilizer, formulation aid, thickener, and a texturizer. Erythritol production is a common trait in a number of the yeast genera viz., Trigonopsis, Candida, Pichia, Moniliella, Yarrowia, Pseudozyma, Trichosporonoides, Aureobasidium, and Trichoderma. Extensive work has been carried out on the biological production of erythritol through Yarrowia, Moniliella, Candida, and other yeast strains, and numerous strategies used to improve erythritol productivity through mutagenesis and genetic engineering are discussed in this review.
Collapse
Affiliation(s)
- Anil B Khatape
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India.,NCIM-Resource Center, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune-411008, India.,High Value Chemicals group, Reliance Industries Limited, Ghansoli, Navi Mumbai 400701, India
| | - Syed G Dastager
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India.,NCIM-Resource Center, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune-411008, India
| | - Vidhya Rangaswamy
- High Value Chemicals group, Reliance Industries Limited, Ghansoli, Navi Mumbai 400701, India
| |
Collapse
|
10
|
Engineering thermotolerant Yarrowia lipolytica for sustainable biosynthesis of mannitol and fructooligosaccharides. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Duan XY, Tian Y, Song ZQ, Song LP, Lin WB, Wang C, Yang H, Lu XY, Ji XJ, Liu HH. High-level de novo biosynthesis of cordycepin by systems metabolic engineering in Yarrowia lipolytica. BIORESOURCE TECHNOLOGY 2022; 363:127862. [PMID: 36041680 DOI: 10.1016/j.biortech.2022.127862] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Cordycepin is a nucleoside antibiotic with various biological activities, which has wide applications in the area of cosmetic and medicine industries. However, the current production of cordycepin is costly and time-consuming. To construct the promising cell factory for high-level cordycepin production, firstly, the design and construction of cordycepin biosynthetic pathway were performed in Yarrowia lipolytica. Secondly, the adaptivity between cordycepin biosynthetic pathway and Y. lipolytica was enhanced by enzyme fusion and integration site engineering. Then, the production of cordycepin was improved by the enhancement of adenosine supply. Furthermore, through modular engineering, the production of cordycepin was achieved at 3588.59 mg/L from glucose. Finally, 3249.58 mg/L cordycepin with a yield of 76.46 mg/g total sugar was produced by the engineered strain from the mixtures of glucose and molasses. This research is the first report on the de novo high-level production of cordycepin in the engineered Y. lipolytica.
Collapse
Affiliation(s)
- Xi-Yu Duan
- College of Bioscience and Biotechnology, Hunan Agricultural University, No. 1 Nongda Road, Changsha 410128, People's Republic of China
| | - Yun Tian
- College of Bioscience and Biotechnology, Hunan Agricultural University, No. 1 Nongda Road, Changsha 410128, People's Republic of China
| | - Ze-Qi Song
- College of Bioscience and Biotechnology, Hunan Agricultural University, No. 1 Nongda Road, Changsha 410128, People's Republic of China
| | - Li-Ping Song
- College of Bioscience and Biotechnology, Hunan Agricultural University, No. 1 Nongda Road, Changsha 410128, People's Republic of China
| | - Wen-Bo Lin
- College of Bioscience and Biotechnology, Hunan Agricultural University, No. 1 Nongda Road, Changsha 410128, People's Republic of China
| | - Chong Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, No. 1 Nongda Road, Changsha 410128, People's Republic of China
| | - Hui Yang
- College of Bioscience and Biotechnology, Hunan Agricultural University, No. 1 Nongda Road, Changsha 410128, People's Republic of China
| | - Xiang-Yang Lu
- College of Bioscience and Biotechnology, Hunan Agricultural University, No. 1 Nongda Road, Changsha 410128, People's Republic of China
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Hu-Hu Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, No. 1 Nongda Road, Changsha 410128, People's Republic of China.
| |
Collapse
|
12
|
Diamantopoulou P, Papanikolaou S. Biotechnological production of sugar-alcohols: focus on Yarrowia lipolytica and edible/medicinal mushrooms. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Drzymała-Kapinos K, Mirończuk AM, Dobrowolski A. Lipid production from lignocellulosic biomass using an engineered Yarrowia lipolytica strain. Microb Cell Fact 2022; 21:226. [PMID: 36307797 PMCID: PMC9617373 DOI: 10.1186/s12934-022-01951-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/13/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The utilization of industrial wastes as feedstock in microbial-based processes is a one of the high-potential approach for the development of sustainable, environmentally beneficial and valuable bioproduction, inter alia, lipids. Rye straw hydrolysate, a possible renewable carbon source for bioconversion, contains a large amount of xylose, inaccessible to the wild-type Yarrowia lipolytica strains. Although these oleaginous yeasts possesses all crucial genes for xylose utilization, it is necessary to induce their metabolic pathway for efficient growth on xylose and mixed sugars from agricultural wastes. Either way, biotechnological production of single cell oils (SCO) from lignocellulosic hydrolysate requires yeast genome modification or adaptation to a suboptimal environment. RESULTS The presented Y. lipolytica strain was developed using minimal genome modification-overexpression of endogenous xylitol dehydrogenase (XDH) and xylulose kinase (XK) genes was sufficient to allow yeast to grow on xylose as a sole carbon source. Diacylglycerol acyltransferase (DGA1) expression remained stable and provided lipid overproduction. Obtained an engineered Y. lipolytica strain produced 5.51 g/L biomass and 2.19 g/L lipids from nitrogen-supplemented rye straw hydrolysate, which represents an increase of 64% and an almost 10 times higher level, respectively, compared to the wild type (WT) strain. Glucose and xylose were depleted after 120 h of fermentation. No increase in byproducts such as xylitol was observed. CONCLUSIONS Xylose-rich rye straw hydrolysate was exploited efficiently for the benefit of production of lipids. This study indicates that it is possible to fine-tune a newly strain with as minimally genetic changes as possible by adjusting to an unfavorable environment, thus limiting multi-level genome modification. It is documented here the use of Y. lipolytica as a microbial cell factory for lipid synthesis from rye straw hydrolysate as a low-cost feedstock.
Collapse
Affiliation(s)
- Katarzyna Drzymała-Kapinos
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, 37 Chełmońskiego Street, 51-630, Wrocław, Poland
| | - Aleksandra M Mirończuk
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, 37 Chełmońskiego Street, 51-630, Wrocław, Poland.,Laboratory for Biosustainability, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Adam Dobrowolski
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, 37 Chełmońskiego Street, 51-630, Wrocław, Poland. .,Laboratory for Biosustainability, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland.
| |
Collapse
|
14
|
Liu X, Yu X, He A, Xia J, He J, Deng Y, Xu N, Qiu Z, Wang X, Zhao P. One-pot fermentation for erythritol production from distillers grains by the co-cultivation of Yarrowia lipolytica and Trichoderma reesei. BIORESOURCE TECHNOLOGY 2022; 351:127053. [PMID: 35337991 DOI: 10.1016/j.biortech.2022.127053] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/19/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
A co-fermentation process involving Yarrowia lipolytica and Trichoderma reesei was studied, using distillers grains (DGS) as feedstocks for erythritol production. DGS can be effectively hydrolyzed by cellulase in the single-strain culture of T. reesei. One-pot solid state fermentation for erythritol production was then established by co-cultivating Y. lipolytica M53-S with the 12 h delay inoculated T. reesei Rut C-30, in which efficient saccharification of DGS and improved production of erythritol were simultaneously achieved. The 10:1 inoculation proportion of Y. lipolytica and T. reesei contributed to the maximum erythritol production of 267.1 mg/gds under the optimal conditions including initial moisture of 55%, pH of 5.0, NaCl addition of 0.02 g/gds and DGS mass of 200 g in 144 h co-cultivation. Being compared with the attempts to produce erythritol from other raw materials, the one-pot SSF with DGS is proposed to be a potential strategy for efficient and economical erythritol production.
Collapse
Affiliation(s)
- Xiaoyan Liu
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, PR China.
| | - Xinjun Yu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, PR China
| | - Aiyong He
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, PR China
| | - Jun Xia
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, PR China
| | - Jianlong He
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, PR China
| | - Yuanfang Deng
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, PR China
| | - Ning Xu
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, PR China
| | - Zhongyang Qiu
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, PR China
| | - Xiaoyu Wang
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, PR China
| | - Pusu Zhao
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, PR China
| |
Collapse
|
15
|
Jach ME, Malm A. Yarrowia lipolytica as an Alternative and Valuable Source of Nutritional and Bioactive Compounds for Humans. Molecules 2022; 27:2300. [PMID: 35408699 PMCID: PMC9000428 DOI: 10.3390/molecules27072300] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 12/04/2022] Open
Abstract
Yarrowia lipolytica, an oleagineous species of yeast, is a carrier of various important nutrients. The biomass of this yeast is an extensive source of protein, exogenous amino acids, bioavailable essenctial trace minerals, and lipid compounds as mainly unsaturated fatty acids. The biomass also contains B vitamins, including vitamin B12, and many other bioactive components. Therefore, Y. lipolytica biomass can be used in food supplements for humans as safe and nutritional additives for maintaining the homeostasis of the organism, including for vegans and vegetarians, athletes, people after recovery, and people at risk of B vitamin deficiencies.
Collapse
Affiliation(s)
- Monika Elżbieta Jach
- Department of Molecular Biology, The John Paul II Catholic University of Lublin, Konstantynów Street 1I, 20-708 Lublin, Poland
| | - Anna Malm
- Department of Pharmaceutical Microbiology, Medical University of Lublin, Chodźki Street 1, 20-093 Lublin, Poland;
| |
Collapse
|
16
|
Erian AM, Sauer M. Utilizing yeasts for the conversion of renewable feedstocks to sugar alcohols - a review. BIORESOURCE TECHNOLOGY 2022; 346:126296. [PMID: 34798255 DOI: 10.1016/j.biortech.2021.126296] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
Sugar alcohols are widely marketed compounds. They are useful building block chemicals and of particular value as low- or non-calorigenic sweeteners, serving as sugar substitutes in the food industry. To date most sugar alcohols are produced by chemical routes using pure sugars, but a transition towards the use of renewable, non-edible feedstocks is anticipated. Several yeasts are naturally able to convert renewable feedstocks, such as lignocellulosic substrates, glycerol and molasses, into sugar alcohols. These bioconversions often face difficulties to obtain sufficiently high yields and productivities necessary for industrialization. This review provides insight into the most recent studies on utilizing yeasts for the conversion of renewable feedstocks to diverse sugar alcohols, including xylitol, erythritol, mannitol and arabitol. Moreover, metabolic approaches are highlighted that specifically target shortcomings of sugar alcohol production by yeasts from these renewable substrates.
Collapse
Affiliation(s)
- Anna Maria Erian
- CD-Laboratory for Biotechnology of Glycerol, Muthgasse 18, Vienna, Austria; University of Natural Resources and Life Sciences, Vienna, Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, Muthgasse 18, 1190 Vienna, Austria
| | - Michael Sauer
- CD-Laboratory for Biotechnology of Glycerol, Muthgasse 18, Vienna, Austria; University of Natural Resources and Life Sciences, Vienna, Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, Muthgasse 18, 1190 Vienna, Austria.
| |
Collapse
|
17
|
Jach ME, Serefko A, Ziaja M, Kieliszek M. Yeast Protein as an Easily Accessible Food Source. Metabolites 2022; 12:63. [PMID: 35050185 PMCID: PMC8780597 DOI: 10.3390/metabo12010063] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 02/07/2023] Open
Abstract
In recent years, the awareness and willingness of consumers to consume healthy food has grown significantly. In order to meet these needs, scientists are looking for innovative methods of food production, which is a source of easily digestible protein with a balanced amino acid composition. Yeast protein biomass (single cell protein, SCP) is a bioavailable product which is obtained when primarily using as a culture medium inexpensive various waste substrates including agricultural and industrial wastes. With the growing population, yeast protein seems to be an attractive alternative to traditional protein sources such as plants and meat. Moreover, yeast protein biomass also contains trace minerals and vitamins including B-group. Thus, using yeast in the production of protein provides both valuable nutrients and enhances purification of wastes. In conclusion, nutritional yeast protein biomass may be the best option for human and animal nutrition with a low environmental footprint. The rapidly evolving SCP production technology and discoveries from the world of biotechnology can make a huge difference in the future for the key improvement of hunger problems and the possibility of improving world food security. On the market of growing demand for cheap and environmentally clean SCP protein with practically unlimited scale of production, it may soon become one of the ingredients of our food. The review article presents the possibilities of protein production by yeast groups with the use of various substrates as well as the safety of yeast protein used as food.
Collapse
Affiliation(s)
- Monika Elżbieta Jach
- Department of Molecular Biology, The John Paul II Catholic University of Lublin, Konstantynów Street 1I, 20-708 Lublin, Poland
| | - Anna Serefko
- Department of Applied Pharmacy, Medical University of Lublin, Chodźki Street 4a, 20-093 Lublin, Poland;
| | - Maria Ziaja
- Institute of Physical Culture Studies, Medical College, University of Rzeszów, Cicha Street 2a, 35-326 Rzeszów, Poland;
| | - Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska Street 159C, 02-776 Warsaw, Poland
| |
Collapse
|
18
|
Szczepańczyk M, Rzechonek DA, Dobrowolski A, Mirończuk AM. The Overexpression of YALI0B07117g Results in Enhanced Erythritol Synthesis from Glycerol by the Yeast Yarrowia lipolytica. Molecules 2021; 26:molecules26247549. [PMID: 34946639 PMCID: PMC8705655 DOI: 10.3390/molecules26247549] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 11/22/2022] Open
Abstract
The unconventional yeast Yarrowia lipolytica is used to produce erythritol from glycerol. In this study, the role of the erythrose reductase (ER) homolog YALI0B07117g in erythritol synthesis was analyzed. The deletion of the gene resulted in an increased production of mannitol (308%) and arabitol (204%) before the utilization of these polyols began. The strain overexpressing the YALI0B07117g gene was used to increase the erythritol yield from glycerol as a sole carbon source in batch cultures, resulting in a yield of 0.4 g/g. The specific consumption rate (qs) increased from 5.83 g/g/L for the WT strain to 8.49 g/g/L for the modified strain and the productivity of erythritol increased from 0.28 g/(L h) for the A101 strain to 0.41 g/(L h) for the modified strain. The application of the research may prove positive for shortening the cultivation time due to the increased rate of consumption of the substrate combined with the increased parameters of erythritol synthesis.
Collapse
|
19
|
Bioconversions of Biodiesel-Derived Glycerol into Sugar Alcohols by Newly Isolated Wild-Type Yarrowia lipolytica Strains. REACTIONS 2021. [DOI: 10.3390/reactions2040032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The utilization of crude glycerol, generated as a by-product from the biodiesel production process, for the production of high value-added products represents an opportunity to overcome the negative impact of low glycerol prices in the biodiesel industry. In this study, the biochemical behavior of Yarrowia lipolytica strains FMCC Y-74 and FMCC Y-75 was investigated using glycerol as a carbon source. Initially, the effect of pH value (3.0–7.0) was examined to produce polyols, intracellular lipids, and polysaccharides. At low pH values (initial pH 3.0–5.0), significant mannitol production was recorded. The highest mannitol production (19.64 g L−1) was obtained by Y. lipolytica FMCC Y-74 at pH = 3.0. At pH values ranging between 5.0 and 6.0, intracellular polysaccharides synthesis was favored, while polyols production was suppressed. Subsequently, the effect of crude glycerol and its concentration on polyols production was studied. Y. lipolytica FMCC Y-74 showed high tolerance to impurities of crude glycerol. Initial substrate concentrations influence polyols production and distribution with a metabolic shift toward erythritol production being observed when the initial glycerol concentration (Gly0) increased. The highest total polyols production (=56.64 g L−1) was obtained at Gly0 adjusted to ≈120 g L−1. The highest polyols conversion yield (0.59 g g−1) and productivity (4.36 g L−1 d−1) were reached at Gly0 = 80 g L−1. In fed-batch intermittent fermentation with glycerol concentration remaining ≤60 g L−1, the metabolism was shifted toward mannitol biosynthesis, which was the main polyol produced in significant quantities (=36.84 g L−1) with a corresponding conversion yield of 0.51 g g−1.
Collapse
|
20
|
Rakicka-Pustułka M, Miedzianka J, Jama D, Kawalec S, Liman K, Janek T, Skaradziński G, Rymowicz W, Lazar Z. High value-added products derived from crude glycerol via microbial fermentation using Yarrowia clade yeast. Microb Cell Fact 2021; 20:195. [PMID: 34627248 PMCID: PMC8502345 DOI: 10.1186/s12934-021-01686-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/24/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Contemporary biotechnology focuses on many problems related to the functioning of developed societies. Many of these problems are related to health, especially with the rapidly rising numbers of people suffering from civilization diseases, such as obesity or diabetes. One factor contributing to the development of these diseases is the high consumption of sucrose. A very promising substitute for this sugar has emerged: the polyhydroxy alcohols, characterized by low caloric value and sufficient sweetness to replace table sugar in food production. RESULTS In the current study, yeast belonging to the Yarrowia clade were tested for erythritol, mannitol and arabitol production using crude glycerol from the biodiesel and soap industries as carbon sources. Out of the 13 tested species, Yarrowia divulgata and Candida oslonensis turned out to be particularly efficient polyol producers. Both species produced large amounts of these compounds from both soap-derived glycerol (59.8-62.7 g dm-3) and biodiesel-derived glycerol (76.8-79.5 g dm-3). However, it is equally important that the protein and lipid content of the biomass (around 30% protein and 12% lipid) obtained after the processes is high enough to use this yeast in the production of animal feed. CONCLUSIONS The use of waste glycerol for the production of polyols as well as utilization of the biomass obtained after the process for the production of feed are part of the development of modern waste-free technologies.
Collapse
Affiliation(s)
- Magdalena Rakicka-Pustułka
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 37, 51-630, Wroclaw, Poland.
| | - Joanna Miedzianka
- Department of Food Storage and Technology, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 37, 51-630, Wroclaw, Poland
| | - Dominika Jama
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 37, 51-630, Wroclaw, Poland
| | - Sylwia Kawalec
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 37, 51-630, Wroclaw, Poland
| | - Kamila Liman
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 37, 51-630, Wroclaw, Poland
| | - Tomasz Janek
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 37, 51-630, Wroclaw, Poland
| | - Grzegorz Skaradziński
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 37, 51-630, Wroclaw, Poland
| | - Waldemar Rymowicz
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 37, 51-630, Wroclaw, Poland
| | - Zbigniew Lazar
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 37, 51-630, Wroclaw, Poland
| |
Collapse
|
21
|
Jagtap SS, Bedekar AA, Singh V, Jin YS, Rao CV. Metabolic engineering of the oleaginous yeast Yarrowia lipolytica PO1f for production of erythritol from glycerol. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:188. [PMID: 34563235 PMCID: PMC8466642 DOI: 10.1186/s13068-021-02039-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 09/11/2021] [Indexed: 05/05/2023]
Abstract
BACKGROUND Sugar alcohols are widely used as low-calorie sweeteners in the food and pharmaceutical industries. They can also be transformed into platform chemicals. Yarrowia lipolytica, an oleaginous yeast, is a promising host for producing many sugar alcohols. In this work, we tested whether heterologous expression of a recently identified sugar alcohol phosphatase (PYP) from Saccharomyces cerevisiae would increase sugar alcohol production in Y. lipolytica. RESULTS Y. lipolytica was found natively to produce erythritol, mannitol, and arabitol during growth on glucose, fructose, mannose, and glycerol. Osmotic stress is known to increase sugar alcohol production, and was found to significantly increase erythritol production during growth on glycerol. To better understand erythritol production from glycerol, since it was the most promising sugar alcohol, we measured the expression of key genes and intracellular metabolites. Osmotic stress increased the expression of several key genes in the glycerol catabolic pathway and the pentose phosphate pathway. Analysis of intracellular metabolites revealed that amino acids, sugar alcohols, and polyamines are produced at higher levels in response to osmotic stress. Heterologous overexpression of the sugar alcohol phosphatase increased erythritol production and glycerol utilization in Y. lipolytica. We further increased erythritol production by increasing the expression of native glycerol kinase (GK), and transketolase (TKL). This strain was able to produce 27.5 ± 0.7 g/L erythritol from glycerol during batch growth and 58.8 ± 1.68 g/L erythritol during fed-batch growth in shake-flasks experiments. In addition, the glycerol utilization was increased by 2.5-fold. We were also able to demonstrate that this strain efficiently produces erythritol from crude glycerol, a major byproduct of the biodiesel production. CONCLUSIONS We demonstrated the application of a promising enzyme for increasing erythritol production in Y. lipolytica. We were further able to boost production by combining the expression of this enzyme with other approaches known to increase erythritol production in Y. lipolytica. This suggest that this new enzyme provides an orthogonal route for boosting production and can be stacked with existing designs known to increase sugar alcohol production in yeast such as Y. lipolytica. Collectively, this work establishes a new route for increasing sugar alcohol production and further develops Y. lipolytica as a promising host for erythritol production from cheap substrates such as glycerol.
Collapse
Affiliation(s)
- Sujit Sadashiv Jagtap
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ashwini Ashok Bedekar
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Vijay Singh
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yong-Su Jin
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Food Science and Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Christopher V Rao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
22
|
Gottardi D, Siroli L, Vannini L, Patrignani F, Lanciotti R. Recovery and valorization of agri-food wastes and by-products using the non-conventional yeast Yarrowia lipolytica. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
23
|
The Role of Hexokinase and Hexose Transporters in Preferential Use of Glucose over Fructose and Downstream Metabolic Pathways in the Yeast Yarrowia lipolytica. Int J Mol Sci 2021; 22:ijms22179282. [PMID: 34502217 PMCID: PMC8431455 DOI: 10.3390/ijms22179282] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/22/2021] [Accepted: 08/25/2021] [Indexed: 11/24/2022] Open
Abstract
The development of efficient bioprocesses requires inexpensive and renewable substrates. Molasses, a by-product of the sugar industry, contains mostly sucrose, a disaccharide composed of glucose and fructose, both easily absorbed by microorganisms. Yarrowia lipolytica, a platform for the production of various chemicals, can be engineered for sucrose utilization by heterologous invertase expression, yet the problem of preferential use of glucose over fructose remains, as fructose consumption begins only after glucose depletion what significantly extends the bioprocesses. We investigated the role of hexose transporters and hexokinase (native and fructophilic) in this preference. Analysis of growth profiles and kinetics of monosaccharide utilization has proven that the glucose preference in Y. lipolytica depends primarily on the affinity of native hexokinase for glucose. Interestingly, combined overexpression of either hexokinase with hexose transporters significantly accelerated citric acid biosynthesis and enhanced pentose phosphate pathway leading to secretion of polyols (31.5 g/L vs. no polyols in the control strain). So far, polyol biosynthesis was efficient in glycerol-containing media. Moreover, overexpression of fructophilic hexokinase in combination with hexose transporters not only shortened this process to 48 h (84 h for the medium with glycerol) but also allowed to obtain 23% more polyols (40 g/L) compared to the glycerol medium (32.5 g/L).
Collapse
|
24
|
Hapeta P, Szczepańska P, Neuvéglise C, Lazar Z. A 37-amino acid loop in the Yarrowia lipolytica hexokinase impacts its activity and affinity and modulates gene expression. Sci Rep 2021; 11:6412. [PMID: 33742083 PMCID: PMC7979807 DOI: 10.1038/s41598-021-85837-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/04/2021] [Indexed: 01/31/2023] Open
Abstract
The oleaginous yeast Yarrowia lipolytica is a potent cell factory as it is able to use a wide variety of carbon sources to convert waste materials into value-added products. Nonetheless, there are still gaps in our understanding of its central carbon metabolism. Here we present an in-depth study of Y. lipolytica hexokinase (YlHxk1), a structurally unique protein. The greatest peculiarity of YlHxk1 is a 37-amino acid loop region, a structure not found in any other known hexokinases. By combining bioinformatic and experimental methods we showed that the loop in YlHxk1 is essential for activity of this protein and through that on growth of Y. lipolytica on glucose and fructose. We further proved that the loop in YlHxk1 hinders binding with trehalose 6-phosphate (T6P), a glycolysis inhibitor, as hexokinase with partial deletion of this region is 4.7-fold less sensitive to this molecule. We also found that YlHxk1 devoid of the loop causes strong repressive effect on lipase-encoding genes LIP2 and LIP8 and that the hexokinase overexpression in Y. lipolytica changes glycerol over glucose preference when cultivated in media containing both substrates.
Collapse
Affiliation(s)
- Piotr Hapeta
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630, Wrocław, Poland
| | - Patrycja Szczepańska
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630, Wrocław, Poland
| | - Cécile Neuvéglise
- SPO, INRAE, Montpellier SupAgro, Univ Montpellier, 34060, Montpellier, France
| | - Zbigniew Lazar
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630, Wrocław, Poland.
| |
Collapse
|
25
|
By-products of sugar factories and wineries as feedstocks for erythritol generation. FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2021.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Celińska E, Nicaud JM, Białas W. Hydrolytic secretome engineering in Yarrowia lipolytica for consolidated bioprocessing on polysaccharide resources: review on starch, cellulose, xylan, and inulin. Appl Microbiol Biotechnol 2021; 105:975-989. [PMID: 33447867 PMCID: PMC7843476 DOI: 10.1007/s00253-021-11097-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/22/2020] [Accepted: 01/03/2021] [Indexed: 10/25/2022]
Abstract
Consolidated bioprocessing (CBP) featuring concomitant hydrolysis of renewable substrates and microbial conversion into value-added biomolecules is considered to bring substantial benefits to the overall process efficiency. The biggest challenge in developing an economically feasible CBP process is identification of bifunctional biocatalyst merging the ability to utilize the substrate and convert it to value-added product with high efficiency. Yarrowia lipolytica is known for its exceptional performance in hydrophobic substrates assimilation and storage. On the other hand, its capacity to grow on plant-derived biomass is strongly limited. Still, its high potential to simultaneously overproduce several secretory proteins makes Y. lipolytica a platform of choice for expanding its substrate range to complex polysaccharides by engineering its hydrolytic secretome. This review provides an overview of different genetic engineering strategies advancing development of Y. lipolytica strains able to grow on the following four complex polysaccharides: starch, cellulose, xylan, and inulin. Much attention has been paid to genome mining studies uncovering native potential of this species to assimilate untypical sugars, as in many cases it turns out that dormant pathways are present in Y. lipolytica's genome. In addition, the magnitude of the economic gain by CBP processing is here discussed and supported with adequate calculations based on simulated process models. KEY POINTS: • The mini-review updates the knowledge on polysaccharide-utilizing Yarrowia lipolytica. • Insight into molecular bases founding new biochemical qualities is provided. • Model industrial processes were simulated and the associated costs were calculated.
Collapse
Affiliation(s)
- Ewelina Celińska
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, ul. Wojska Polskiego 48, 60-627, Poznań, Poland.
| | - Jean-Marc Nicaud
- Micalis Institute, INRAE-AgroParisTech, UMR1319, Team BIMLip: Integrative Metabolism of Microbial Lipids, Domaine de Vilvert, 78352, Jouy-en-Josas, France
| | - Wojciech Białas
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, ul. Wojska Polskiego 48, 60-627, Poznań, Poland
| |
Collapse
|
27
|
Liu H, Wang F, Deng L, Xu P. Genetic and bioprocess engineering to improve squalene production in Yarrowia lipolytica. BIORESOURCE TECHNOLOGY 2020; 317:123991. [PMID: 32805480 PMCID: PMC7561614 DOI: 10.1016/j.biortech.2020.123991] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 05/23/2023]
Abstract
Squalene is the precursor for triterpene-based natural products and steroids-based drugs. It has been widely used as pharmaceutical intermediates and personal care products. The aim of this work is to test the feasibility of engineering Yarrowia lipolytica as a potential host for squalene production. The bottleneck of the pathway was removed by overexpressing native HMG-CoA (3-hydroxy-3-methylglutaryl-CoA) reductase. With the recycling of NADPH from the mannitol cycle, the engineered strain produced about 180.3 mg/L and 188.2 mg/L squalene from glucose or acetate minimal media. By optimizing the C/N ratio, controlling the media pH and mitigating acetyl-CoA flux competition from lipogenesis, the engineered strain produced 502.7 mg/L squalene, a 28-fold increase over the parental strain (17.2 mg/L). This work may serve as a baseline to harness Y. lipolytica as an oleaginous cell factory for sustainable production of squalene or terpenoids-based chemicals and natural products.
Collapse
Affiliation(s)
- Huan Liu
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Fang Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Li Deng
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Peng Xu
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, China.
| |
Collapse
|
28
|
Physiological Characterization of a Novel Wild-Type Yarrowia lipolytica Strain Grown on Glycerol: Effects of Cultivation Conditions and Mode on Polyols and Citric Acid Production. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10207373] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A new yeast wild-type Yarrowia lipolytica isolate presented efficient growth on glycerol. During flask cultures, nitrogen limitation led to the secretion of sugar-alcohols as the major metabolites of the process (mannitol, arabitol and erythritol), whereas insignificant quantities of citrate were synthesized. Although in some instances high initial glycerol concentrations were employed (≈150 g/L), remarkable glycerol assimilation and polyol secretion was observed. Total polyols ≈ 52 g/L (conversion yield on glycerol consumed = 0.43 g/g) was recorded in the flask experiments. The sugar-alcohol production bioprocess was successfully simulated with the aid of a modified Velhlust–Aggelis model that fitted very well with the experimental data, while optimized parameter values seemed to be quite consistent. In bioreactor trials, a noticeable metabolic shift towards citric acid production was observed, while simultaneously insignificant polyol quantities were produced. In fed-batch bioreactor experiments, a total citric acid quantity ≈ 102 g/L was recorded—one of the highest in the literature for wild-type Y. lipolytica strains. This metabolic transition was due to higher oxygen saturation into the medium that occurred in the bioreactor experiments compared with the flasks. Cellular lipids produced in the bioreactor trial contained higher concentrations of unsaturated fatty acids compared with those produced in flasks.
Collapse
|
29
|
Korpys-Woźniak P, Kubiak P, Białas W, Celińska E. Impact of overproduced heterologous protein characteristics on physiological response in Yarrowia lipolytica steady-state-maintained continuous cultures. Appl Microbiol Biotechnol 2020; 104:9785-9800. [PMID: 33025130 PMCID: PMC7595971 DOI: 10.1007/s00253-020-10937-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/23/2020] [Accepted: 09/27/2020] [Indexed: 12/21/2022]
Abstract
Overproduction of recombinant secretory proteins triggers numerous physiological perturbations. Depending on a given heterologous protein characteristics, the producer cell is faced with different challenges which lead to varying responses in terms of its physiology and the target protein production rate. In the present study, we used steady-state-maintained Yarrowia lipolytica cells to investigate the impact of different heterologous proteins on the physiological behavior of the host cells. Such an approach allowed to uncouple the impact of the overproduction of a particular protein from the phenomena that result from growth phase or are caused by the heterogeneity of the analyzed populations. Altogether, eight variants of recombinant strains, individually overproducing heterologous proteins of varying molecular weight (27-65 kDa) and reporting activity (enzymatic and fluorescent) were subjected to chemostat cultivations. The steady-state-maintained cells were analyzed in terms of the substrate utilization, biomass and metabolites production, as well as the reporter protein synthesis. Simplified distribution of carbon and nitrogen between the respective products, as well as expression analysis of the heterologous genes were conducted. The here-obtained data suggest that using a more transcriptionally active promoter results in channeling more C flux towards the target protein, giving significantly higher specific amounts and production rates of the target polypeptide, at the cost of biomass accumulation, and with no significant impact on the polyols production. The extent of the reporter protein's post-translational modifications, i.e., the number of disulfide bonds and glycosylation pattern, strongly impacts the synthesis process. Specific responses in terms of the protein formation kinetics, the gene expression levels, and transcript-to-protein linearity were observed.Key Points• Eight expression systems, producing different reporter proteins were analyzed.• The cells were maintained in steady-state by continuous chemostat culturing.• Protein- and promoter-specific effects were observed.
Collapse
Affiliation(s)
- Paulina Korpys-Woźniak
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, ul. Wojska Polskiego 48, 60-627, Poznań, Poland
| | - Piotr Kubiak
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, ul. Wojska Polskiego 48, 60-627, Poznań, Poland
| | - Wojciech Białas
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, ul. Wojska Polskiego 48, 60-627, Poznań, Poland
| | - Ewelina Celińska
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, ul. Wojska Polskiego 48, 60-627, Poznań, Poland.
| |
Collapse
|
30
|
Dobrowolski A, Drzymała K, Mituła P, Mirończuk AM. Production of tailor-made fatty acids from crude glycerol at low pH by Yarrowia lipolytica. BIORESOURCE TECHNOLOGY 2020; 314:123746. [PMID: 32622282 DOI: 10.1016/j.biortech.2020.123746] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
Nowadays, single cell oil (SCO) can play two distinct roles, first as a supplier of functional oils, and second as a feedstock for the biodiesel industry. These two distinct functions require a different fatty acids (FA) profile in the lipid pool. Moreover, to exploit their potential for industrialization, it is necessary to employ a low-cost substrate. Crude glycerol is the main side-product of biodiesel production. This renewable feedstock is one of Yarrowia lipolytica favorable substrates. In this study we improved polyunsaturated fatty acids (PUFA) synthesis by overexpression of the glycerol phosphate acyltransferase gene (SCT1). Here, we established a method to alter the quantity and FA composition of SCO. The engineered strain showed a 10-fold improvement (>20%) in linoleic acid synthesis (C18:2) in a shake-flask experiment. In a fermenter study co-overexpression of glycerol kinase (GUT1) and SCT1 allowed for 3-fold improvement in C18:2 synthesis from crude glycerol and at low pH.
Collapse
Affiliation(s)
- Adam Dobrowolski
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, Wrocław 51-630, Poland.
| | - Katarzyna Drzymała
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, Wrocław 51-630, Poland
| | - Paweł Mituła
- Institute of Environmental Engineering, Wrocław University of Environmental and Life Sciences, Grunwaldzki Sq 24, Wrocław 50-363, Poland
| | - Aleksandra M Mirończuk
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, Wrocław 51-630, Poland
| |
Collapse
|
31
|
Rye and Oat Agricultural Wastes as Substrate Candidates for Biomass Production of the Non-Conventional Yeast Yarrowia lipolytica. SUSTAINABILITY 2020. [DOI: 10.3390/su12187704] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of this study was to test rye straw, rye bran and oat bran hydrolysates as substrates for growth of the yeast Yarrowia lipolytica, a microorganism known to have large biotechnological potential. First, after the combined process of acid-enzymatic hydrolysis, the concentration and composition of fermentable monosaccharides in the obtained hydrolysates were analyzed. Glucose was the main sugar, followed by xylose and arabinose. Rye bran hydrolysate had the highest sugar content—80.8 g/L. The results showed that this yeast was able to grow on low-cost medium and produce biomass that could be used as a feed in the form of single cell protein. The biomass of yeast grown in oat bran hydrolysate was over 9 g/L after 120 h, with the biomass total yield and total productivity values of 0.141 g/g and 0.078 g/h, respectively. The protein contents in yeast biomass were in the range of 30.5–44.5% of dry weight. Results obtained from Y. lipolytica cultivated in rye bran showed high content of exogenous amino acid (leucine 3.38 g, lysine 2.93 g, threonine 2.31 g/100 g of dry mass) and spectrum of unsaturated fatty acid with predominantly oleic acid—59.28%. In conclusion, these results demonstrate that lignocellulosic agricultural waste, after hydrolysis, could be efficiently converted to feed-related yeast biomass.
Collapse
|
32
|
Alpha-Ketoglutaric Acid Production from a Mixture of Glycerol and Rapeseed Oil by Yarrowia lipolytica Using Different Substrate Feeding Strategies. SUSTAINABILITY 2020. [DOI: 10.3390/su12156109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The microbiological biosynthesis of α-ketoglutaric acid (KGA) has recently captured the attention of many scientists as an alternative to its common chemical synthesis. The present study aimed to evaluate the effect of the feeding strategy of substrates, i.e., glycerol (G = 20 g·dm−3) and rapeseed oil (O = 20 g·dm−3), on yeast growth and the parameters of KGA biosynthesis by a wild strain Yarrowia lipolytica A-8 in fed-batch and repeated-batch cultures. The effectiveness of KGA biosynthesis was demonstrated to depend on thiamine concentration and the substrate feeding method. In the fed-batch culture incubated with 3 µg·dm−3 of thiamine and a substrate feeding variant 2G(_OGO), KGA was produced in the amount of 62.1 g·dm−3 at the volumetric production rate of 0.37 g·dm−3·h−1. These values of KGA production parameters were higher than these obtained in the control culture (with rapeseed oil only). During 10 cycles of the 1788-h repeated-batch culture carried out acc. to the feeding strategy 2G(_OGO), in the last 5 cycles the yeast produced from 55.6 to 58.2 g·dm−3 of KGA and maximally 2.9 g·dm−3 of the pyruvic acid as a by-product.
Collapse
|
33
|
Efficient synthesis of 2-phenylethanol from L-phenylalanine by engineered Bacillus licheniformis using molasses as carbon source. Appl Microbiol Biotechnol 2020; 104:7507-7520. [DOI: 10.1007/s00253-020-10740-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/31/2020] [Accepted: 06/09/2020] [Indexed: 01/07/2023]
|
34
|
Wróbel‐Kwiatkowska M, Turski W, Kocki T, Rakicka‐Pustułka M, Rymowicz W. An efficient method for production of kynurenic acid by
Yarrowia lipolytica. Yeast 2020; 37:541-547. [DOI: 10.1002/yea.3469] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/10/2020] [Accepted: 04/19/2020] [Indexed: 12/19/2022] Open
Affiliation(s)
- Magdalena Wróbel‐Kwiatkowska
- Department of Biotechnology and Food Microbiology Wrocław University of Environmental and Life Sciences Wrocław Poland
| | - Waldemar Turski
- Department of Experimental and Clinical Pharmacology Medical University of Lublin Lublin Poland
| | - Tomasz Kocki
- Department of Experimental and Clinical Pharmacology Medical University of Lublin Lublin Poland
| | - Magdalena Rakicka‐Pustułka
- Department of Biotechnology and Food Microbiology Wrocław University of Environmental and Life Sciences Wrocław Poland
| | - Waldemar Rymowicz
- Department of Biotechnology and Food Microbiology Wrocław University of Environmental and Life Sciences Wrocław Poland
| |
Collapse
|
35
|
Fickers P, Cheng H, Sze Ki Lin C. Sugar Alcohols and Organic Acids Synthesis in Yarrowia lipolytica: Where Are We? Microorganisms 2020; 8:E574. [PMID: 32326622 PMCID: PMC7232202 DOI: 10.3390/microorganisms8040574] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/09/2020] [Accepted: 04/13/2020] [Indexed: 01/01/2023] Open
Abstract
Sugar alcohols and organic acids that derive from the metabolism of certain microorganisms have a panoply of applications in agro-food, chemical and pharmaceutical industries. The main challenge in their production is to reach a productivity threshold that allow the process to be profitable. This relies on the construction of efficient cell factories by metabolic engineering and on the development of low-cost production processes by using industrial wastes or cheap and widely available raw materials as feedstock. The non-conventional yeast Yarrowia lipolytica has emerged recently as a potential producer of such metabolites owing its low nutritive requirements, its ability to grow at high cell densities in a bioreactor and ease of genome edition. This review will focus on current knowledge on the synthesis of the most important sugar alcohols and organic acids in Y. lipolytica.
Collapse
Affiliation(s)
- Patrick Fickers
- Microbial Process and Interactions, TERRA Teaching and Research Centre, University of Liege—Gembloux Agro-Bio Tech, 5030 Gembloux, Belgium
| | - Hairong Cheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong;
| |
Collapse
|
36
|
Morgunov IG, Kamzolova SV, Karpukhina OV, Bokieva SB, Lunina JN, Inozemtsev AN. Microbiological Production of Isocitric Acid from Biodiesel Waste and Its Effect on Spatial Memory. Microorganisms 2020; 8:E462. [PMID: 32218311 PMCID: PMC7232500 DOI: 10.3390/microorganisms8040462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/15/2020] [Accepted: 03/23/2020] [Indexed: 11/17/2022] Open
Abstract
Within this work, the microbial synthesis of (2R,3S)-isocitric acid (ICA), a metabolite of the nonconventional yeast Yarrowia lipolytica, from biodiesel waste, has been studied. The selected strain Y. lipolytica VKM Y-2373 synthesized ICA with citric acid (CA) as a byproduct. This process can be regulated by changing cultivation conditions. The maximal production of ICA with the minimal formation of the byproduct was provided by the use of a concentration of (NH4)2SO4 (6 g/L); the addition of biodiesel waste to cultivation medium in 20-60 g/L portions; maintaining the pH of the cultivation medium at 6, and degree of aeration between 25% and 60% of saturation. Itaconic acid at a concentration of 15 mM favorably influenced the production of ICA by the selected strain. The optimization of cultivation conditions allowed us to increase the concentration of ICA in the culture liquid from 58.32 to 90.2 g/L, the product yield (Y) by 40%, and the ICA/CA ratio from 1.1:1 to 3:1. Research on laboratory animals indicated that ICA counteracted the negative effect of ammonium molybdate (10-5 М) and lead diacetate (10-7 М) on the learning and spatial memory of rats, including those exposed to emotional stress.
Collapse
Affiliation(s)
- Igor G. Morgunov
- Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences, Prospect Nauki 5, Pushchino, 142290 Moscow Region, Russia;
| | - Svetlana V. Kamzolova
- Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences, Prospect Nauki 5, Pushchino, 142290 Moscow Region, Russia;
| | - Olga V. Karpukhina
- Department of Higher Nervous Activity, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119234 Moscow, Russia; (O.V.K.); (A.N.I.)
| | - Svetlana B. Bokieva
- Department of Anatomy, Physiology and Botany, Khetagurov North Ossetian State University, 44-46 Vatutina str, 362025 Vladikavkaz, North Ossetia, Russia;
| | - Julia N. Lunina
- Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences, Prospect Nauki 5, Pushchino, 142290 Moscow Region, Russia;
| | - Anatoly N. Inozemtsev
- Department of Higher Nervous Activity, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119234 Moscow, Russia; (O.V.K.); (A.N.I.)
| |
Collapse
|
37
|
Jacobsen IH, Ledesma-Amaro R, Martinez JL. Recombinant β-Carotene Production by Yarrowia lipolytica - Assessing the Potential of Micro-Scale Fermentation Analysis in Cell Factory Design and Bioreaction Optimization. Front Bioeng Biotechnol 2020; 8:29. [PMID: 32117917 PMCID: PMC7031159 DOI: 10.3389/fbioe.2020.00029] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/14/2020] [Indexed: 11/17/2022] Open
Abstract
The production of β-carotene has become increasingly interesting within the biotechnological industry due to a rising demand for safer and more natural colorants, nutritional supplements, and antioxidants. A recent study has described the potential of Yarrowia lipolytica as a β-carotene-producing cell factory, reporting the highest titer of recombinant β-carotene produced to date. Finding the best conditions to maximize production and scaling up the process to full scale, a costly and time-consuming process, it is often a bottleneck in biotechnology. In this work, we explored the benefits of using micro-fermentation equipment to significantly reduce the time spent on design and optimization of bioreaction conditions, especially in the early stages of process development. In this proof-of-concept study, a β-carotene producing Y. lipolytica strain was tested in micro-fermentations partly to assess the robustness of the cell factory design and partly to perform media optimization. The medium optimization led us to an improvement of up to 50% in the yield of β-carotene production in the best of the conditions. Overall, the micro-fermentation system had a high degree of reliability in all tests.
Collapse
Affiliation(s)
- Irene Hjorth Jacobsen
- Department of Biotechnology and Biomedicine, Section for Synthetic Biology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering, Faculty of Engineering, Imperial College London, London, United Kingdom
| | - José Luis Martinez
- Department of Biotechnology and Biomedicine, Section for Synthetic Biology, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
38
|
Wang N, Chi P, Zou Y, Xu Y, Xu S, Bilal M, Fickers P, Cheng H. Metabolic engineering of Yarrowia lipolytica for thermoresistance and enhanced erythritol productivity. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:176. [PMID: 33093870 PMCID: PMC7576711 DOI: 10.1186/s13068-020-01815-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/10/2020] [Indexed: 05/02/2023]
Abstract
BACKGROUND Functional sugar alcohols have been widely used in the food, medicine, and pharmaceutical industries for their unique properties. Among these, erythritol is a zero calories sweetener produced by the yeast Yarrowia lipolytica. However, in wild-type strains, erythritol is produced with low productivity and yield and only under high osmotic pressure together with other undesired polyols, such as mannitol or d-arabitol. The yeast is also able to catabolize erythritol in non-stressing conditions. RESULTS Herein, Y. lipolytica has been metabolically engineered to increase erythritol production titer, yield, and productivity from glucose. This consisted of the disruption of anabolic pathways for mannitol and d-arabitol together with the erythritol catabolic pathway. Genes ZWF1 and GND encoding, respectively, glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase were also constitutively expressed in regenerating the NADPH2 consumed during erythritol synthesis. Finally, the gene RSP5 gene from Saccharomyces cerevisiae encoding ubiquitin ligase was overexpressed to improve cell thermoresistance. The resulting strain HCY118 is impaired in mannitol or d-arabitol production and erythritol consumption. It can grow well up to 35 °C and retain an efficient erythritol production capacity at 33 °C. The yield, production, and productivity reached 0.63 g/g, 190 g/L, and 1.97 g/L·h in 2-L flasks, and increased to 0.65 g/g, 196 g/L, and 2.51 g/L·h in 30-m3 fermentor, respectively, which has economical practical importance. CONCLUSION The strategy developed herein yielded an engineered Y. lipolytica strain with enhanced thermoresistance and NADPH supply, resulting in a higher ability to produce erythritol, but not mannitol or d-arabitol from glucose. This is of interest for process development since it will reduce the cost of bioreactor cooling and erythritol purification.
Collapse
Affiliation(s)
- Nan Wang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ping Chi
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yawen Zou
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yirong Xu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shuo Xu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - M. Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003 China
| | - Patrick Fickers
- Microbial Process and Interaction, TERRA Teaching and Research Centre, University of Liege – Gembloux Agro-Bio Tech, Gembloux, Belgium
| | - Hairong Cheng
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
39
|
Mirończuk AM, Kosiorowska KE, Biegalska A, Rakicka-Pustułka M, Szczepańczyk M, Dobrowolski A. Heterologous overexpression of bacterial hemoglobin VHb improves erythritol biosynthesis by yeast Yarrowia lipolytica. Microb Cell Fact 2019; 18:176. [PMID: 31615519 PMCID: PMC6794898 DOI: 10.1186/s12934-019-1231-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/11/2019] [Indexed: 01/16/2023] Open
Abstract
Background Yarrowia lipolytica is an unconventional yeast with a huge industrial potential. Despite many advantages for biotechnological applications, it possesses enormous demand for oxygen, which is a bottleneck in large scale production. In this study a codon optimized bacterial hemoglobin from Vitreoscilla stercoraria (VHb) was overexpressed in Y. lipolytica for efficient growth and erythritol synthesis from glycerol in low-oxygen conditions. Erythritol is a natural sweetener produced by Y. lipolytica under high osmotic pressure and at low pH, and this process requires high oxygen demand. Results Under these conditions the VHb overexpressing strain showed mostly yeast-type cells resulting in 83% higher erythritol titer in shake-flask experiments. During a bioreactor study the engineered strain showed higher erythritol productivity (QERY = 0.38 g/l h) and yield (YERY = 0.37 g/g) in comparison to the control strain (QERY = 0.30 g/l h, YERY = 0.29 g/g). Moreover, low stirring during the fermentation process resulted in modest foam formation. Conclusions This study showed that overexpression of VHb in Y. lipolytica allows for dynamic growth and efficient production of a value-added product from a low-value substrate.
Collapse
Affiliation(s)
- Aleksandra M Mirończuk
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 37, 51-630, Wrocław, Poland.
| | - Katarzyna E Kosiorowska
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 37, 51-630, Wrocław, Poland
| | - Anna Biegalska
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 37, 51-630, Wrocław, Poland
| | - Magdalena Rakicka-Pustułka
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 37, 51-630, Wrocław, Poland
| | - Mateusz Szczepańczyk
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 37, 51-630, Wrocław, Poland
| | - Adam Dobrowolski
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 37, 51-630, Wrocław, Poland
| |
Collapse
|
40
|
Liu HH, Wang C, Lu XY, Huang H, Tian Y, Ji XJ. Improved Production of Arachidonic Acid by Combined Pathway Engineering and Synthetic Enzyme Fusion in Yarrowia lipolytica. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9851-9857. [PMID: 31418561 DOI: 10.1021/acs.jafc.9b03727] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Arachidonic acid (ARA, C20:4) is a typical ω-6 polyunsaturated fatty acid with special functions. Using Yarrowia lipolytica as an unconventional chassis, we previously showed the performance of the Δ-6 pathway in ARA production. However, a significant increase in the Δ-9 pathway has rarely been reported. Herein, the Δ-9 pathway from Isochrysis galbana was constructed via pathway engineering, allowing us to synthesize ARA at 91.5 mg L-1. To further improve the ARA titer, novel enzyme fusions of Δ-9 elongase and Δ-8 desaturase were redesigned in special combinations containing different linkers. Finally, with the integrated pathway engineering and synthetic enzyme fusion, a 29% increase in the ARA titer, up to 118.1 mg/L, was achieved using the reconstructed strain RH-4 that harbors the rigid linker (GGGGS). The results show that the combined pathway and protein engineering can significantly facilitate applications of Y. lipolytica.
Collapse
Affiliation(s)
- Hu-Hu Liu
- College of Bioscience and Biotechnology , Hunan Agricultural University , Changsha 410128 , People's Republic of China
| | - Chong Wang
- College of Bioscience and Biotechnology , Hunan Agricultural University , Changsha 410128 , People's Republic of China
| | - Xiang-Yang Lu
- College of Bioscience and Biotechnology , Hunan Agricultural University , Changsha 410128 , People's Republic of China
| | - He Huang
- College of Bioscience and Biotechnology , Hunan Agricultural University , Changsha 410128 , People's Republic of China
- College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , No. 30 South Puzhu Road , Nanjing 211816 , People's Republic of China
| | - Yun Tian
- College of Bioscience and Biotechnology , Hunan Agricultural University , Changsha 410128 , People's Republic of China
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , No. 30 South Puzhu Road , Nanjing 211816 , People's Republic of China
| |
Collapse
|
41
|
Do DTH, Theron CW, Fickers P. Organic Wastes as Feedstocks for Non-Conventional Yeast-Based Bioprocesses. Microorganisms 2019; 7:E229. [PMID: 31370226 PMCID: PMC6722544 DOI: 10.3390/microorganisms7080229] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 12/22/2022] Open
Abstract
Non-conventional yeasts are efficient cell factories for the synthesis of value-added compounds such as recombinant proteins, intracellular metabolites, and/or metabolic by-products. Most bioprocess, however, are still designed to use pure, ideal sugars, especially glucose. In the quest for the development of more sustainable processes amid concerns over the future availability of resources for the ever-growing global population, the utilization of organic wastes or industrial by-products as feedstocks to support cell growth is a crucial approach. Indeed, vast amounts of industrial and commercial waste simultaneously represent an environmental burden and an important reservoir for recyclable or reusable material. These alternative feedstocks can provide microbial cell factories with the required metabolic building blocks and energy to synthesize value-added compounds, further representing a potential means of reduction of process costs as well. This review highlights recent strategies in this regard, encompassing knowledge on catabolic pathways and metabolic engineering solutions developed to endow cells with the required metabolic capabilities, and the connection of these to the synthesis of value-added compounds. This review focuses primarily, but not exclusively, on Yarrowia lipolytica as a yeast cell factory, owing to its broad range of naturally metabolizable carbon sources, together with its popularity as a non-conventional yeast.
Collapse
Affiliation(s)
- Diem T Hoang Do
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, University of Liège - Gembloux AgroBio Tech, Av. de la Faculté, 2B. B-5030 Gembloux, Belgium
| | - Chrispian W Theron
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, University of Liège - Gembloux AgroBio Tech, Av. de la Faculté, 2B. B-5030 Gembloux, Belgium
| | - Patrick Fickers
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, University of Liège - Gembloux AgroBio Tech, Av. de la Faculté, 2B. B-5030 Gembloux, Belgium.
| |
Collapse
|
42
|
Dobrowolski A, Drzymała K, Rzechonek DA, Mituła P, Mirończuk AM. Lipid Production From Waste Materials in Seawater-Based Medium by the Yeast Yarrowia lipolytica. Front Microbiol 2019; 10:547. [PMID: 30936863 PMCID: PMC6431633 DOI: 10.3389/fmicb.2019.00547] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/04/2019] [Indexed: 01/12/2023] Open
Abstract
The global limitation of fossil fuels impels scientists to search for new energy sources. A good alternative is biodiesel produced from crop plants. However, its production requires huge quantities of farmland, fertilizers and fresh water, which is in conflict with the human demand for water for consumption and land for food production. Thus, production of single cell oil (SCO) by oleaginous microorganisms remains the best solution for the coming years. Whereas most microorganisms require fresh water for proper cell metabolism, in this study we demonstrate that the unconventional yeast Yarrowia lipolytica is able to produce huge quantities of fatty acid in seawater-based medium. Here we shown that Y. lipolytica is able to produce fatty acids in medium based on seawater and crude glycerol as the main carbon source, which allows for low-cost production of SCO, is beneficial for industrial application and is ecologically friendly.
Collapse
Affiliation(s)
- Adam Dobrowolski
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Katarzyna Drzymała
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Dorota A Rzechonek
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Paweł Mituła
- Institute of Environmental Engineering, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Aleksandra M Mirończuk
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
43
|
Rakicka M, Wolniak J, Lazar Z, Rymowicz W. Production of high titer of citric acid from inulin. BMC Biotechnol 2019; 19:11. [PMID: 30744615 PMCID: PMC6371587 DOI: 10.1186/s12896-019-0503-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/31/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Citric acid is considered as the most economically feasible product of microbiological production, therefore studies on cheap and renewable raw materials for its production are highly desirable. In this study citric acid was synthesized by genetically engineered strains of Yarrowia lipolytica from widely available, renewable polysaccharide - inulin. Hydrolysis of inulin by the Y. lipolytica strains was established by expressing the inulinase gene (INU1 gene; GenBank: X57202.1) with its native secretion signal sequence was amplified from genomic DNA from Kluyveromyces marxianus CBS6432. To ensure the maximum citric acid titer, the optimal cultivation strategy-repeated-batch culture was applied. RESULTS The strain Y. lipolytica AWG7 INU 8 secreted more than 200 g dm- 3 of citric acid during repeated-batch culture on inulin, with a productivity of 0.51 g dm- 3 h- 1 and a yield of 0.85 g g- 1. CONCLUSIONS The citric acid titer obtained in the proposed process is the highest value reported in the literature for Yarrowia yeast. The obtained results suggest that citric acid production from inulin by engineered Y. lipolytica may be a very promising technology for industrial citric acid production.
Collapse
Affiliation(s)
- Magdalena Rakicka
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, 37 Chełmońskiego St, 51-630 Wroclaw, Poland
| | - Jakub Wolniak
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, 37 Chełmońskiego St, 51-630 Wroclaw, Poland
| | - Zbigniew Lazar
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, 37 Chełmońskiego St, 51-630 Wroclaw, Poland
| | - Waldemar Rymowicz
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, 37 Chełmońskiego St, 51-630 Wroclaw, Poland
| |
Collapse
|
44
|
Shi J, Zhan Y, Zhou M, He M, Wang Q, Li X, Wen Z, Chen S. High-level production of short branched-chain fatty acids from waste materials by genetically modified Bacillus licheniformis. BIORESOURCE TECHNOLOGY 2019; 271:325-331. [PMID: 30292131 DOI: 10.1016/j.biortech.2018.08.134] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 08/12/2018] [Accepted: 08/13/2018] [Indexed: 06/08/2023]
Abstract
Short branched-chain fatty acids (SBCFAs) are multi-functional platform chemicals used in many fields. Currently, SBCFAs are produced mainly by chemical synthesis, which is high cost and lead to environmental pollution. The aim of this study was to achieve high-level production of SBCFAs from waste materials, bean dreg and crude glycerol. The Bacillus licheniformis DWc9n∗ was genetically modified by overexpression of SBCFAs synthesis genes via replacement of native promoter of bkd operon, the mutant strain DWc9n∗-PbacA produced 4.68 g/L of SBCFAs, increasing by 1.98-fold compared to wild-type strain. SBCFAs concentration was further increased to 7.85 g/L through process optimization. In a 5-L batch fermenter, the mutant showed SBCFAs production with high concentration (8.37 g/L) and productivity (0.20 g/L/h), which is the highest level of SBCFAs production based on low-value substrates fermentation. This is the first study describing efficient SBCFAs production by the modified B. licheniformis strain from bean dreg and crude glycerol.
Collapse
Affiliation(s)
- Jiao Shi
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Yangyang Zhan
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Mengling Zhou
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Min He
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Qin Wang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Xin Li
- College of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Zhiyou Wen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China; Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA
| | - Shouwen Chen
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, PR China.
| |
Collapse
|
45
|
Rzechonek DA, Dobrowolski A, Rymowicz W, Mirończuk AM. Aseptic production of citric and isocitric acid from crude glycerol by genetically modified Yarrowia lipolytica. BIORESOURCE TECHNOLOGY 2019; 271:340-344. [PMID: 30292133 DOI: 10.1016/j.biortech.2018.09.118] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/21/2018] [Accepted: 09/22/2018] [Indexed: 06/08/2023]
Abstract
The unconventional yeast Yarrowia lipolytica is known for its capacity to produce citric or isocitric acid from glycerol. In this study a reduction of production cost was achieved by using cheap crude glycerol and conducting the production at pH 3 to prevent bacterial contamination. In this study a Y. lipolytica strain overexpressing Gut1 and Gut2 was used. For the modified strain, crude glycerol proved to be an excellent substrate for production of citric/isocitric acids in aseptic conditions, as the final concentration of these compounds reached 75.9 ± 1.8 g L-1 after 7 days of batch production. Interestingly, the concentration of isocitric acid was 42.5 ± 2.4 g L-1, which is one of the highest concentrations of isocitric acid obtained from a waste substrate. In summary, these data show that organic acids can be efficiently produced by the yeast Y. lipolytica from crude glycerol without any prior purification in aseptic conditions.
Collapse
Affiliation(s)
- Dorota A Rzechonek
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland
| | - Adam Dobrowolski
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland
| | - Waldemar Rymowicz
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland
| | - Aleksandra M Mirończuk
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland.
| |
Collapse
|
46
|
Kamzolova SV, Morgunov IG. Biosynthesis of pyruvic acid from glycerol-containing substrates and its regulation in the yeast Yarrowia lipolytica. BIORESOURCE TECHNOLOGY 2018; 266:125-133. [PMID: 29960242 DOI: 10.1016/j.biortech.2018.06.071] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 06/08/2023]
Abstract
The ability of different yeasts to synthesize pyruvic acid (PA) from glycerol-containing substrates has been studied. The selected strain Yarrowia lipolytica VKM Y-2378 synthesized PA with α-ketoglutaric acid (KGA) as a byproduct. The content of KGA greatly depended on cultivation conditions. The minimal formation of the byproduct was provided by the limitation of yeast growth by thiamine (0.6 µg/g biomass); the use of ammonium sulfate (0.6%) as a nitrogen source; addition of glycerol to cultivation medium in 20 g/L portions; maintaining the cultivation temperature at 28 °C, pH of the cultivation medium at 4.5, and medium aeration between 55 and 60% of saturation; the optimal cultivation time was 48 h. The selected strain cultivated under such conditions in a fermenter with a waste glycerol from biodiesel production process synthesized 41 g/L PA with a yield of 0.82 g/g. The mechanism of PA production from glycerol-containing substrates in Y. lipolytica is discussed.
Collapse
Affiliation(s)
- Svetlana V Kamzolova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Igor G Morgunov
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino 142290, Russia.
| |
Collapse
|
47
|
Abdel-Mawgoud AM, Markham KA, Palmer CM, Liu N, Stephanopoulos G, Alper HS. Metabolic engineering in the host Yarrowia lipolytica. Metab Eng 2018; 50:192-208. [PMID: 30056205 DOI: 10.1016/j.ymben.2018.07.016] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 12/21/2022]
Abstract
The nonconventional, oleaginous yeast, Yarrowia lipolytica is rapidly emerging as a valuable host for the production of a variety of both lipid and nonlipid chemical products. While the unique genetics of this organism pose some challenges, many new metabolic engineering tools have emerged to facilitate improved genetic manipulation in this host. This review establishes a case for Y. lipolytica as a premier metabolic engineering host based on innate metabolic capacity, emerging synthetic tools, and engineering examples. The metabolism underlying the lipid accumulation phenotype of this yeast as well as high flux through acyl-CoA precursors and the TCA cycle provide a favorable metabolic environment for expression of relevant heterologous pathways. These properties allow Y. lipolytica to be successfully engineered for the production of both native and nonnative lipid, organic acid, sugar and acetyl-CoA derived products. Finally, this host has unique metabolic pathways enabling growth on a wide range of carbon sources, including waste products. The expansion of carbon sources, together with the improvement of tools as highlighted here, have allowed this nonconventional organism to act as a cellular factory for valuable chemicals and fuels.
Collapse
Affiliation(s)
- Ahmad M Abdel-Mawgoud
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Kelly A Markham
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX 78712, United States
| | - Claire M Palmer
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, TX 78712, United States
| | - Nian Liu
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Gregory Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States.
| | - Hal S Alper
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX 78712, United States; Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, TX 78712, United States.
| |
Collapse
|
48
|
Markham KA, Alper HS. Synthetic Biology Expands the Industrial Potential of Yarrowia lipolytica. Trends Biotechnol 2018; 36:1085-1095. [PMID: 29880228 DOI: 10.1016/j.tibtech.2018.05.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 10/14/2022]
Abstract
The oleaginous yeast Yarrowia lipolytica is quickly emerging as the most popular non-conventional (i.e., non-model organism) yeast in the bioproduction field. With a high propensity for flux through tricarboxylic acid (TCA) cycle intermediates and biological precursors such as acetyl-CoA and malonyl-CoA, this host is especially well suited to meet our industrial chemical production needs. Recent progress in synthetic biology tool development has greatly enhanced our ability to rewire this organism, with advances in genetic component design, CRISPR technologies, and modular cloning strategies. In this review we investigate recent developments in metabolic engineering and describe how the new tools being developed help to realize the full industrial potential of this host. Finally, we conclude with our vision of the developments that will be necessary to enhance future engineering efforts.
Collapse
Affiliation(s)
- Kelly A Markham
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 East Dean Keeton Street, Austin, TX 78712, USA
| | - Hal S Alper
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 East Dean Keeton Street, Austin, TX 78712, USA; Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, TX 78712, USA.
| |
Collapse
|
49
|
Mirończuk AM, Biegalska A, Zugaj K, Rzechonek DA, Dobrowolski A. A Role of a Newly Identified Isomerase From Yarrowia lipolytica in Erythritol Catabolism. Front Microbiol 2018; 9:1122. [PMID: 29910781 PMCID: PMC5992420 DOI: 10.3389/fmicb.2018.01122] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/11/2018] [Indexed: 11/13/2022] Open
Abstract
Erythritol is a natural sweetener produced by microorganisms as an osmoprotectant. It belongs to the group of polyols and it can be utilized by the oleaginous yeast Yarrowia lipolytica. Despite the recent identification of the transcription factor of erythritol utilization (EUF1), the metabolic pathway of erythritol catabolism remains unknown. In this study we identified a new gene, YALI0F01628g, involved in erythritol assimilation. In silico analysis showed that YALI0F01628g is a putative isomerase and it is localized in the same region as EUF1. qRT-PCR analysis of Y. lipolytica showed a significant increase in YALI0F01628g expression during growth on erythritol and after overexpression of EUF1. Moreover, the deletion strain ΔF01628 showed significantly impaired erythritol assimilation, whereas synthesis of erythritol remained unchanged. The results showed that YALI0F1628g is involved in erythritol assimilation; thus we named the gene EYI1. Moreover, we suggest the metabolic pathway of erythritol assimilation in yeast Y. lipolytica.
Collapse
Affiliation(s)
- Aleksandra M. Mirończuk
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | | | | | | | | |
Collapse
|
50
|
Moeller L, Bauer A, Zehnsdorf A, Lee MY, Müller RA. Anaerobic co-digestion of waste yeast biomass from citric acid production and waste frying fat. Eng Life Sci 2018; 18:425-433. [PMID: 32624923 DOI: 10.1002/elsc.201700176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 03/21/2018] [Accepted: 04/04/2018] [Indexed: 11/11/2022] Open
Abstract
The application of spent yeast for biogas production has been studied only in the context of breweries so far. This study is focused on the anaerobic digestion of concentrated yeast biomass (CYB), being a by-product of citric acid biosynthesis. Two experimental set-ups were used in order to test CYB as a mono-substrate and co-substrate for closing the loop in accordance with the 'bioeconomy' approach. The results show that CYB allows for obtaining a high biogas yield, with a maximum of 1.45 m3 N/kgVS produced when CYB was used as a mono-substrate. The average methane concentration was 66 ± 4%. However, anaerobic digestion of CYB alone was difficult to perform because of a tendency for over-acidification, meaning that the maximum possible organic loading rate was 1 kg/(m3*d). Repeated clogging of tubes with coagulated biomass also disturbed continuous feeding. In contrast, the co-digestion of CYB with waste frying fat at a ratio of 1:20 showed stable operation during a 70-day fermentation period. The biogas yield using the substrate mixture was 1.42 m3/kgVS at an organic loading rate of 2 kg/(m3*d). The methane concentration reached 67 ± 4% and the acetate concentration did not exceed 30 mg/L during the entire fermentation.
Collapse
Affiliation(s)
- Lucie Moeller
- Centre for Environmental Biotechnology Helmholtz Centre for Environmental Research - UFZ Leipzig Germany
| | - Aline Bauer
- Centre for Environmental Biotechnology Helmholtz Centre for Environmental Research - UFZ Leipzig Germany
| | - Andreas Zehnsdorf
- Centre for Environmental Biotechnology Helmholtz Centre for Environmental Research - UFZ Leipzig Germany
| | - Mi-Yong Lee
- Centre for Environmental Biotechnology Helmholtz Centre for Environmental Research - UFZ Leipzig Germany
| | - Roland Arno Müller
- Centre for Environmental Biotechnology Helmholtz Centre for Environmental Research - UFZ Leipzig Germany
| |
Collapse
|