1
|
Pullen R, Decker SR, Subramanian V, Adler MJ, Tobias AV, Perisin M, Sund CJ, Servinsky MD, Kozlowski MT. Considerations for Domestication of Novel Strains of Filamentous Fungi. ACS Synth Biol 2025; 14:343-362. [PMID: 39883596 PMCID: PMC11852223 DOI: 10.1021/acssynbio.4c00672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 02/01/2025]
Abstract
Fungi, especially filamentous fungi, are a relatively understudied, biotechnologically useful resource with incredible potential for commercial applications. These multicellular eukaryotic organisms have long been exploited for their natural production of useful commodity chemicals and proteins such as enzymes used in starch processing, detergents, food and feed production, pulping and paper making and biofuels production. The ability of filamentous fungi to use a wide range of feedstocks is another key advantage. As chassis organisms, filamentous fungi can express cellular machinery, and metabolic and signal transduction pathways from both prokaryotic and eukaryotic origins. Their genomes abound with novel genetic elements and metabolic processes that can be harnessed for biotechnology applications. Synthetic biology tools are becoming inexpensive, modular, and expansive while systems biology is beginning to provide the level of understanding required to design increasingly complex synthetic systems. This review covers the challenges of working in filamentous fungi and offers a perspective on the approaches needed to exploit fungi as microbial cell factories.
Collapse
Affiliation(s)
- Randi
M. Pullen
- DEVCOM
Army Research Laboratory, 2800 Powder Mill Rd., Adelphi, Maryland 20783, United
States
| | - Stephen R. Decker
- National
Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | | | - Meaghan J. Adler
- DEVCOM
Army Research Laboratory, 2800 Powder Mill Rd., Adelphi, Maryland 20783, United
States
| | - Alexander V. Tobias
- DEVCOM
Army Research Laboratory, 2800 Powder Mill Rd., Adelphi, Maryland 20783, United
States
| | - Matthew Perisin
- DEVCOM
Army Research Laboratory, 2800 Powder Mill Rd., Adelphi, Maryland 20783, United
States
| | - Christian J. Sund
- DEVCOM
Army Research Laboratory, 2800 Powder Mill Rd., Adelphi, Maryland 20783, United
States
| | - Matthew D. Servinsky
- DEVCOM
Army Research Laboratory, 2800 Powder Mill Rd., Adelphi, Maryland 20783, United
States
| | - Mark T. Kozlowski
- DEVCOM
Army Research Laboratory, 2800 Powder Mill Rd., Adelphi, Maryland 20783, United
States
| |
Collapse
|
2
|
Shree A, Pal S, Verma PK. Structural diversification of fungal cell wall in response to the stress signaling and remodeling during fungal pathogenesis. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:733-747. [PMID: 38846457 PMCID: PMC11150350 DOI: 10.1007/s12298-024-01453-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 06/09/2024]
Abstract
Fungi are one of the most diverse organisms found in our surroundings. The heterotrophic lifestyle of fungi and the ever-changing external environmental factors pose numerous challenges for their survival. Despite all adversities, fungi continuously develop new survival strategies to secure nutrition and space from their host. During host-pathogen interaction, filamentous phytopathogens in particular, effectively infect their hosts by maintaining polarised growth at the tips of hyphae. The fungal cell wall, being the prime component of host contact, plays a crucial role in fortifying the intracellular environment against the harsh external environment. Structurally, the fungal cell wall is a highly dynamic yet rigid component, responsible for maintaining cellular morphology. Filamentous pathogens actively maintain their dynamic cell wall to compensate rapid growth on the host. Additionally, they secrete effectors to dampen the sophisticated mechanisms of plant defense and initiate various downstream signaling cascades to repair the damage inflicted by the host. Thus, the fungal cell wall serves as a key modulator of fungal pathogenicity. The fungal cell wall with their associated signaling mechanisms emerge as intriguing targets for host immunity. This review comprehensively examines and summarizes the multifaceted findings of various research groups regarding the dynamics of the cell wall in filamentous fungal pathogens during host invasion.
Collapse
Affiliation(s)
- Ankita Shree
- Plant Immunity Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Surabhi Pal
- Plant Immunity Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Praveen Kumar Verma
- Plant Immunity Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| |
Collapse
|
3
|
Li G, Shan X, Zeng W, Yu S, Zhang G, Chen J, Zhou J. Efficient Production of 2,5-Diketo-D-gluconic Acid by Reducing Browning Levels During Gluconobacter oxydans ATCC 9937 Fermentation. Front Bioeng Biotechnol 2022; 10:918277. [PMID: 35875491 PMCID: PMC9304662 DOI: 10.3389/fbioe.2022.918277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
D-Glucose directly generates 2-keto-L-gulonic acid (2-KLG, precursor of vitamin C) through the 2,5-diketo-D-gluconic acid (2,5-DKG) pathway. 2,5-DKG is the main rate-limiting factor of the reaction, and there are few relevant studies on it. In this study, a more accurate quantitative method of 2,5-DKG was developed and used to screen G. oxydans ATCC9937 as the chassis strain for the production of 2,5-DKG. Combining the metabolite profile analysis and knockout and overexpression of production strain, the non-enzymatic browning of 2,5-DKG was identified as the main factor leading to low yield of the target compound. By optimizing the fermentation process, the fermentation time was reduced to 48 h, and 2,5-DKG production peaked at 50.9 g/L, which was 139.02% higher than in the control group. Effectively eliminating browning and reducing the degradation of 2,5-DKG will help increase the conversion of 2,5-DKG to 2-KLG, and finally, establish a one-step D-glucose to 2-KLG fermentation pathway.
Collapse
Affiliation(s)
- Guang Li
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Xiaoyu Shan
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Weizhu Zeng
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China
| | - Shiqin Yu
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China
| | - Guoqiang Zhang
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- *Correspondence: Jingwen Zhou,
| |
Collapse
|
4
|
Liu E, Wilkins MR. Process optimization and scale-up production of fungal aryl alcohol oxidase from genetically modified Aspergillus nidulans in stirred-tank bioreactor. BIORESOURCE TECHNOLOGY 2020; 315:123792. [PMID: 32659422 DOI: 10.1016/j.biortech.2020.123792] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
Microbial production of aryl alcohol oxidase (AAO) has attracted increasing attention due to the central role of AAO in enzymatic lignin depolymerization. However, large-scale production of AAO has not been reached because of the low yield and inefficient fermentation process. This study aims to optimize the process parameters and scale-up production of AAO using Aspergillus nidulans in a stirred-tank bioreactor. Effects of pH and dissolved oxygen on AAO production at bioreactor scale were particularly investigated. Results revealed that pH control significantly affected protein production and increasing dissolved oxygen level stimulated AAO production. The greatest AAO activity (1906 U/L) and protein concentration (1.19 g/L) were achieved in 48 h at 60% dissolved oxygen with pH controlled at 6.0. The yield and productivity (in 48 h) were 31.2 U/g maltose and 39.7 U/L/h, respectively. In addition, crude AAO was concentrated and partially purified by ultrafiltration and verified by protein identification.
Collapse
Affiliation(s)
- Enshi Liu
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Mark R Wilkins
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; Industrial Agricultural Products Center, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
| |
Collapse
|
5
|
Aspergillus nidulans: A Potential Resource of the Production of the Native and Heterologous Enzymes for Industrial Applications. Int J Microbiol 2020; 2020:8894215. [PMID: 32802076 PMCID: PMC7416255 DOI: 10.1155/2020/8894215] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 05/13/2020] [Accepted: 07/18/2020] [Indexed: 01/24/2023] Open
Abstract
Aspergillus nidulans is a filamentous fungus that is a potential resource for industrial enzymes. It is a versatile fungal cell factory that can synthesize various industrial enzymes such as cellulases, β-glucosidases, hemicellulases, laccases, lipases, proteases, β-galactosidases, tannases, keratinase, cutinases, and aryl alcohol oxidase. A. nidulans has shown the potential to utilize low-cost substrates such as wheat bran, rice straw, sugarcane bagasse, rice bran, coir pith, black gram residue, and chicken feathers to produce enzymes cost-effectively. A. nidulans has also been known as a model organism for the production of heterologous enzymes. Several studies reported genetically engineered strains of A. nidulans for the production of different enzymes. Native as well as heterologous enzymes of A. nidulans have been employed for various industrial processes.
Collapse
|
6
|
Kadowaki MAS, Higasi PMR, de Godoy MO, de Araújo EA, Godoy AS, Prade RA, Polikarpov I. Enzymatic versatility and thermostability of a new aryl-alcohol oxidase from Thermothelomyces thermophilus M77. Biochim Biophys Acta Gen Subj 2020; 1864:129681. [PMID: 32653619 DOI: 10.1016/j.bbagen.2020.129681] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/14/2020] [Accepted: 06/30/2020] [Indexed: 01/23/2023]
Abstract
Background Fungal aryl-alcohol oxidases (AAOx) are extracellular flavoenzymes that belong to glucose-methanol-choline oxidoreductase family and are responsible for the selective conversion of primary aromatic alcohols into aldehydes and aromatic aldehydes to their corresponding acids, with concomitant production of hydrogen peroxide (H2O2) as by-product. The H2O2 can be provided to lignin degradation pathway, a biotechnological property explored in biofuel production. In the thermophilic fungus Thermothelomyces thermophilus (formerly Myceliophthora thermophila), just one AAOx was identified in the exo-proteome. Methods The glycosylated and non-refolded crystal structure of an AAOx from T. thermophilus at 2.6 Å resolution was elucidated by X-ray crystallography combined with small-angle X-ray scattering (SAXS) studies. Moreover, biochemical analyses were carried out to shed light on enzyme substrate specificity and thermostability. Results This flavoenzyme harbors a flavin adenine dinucleotide as a cofactor and is able to oxidize aromatic substrates and 5-HMF. Our results also show that the enzyme has similar oxidation rates for bulky or simple aromatic substrates such as cinnamyl and veratryl alcohols. Moreover, the crystal structure of MtAAOx reveals an open active site, which might explain observed specificity of the enzyme. Conclusions MtAAOx shows previously undescribed structural differences such as a fully accessible catalytic tunnel, heavy glycosylation and Ca2+ binding site providing evidences for thermostability and activity of the enzymes from AA3_2 subfamily. General significance Structural and biochemical analyses of MtAAOx could be important for comprehension of aryl-alcohol oxidases structure-function relationships and provide additional molecular tools to be used in future biotechnological applications.
Collapse
Affiliation(s)
- Marco Antonio Seiki Kadowaki
- São Carlos Institute of Physics, University of São Paulo, Av. Trabalhador São-carlense, 400, São Carlos, SP 13566-590, Brazil.
| | - Paula Miwa Rabelo Higasi
- São Carlos Institute of Physics, University of São Paulo, Av. Trabalhador São-carlense, 400, São Carlos, SP 13566-590, Brazil
| | - Mariana Ortiz de Godoy
- São Carlos Institute of Physics, University of São Paulo, Av. Trabalhador São-carlense, 400, São Carlos, SP 13566-590, Brazil
| | - Evandro Ares de Araújo
- São Carlos Institute of Physics, University of São Paulo, Av. Trabalhador São-carlense, 400, São Carlos, SP 13566-590, Brazil
| | - Andre Schutzer Godoy
- São Carlos Institute of Physics, University of São Paulo, Av. Trabalhador São-carlense, 400, São Carlos, SP 13566-590, Brazil
| | - Rolf Alexander Prade
- Departments of Microbiology & Molecular Genetics and Biochemistry & Molecular Biology, Oklahoma State University, OK, USA
| | - Igor Polikarpov
- São Carlos Institute of Physics, University of São Paulo, Av. Trabalhador São-carlense, 400, São Carlos, SP 13566-590, Brazil.
| |
Collapse
|
7
|
Liu E, Li M, Abdella A, Wilkins MR. Development of a cost-effective medium for submerged production of fungal aryl alcohol oxidase using a genetically modified Aspergillus nidulans strain. BIORESOURCE TECHNOLOGY 2020; 305:123038. [PMID: 32120232 DOI: 10.1016/j.biortech.2020.123038] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/13/2020] [Accepted: 02/15/2020] [Indexed: 06/10/2023]
Abstract
Aryl alcohol oxidase (AAO), an extracellular H2O2-providing enzyme, plays a central role in lignin depolymerization. Cost-effective production of AAO has not been achieved, due to the low yield of enzyme-producing microorganisms and the high cost of fermentation media. This study aims to develop a cost-effective medium for high-yield production of AAO in submerged culture using a recombinant Aspergillus nidulans strain. Results demonstrate that corn steep liquor (CSL) was a rich but inexpensive nitrogen source for AAO production, and CSL can provide enough trace metals and vitamins (i.e. pyridoxine) for A. nidulans. A 2-level Plackett-Burman design was utilized to determine the main affecting factors in AAO production. The medium was further optimized by a 3-level Box-Behnken design to obtain the optimum medium component concentrations (61.0 g/L maltose, 26.4 g/L CSL, and 13.8 g/L NaNO3). The greatest AAO activity achieved was 1021 U/L with a protein concentration of 0.75 g/L.
Collapse
Affiliation(s)
- Enshi Liu
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Mengxing Li
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; Department of Statistics, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Asmaa Abdella
- Department of Industrial Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City 22857, Egypt; Industrial Agricultural Products Center, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Mark R Wilkins
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; Industrial Agricultural Products Center, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
| |
Collapse
|
8
|
Abdella A, Segato F, Wilkins MR. Optimization of nutrient medium components for production of a client endo-β-1,4-xylanase from Aspergillus fumigatus var. niveus using a recombinant Aspergillus nidulans strain. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Li M, Eskridge K, Liu E, Wilkins M. Enhancement of polyhydroxybutyrate (PHB) production by 10-fold from alkaline pretreatment liquor with an oxidative enzyme-mediator-surfactant system under Plackett-Burman and central composite designs. BIORESOURCE TECHNOLOGY 2019; 281:99-106. [PMID: 30807996 DOI: 10.1016/j.biortech.2019.02.045] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/06/2019] [Accepted: 02/08/2019] [Indexed: 06/09/2023]
Abstract
In this study, Plackett-Burman and central composite designs were applied to improve polyhydroxybutyrate (PHB) production from alkaline pretreatment liquor (APL) by Cupriavidus necator DSM 545 using a supplement system consisting of oxidative enzymes (laccase, aryl alcohol oxidase (AAO)), mediators (ABTS, HOBT), DMSO, silica nanoparticle Aerosol R816 and surfactant Tween 80. First, screening experiments under Plackett-Burman design showed R816, ABTS and Tween 80 could significantly enhance PHB production. Additional experiments showed that HOBT and DMSO could be removed, and laccase and AAO were needed to remain in the system. Second, a central composite design was applied to obtain the optimum supplemental levels of R816, ABTS and Tween 80. Under optimum conditions, theoretical maximum PHB production (1.9 g/L) was close to experimental PHB production (2.1 g/L). With the supplement system, a 10-fold increase was achieved compared to PHB production (0.2 g/L) without any supplements.
Collapse
Affiliation(s)
- Mengxing Li
- Department of Biological Systems Engineering, The University of Nebraska-Lincoln, Lincoln 68583, USA; Department of Statistics, The University of Nebraska-Lincoln, Lincoln 68583, USA
| | - Kent Eskridge
- Department of Statistics, The University of Nebraska-Lincoln, Lincoln 68583, USA
| | - Enshi Liu
- Department of Biological Systems Engineering, The University of Nebraska-Lincoln, Lincoln 68583, USA
| | - Mark Wilkins
- Department of Biological Systems Engineering, The University of Nebraska-Lincoln, Lincoln 68583, USA; Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln 68588, USA; Industrial Agricultural Products Center, University of Nebraska-Lincoln, Lincoln 68583, USA.
| |
Collapse
|
10
|
Ben Mefteh F, Daoud A, Chenari Bouket A, Thissera B, Kadri Y, Cherif-Silini H, Eshelli M, Alenezi FN, Vallat A, Oszako T, Kadri A, Ros-García JM, Rateb ME, Gharsallah N, Belbahri L. Date Palm Trees Root-Derived Endophytes as Fungal Cell Factories for Diverse Bioactive Metabolites. Int J Mol Sci 2018; 19:ijms19071986. [PMID: 29986518 PMCID: PMC6073733 DOI: 10.3390/ijms19071986] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 06/29/2018] [Accepted: 07/05/2018] [Indexed: 12/24/2022] Open
Abstract
Endophytic fungi of healthy and brittle leaf diseased (BLD) date palm trees (Phoenix dactylifera L.) represent a promising source of bioactive compounds with biomedical, industrial, and pharmaceutical applications. The fungal endophytes Penicillium citrinum isolate TDPEF34, and Geotrichum candidum isolate TDPEF20 from healthy and BLD date palm trees, respectively, proved very effective in confrontation assays against three pathogenic bacteria, including two Gram-positive bacteria Bacillus thuringiensis (Bt) and Enterococcus faecalis (Ef), and one Gram-negative bacterium Salmonella enterica (St). They also inhibited the growth of three fungi Trichoderma sp. (Ti), Fusarium sporotrichioides (Fs), Trichoderma sp. (Ts). Additionally, their volatile organic compounds (VOCs) were shown to be in part responsible for the inhibition of Ti and Ts and could account for the full inhibition of Fs. Therefore, we have explored their potential as fungal cell factories for bioactive metabolites production. Four extracts of each endophyte were prepared using different solvent polarities, ethanol (EtOH), ethyl acetate (EtOAc), hexane (Hex), and methanol (MetOH). Both endophyte species showed varying degrees of inhibition of the bacterial and fungal pathogens according to the solvent used. These results suggest a good relationship between fungal bioactivities and their produced secondary metabolites. Targeting the discovery of potential anti-diabetic, anti-hemolysis, anti-inflammatory, anti-obesity, and cytotoxic activities, endophytic extracts showed promising results. The EtOAc extract of G. candidum displayed IC50 value comparable to the positive control diclofenac sodium in the anti-inflammatory assays. Antioxidant activity was evaluated using α,α-diphenyl-β-picrylhydrazyl (DPPH), β-carotene bleaching, reducing power (RP), and 2,2-azino-bis(3-ethylbenzothiazoline-6-sulphonique) (ABTS) radical scavenging assays. The findings revealed strong anti-oxidant power with an IC50 of 177.55 µg/mL for G. candidum EtOAc extract using DPPH assay, probably due to high polyphenol and flavonoid content in both fungal extracts. Finally, LC-HRMS (Liquid Chromatography–High Resolution Mass Spectrometry) and GC-MS (Gas Chromatography–Mass Spectrometry) analysis of G. candidum and P. citrinum extracts revealed an impressive arsenal of compounds with previously reported biological activities, partly explaining the obtained results. Finally, LC-HRMS analysis indicated the presence of new fungal metabolites that have never been reported, which represent good candidates to follow for the discovery of new bioactive molecules.
Collapse
Affiliation(s)
- Fedia Ben Mefteh
- Faculty of Science, B.P. 1171, 3000, University of Sfax, 3029 Sfax, Tunisia.
| | - Amal Daoud
- Faculty of Science, B.P. 1171, 3000, University of Sfax, 3029 Sfax, Tunisia.
| | - Ali Chenari Bouket
- Plant Protection Research Department, East Azarbaijan Agricultural and Natural Resources Research and Education Center, AREEO, 5153715898 Tabriz, Iran.
| | - Bathini Thissera
- School of Science and Sport, University of the West of Scotland, Paisley PA1 2BE, UK.
| | - Yamina Kadri
- Labroratory of Animal Physiology, Faculty of Sciences of Sfax, University of Sfax,95, 3052 Sfax, Tunisia.
| | - Hafsa Cherif-Silini
- Laboratory of Applied Microbiology, Department of Microbiology, Faculty of Natural and Life Sciences, Ferhat Abbas University, 19000 Setif, Algeria.
| | - Manal Eshelli
- School of Science and Sport, University of the West of Scotland, Paisley PA1 2BE, UK.
- Department of Food Science & Technology, Faculty of Agriculture, University of Tripoli, 13275 Tripoli, Libya.
| | | | - Armelle Vallat
- Neuchâtel Platform of Analytical Chemistry, Institute of Chemistry, University of Neuchâtel, 2000 Neuchâtel, Switzerland.
| | | | - Adel Kadri
- Faculty of Science, B.P. 1171, 3000, University of Sfax, 3029 Sfax, Tunisia.
| | - José María Ros-García
- Department of Food Science & Technology and Human Nutrition, University of Murcia, 30100 Murcia, Spain.
| | - Mostafa E Rateb
- School of Science and Sport, University of the West of Scotland, Paisley PA1 2BE, UK.
| | - Neji Gharsallah
- Faculty of Science, B.P. 1171, 3000, University of Sfax, 3029 Sfax, Tunisia.
| | - Lassaad Belbahri
- NextBiotech, 98 Rue Ali Belhouane, 3030 Agareb, Tunisia.
- Laboratory of Soil Biology, University of Neuchatel, 2000 Neuchatel, Switzerland.
| |
Collapse
|
11
|
Szilágyi M, Anton F, Pócsi I, Emri T. Autolytic enzymes are responsible for increased melanization of carbon stressed Aspergillus nidulans cultures. J Basic Microbiol 2018; 58:440-447. [PMID: 29266292 DOI: 10.1002/jobm.201700545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/21/2017] [Accepted: 11/30/2017] [Indexed: 11/11/2022]
Abstract
Melanization of carbon stressed Aspergillus nidulans cultures were studied. Melanin production showed strong positive correlation with the activity of the secreted chitinase and ß-1,3-glucanase. Deletion of either chiB encoding an autolytic endochitinase or engA encoding an autolytic ß-1,3-endoglucanase, or both, almost completely prevented melanization of carbon stressed cultures. In contrast, addition of Trichoderma lyticase to cultures induced melanin production. Synthetic melanin could efficiently inhibit the purified ChiB chitinase activity. It could also efficiently decrease the intensity of hyphal fragmentation and pellet disorganization in Trichoderma lyticase treated cultures. Glyphosate, an inhibitor of L-3,4-dihydroxyphenylalanine-type melanin synthesis, could prevent melanization of carbon-starved cultures and enhanced pellet disorganization, while pyroquilon, a 1,8-dihydroxynaphthalene-type melanin synthesis inhibitor, enhanced melanization, and prevented pellet disorganization. We concluded that cell wall stress induced by autolytic cell wall hydrolases was responsible for melanization of carbon-starved cultures. The produced melanin can shield the living cells but may not inhibit the degradation and reutilization of cell wall materials of dead hyphae. Controlling the activity of autolytic hydrolase production can be an efficient approach to prevent unwanted melanization in the fermentation industry, while applying melanin synthesis inhibitors can decrease the resistance of pathogenic fungi against the chitinases produced by the host organism.
Collapse
Affiliation(s)
- Melinda Szilágyi
- Faculty of Science and Technology, Department of Biotechnology and Microbiology, University of Debrecen, Debrecen, Hungary
| | - Fruzsina Anton
- Faculty of Science and Technology, Department of Biotechnology and Microbiology, University of Debrecen, Debrecen, Hungary
| | - István Pócsi
- Faculty of Science and Technology, Department of Biotechnology and Microbiology, University of Debrecen, Debrecen, Hungary
| | - Tamás Emri
- Faculty of Science and Technology, Department of Biotechnology and Microbiology, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
12
|
Pardo-Planas O, Atiyeh HK, Prade RA, Müller M, Wilkins MR. Continuous aryl alcohol oxidase production under growth-limited conditions using a trickle bed reactor. BIORESOURCE TECHNOLOGY 2018; 255:149-155. [PMID: 29414160 DOI: 10.1016/j.biortech.2018.01.098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/19/2018] [Accepted: 01/20/2018] [Indexed: 06/08/2023]
Abstract
An A. nidulans strain with a pyridoxine marker was used for continuous production of aryl alcohol oxidase (AAO) in a trickle bed reactor (TBR). Modified medium with reduced zinc, no copper, and 5 g/L ascorbic acid that reduced melanin production and increased AAO productivity under growth limited conditions was used. Two air flow rates, 0.11 L/min (0.1 vvm) and 1.1 L/min (1.0 vvm) were tested. More melanin formation and reduced protein productivity were observed with air flow rate of 1.1 L/min. Three random packings were used as support for the fungus inside the TBR column, two of which were hydrophobic and one which was hydrophilic, and three different dilution rates were tested. The use of GEA BCN 030 hydrophobic packing resulted in greater AAO yield and productivity than the other packings. Increasing dilution rates favored melanin formation and citric, lactic and succinic acid accumulation, which decreased AAO yield and productivity.
Collapse
Affiliation(s)
- Oscar Pardo-Planas
- Department of Biosystems and Agricultural Engineering, 111 Agriculture Hall, Oklahoma State University, Stillwater, OK 74078, USA
| | - Hasan K Atiyeh
- Department of Biosystems and Agricultural Engineering, 111 Agriculture Hall, Oklahoma State University, Stillwater, OK 74078, USA
| | - Rolf A Prade
- Department of Microbiology and Molecular Genetics, 307 Life Sciences East, Oklahoma State University, Stillwater, OK 74078, USA
| | - Michael Müller
- Prüf-und-Forschungsinstitut Pirmasens, Marie-Curie-Straβe 19, 66953 Pirmasens, Germany
| | - Mark R Wilkins
- Department of Biosystems and Agricultural Engineering, 111 Agriculture Hall, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|