1
|
Kumar P, Perumal PK, Sumathi Y, Singhania RR, Chen CW, Dong CD, Patel AK. Nano-enabled microalgae bioremediation: Advances in sustainable pollutant removal and value-addition. ENVIRONMENTAL RESEARCH 2024; 263:120011. [PMID: 39284486 DOI: 10.1016/j.envres.2024.120011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/04/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
Microalgae-assisted bioremediation, enriched by nanomaterial integration, offers a sustainable approach to environmental pollution mitigation while harnessing microalgae's potential as a biocatalyst and biorefinery resource. This strategy explores the interaction between microalgae, nanomaterials, and bioremediation, advancing sustainability objectives. The potent combination of microalgae and nanomaterials highlights the biorefinery's promise in effective pollutant removal and valuable algal byproduct production. Various nanomaterials, including metallic nanoparticles and semiconductor quantum dots, are reviewed for their roles in inorganic and organic pollutant removal and enhancement of microalgae growth. Limited studies have been conducted to establish nanomaterial's (CeO2, ZnO, Fe3O4, Al2O3, etc.) role on microalgae in pollution remediation; most studies cover inorganic pollutants (heavy metals and nutrients) remediation, exhibited 50-300% bioremediation efficiency improvement; however, some studies cover antibiotics and toxic dyes removal efficiency with 19-95% improvement. These aspects unveil the complex mechanisms underlying nanomaterial-pollutant-microalgae interactions, focusing on adsorption, photocatalysis, and quantum dot properties. Strategies to enhance bioremediation efficiency are discussed, including pollutant uptake improvement, real-time control, tailored nanomaterial design, and nutrient recovery. The review assesses recent advancements, navigates challenges, and envisions a sustainable future for bioremediation, underlining the transformative capacity of nanomaterial-driven microalgae-assisted bioremediation. This work aligns with Sustainable Development Goals 6 (Clean Water and Sanitation) and 12 (Responsible Consumption and Production) by exploring nanomaterial-enhanced microalgae bioremediation for sustainable pollution management and resource utilization.
Collapse
Affiliation(s)
- Prashant Kumar
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Pitchurajan Krishna Perumal
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Yamini Sumathi
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Reeta Rani Singhania
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow, 226 029, Uttar Pradesh, India
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow, 226 029, Uttar Pradesh, India.
| |
Collapse
|
2
|
Qi L, Yang Y, Yang Z, Qi J, Zhou Y, Zhu Z, Li J. Antifouling characteristics and mechanisms in visible-light photocatalytic membrane bioreactor based on g-C 3N 4 modified membrane. WATER RESEARCH 2024; 268:122581. [PMID: 39395364 DOI: 10.1016/j.watres.2024.122581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/22/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024]
Abstract
A novel visible-light photocatalytic membrane bioreactor (R3) was constructed for membrane fouling control and effluent quality improvement. Specially, g-C3N4 modified membrane was evaluated for the performance of synergistic separation and photocatalysis. Another two parallel reactors, MBRs with ceramic membrane (R1) and g-C3N4 membrane in dark condition (R2), were operated synchronously for comparison. A satisfactory effluent quality was obtained in R3 with COD and NH4+-N around 22.0 mg/L and 1.02 mg/L during 60-day operation, which was superior to R1 (27.8, 1.42 mg/L) and R2 (29.9, 2.26 mg/L). The thickness of cake layer on membranes in R3 (2.46 μm) was thinner than R1 (3.52 μm) and R2 (4.97 μm) after operation, indicating the introduction of visible light could effectively mitigate membranes fouling. Moreover, microorganism community analysis revealed that visible light increased the relative abundance of Bacteroidetes and Chryseolinea, which not only enhanced the activity of microorganisms in metabolizing organic nutrients, but also improved the transfer and utilization of photogenerated electrons on the semiconductor-microorganism interface. The active aromatic protein metabolism and the upregulated related enzymes further demonstrated the synergistic effect of photocatalysis and microbial communities on the membrane fouling mitigation. This work provides a novel application of photocatalysis into antibiofouling effect in MBRs, and opens a strategy for bacteria inactivation and foulants removal with eco-friendly solar energy.
Collapse
Affiliation(s)
- Lanyue Qi
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, PR China
| | - Yue Yang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, PR China.
| | - Zhongcheng Yang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, PR China
| | - Junwen Qi
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, PR China
| | - Yujun Zhou
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, PR China
| | - Zhigao Zhu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, PR China
| | - Jiansheng Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, PR China.
| |
Collapse
|
3
|
Zhang X, Zhao Y, Wang Y, Qian H, Xing J, Joseph A, Rene ER, Li J, Zhu N. The interplay of hematite and photic biofilm triggers the acceleration of biotic nitrate removal. CHEMOSPHERE 2024; 358:142136. [PMID: 38692363 DOI: 10.1016/j.chemosphere.2024.142136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/03/2024]
Abstract
The soil-water interface is replete with photic biofilm and iron minerals; however, the potential of how iron minerals promote biotic nitrate removal is still unknown. This study investigates the physiological and ecological responses of photic biofilm to hematite (Fe2O3), in order to explore a practically feasible approach for in-situ nitrate removal. The nitrate removal by photic biofilm was significantly higher in the presence of Fe2O3 (92.5%) compared to the control (82.8%). Results show that the presence of Fe2O3 changed the microbial community composition of the photic biofilm, facilitates the thriving of Magnetospirillum and Pseudomonas, and promotes the growth of photic biofilm represented by the extracellular polymeric substance (EPS) and the content of chlorophyll. The presence of Fe2O3 also induces oxidative stress (•O2-) in the photic biofilm, which was demonstrated by electron spin resonance spectrometry. However, the photic biofilm could improve the EPS productivity to prevent the entrance of Fe2O3 to cells in the biofilm matrix and mitigate oxidative stress. The Fe2O3 then promoted the relative abundance of Magnetospirillum and Pseudomonas and the activity of nitrate reductase, which accelerates nitrate reduction by the photic biofilm. This study provides an insight into the interaction between iron minerals and photic biofilm and demonstrates the possibility of combining biotic and abiotic methods to improve the in-situ nitrate removal rate.
Collapse
Affiliation(s)
- Xiguo Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Yanhui Zhao
- Changjiang Basin Ecology and Environment Monitoring and Scientific Research Center, Changjiang Basin Ecology and Environment Administration, Ministry of Ecology and Environment, Wuhan, 430010, China
| | - Yimin Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Haoliang Qian
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Jun Xing
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Akaninyene Joseph
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX, Delft, the Netherlands
| | - Jizhou Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Ningyuan Zhu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; Institute of Soil Sciences, Chinese Academy of Sciences, 71 East Beijing Road, 210008, China.
| |
Collapse
|
4
|
Shi W, Zhang Z, Xiong J, Zhou J, Liang L, Liu Y. Influence of double-layer filling structure on nitrogen removal and internal microbial distribution in bioretention cells. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 339:117901. [PMID: 37043914 DOI: 10.1016/j.jenvman.2023.117901] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 05/03/2023]
Abstract
The nitrogen removal effect of traditional bioretention cells on runoff rainwater is not stable. The nitrogen removal effect of bioretention cells can be improved by setting up a layered filling structure, but the effect of changes in filling structure on the nitrogen removal process and microbial community characteristics is still unclear. Two types of porosity fillers were set up in the experiment, and a homogeneous bioretention cell and three bioretention cells with layered fillers were constructed by changing the depth range of the upper and lower layers to analyze the influence of the pore variation of different depth fillers on the nitrogen removal process and microbial community characteristics. The experimental results showed that, compared with the homogeneous filing structure, the layered filling structure can strengthen the adsorption of NH4+-N and the conversion of NO3--N, so as to increase the removal rates of NH4+-N and NO3--N by 20.71-81.56% and 9.25%-78.19%, respectively. Although the low porosity filler structure will reduce the nitrification activity and urease activity by 48.63%-66.68% and 8.00%-20.64% respectively, it can increase the denitrification activity by 19.14%-31.92%, thus significantly reducing the nitrate content in the filler. The low porosity filler structure can affect the growth and reproduction of various phylum bacteria such as Proteobacteria, Chloroflexi, Acidobacteria, and genus bacteria such as Nitrospira, Ellin6067, Rhizobacter, Pseudomonas, which can improve the diversity and richness of microorganisms.
Collapse
Affiliation(s)
- Weipeng Shi
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
| | - Zinuo Zhang
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
| | - Jiaqing Xiong
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China.
| | - Jiajia Zhou
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
| | - Lipeng Liang
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
| | - Yanzheng Liu
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Xi'an University of Architecture and Technology and University of South Australia, An De College, Xi'an, 710055, China
| |
Collapse
|
5
|
Zhang M, Ji J, Liu L, Guo Y, Chen J. Response of microbial communities to nutrient removal in coastal sediment by using ecological concrete. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27386-3. [PMID: 37155101 DOI: 10.1007/s11356-023-27386-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/28/2023] [Indexed: 05/10/2023]
Abstract
Ecological concrete (eco-concrete) is a kind of environment-friendly material with porous characteristics. In this study, the eco-concrete was used to remove the total nitrogen (TN), total phosphorus (TP), and total organic carbon (TOC) in marine coastal sediment. The bacterial communities in sediment and on eco-concrete surface were also investigated by using high-throughput sequencing and quantitative PCR of 16S rRNA gene. We found that the mean removal efficiencies of TN, TP, and TOC in treatment group were 8.3%, 8.4%, and 12.3% after 28 days. The bacterial community composition in the treatment group was significantly different from that in the control group on day 28. In addition, the bacterial community composition on eco-concrete surface was slightly different from that in sediment, and the copy numbers of 16S rRNA gene were higher on eco-concrete surface than in sediment. The types of eco-concrete aggregates (gravel, pebble, and zeolite) also had effects on the bacterial community composition and 16S rRNA gene copy numbers. Furthermore, we found the abundant genus Sulfurovum increased significantly on eco-concrete surface in the treatment group after 28 days. Bacteria belonging to this genus were found having denitrification ability and were commonly detected in bioreactors for nitrate removal. Overall, our study expands the application scopes of eco-concrete and suggests that the bacterial communities in eco-concrete can potentially enhance the removal efficiency of nutrients in coastal sediment.
Collapse
Affiliation(s)
- Meiling Zhang
- School of Advanced Manufacturing, Fuzhou University, Jinjiang, 362200, China
- Marine Engineering Research and Development Center of Jinjiang Science and Education Park, Fuzhou University, Jinjiang, 362200, China
- Institute of Natural Products and Traditional Chinese Medicine Modernization, Fuzhou University, Fuzhou, 350108, China
| | - Jiannan Ji
- Marine Engineering Research and Development Center of Jinjiang Science and Education Park, Fuzhou University, Jinjiang, 362200, China
- Institute of Natural Products and Traditional Chinese Medicine Modernization, Fuzhou University, Fuzhou, 350108, China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Lemian Liu
- School of Advanced Manufacturing, Fuzhou University, Jinjiang, 362200, China.
- Marine Engineering Research and Development Center of Jinjiang Science and Education Park, Fuzhou University, Jinjiang, 362200, China.
- Institute of Natural Products and Traditional Chinese Medicine Modernization, Fuzhou University, Fuzhou, 350108, China.
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China.
| | - Yisong Guo
- School of Advanced Manufacturing, Fuzhou University, Jinjiang, 362200, China
- Marine Engineering Research and Development Center of Jinjiang Science and Education Park, Fuzhou University, Jinjiang, 362200, China
- Institute of Natural Products and Traditional Chinese Medicine Modernization, Fuzhou University, Fuzhou, 350108, China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Jianfeng Chen
- School of Advanced Manufacturing, Fuzhou University, Jinjiang, 362200, China
- Marine Engineering Research and Development Center of Jinjiang Science and Education Park, Fuzhou University, Jinjiang, 362200, China
- Institute of Natural Products and Traditional Chinese Medicine Modernization, Fuzhou University, Fuzhou, 350108, China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
6
|
Kumari M, Sarkar B, Mukherjee K. Nanoscale calcium oxide and its biomedical applications: A comprehensive review. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Review on Thin-film Nanocomposite Membranes with Various Quantum Dots for Water Treatments. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Qin Z, Zhao Z, Xia L, Ohore OE. Research trends and hotspots of aquatic biofilms in freshwater environment during the last three decades: a critical review and bibliometric analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:47915-47930. [PMID: 35522418 DOI: 10.1007/s11356-022-20238-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
Freshwater periphytic biofilms (FPBs), existing widely in various aquatic environments, have attracted extensive attention for many years. In the present study, a bibliometric analysis based on Web of Science Core Collection (WoSCC) was used to understand the research progress, trends, and hot topics of FPBs qualitatively and quantitatively. The results indicated that publications on FPBs have increased from 1991 to 2020 rapidly, and researchers have focused more on the areas of environmental sciences, microbiology, and marine freshwater biology. The most influential countries were mainly the USA, Spain, France, and Germany. Cooperation network analysis reflected that the USA and its affiliated institutions played crucial roles in the research of FPB cooperation, but the collaboration between core author groups still fell short. Based on the analysis of top 20 high-cited FPB documents over the last 30 years, research hotspots mainly included micro-observation and assembly mechanisms of FPBs; interactions of FPBs and pollutants including heavy metals, antibiotic resistance genes, pathogens, organic pollutants, and nanoparticles; and the role of FPBs for biogeochemical cycling, especially nitrogen cycling. Additionally, future research directions were proposed. Overall, this study provides a comprehensive and systematic overview of FPBs, which is useful for research development and researchers who are interested in this area.
Collapse
Affiliation(s)
- Zhirui Qin
- Key Laboratory of Integrated Regulation and Resource Development On Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Zhenhua Zhao
- Key Laboratory of Integrated Regulation and Resource Development On Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA.
| | - Liling Xia
- Nanjing Institute of Industry Technology, Nanjing, 210016, China
| | - Okugbe Ebiotubo Ohore
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
- Organization of African Academic Doctors, Off Kamiti Road, P.O. Box 25305-00100, Nairobi, Kenya
| |
Collapse
|
9
|
Ye J, Gao H, Domingo-Félez C, Wu J, Zhan M, Yu R, Smets BF. Chronic effects of cerium dioxide nanoparticles on biological nitrogen removal and nitrous oxide emission: Insight into impact mechanism and performance recovery potential. BIORESOURCE TECHNOLOGY 2022; 351:126966. [PMID: 35278624 DOI: 10.1016/j.biortech.2022.126966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
The influence of cerium dioxide nanoparticles (CeO2 NPs) on biological nitrogen removal and associated nitrous oxide (N2O) emission has seldom been addressed yet. Herein, the chronic effect of CeO2 NPs on the nitrogen transformation processes during wastewater treatment and the impacted system's self-recovery potential after CeO2 NP stress removal were investigated. CeO2 NP of 10-50 mg/L induced significant declines of the ammonia nitrogen (NH4+-N) and the total nitrogen removal efficiencies, but triggered the nitrite accumulation and the N2O emission. The N2O reductase (NOS) activity was negatively correlated with the N2O emission level, and the inhibition of NOS activity under CeO2 NP stress was probably due to the depressions of the sludge denitrifiers' metabolic activities. The NH4+-N removal efficiency was successfully regained after the recovery period although the N2O emission level was still higher than the pre-exposure period, which was probably due to the residual CeO2 NPs inside the activated sludge.
Collapse
Affiliation(s)
- Jinyu Ye
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Huan Gao
- Department of Environmental Science and Engineering, School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China
| | - Carlos Domingo-Félez
- Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Junkang Wu
- Department of Environmental Science and Engineering, School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China; Department of Water Supply and Drainage Science and Engineering, College of Civil Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Manjun Zhan
- Nanjing Research Institute of Environmental Protection, Nanjing Environmental Protection Bureau, Nanjing, Jiangsu 210013, China
| | - Ran Yu
- Department of Environmental Science and Engineering, School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China.
| | - Barth F Smets
- Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| |
Collapse
|
10
|
Zhao Y, Zhang R, Jing L, Wang W. Performance of basalt fiber-periphyton in deep-level nutrient removal: A study concerned periphyton cultivation, characterization and application. CHEMOSPHERE 2022; 291:133044. [PMID: 34826450 DOI: 10.1016/j.chemosphere.2021.133044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/12/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
Nutrients in centralized discharge area of treated sewage can cause high ecological risks to aquatic systems, thus a deep-level nutrient removal is necessary. Recently, periphyton has attracted increasing interests for its excellent performance in nutrient removal. In this study, the suitability and durability of basalt fiber (BF) as a new green carrier of periphyton was evaluated, and development process of basalt fiber-periphtyon (BFP) was tracked with bacterial community succession and physiological indicators. Then, well-developed BFP was applied to deeply purify water containing the same concentration of nutrient as the treated sewage. Results showed the periphyton could adapt to BF and formed in large quantities. In addition, the tensile strength of BF after being used as a carrier was still strong. Bacterial community and physiological indicators indicated that BFP was well developed in 40-50 days. LEfSE and random forest analysis revealed that Deinococcus-Deinococci, Spartobacteria and Chlamydiia at class-level, Rhizobiales and Rhodobacterales at order-level were the biomarkers for development of BFP. Moreover, application results showed BFP efficiently removed nitrogen and phosphorus from water and promoted the transformation of ammonia to nitrate. The concentration of ammonia and phosphorus severely decreased from 4.90 ± 0.11 mg/L to 0.51 ± 0.20 mg/L, from 0.66 ± 0.016 mg/L to 0.023 ± 0.013 mg/L, respectively. The efficient nutrient removal was attributed to accumulation of nitrogen and phosphorus metabolism related organisms in BFP as well as favorable water physic-chemical conditions created by BFP. These results suggest that BF is a suitable and durable green carrier of periphyton, and BFP could efficiently reduce ecological risk to aquatic systems receiving treated sewage.
Collapse
Affiliation(s)
- Yue Zhao
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China
| | - Run Zhang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China
| | - Liandong Jing
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China.
| | - Wenjing Wang
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 7 Chunhui Road, Yantai, 264003, China
| |
Collapse
|
11
|
Wang S, Sun P, Zhang G, Gray N, Dolfing J, Esquivel-Elizondo S, Peñuelas J, Wu Y. Contribution of periphytic biofilm of paddy soils to carbon dioxide fixation and methane emissions. Innovation (N Y) 2022; 3:100192. [PMID: 34950915 PMCID: PMC8672048 DOI: 10.1016/j.xinn.2021.100192] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/23/2021] [Indexed: 10/26/2022] Open
Abstract
Rice paddies are major contributors to anthropogenic greenhouse gas emissions via methane (CH4) flux. The accurate quantification of CH4 emissions from rice paddies remains problematic, in part due to uncertainties and omissions in the contribution of microbial aggregates on the soil surface to carbon fluxes. Herein, we comprehensively evaluated the contribution of one form of microbial aggregates, periphytic biofilm (PB), to carbon dioxide (CO2) and CH4 emissions from paddies distributed across three climatic zones, and quantified the pathways that drive net CH4 production as well as CO2 fixation. We found that PB accounted for 7.1%-38.5% of CH4 emissions and 7.2%-12.7% of CO2 fixation in the rice paddies. During their growth phase, PB fixed CO2 and increased the redox potential, which promoted aerobic CH4 oxidation. During the decay phase, PB degradation reduced redox potential and increased soil organic carbon availability, which promoted methanogenic microbial community growth and metabolism and increased CH4 emissions. Overall, PB acted as a biotic converter of atmospheric CO2 to CH4, and aggravated carbon emissions by up to 2,318 kg CO2 equiv ha-1 season-1. Our results provide proof-of-concept evidence for the discrimination of the contributions of surface microbial aggregates (i.e., PB) from soil microbes, and a profound foundation for the estimation and simulation of carbon fluxes in a potential novel approach to the mitigation of CH4 emissions by manipulating PB growth.
Collapse
Affiliation(s)
- Sichu Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China.,Zigui Three Gorges Reservoir Ecosystem, Observation and Research Station of Ministry of Water Resources of the People's Republic of China, Shuitianba Zigui, Yichang 443605, China.,College of Advanced Agricultural Science, University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Pengfei Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China.,Zigui Three Gorges Reservoir Ecosystem, Observation and Research Station of Ministry of Water Resources of the People's Republic of China, Shuitianba Zigui, Yichang 443605, China
| | - Guangbin Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China
| | - Neil Gray
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Jan Dolfing
- Faculty of Energy and Environment, Northumbria University, Newcastle upon Tyne NE1 8QH, UK
| | - Sofia Esquivel-Elizondo
- Department of Microbiome Science, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Josep Peñuelas
- Consejo Superior de Investigaciones Científicas (CSIC), Global Ecology Unit, Centre for Ecological Research and Forestry Applications (CREAF)-CSIC-Universitat Autonoma de Barcelona (UAB), Bellaterra, 08193 Barcelona, Catalonia, Spain
| | - Yonghong Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China.,Zigui Three Gorges Reservoir Ecosystem, Observation and Research Station of Ministry of Water Resources of the People's Republic of China, Shuitianba Zigui, Yichang 443605, China
| |
Collapse
|
12
|
Li W, Zhang P, Qiu H, Van Gestel CAM, Peijnenburg WJGM, Cao X, Zhao L, Xu X, He E. Commonwealth of Soil Health: How Do Earthworms Modify the Soil Microbial Responses to CeO 2 Nanoparticles? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1138-1148. [PMID: 34964610 DOI: 10.1021/acs.est.1c06592] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Soil ecotoxicological assays on nanoparticles (NPs) have mainly investigated single components (e.g., plants, fauna, and microbes) within the ecosystem, neglecting possible effects resulting from the disturbance of the interactions between these components. Here, we investigated soil microbial responses to CeO2 NPs in the presence and absence of earthworms from the perspectives of microbial functions (i.e., enzyme activities), the community structure, and soil metabolite profiles. Exposure to CeO2 NPs (50, 500 mg/kg) alone decreased the activities of enzymes (i.e., acid protease and acid phosphatase) participating in soil N and P cycles, while the presence of earthworms ameliorated these inhibitory effects. After the CeO2 NP exposure, the earthworms significantly altered the relative abundance of some microbes associated with the soil N and P cycles (Flavobacterium, Pedobacter, Streptomyces, Bacillus, Bacteroidota, Actinobacteria, and Firmicutes). This was consistent with the pattern found in the significantly changed metabolites which were also involved in the microbial N and P metabolism. Both CeO2 NPs and earthworms changed the soil bacterial community and soil metabolite profiles. Larger alterations of soil bacteria and metabolites were found under CeO2 NP exposure with earthworms. Overall, our study indicates that the top-down control of earthworms can drastically modify the microbial responses to CeO2 NPs from all studied biological aspects. This clearly shows the importance of the holistic consideration of all soil ecological components to assess the environmental risks of NPs to soil health.
Collapse
Affiliation(s)
- Wenxing Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Peihua Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cornelis A M Van Gestel
- Department of Ecological Science, Faculty of Science, Vrije Universiteit, Amsterdam 1081 HV, The Netherlands
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences, Leiden University, Leiden 2333 CC, The Netherlands
- National Institute of Public Health and the Environment, Center for the Safety of Substances and Products, Bilthoven 3720 BA, The Netherlands
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ling Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyun Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Erkai He
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
13
|
Sentenac H, Loyau A, Leflaive J, Schmeller DS. The significance of biofilms to human, animal, plant and ecosystem health. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13947] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Hugo Sentenac
- Laboratoire Ecologie Fonctionnelle et Environnement UMR 5245 Université de Toulouse CNRS INPT UPS Castanet‐Tolosan Cedex France
| | - Adeline Loyau
- Laboratoire Ecologie Fonctionnelle et Environnement UMR 5245 Université de Toulouse CNRS INPT UPS Castanet‐Tolosan Cedex France
- Department of Experimental Limnology Leibniz‐Institute of Freshwater Ecology and Inland Fisheries (IGB) Stechlin Germany
| | - Joséphine Leflaive
- Laboratoire Ecologie Fonctionnelle et Environnement UMR 5245 Université de Toulouse CNRS INPT UPS Castanet‐Tolosan Cedex France
| | - Dirk S. Schmeller
- Laboratoire Ecologie Fonctionnelle et Environnement UMR 5245 Université de Toulouse CNRS INPT UPS Castanet‐Tolosan Cedex France
| |
Collapse
|
14
|
Mehmood T, Gaurav GK, Cheng L, Klemeš JJ, Usman M, Bokhari A, Lu J. A review on plant-microbial interactions, functions, mechanisms and emerging trends in bioretention system to improve multi-contaminated stormwater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 294:113108. [PMID: 34218074 DOI: 10.1016/j.jenvman.2021.113108] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Management and treatment of multi-polluted stormwater in bioretention system have gained significant attraction recently. Besides nutrients, recent source appointment studies found elevated levels of Potentially toxic metal(loid)s (PTMs) and contaminants of emerging concern (CECs) in stormwater that highlighted many limitations in conventional media adsorption-based pollutant removal bioretention strategies. The substantial new studies include biological treatment approaches to strengthen pollutants degradation and adsorption capacity of bioretention. The knowledge on characteristics of plants and their corresponding mechanisms in various functions, e.g., rainwater interception, retention, infiltration, media clogging prevention, evapotranspiration and phytoremediation, is scattered. The microorganisms' role in facilitating vegetation and media, plant-microorganism interactions and relative performance over different functions in bioretention is still unreviewed. To uncover the underneath, it was summarised plant and microbial studies and their functionality in hydrogeochemical cycles in the bioretention system in this review, contributing to finding their interconnections and developing a more efficient bioretention system. Additionally, source characteristics of stormwater and fate of associated pollutants in the environment, the potential of genetical engineered plants, algae and fungi in bioretention system as well as performance assessment of plants and microorganisms in non-bioretention studies to propose the possible solution of un-addressed problems in bioretention system have been put forward in this review. The present review can be used as an imperative reference to enlighten the advantages of adopting multidisciplinary approaches for the environment sustainability and pollution control.
Collapse
Affiliation(s)
- Tariq Mehmood
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, China; College of Civil Engineering, Hohai University, Nanjing, 210098, China
| | - Gajendra Kumar Gaurav
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, China; College of Civil Engineering, Hohai University, Nanjing, 210098, China
| | - Liu Cheng
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, China; College of Civil Engineering, Hohai University, Nanjing, 210098, China.
| | - Jiří Jaromír Klemeš
- Sustainable Process Integration Laboratory, SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology, VUT Brno, Technická 2896/2, 616 00, Brno, Czech Republic
| | - Muhammad Usman
- PEIE Research Chair for the Development of Industrial Estates and Free Zones, Center for Environmental Studies and Research, Sultan Qaboos University, Al-Khoud 123, Muscat, Oman
| | - Awais Bokhari
- Sustainable Process Integration Laboratory, SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology, VUT Brno, Technická 2896/2, 616 00, Brno, Czech Republic; Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore Campus, Punjab, 54000, Pakistan
| | - Jie Lu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, China; College of Civil Engineering, Hohai University, Nanjing, 210098, China
| |
Collapse
|
15
|
Moreno-Vásquez MJ, Plascencia-Jatomea M, Sánchez-Valdes S, Tanori-Córdova JC, Castillo-Yañez FJ, Quintero-Reyes IE, Graciano-Verdugo AZ. Characterization of Epigallocatechin-Gallate-Grafted Chitosan Nanoparticles and Evaluation of Their Antibacterial and Antioxidant Potential. Polymers (Basel) 2021; 13:1375. [PMID: 33922410 PMCID: PMC8122830 DOI: 10.3390/polym13091375] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 01/28/2023] Open
Abstract
Nanoparticles based on chitosan modified with epigallocatechin gallate (EGCG) were synthetized by nanoprecipitation (EGCG-g-chitosan-P). Chitosan was modified by free-radical-induced grafting, which was verified by Fourier transform infrared (FTIR). Furthermore, the morphology, particle size, polydispersity index, and zeta potential of the nanoparticles were investigated. The grafting degree of EGCG, reactive oxygen species (ROS) production, antibacterial and antioxidant activities of EGCG-g-chitosan-P were evaluated and compared with those of pure EGCG and chitosan nanoparticles (Chitosan-P). FTIR results confirmed the modification of the chitosan with EGCG. The EGCG-g-chitosan-P showed spherical shapes and smoother surfaces than those of Chitosan-P. EGCG content of the grafted chitosan nanoparticles was 330 μg/g. Minimal inhibitory concentration (MIC) of EGCG-g-chitosan-P (15.6 μg/mL) was lower than Chitosan-P (31.2 μg/mL) and EGCG (500 μg/mL) against Pseudomonas fluorescens (p < 0.05). Additionally, EGCG-g-chitosan-P and Chitosan-P presented higher Staphylococcus aureus growth inhibition (100%) than EGCG at the lowest concentration tested. The nanoparticles produced an increase of ROS (p < 0.05) in both bacterial species assayed. Furthermore, EGCG-g-chitosan-P exhibited higher antioxidant activity than that of Chitosan-P (p < 0.05) in 2,2'-azino-bis (3-ethyl-benzothiazoline-6-sulfonic acid) (ABTS), 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) and ferric-reducing antioxidant power assays. Based on the above results, EGCG-g-chitosan-P shows the potential for food packaging and biomedical applications.
Collapse
Affiliation(s)
- María J. Moreno-Vásquez
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, 83000 Hermosillo, Sonora, Mexico; (M.J.M.-V.); (F.J.C.-Y.)
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, 83000 Hermosillo, Sonora, Mexico
| | - Maribel Plascencia-Jatomea
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, 83000 Hermosillo, Sonora, Mexico
| | - Saúl Sánchez-Valdes
- Departamento de Procesos de Transformación de Plásticos, Centro de Investigación en Química Aplicada, 25294 Saltillo, Coahuila, Mexico;
| | - Judith C. Tanori-Córdova
- Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, 83000 Hermosillo, Sonora, Mexico;
| | - Francisco J. Castillo-Yañez
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, 83000 Hermosillo, Sonora, Mexico; (M.J.M.-V.); (F.J.C.-Y.)
| | | | - Abril Z. Graciano-Verdugo
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, 83000 Hermosillo, Sonora, Mexico; (M.J.M.-V.); (F.J.C.-Y.)
| |
Collapse
|
16
|
Wang G, Wang D, Xu Y, Li Z, Huang L. Study on optimization and performance of biological enhanced activated sludge process for pharmaceutical wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:140166. [PMID: 32758957 DOI: 10.1016/j.scitotenv.2020.140166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/02/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
Simulated pharmaceutical wastewater was treated by moving bed biofilm reactor (MBBR) and total reflux sludge reactor process (STR) system. By cultivating specific bacterial groups, optimizing reactor process parameters, and comparatively analyzing the pollutant removal efficiency under stable operating conditions of the system, the treatment efficiency of the two systems under the combined impact load of organic pollutants on the target pollutants indole and naphthalene was studied. The optimal operation parameters of reactors: hydraulic retention time (HRT) was 8 h, aeration was 0.12 m3/h. The effect was better in 25 ± 1 °C than that in 20 ± 2 °C. During stable operation, the average removal rate of chemical oxygen demand (COD) and ammonia nitrogen (NH4+-N) of the MBBR system was significantly higher than that of STR, and the two kinds of target pollutants concentration in water was lower than the detection limit. In the combined impact test of organic pollutants, the dominant bacterial group obtained by domestication had a high degradation ability, so the combined impact of indole and naphthalene had little effect on the two reactors. But in the fourth stage, the residual naphthalene concentration in the STR system effluent exceeded the target value. Therefore, the MBBR process has a stronger treatment effect on pharmaceutical wastewater than the STR system during the stable period and the impact load stage.
Collapse
Affiliation(s)
- Guangzhi Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China.
| | - Dongdong Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | - Yuanyuan Xu
- School of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Zhe Li
- School of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Likun Huang
- School of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| |
Collapse
|
17
|
Shkodenko L, Kassirov I, Koshel E. Metal Oxide Nanoparticles Against Bacterial Biofilms: Perspectives and Limitations. Microorganisms 2020; 8:E1545. [PMID: 33036373 PMCID: PMC7601517 DOI: 10.3390/microorganisms8101545] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 09/25/2020] [Accepted: 10/02/2020] [Indexed: 12/17/2022] Open
Abstract
At present, there is an urgent need in medicine and industry to develop new approaches to eliminate bacterial biofilms. Considering the low efficiency of classical approaches to biofilm eradication and the growing problem of antibiotic resistance, the introduction of nanomaterials may be a promising solution. Outstanding antimicrobial properties have been demonstrated by nanoparticles (NPs) of metal oxides and their nanocomposites. The review presents a comparative analysis of antibiofilm properties of various metal oxide NPs (primarily, CuO, Fe3O4, TiO2, ZnO, MgO, and Al2O3 NPs) and nanocomposites, as well as mechanisms of their effect on plankton bacteria cells and biofilms. The potential mutagenicity of metal oxide NPs and safety problems of their wide application are also discussed.
Collapse
Affiliation(s)
- Liubov Shkodenko
- Microbiology Lab of SCAMT Institute, ITMO University, Lomonosova st. 9, 191002 St. Petersburg, Russia; (L.S.); (I.K.)
| | - Ilia Kassirov
- Microbiology Lab of SCAMT Institute, ITMO University, Lomonosova st. 9, 191002 St. Petersburg, Russia; (L.S.); (I.K.)
- Department of Epidemiology, Pasteur Institute, 197101 St. Petersburg, Russia
| | - Elena Koshel
- Microbiology Lab of SCAMT Institute, ITMO University, Lomonosova st. 9, 191002 St. Petersburg, Russia; (L.S.); (I.K.)
| |
Collapse
|
18
|
Rodríguez-Suárez JM, Butler CS, Gershenson A, Lau BLT. Heterogeneous Diffusion of Polystyrene Nanoparticles through an Alginate Matrix: The Role of Cross-linking and Particle Size. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:5159-5166. [PMID: 32182039 DOI: 10.1021/acs.est.9b06113] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Most bacteria in natural and engineered environments grow and exist in biofilms. Recent investigations have shown that nanoparticles (NPs) interact with environmental biofilms, but these interactions are still not well characterized. Extracellular polymeric substances (EPS) are polymers secreted by bacteria to establish the functional and structural integrity of biofilms, and EPS porosity is a major contributor to NP access to and diffusion in biofilms. We used a synergistic combination of total internal reflection fluorescence microscopy and image correlation spectroscopy to monitor and map diffusion of fluorescent NPs in alginate yielding a detailed picture of the heterogeneous structure and connectivity of pores within a model EPS polymer. Using different sizes (20, 100, and 200 nm) of carboxylated polystyrene NPs, we examined how NP diffusive behaviors change as a result of calcium-induced cross-linking of the alginate matrix. This study reveals that cross-linking decreases NP diffusion coefficients and pore accessibility in an NP size-dependent manner and that NP movement through alginate matrices is anisotropic and heterogeneous. These results on heterogeneous and size-dependent movement within biofilms have important implications for future studies and simulations of NP-biofilm interactions.
Collapse
Affiliation(s)
- Joann M Rodríguez-Suárez
- Department of Civil and Environmental Engineering, University of Massachusetts Amherst, Amherst Massachusetts 01003, United States
| | - Caitlyn S Butler
- Department of Civil and Environmental Engineering, University of Massachusetts Amherst, Amherst Massachusetts 01003, United States
| | - Anne Gershenson
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst Massachusetts 01003, United States
| | - Boris L T Lau
- Department of Civil and Environmental Engineering, University of Massachusetts Amherst, Amherst Massachusetts 01003, United States
| |
Collapse
|
19
|
Blinova I, Muna M, Heinlaan M, Lukjanova A, Kahru A. Potential Hazard of Lanthanides and Lanthanide-Based Nanoparticles to Aquatic Ecosystems: Data Gaps, Challenges and Future Research Needs Derived from Bibliometric Analysis. NANOMATERIALS 2020; 10:nano10020328. [PMID: 32075069 PMCID: PMC7075196 DOI: 10.3390/nano10020328] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/09/2020] [Accepted: 02/10/2020] [Indexed: 12/16/2022]
Abstract
Lanthanides (Ln), applied mostly in the form of nanoparticles (NPs), are critical to emerging high-tech and green energy industries due to their distinct physicochemical properties. The resulting anthropogenic input of Ln and Ln-based NPs into aquatic environment might create a problem of emerging contaminants. Thus, information on the biological effects of Ln and Ln-based NPs is urgently needed for relevant environmental risk assessment. In this mini-review, we made a bibliometric survey on existing scientific literature with the main aim of identifying the most important data gaps on Ln and Ln-based nanoparticles' toxicity to aquatic biota. We report that the most studied Ln for ecotoxicity are Ce and Ln, whereas practically no information was found for Nd, Tb, Tm, and Yb. We also discuss the challenges of the research on Ln ecotoxicity, such as relevance of nominal versus bioavailable concentrations of Ln, and point out future research needs (long-term toxicity to aquatic biota and toxic effects of Ln to bottom-dwelling species).
Collapse
Affiliation(s)
- Irina Blinova
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Tallinn 12618, Estonia; (I.B.); (M.M.); (M.H.); (A.L.)
| | - Marge Muna
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Tallinn 12618, Estonia; (I.B.); (M.M.); (M.H.); (A.L.)
| | - Margit Heinlaan
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Tallinn 12618, Estonia; (I.B.); (M.M.); (M.H.); (A.L.)
| | - Aljona Lukjanova
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Tallinn 12618, Estonia; (I.B.); (M.M.); (M.H.); (A.L.)
| | - Anne Kahru
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Tallinn 12618, Estonia; (I.B.); (M.M.); (M.H.); (A.L.)
- Estonian Academy of Sciences, Tallinn 10130, Kohtu 6, Estonia
- Correspondence: ; Tel.: +372-6398373
| |
Collapse
|
20
|
Zhong W, Zhao W, Song J. Responses of Periphyton Microbial Growth, Activity, and Pollutant Removal Efficiency to Cu Exposure. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17030941. [PMID: 32028710 PMCID: PMC7037227 DOI: 10.3390/ijerph17030941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/19/2020] [Accepted: 01/28/2020] [Indexed: 12/24/2022]
Abstract
Periphyton is an effective matrix for the removal of pollutants in wastewater and has been considered a promising method of bioremediation. However, it still needs to be verified whether periphyton can maintain microbial activity and pollutant removal efficiency when dealing with the influence with complex components, and the underlying mechanisms of periphyton need to be revealed further. Herein, this study investigated the microbial growth, activity and functional responses of periphyton after removal of Cu from wastewater. Results showed that the cultivated periphyton was dominated by filamentous algae, and high Cu removal efficiencies by periphyton were obtained after 108 h treatments. Although 2 mg/L Cu2+ changed the microalgal growth (decreasing the contents of total chlorophyll-a (Chla), the carbon source utilization and microbial metabolic activity in periphyton were not significantly affected and even increased by 2 mg/L Cu2+. Moreover, chemical oxygen demand (COD) removal rates were sustained after 0.5 and 2 mg/L Cu2+ treatments. Our work showed that periphyton had strong tolerance and resistance on Cu stress and is environmentally friendly in dealing with wastewater containing heavy metals, as the microbial functions in pollutant removal could be maintained.
Collapse
Affiliation(s)
- Wei Zhong
- College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
- Power China Kuminng Engineering Co., Ltd., Kuminng 650051, China;
- Correspondence:
| | - Weiqun Zhao
- Power China Kuminng Engineering Co., Ltd., Kuminng 650051, China;
| | - Jianhui Song
- Sinohydro Bureau 8 Co., Ltd., Changsha 410004, China;
| |
Collapse
|
21
|
Lawrence JR, Paule A, Swerhone GDW, Roy J, Grigoryan AA, Dynes JJ, Chekabab SM, Korber DR. Microscale and molecular analyses of river biofilm communities treated with microgram levels of cerium oxide nanoparticles indicate limited but significant effects. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113515. [PMID: 31706760 DOI: 10.1016/j.envpol.2019.113515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 10/24/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
Cerium oxide (CeO2) nanoparticles are used as in-fuel catalysts and in manufacturing processes, creating a potential for release to aquatic environments. Exposures at 1 and 10 μg/L CeO2-nanoparticles were made to assess effects during the development of river biofilm communities. Scanning transmission x-ray microscopy (STXM) indicated extensive sorption of nanoparticles to the community and co-localization with lipid moieties. Following 8 weeks of development, polycarbonate coupons were removed from the reactors and used for molecular analyses, denaturing gradient gel electrophoresis analysis (DGGE-16S rRNA) and 16S rRNA amplicon sequencing. Microscopic imaging of the biofilm communities (bacterial, photosynthetic biomass, exopolymer composition, thickness, protozoan numbers), as well as carbon substrate utilization fingerprinting was performed. There was a trend toward reduced photosynthetic biomass, but no significant effects of CeO2 exposure were found on photosynthetic and bacterial biomass or biofilm thickness. Sole carbon source utilization analyses indicated increased utilization of 10 carbon sources in the carbohydrate, carboxylic acid and amino acids categories related to CeO2 exposures; however, predominantly, no significant effects (p < 0.05) were detected. Measures of microbial diversity, lectin binding affinities of exopolymeric substances and results of DGGE analyses, indicated significant changes to community composition (p < 0.05) with CeO2 exposure. Increased binding of the lectin Canavalia ensiformis was observed, consistent with changes in bacterial-associated polymers. Whereas, no significant changes were observed in binding to residues associated with algal and cyanobacterial exopolymers. 16S rRNA amplicon sequencing of community DNA indicated changes in diversity and shifts in community composition; however, these did not trend with increasing CeO2 exposure. Counting of protozoans in the biofilm communities indicated no significant effects on this trophic level. Thus, based on biomass and functional measures, CeO2 nanoparticles did not appear to have significant effects; however, there was evidence of selection pressure resulting in significant changes in microbial community composition.
Collapse
Affiliation(s)
- John R Lawrence
- Environment and Climate Change Canada, 11 Innovation Blvd., Saskatoon, SK, S7N 3H5, Canada.
| | - Armelle Paule
- Global Institute for Water Security, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada.
| | - George D W Swerhone
- Environment and Climate Change Canada, 11 Innovation Blvd., Saskatoon, SK, S7N 3H5, Canada.
| | - Julie Roy
- Environment and Climate Change Canada, 11 Innovation Blvd., Saskatoon, SK, S7N 3H5, Canada.
| | - Alexander A Grigoryan
- Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada.
| | - James J Dynes
- Canadian Light Source Inc., University of Saskatchewan, SK, Canada.
| | - Samuel M Chekabab
- Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada.
| | - Darren R Korber
- Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada.
| |
Collapse
|
22
|
Hou J, Li T, Miao L, You G, Xu Y, Liu S. Effects of titanium dioxide nanoparticles on algal and bacterial communities in periphytic biofilms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:407-414. [PMID: 31103000 DOI: 10.1016/j.envpol.2019.04.136] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/25/2019] [Accepted: 04/29/2019] [Indexed: 06/09/2023]
Abstract
The widespread application of commercial TiO2 NPs inevitably leads to their release into environmental waters through various ways. TiO2 NPs released into water might be absorbed by and react with periphytic biofilms, which are a kind of aquatic environmental media of important ecological significance, and influence the physiological activity and ecological function of periphytic biofilms. This study investigated the effects of exposure to 1 mg/L and 5 mg/L of TiO2 NPs on periphytic biofilms cultured indoors. After a 10-day exposure to TiO2 NPs, the growth (measured by chlorophyll-a content) of microalgal community was inhibited greatly (more than 60%); however, the primary production (indicated by quantum yield) of periphytic biofilms maintained changeless. As for bacteria, TiO2 NP-exposure increased the bacterial diversity and altered the composition structure. Significant changes were observed in the bacterial communities at the class level, mainly including Alphaproteobacteria, Gammaproteobacteria, Cytophagia, Flavobacteriia, Sphingobacteriia, Synechococcophycideae and Oscillatoriophycideae. The enhancement of metabolic activities (the production of extracellular polymeric substances, especially proteins content increased by 48.51%) of periphytic biofilms was a resistance mechanism to toxicity of NPs. As for extracellular enzyme activities of periphytic biofilms, alkaline phosphatase activity was inhibited (22.43%) after exposed to 5 mg/L of TiO2 NPs, which posed a threat to phosphorus metabolism of periphytic biofilms. Overall, this study demonstrated that 1 mg/L and 5 mg/L of TiO2 NPs negatively influenced physiological activities and ecological functions of periphytic biofilms, highlighting that the ecological risks of TiO2 NPs should be paid attention to.
Collapse
Affiliation(s)
- Jun Hou
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Tengfei Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China.
| | - Gouxiang You
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Yi Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Songqi Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| |
Collapse
|
23
|
How Microbial Aggregates Protect against Nanoparticle Toxicity. Trends Biotechnol 2018; 36:1171-1182. [DOI: 10.1016/j.tibtech.2018.06.009] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/12/2018] [Accepted: 06/20/2018] [Indexed: 12/21/2022]
|
24
|
Xu Y, Wang C, Hou J, Wang P, Miao L, You G. Strategies and relative mechanisms to attenuate the bioaccumulation and biotoxicity of ceria nanoparticles in wastewater biofilms. BIORESOURCE TECHNOLOGY 2018; 265:102-109. [PMID: 29885495 DOI: 10.1016/j.biortech.2018.05.107] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/28/2018] [Accepted: 05/30/2018] [Indexed: 06/08/2023]
Abstract
Inhibitory effects of ceria nanoparticles (CeO2 NPs) on biofilm were investigated individually and in combination with phosphate (P), ethylene diamine tetraacetic acid (EDTA), humic acid (HA) and citrate (CA) to further explore the toxicity alleviating solutions. Exposure to 20 mg/L CeO2 NPs significantly decreased the performance of biofilm in nutrients removal. Distribution experiments suggested >98% of the CeO2 NPs retained in microbial aggregates, leading to 51.26 μg/L Ce ions dissolution. The dissolved CeIV and its further being reduced to CeIII stimulated the formation of O2- and OH, which increased lipid peroxidation level to 130.93% in biofilms. However, P/EDTA/CA captured or precipitated Ce ions, whereas EDTA/HA/CA shielded NPs-bacteria direct contacts, both disturbing the NPs adsorption, intercepting the redox transition between CeIV and CeIII, reducing the generation of O2- and OH, thus mitigating the toxicity of CeO2 NPs. These results illustrate the main drivers of CeO2 NPs biotoxicity and provide safer-by-design strategies.
Collapse
Affiliation(s)
- Yi Xu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China.
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Guoxiang You
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| |
Collapse
|
25
|
Zhu N, Wu Y, Tang J, Duan P, Yao L, Rene ER, Wong PK, An T, Dionysiou DD. A New Concept of Promoting Nitrate Reduction in Surface Waters: Simultaneous Supplement of Denitrifiers, Electron Donor Pool, and Electron Mediators. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:8617-8626. [PMID: 29966090 DOI: 10.1021/acs.est.8b01605] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The efficiency of biological nitrate reduction depends on the community composition of microorganisms, the electron donor pool, and the electron mediators participating in the biological reduction process. This study aims at creating an in situ system comprising of denitrifiers, electron donors, and electron mediators to reduce nitrate in surface waters. The ubiquitous periphytic biofilm in waters was employed to promote in situ nitrate reduction in the presence of titanium dioxide (TiO2) nanoparticles (NPs). The nitrate removal rate in the periphytic biofilm and TiO2 NPs system was significantly higher than the control (only periphytic biofilm or TiO2 NPs). TiO2 NPs optimized the community composition of periphytic biofilm for nitrate reduction by increasing the relative abundance of four dominant denitrifying bacteria. Periphytic biofilm showed a substantial increase in extracellular polymeric substance, especially the humic acid and protein content, due to the presence of TiO2 NPs. The synergistic action of humic acid, protein, denitrifying bacteria of the periphytic biofilm, and TiO2 NPs contributed to 80% of the nitrate reduction. The protein and humic acid, acting as electron mediators, facilitated the transfer of exogenous electrons from photoexcited TiO2 NPs to periphytic biofilm containing denitrifiers, which enhanced nitrate reduction in surface waters.
Collapse
Affiliation(s)
- Ningyuan Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences , Chinese Academy of Sciences , 71 East Beijing Road , Nanjing 210008 , China
- College of Resource and Environment , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yonghong Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences , Chinese Academy of Sciences , 71 East Beijing Road , Nanjing 210008 , China
| | - Jun Tang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences , Chinese Academy of Sciences , 71 East Beijing Road , Nanjing 210008 , China
- College of Resource and Environment , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Pengfei Duan
- Collaborative Innovation Center of Water Security for Water Source, Region of Mid-line of South-to-North Diversion Project , Nanyang Normal University , Nanyang 473061 , Henan , China
| | - Lunguang Yao
- Collaborative Innovation Center of Water Security for Water Source, Region of Mid-line of South-to-North Diversion Project , Nanyang Normal University , Nanyang 473061 , Henan , China
| | - Eldon R Rene
- Department of Environmental Engineering and Water Technology , IHE Delft Institute for Water Education , Westvest 7 , 2611 AX Delft , The Netherlands
| | - Po Keung Wong
- School of Life Sciences , The Chinese University of Hong Kong , Shatin, NT, Hong Kong , SAR , China
| | - Taicheng An
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control , Guangdong University of Technology , Guangzhou , 510006 , China
| | - Dionysios D Dionysiou
- Department of Chemical and Environmental Engineering (ChEE), 705 Engineering Research Center , University of Cincinnati , Cincinnati , Ohio 45221-0012 , United States
| |
Collapse
|
26
|
Zhang P, Chen YP, Qiu JH, Dai YZ, Feng B. Imaging the Microprocesses in Biofilm Matrices. Trends Biotechnol 2018; 37:214-226. [PMID: 30075862 DOI: 10.1016/j.tibtech.2018.07.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/07/2018] [Accepted: 07/09/2018] [Indexed: 12/22/2022]
Abstract
Biofilms, which are aggregates of microorganisms and extracellular matrices, widely colonize natural water bodies, wastewater treatment systems, and body tissues, and have vital roles in water purification, biofouling, and infectious diseases. Recently, multiple imaging modalities have been developed to visualize the morphological structure and material distribution within biofilms and to probe the microprocesses in biofilm matrices, including biofilm formation, transfer and metabolism of substrates, and cell-cell communication. These technologies have improved our understanding of biofilm control and the fates of substrates in biofilms. In this review, we describe the principles of various imaging techniques and discuss the advantages and limitations of each approach to characterizing microprocesses in biofilm matrices.
Collapse
Affiliation(s)
- Peng Zhang
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - You-Peng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China.
| | - Ju-Hui Qiu
- College of Bioengineering, Chongqing University, Chongqing 400045, China
| | - You-Zhi Dai
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Bo Feng
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China.
| |
Collapse
|