1
|
Khodadadi M, Badibostan H, Neisiani AK, Sabzghabaee AM, Meamar R, Giesy JP, Eizadi-Mood N. A simple and low-cost method for determination of methanol in alcoholic solutions. Toxicol Rep 2024; 13:101791. [PMID: 39582927 PMCID: PMC11583802 DOI: 10.1016/j.toxrep.2024.101791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/26/2024] Open
Abstract
Methanol poisoning can occur through consumption of methanol-containing alcohols, especially in areas where production, distribution, sale and consumption of alcohol is lawfully prohibited. Due to its toxic potency, determination of methanol in alcoholic solutions is important. The aim of the present study was to develop a rapid, simple and inexpensive method for quantification of methanol in alcoholic solutions that uses minimal equipment available in most laboratories. The method developed is based microdistillation and chromotropic acid, which can be conducted without sophisticated instruments or personal. The system consists of a micro-tube suspended in a falcon tube to function as a collector. Methanol is separated from wine by microdistillation at 90°C in water bath and converted to formaldehyde in the collector. The collector contains an acidic permanganate solution that converts methanol to formaldehyde. Formaldehyde was then quantified by use of chromotropic acid in concentrated sulfuric acid. Experimental variables were optimized by using central composite design (CCD). Method detection and quantification limits were 183 mg L-1 and 584 mg L-1, respectively. The percent relative standard deviation (RSD%) were between 6.4 and 7.9. Accuracies were between 89.6 % and 92.4 %. Concentrations of methanol in five alcoholic solutions were between 2.9×104 and 3.0×104, mg/L, v/v (ppm). Due to its simplicity and cost effectiveness, this method can be used for routine, real-time determination of methanol in alcoholic solutions.
Collapse
Affiliation(s)
- Mohammad Khodadadi
- Core Research Facilities (CRF), Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hasan Badibostan
- Isfahan Clinical Toxicology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Azadeh Khosravi Neisiani
- Isfahan Clinical Toxicology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Mohammad Sabzghabaee
- Isfahan Clinical Toxicology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rokhsareh Meamar
- Isfahan Clinical Toxicology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - John P. Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
- Department of Integrative Biology and Center for Integrative Toxicology, Michigan State University, 1129 Farm Lane Road, East Lansing, MI, USA
- Department of Environmental Sciences, Baylor University, Waco, TX 76706, USA
| | - Nastaran Eizadi-Mood
- Isfahan Clinical Toxicology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
2
|
da Silva GF, Gomez JAM, Moreira JVF, Braatz GM, Bonugli-Santos RC. Atrazine dependence in cultivated fungal communities. Folia Microbiol (Praha) 2024:10.1007/s12223-024-01204-w. [PMID: 39414759 DOI: 10.1007/s12223-024-01204-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/30/2024] [Indexed: 10/18/2024]
Abstract
The isolation and study of fungi within specific contexts yield valuable insights into the intricate relationships between fungi and ecosystems. Unlike culture-independent approaches, cultivation methods are advantageous in this context because they provide standardized replicates, specific species isolation, and easy sampling. This study aimed to understand the ecological process using a microcosm system with pesticide concentrations similar to those found in the soil, in contrast to high doses, from the isolation of the enriched community. The atrazine concentrations used were 0.02 mg/kg (control treatment), 300 ng/kg (treatment 1), and 3000 ng/kg (treatment 2), using a 28-day microcosm system. Ultimately, the isolation resulted in 561 fungi classified into 76 morphospecies. The Ascomycota phylum was prevalent, with Purpureocillium, Aspergillus, and Trichoderma being consistently isolated, denoting robust and persistent genera. Diversity analyses showed that the control microcosms displayed more distinct fungal morphospecies, suggesting the influence of atrazine on fungal communities. Treatment 2 (higher atrazine concentration) showed a structure comparable to that of the control, whereas treatment 1 (lower atrazine concentration) differed significantly, indicating that atrazine concentration impacted community variance. Higher atrazine addition subtly altered ligninolytic fungal community dynamics, implying its potential for pesticide degradation. Finally, variations in atrazine concentrations triggered diverse community responses over time, shedding light on fungal resilience and adaptive strategies against pesticides.
Collapse
Affiliation(s)
- Gessyca Fernanda da Silva
- Federal University of Latin American Integration (UNILA), Institute Latin American of Nature and Life Sciences (ILACNV), Interdisciplinary Center of Life Sciences (CICV), JardimUniversitário, 1000 Tarquínio Joslin Dos Santos Av, Foz Do Iguaçu, PR, 85870-901, Brazil
| | - Jose Alejandro Morales Gomez
- Federal University of Latin American Integration (UNILA), Institute Latin American of Nature and Life Sciences (ILACNV), Interdisciplinary Center of Life Sciences (CICV), JardimUniversitário, 1000 Tarquínio Joslin Dos Santos Av, Foz Do Iguaçu, PR, 85870-901, Brazil
| | - João Victor Fonseca Moreira
- Federal University of Latin American Integration (UNILA), Institute Latin American of Nature and Life Sciences (ILACNV), Interdisciplinary Center of Life Sciences (CICV), JardimUniversitário, 1000 Tarquínio Joslin Dos Santos Av, Foz Do Iguaçu, PR, 85870-901, Brazil
| | - Giulio Mendes Braatz
- Federal University of Latin American Integration (UNILA), Institute Latin American of Nature and Life Sciences (ILACNV), Interdisciplinary Center of Life Sciences (CICV), JardimUniversitário, 1000 Tarquínio Joslin Dos Santos Av, Foz Do Iguaçu, PR, 85870-901, Brazil
| | - Rafaella Costa Bonugli-Santos
- Federal University of Latin American Integration (UNILA), Institute Latin American of Nature and Life Sciences (ILACNV), Interdisciplinary Center of Life Sciences (CICV), JardimUniversitário, 1000 Tarquínio Joslin Dos Santos Av, Foz Do Iguaçu, PR, 85870-901, Brazil.
| |
Collapse
|
3
|
Chen SF, Chen WJ, Song H, Liu M, Mishra S, Ghorab MA, Chen S, Chang C. Microorganism-Driven 2,4-D Biodegradation: Current Status and Emerging Opportunities. Molecules 2024; 29:3869. [PMID: 39202952 PMCID: PMC11357097 DOI: 10.3390/molecules29163869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) has been widely used around the world in both agricultural and non-agricultural fields due to its high activity. However, the heavy use of 2,4-D has resulted in serious environmental contamination, posing a significant risk to non-target organisms, including human beings. This has raised substantial concerns regarding its impact. In addition to agricultural use, accidental spills of 2,4-D can pose serious threats to human health and the ecosystem, emphasizing the importance of prompt pollution remediation. A variety of technologies have been developed to remove 2,4-D residues from the environment, such as incineration, adsorption, ozonation, photodegradation, the photo-Fenton process, and microbial degradation. Compared with traditional physical and chemical remediation methods, microorganisms are the most effective way to remediate 2,4-D pollution because of their rich species, wide distribution, and diverse metabolic pathways. Numerous studies demonstrate that the degradation of 2,4-D in the environment is primarily driven by enzymatic processes carried out by soil microorganisms. To date, a number of bacterial and fungal strains associated with 2,4-D biodegradation have been isolated, such as Sphingomonas, Pseudomonas, Cupriavidus, Achromobacter, Ochrobactrum, Mortierella, and Umbelopsis. Moreover, several key enzymes and genes responsible for 2,4-D biodegradation are also being identified. However, further in-depth research based on multi-omics is needed to elaborate their role in the evolution of novel catabolic pathways and the microbial degradation of 2,4-D. Here, this review provides a comprehensive analysis of recent progress on elucidating the degradation mechanisms of the herbicide 2,4-D, including the microbial strains responsible for its degradation, the enzymes participating in its degradation, and the associated genetic components. Furthermore, it explores the complex biochemical pathways and molecular mechanisms involved in the biodegradation of 2,4-D. In addition, molecular docking techniques are employed to identify crucial amino acids within an alpha-ketoglutarate-dependent 2,4-D dioxygenase that interacts with 2,4-D, thereby offering valuable insights that can inform the development of effective strategies for the biological remediation of this herbicide.
Collapse
Affiliation(s)
- Shao-Fang Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Engineering Research Center of Biological Control, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Wen-Juan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Engineering Research Center of Biological Control, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Haoran Song
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Engineering Research Center of Biological Control, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Mingqiu Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Engineering Research Center of Biological Control, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Sandhya Mishra
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India
| | - Mohamed A. Ghorab
- The Office of Chemical Safety and Pollution Prevention, U.S. Environmental Protection Agency (EPA), Washington, DC 20460, USA
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Engineering Research Center of Biological Control, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Changqing Chang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Engineering Research Center of Biological Control, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
4
|
Naboulsi A, Haydari I, Bouzid T, Grich A, Aziz F, Regti A, Himri ME, Haddad ME. Fixed-bed adsorption of pesticide agricultural waste using cross-linked adsorptive hydrogel composite beads. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:32320-32338. [PMID: 38653892 DOI: 10.1007/s11356-024-33388-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
Adsorption column blockage due to solid adsorbent material is prevalent in laboratory-scale applications. Creating composite materials with stable geometries offers a viable solution. By crafting hydrogel beads using sodium alginate (Alg) and a bio-source like activated carbon (RMCA-P), it becomes possible to effectively eliminate agricultural pollutants, including the pesticide 2,4-D, from aqueous solutions. To evaluate the performance of these beads, a range of structural and textural analyses such as DRX, FTIR, SEM/EDX, BET, Zeta potential, Boehm titration, and iodine number were employed. Moreover, the study found that optimizing certain parameters greatly enhanced adsorption column efficiency. Specifically, increasing the bed height while reducing the flow rate of the adsorbate and the initial concentration in the inlet proved beneficial. The column demonstrated peak performance at a flow rate of 0.5 mL/min, a bed height of 35 cm, and an inlet adsorbate concentration of 50 mg/L. Under these conditions, the highest recorded removal rate for 2,4-D was 95.49%, which was subsequently confirmed experimentally at 95.05%. Both the Thomas and Yoon-Nelson models exhibited a good fit with the breakthrough curves. After undergoing three cycles of reuse, the RMCA-P/Alg hydrogel composite maintained a 2,4-D removal percentage of 74.21%. Notably, the RMCA-P/Alg beads exhibited effective removal of 2,4-D from herbicidal field waters in a continuous operational mode.
Collapse
Affiliation(s)
- Aicha Naboulsi
- Laboratory of Analytical and Molecular Chemistry, Faculty Poly-Disciplinary of Safi, BP 4162, 46 000, Safi, Morocco.
| | - Imane Haydari
- Laboratory of Water, Biodiversity, and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, BP2390, 40000, Marrakech, Morocco
| | - Taoufiq Bouzid
- Laboratory of Analytical and Molecular Chemistry, Faculty Poly-Disciplinary of Safi, BP 4162, 46 000, Safi, Morocco
| | - Abdelali Grich
- Laboratory of Analytical and Molecular Chemistry, Faculty Poly-Disciplinary of Safi, BP 4162, 46 000, Safi, Morocco
| | - Faissal Aziz
- Laboratory of Analytical and Molecular Chemistry, Faculty Poly-Disciplinary of Safi, BP 4162, 46 000, Safi, Morocco
- Laboratory of Water, Biodiversity, and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, BP2390, 40000, Marrakech, Morocco
| | - Abdelmajid Regti
- Laboratory of Analytical and Molecular Chemistry, Faculty Poly-Disciplinary of Safi, BP 4162, 46 000, Safi, Morocco
| | - Mamoune El Himri
- Laboratory of Analytical and Molecular Chemistry, Faculty Poly-Disciplinary of Safi, BP 4162, 46 000, Safi, Morocco
| | - Mohammadine El Haddad
- Laboratory of Analytical and Molecular Chemistry, Faculty Poly-Disciplinary of Safi, BP 4162, 46 000, Safi, Morocco
| |
Collapse
|
5
|
Serbent MP, Magario I, Saux C. Immobilizing white-rot fungi laccase: Toward bio-derived supports as a circular economy approach in organochlorine removal. Biotechnol Bioeng 2024; 121:434-455. [PMID: 37990982 DOI: 10.1002/bit.28591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/23/2023] [Accepted: 10/28/2023] [Indexed: 11/23/2023]
Abstract
Despite their high persistence in the environment, organochlorines (OC) are widely used in the pharmaceutical industry, in plastics, and in the manufacture of pesticides, among other applications. These compounds and the byproducts of their decomposition deserve attention and efficient proposals for their treatment. Among sustainable alternatives, the use of ligninolytic enzymes (LEs) from fungi stands out, as these molecules can catalyze the transformation of a wide range of pollutants. Among LEs, laccases (Lac) are known for their efficiency as biocatalysts in the conversion of organic pollutants. Their application in biotechnological processes is possible, but the enzymes are often unstable and difficult to recover after use, driving up costs. Immobilization of enzymes on a matrix (support or solid carrier) allows recovery and stabilization of this catalytic capacity. Agricultural residual biomass is a passive environmental asset. Although underestimated and still treated as an undesirable component, residual biomass can be used as a low-cost adsorbent and as a support for the immobilization of enzymes. In this review, the adsorption capacity and immobilization of fungal Lac on supports made from residual biomass, including compounds such as biochar, for the removal of OC compounds are analyzed and compared with the use of synthetic supports. A qualitative and quantitative comparison of the reported results was made. In this context, the use of peanut shells is highlighted in view of the increasing peanut production worldwide. The linkage of methods with circular economy approaches that can be applied in practice is discussed.
Collapse
Affiliation(s)
- Maria Pilar Serbent
- Centro de Investigación y Tecnología Química (CITeQ), Facultad Regional Córdoba, Universidad Tecnológica Nacional (CONICET), Córdoba, Argentina
- Programa de Pós-Graduação em Ciências Ambientais (PPGCAMB), Universidade do Estado de Santa Catarina, Lages, Santa Catarina, Brasil
| | - Ivana Magario
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA), Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba (CONICET), Córdoba, Argentina
| | - Clara Saux
- Centro de Investigación y Tecnología Química (CITeQ), Facultad Regional Córdoba, Universidad Tecnológica Nacional (CONICET), Córdoba, Argentina
| |
Collapse
|
6
|
Leon‐Fernandez LF, Dominguez‐Benetton X, Villaseñor Camacho J, Fernandez‐Morales FJ. Coupling the electrocatalytic dechlorination of 2,4-D with electroactive microbial anodes. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:512-529. [PMID: 37482917 PMCID: PMC10667633 DOI: 10.1111/1758-2229.13187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/01/2023] [Indexed: 07/25/2023]
Abstract
This work proves the feasibility of dechlorinating 2,4-D, a customary commercial herbicide, using cathodic electrocatalysis driven by the anodic microbial electrooxidation of sodium acetate. A set of microbial electrochemical systems (MES) were run under two different operating modes, namely microbial fuel cell (MFC) mode, with an external resistance of 120 Ω, or microbial electrolysis cell (MEC) mode, by supplying external voltage (0.6 V) for promoting the (bio)electrochemical reactions taking place. When operating the MES as an MFC, 32% dechlorination was obtained after 72 h of treatment, which was further enhanced by working under MEC mode and achieving a 79% dechlorination. In addition, the biodegradability (expressed as the ratio BOD/COD) of the synthetic polluted wastewater was tested prior and after the MES treatment, which was improved from negative values (corresponding to toxic effluents) up to 0.135 in the MFC and 0.453 in the MEC. Our MES approach proves to be a favourable option from the point of view of energy consumption. Running the system under MFC mode allowed to co-generate energy along the dechlorination process (-0.0120 kWh mol-1 ), even though low removal rates were attained. The energy input under MEC operation was 1.03 kWh mol-1 -a competitive value compared to previous works reported in the literature for (non-biological) electrochemical reactors for 2,4-D electrodechlorination.
Collapse
Affiliation(s)
- Luis F. Leon‐Fernandez
- Chemical Engineering Department, ITQUIMAUniversity of Castilla‐La ManchaCiudad RealSpain
- Separation and Conversion TechnologiesFlemish Institute for Technological Research (VITO)MolBelgium
| | | | | | | |
Collapse
|
7
|
Wang Y, Tian YS, Gao JJ, Xu J, Li ZJ, Fu XY, Han HJ, Wang LJ, Zhang WH, Deng YD, Qian C, Zuo ZH, Wang B, Peng RH, Yao QH. Complete biodegradation of the oldest organic herbicide 2,4-Dichlorophenoxyacetic acid by engineering Escherichia coli. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131099. [PMID: 36868133 DOI: 10.1016/j.jhazmat.2023.131099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
After nearly 80 years of extensive application, the oldest organic herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) has caused many problems of environmental pollution and ecological deterioration. Bioremediation is an ideal method for pollutant treatment. However, difficult screening and preparation of efficient degradation bacteria have largely hindered its application in 2,4-D remediation. We have created a novel engineering Escherichia coli with a reconstructed complete degradation pathway of 2,4-D to solve the problem of screening highly efficient degradation bacteria in this study. The results of fluorescence quantitative PCR demonstrated that all nine genes in the degradation pathway were successfully expressed in the engineered strain. The engineered strains can quickly and completely degrade 0.5 mM 2, 4-D within 6 h. Inspiring, the engineered strains grew with 2,4-D as the sole carbon source. By using the isotope tracing method, the metabolites of 2,4-D were found incorporated into the tricarboxylic acid cycle in the engineering strain. Scanning electron microscopy showed that 2,4-D had less damage on the engineered bacteria than the wild-type strain. Engineered strain can also rapidly and completely remedy 2,4-D pollution in natural water and soil. Assembling the metabolic pathways of pollutants through synthetic biology was an effective method to create pollutant-degrading bacteria for bioremediation.
Collapse
Affiliation(s)
- Yu Wang
- Shanghai Key laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yong-Sheng Tian
- Shanghai Key laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jian-Jie Gao
- Shanghai Key laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jing Xu
- Shanghai Key laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Zhen-Jun Li
- Shanghai Key laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Xiao-Yan Fu
- Shanghai Key laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Hong-Juan Han
- Shanghai Key laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Li-Juan Wang
- Shanghai Key laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Wen-Hui Zhang
- Shanghai Key laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yong-Dong Deng
- Shanghai Key laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Cen Qian
- Shanghai Key laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Zhi-Hao Zuo
- Shanghai Key laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Bo Wang
- Shanghai Key laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China.
| | - Ri-He Peng
- Shanghai Key laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China.
| | - Quan-Hong Yao
- Shanghai Key laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China.
| |
Collapse
|
8
|
Gao Z, Dai Z, Wang R, Li Y. Adsorption kinetics and mechanism of atrazine on iron-modified algal residue biochar in the presence of soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27373-8. [PMID: 37147544 DOI: 10.1007/s11356-023-27373-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/27/2023] [Indexed: 05/07/2023]
Abstract
Atrazine has been widely used as an herbicide, and its harm has attracted more and more attention. In this study, magnetic algal residue biochar (MARB) was prepared from algae residue, a by-product of aquaculture, by ball milling it with ferric oxide to study the adsorption and removal of the triazine herbicide atrazine in a soil medium. The adsorption kinetics and isotherm results showed that atrazine removal by MARB reached 95.5% within 8 h at a concentration of 10 mg·L-1, but the removal rate dropped to 78.4% in the soil medium. The pseudo-first- and pseudo-second-order kinetics and Langmuir isotherms best described atrazine adsorption on MARB. It is estimated that the maximum adsorption capacity of MARB can reach 10.63 mg·g-1. The effects of pH, humic acids, and cations on the adsorption performance of MARB for atrazine were also studied. When pH was 3, the adsorption capacity of MARB was twice that of other pHs. Only in the presence of 50 mg·L-1 HA and 0.1 mol·L-1 NH4+, Na, and K, the adsorption capacity of MARB to AT decreased by 8% and 13%, respectively. The results showed that MARB had a stable removal profile over a wide range of conditions. The adsorption mechanisms involved multiple interaction forms, among which the introduction of iron oxide promoted hydrogen bonding formation and π-π interactions by enriching -OH and -COO on the surface of MARB. Overall, the magnetic biochar prepared in this study can be used as an effective adsorbent to remove atrazine in complex environments and is ideal for algal biomass waste treatment and environmental governance.+.
Collapse
Affiliation(s)
- Ziqiang Gao
- School of Environmental Science and Engineering, Xiamen University of Technology, Xiamen, 361024, China
| | - Zhineng Dai
- School of Environmental Science and Engineering, Xiamen University of Technology, Xiamen, 361024, China.
- Key Laboratory of Environmental Biotechnology (XMUT), Fujian Province University, Xiamen, China.
| | - Rui Wang
- School of Environmental Science and Engineering, Xiamen University of Technology, Xiamen, 361024, China
| | - Yang Li
- School of Environment, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
9
|
Vanitha TK, Suresh G, Bhandi MM, Mudiam MKR, Mohan SV. Microbial degradation of organochlorine pesticide: 2,4-Dichlorophenoxyacetic acid by axenic and mixed consortium. BIORESOURCE TECHNOLOGY 2023; 382:129031. [PMID: 37037331 DOI: 10.1016/j.biortech.2023.129031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 05/31/2023]
Abstract
The presence of 2,4-dichlorophenoxyacetic acid (2,4-D), an organochlorine herbicide, in the environment has raised public concern as it poses hazard to both humans and the ecosystem. Three potential strains having the capability to degrade 2,4-D were isolated from on site agricultural soil and identified as Arthrobacter sp. SVMIICT25, Sphingomonas sp. SVMIICT11 and Stenotrophomonas sp. SVMIICT13. Over 12 days of incubation, 81-90% of 100 mg/L of 2,4-D degradation was observed at 2% inoculum. A shorter lag phase with 80% of degradation efficiency was observed within 5 days when the inoculum size was increased to 10%. Six microbial consortia were prepared by combining the isolates along with in-house strains, Bacillus sp. and Pseudomonas sp. Consortia R3 (Arthrobacter sp. + Sphingomonas sp.), operated with 10% of inoculum, showed 85-90% degradation within 4 days and 98-100% in 9 days. Further, targeted exo-metabolite analysis confirmed the presence and catabolism of intermediate 2,4-dichlorophenol and 4-chlorophenol compounds.
Collapse
Affiliation(s)
- T K Vanitha
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, Telangana 500 007, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - G Suresh
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, Telangana 500 007, India
| | - Murali Mohan Bhandi
- Analytical & Structural Chemistry Department, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, Telangana 500 007, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mohana Krishna Reddy Mudiam
- Analytical & Structural Chemistry Department, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, Telangana 500 007, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - S Venkata Mohan
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, Telangana 500 007, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
10
|
Zhou J, Liu J, Liu T, Liu G, Li J, Chen D, Feng Y. Electrochemical activation of persulfate by Al-doped blue TiO 2 nanotubes for the multipath degradation of atrazine. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130578. [PMID: 37055983 DOI: 10.1016/j.jhazmat.2022.130578] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/17/2022] [Accepted: 12/07/2022] [Indexed: 06/19/2023]
Abstract
The combination of electrolysis and persulfate activation (E/PDS) is a cost-effective method for the treatment of refractory organics. However, persulfate is difficult to be activated into radicals at the anode, resulting in insufficient electro-activation efficiency. Herein, Al doped blue TiO2 nanotube electrodes (Al-bTNT) were first employed as cost-effective anode materials to fully activate PDS to radicals. In E/PDS, the kinetic constant of atrazine removal by Al-bTNT (0.048 min-1) substantially outperformed the other anodes, including the blue TiO2 nanotube electrodes (bTNT) (0.024 min-1), Ti4O7 (0.02 min-1), and B doped diamond (BDD) anodes (0.023 min-1). The Al-bTNT-E/PDS exhibited a low energy consumption (EEO = 0.72 kWh m-3) and a high mineralization rate. Based on the results of electron paramagnetic resonance, quenching experiments, and probe experiments, we propose that atrazine degrades in the Al-bTNT-E/PDS system mainly via a novel radical pathway that involves both·OH and SO4·- and the generated SO4·- is responsible for the enhanced removal rate. The oxygen vacancies (VO) generated from interstitial Al may serve as the active sites to adsorb and dissociate the persulfate molecules based on extensive characterizations. The attempt at soil-washing wastewater disposal indicated the synergistic system possessed good potential for future practical application.
Collapse
Affiliation(s)
- Jiajie Zhou
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Junfeng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Tongtong Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guohong Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jiannan Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dahong Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
11
|
Zhang X, Han R. Adsorption of 2,4-dichlorophenoxyacetic acid by UiO-66-NH 2 obtained in a green way. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:90738-90751. [PMID: 35879633 DOI: 10.1007/s11356-022-22127-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
In this study, a zirconium elemental organic framework (UiO-66-NH2) was prepared by a green synthesis method and showed a good adsorption performance for removing 2,4-dichlorophenoxyacetic acid (2,4-D) from water. UiO-66-NH2 was analyzed by a variety of characterization methods and the adsorption properties of 2,4-D on UiO-66-NH2 were investigated by static adsorption experiments. The results showed that the adsorption of 2,4-D had a wide pH range (2-10) and good salt tolerance with the adsorption equilibrium time about 2 h. The maximum adsorption capacity from Langmuir was up to 652 mg g-1 at 303 K. The isotherms can be described by Langmuir model and the adsorption kinetics was consistent with pseudo-second-order kinetic model and Elovich model. The regeneration efficiency was still 95% after 5 cycles with 0.01 mol L-1 NaOH as desorption solution. The feasibility of practical application of UiO-66-NH2 was explored by simulating actual wastewater at different pH. UiO-66-NH2 is promising to remove 2,4-D from water.
Collapse
Affiliation(s)
- Xiaoting Zhang
- College of Chemistry, Zhengzhou University, No 100 of Ke Xue Road, Zhengzhou, 450001, People's Republic of China
| | - Runping Han
- College of Chemistry, Zhengzhou University, No 100 of Ke Xue Road, Zhengzhou, 450001, People's Republic of China.
| |
Collapse
|
12
|
Endogenous Honeybee Gut Microbiota Metabolize the Pesticide Clothianidin. Microorganisms 2022; 10:microorganisms10030493. [PMID: 35336069 PMCID: PMC8949661 DOI: 10.3390/microorganisms10030493] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/02/2022] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
Including probiotics in honeybee nutrition represents a promising solution for mitigating diseases, and recent evidence suggests that various microbes possess mechanisms that can bioremediate environmental pollutants. Thus, the use of probiotics capable of degrading pesticides used in modern agriculture would help to both reduce colony losses due to the exposure of foragers to these toxic molecules and improve honeybee health and wellbeing globally. We conducted in vitro experiments to isolate and identify probiotic candidates from bacterial isolates of the honeybee gut (i.e., endogenous strains) according to their ability to (i) grow in contact with three sublethal concentrations of the pesticide clothianidin (0.15, 1 and 10 ppb) and (ii) degrade clothianidin at 0.15 ppb. The isolated bacterial strains were indeed able to grow in contact with the three sublethal concentrations of clothianidin. Bacterial growth rate differed significantly depending on the probiotic candidate and the clothianidin concentration used. Clothianidin was degraded by seven endogenous honeybee gut bacteria, namely Edwardsiella sp., two Serratia sp., Rahnella sp., Pantoea sp., Hafnia sp. and Enterobacter sp., measured within 72 h under in vitro conditions. Our findings highlight that endogenous bacterial strains may constitute the base material from which to develop a promising probiotic strategy to mitigate the toxic effects of clothianidin exposure on honeybee colony health.
Collapse
|
13
|
Modelling the cathodic reduction of 2,4-dichlorophenol in a microbial fuel cell. Bioprocess Biosyst Eng 2022; 45:771-782. [PMID: 35138451 PMCID: PMC8948123 DOI: 10.1007/s00449-022-02699-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/19/2022] [Indexed: 11/29/2022]
Abstract
This work presents a simplified mathematical model able to predict the performance of a microbial fuel cell (MFC) for the cathodic dechlorination of 2,4-dichlorophenol (2,4-DCP) operating at different cathode pH values (7.0 and 5.0). Experimental data from previous work were utilized for the fitting of the model. The MFC modelled consisted of two chambers (bioanode and abiotic cathode), wherein the catholyte contained 300 mg L−1 of 2,4-DCP and the anolyte 1000 mg L−1 of sodium acetate. The model considered two mixed microbial populations in the anode compartment using sodium acetate as the carbon source for growth and maintenance: electrogenic and non-electrogenic biomass. 2,4-DCP, its intermediates of the reductive process (2-chlorophenol, 2-CP and 4-chlorophenol, 4-CP) and protons were considered in the model as electron acceptors in the electrogenic mechanism. The global process rate was assumed to be controlled by the biological mechanisms and modelled using multiplicative Monod-type equations. The formulation of a set of differential equations allowed to describe the simultaneous evolution of every component: concentration of sodium acetate in the anodic compartment; and concentration of 2,4-DCP, 2-CP, 4-CP, phenol and chloride in the cathode chamber. Current production and coulombic efficiencies were also estimated from the fitting. It was observed that most of the organic substrate was used by non-electrogenic mechanism. The influence of the Monod parameters was more important than the influence of the biomass yield coefficients. Finally, the model was employed to simulate different scenarios under distinct experimental conditions.
Collapse
|
14
|
Vinayagam R, Pai S, Murugesan G, Varadavenkatesan T, Narayanasamy S, Selvaraj R. Magnetic activated charcoal/Fe 2O 3 nanocomposite for the adsorptive removal of 2,4-Dichlorophenoxyacetic acid (2,4-D) from aqueous solutions: Synthesis, characterization, optimization, kinetic and isotherm studies. CHEMOSPHERE 2022; 286:131938. [PMID: 34426299 DOI: 10.1016/j.chemosphere.2021.131938] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/04/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Magnetic activated charcoal/Fe2O3 nanocomposite (AC/Fe2O3NC) was fabricated using Spondias dulcis leaf extract by a facile method and used for the adsorptive removal of 2,4-Dichlorophenoxyacetic acid (2,4-D) from aqueous solutions for the first time. The nanocomposite was characterized by methods such as FE-SEM, EDS, XRD, FTIR, TGA, VSM, and BET to identify and confirm the surface morphology, elemental composition, crystalline nature, functional groups, thermal stability, magnetic behavior, and surface area respectively. Box-Behnken Design (BBD) - an optimization method, which belongs to the Response surface methodology (RSM) and a modeling tool - Artificial Neural Network (ANN) were employed to design, optimize and predict the relationship between the input parameters (pH, initial concentration of 2,4-D, time and agitation speed) versus the output parameter (adsorption efficiency of 2,4-D). Adsorption efficiency of 98.12% was obtained at optimum conditions (pH: 2.05, initial concentration: 32 ppm, contact time: 100 min, agitation speed: 130 rpm, temperature: 30 °C, and dosage: 0.2 g/L). The predictive ability of the ANN was superior (R2 = 0.99) than the quadratic model, given by the RSM (R2 = 0.93). The equilibrium data were best-fitted to Langmuir isotherm (R2 = 0.9944) and the kinetics obeyed pseudo-second-order model (R2 = 0.9993) satisfactorily. Thermodynamic studies revealed the spontaneity and exothermic nature of adsorption. The maximum adsorption capacity, qm was found to be 255.10 mg/g, substantially larger than the reported values for 2,4-D adsorption by other magnetic nanoadsorbents. Therefore, this nanoadsorbent may be utilized as an excellent alternative for the elimination of 2,4-D from the waterbodies.
Collapse
Affiliation(s)
- Ramesh Vinayagam
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Shraddha Pai
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Gokulakrishnan Murugesan
- Department of Biotechnology, M.S.Ramaiah Institute of Technology, Bengaluru, 560054, Karnataka, India
| | - Thivaharan Varadavenkatesan
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Selvaraju Narayanasamy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Raja Selvaraj
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
15
|
Parvulescu VI, Epron F, Garcia H, Granger P. Recent Progress and Prospects in Catalytic Water Treatment. Chem Rev 2021; 122:2981-3121. [PMID: 34874709 DOI: 10.1021/acs.chemrev.1c00527] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Presently, conventional technologies in water treatment are not efficient enough to completely mineralize refractory water contaminants. In this context, the implementation of catalytic processes could be an alternative. Despite the advantages provided in terms of kinetics of transformation, selectivity, and energy saving, numerous attempts have not yet led to implementation at an industrial scale. This review examines investigations at different scales for which controversies and limitations must be solved to bridge the gap between fundamentals and practical developments. Particular attention has been paid to the development of solar-driven catalytic technologies and some other emerging processes, such as microwave assisted catalysis, plasma-catalytic processes, or biocatalytic remediation, taking into account their specific advantages and the drawbacks. Challenges for which a better understanding related to the complexity of the systems and the coexistence of various solid-liquid-gas interfaces have been identified.
Collapse
Affiliation(s)
- Vasile I Parvulescu
- Department of Organic Chemistry, Biochemistry and Catalysis, University of Bucharest, B-dul Regina Elisabeta 4-12, Bucharest 030016, Romania
| | - Florence Epron
- Université de Poitiers, CNRS UMR 7285, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), 4 rue Michel Brunet, TSA 51106, 86073 Poitiers Cedex 9, France
| | - Hermenegildo Garcia
- Instituto Universitario de Tecnología Química, Universitat Politecnica de Valencia-Consejo Superior de Investigaciones Científicas, Universitat Politencia de Valencia, Av. de los Naranjos s/n, 46022 Valencia, Spain
| | - Pascal Granger
- CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Univ. Lille, F-59000 Lille, France
| |
Collapse
|
16
|
Liu C, Chen X, Banwart SA, Du W, Yin Y, Guo H. A novel permeable reactive biobarrier for ortho-nitrochlorobenzene pollution control in groundwater: Experimental evaluation and kinetic modelling. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126563. [PMID: 34271441 DOI: 10.1016/j.jhazmat.2021.126563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 06/25/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Three novel permeable reactive barrier (PRB) materials composed of Cu/Fe with 0.24% and 0.43% (w/w) Cu loadings or Fe0 supported on wheat straw were prepared (termed materials E, F and G). These materials exhibited excellent pollutant removal efficiency and physical stability as well as the ongoing release of organic carbon and iron. Column experiments showed that materials E, F and G removed almost 100% of ortho-nitrochlorobenzene (o-NCB) from water. The rates of iron release from the E and F columns exceeded those from column G but this had no significant effect on o-NCB removal. The bacteria that degraded o-NCB in E and F were also different from those in G. The levels of these bacteria in the columns were higher than those in the initial materials, with the highest level in column E. The simultaneous reduction and microbial degradation of o-NCB was observed, with the latter being dominant. A kinetic model was established to simulate the dynamic interactions and accurately predicted the experimental results. Organic carbon from the wheat straw supported the majority of the biomass in each column, which was essential for the bioremediation process. The findings of this study suggest an economically viable approach to mitigating o-NCB pollution.
Collapse
Affiliation(s)
- Cuicui Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; School of Civil Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - Xiaohui Chen
- School of Civil Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - Steven A Banwart
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK; Global Food and Environment Institute, University of Leeds, Leeds LS2 9JT, UK
| | - Wenchao Du
- School of the Environment, Nanjing Normal University, Nanjing 210023, China
| | - Ying Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Joint International Research Centre for Critical Zone Science-University of Leeds and Nanjing University, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
17
|
Guarin TC, Pagilla KR. Microbial community in biofilters for water reuse applications: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145655. [PMID: 33940748 DOI: 10.1016/j.scitotenv.2021.145655] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/18/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
The combination of ozonation (O3) and biofiltration processes has become practical and desirable in advanced water reclamation for water reuse applications. However, the role of microbial community and its characteristics (source, abundance, composition, viability, structure) on treatment performance has not received the same attention in water reclamation biofilters as in other applications, such as in drinking water biofilters. Microbial community characterization of biofilters used in water reuse applications will add evidence to better understand the potential microorganisms, consequent risks, and mechanisms that will populate drinking water sources and ultimately influence public health and the environment. This critical review provides insights into O3-biofiltration as a treatment barrier with a focus on development, structure, and composition of the microbial community characteristics involved in the process. The effect of microorganism seeding by the influent before and after the biofilter and ozone oxidation effects are explored to capture the microbial ecology interactions and environmental factors affecting the media ecosystem. The findings of reviewed studies concurred in identifying Proteobacteria as the most dominant phylum. However, Proteobacteria and other phyla relative abundance differ substantially depending upon environmental factors (e.g., pH, temperature, nutrients availability, among others) gradients. In general, we found significant gaps to relate and explain the biodegradation performance and metabolic processes within the biofilter, and hence deserve future attention. We highlighted and identified key challenges and future research ideas to assure O3-biofiltration reliability as a promising barrier in advanced water treatment applications.
Collapse
Affiliation(s)
- Tatiana C Guarin
- Department of Civil and Environmental Engineering, University of Nevada, Reno, Reno, NV 89557-0258, USA
| | - Krishna R Pagilla
- Department of Civil and Environmental Engineering, University of Nevada, Reno, Reno, NV 89557-0258, USA.
| |
Collapse
|
18
|
Wang T, Huang T, Jiang H, Ma R. Electrochemical degradation of atrazine by BDD anode: Evidence from compound-specific stable isotope analysis and DFT simulations. CHEMOSPHERE 2021; 273:129754. [PMID: 33524760 DOI: 10.1016/j.chemosphere.2021.129754] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/16/2021] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Direct charge transfer (DCT) and •OH attack played important roles in contaminant degradation by BDD electrochemical oxidation. Their separate contributions and potential bond-cleavage processes were required but lacking. Here, we carried out promising compound-specific isotope fractionation analysis (CSIA) to explore 13C and 2H isotope fractionation of atrazine (ATZ), followed by assessing the reaction pathway by BDD anode. The correlation of 2H and 13C fractionation allows to remarkably differentiate DCT process and •OH attack, with Λ values of 18.99 and 53.60, respectively. Radical quenching identified that •OH accounted for 79.0%-88.5% in the whole reaction. While CSIA methods provided biased results, which suggested that ATZ degradation exhibited two stages with •OH contributions of 24.6% and 84.3% respectively, confirming CSIA was more sensitive and provided more possibilities to estimate degradation processes. Combined with Fukui index and intermediate products identification, we deduced that dechlorination-hydroxylation mainly occurred in the first 30 min by DCT reaction. While lateral chain oxidation with C-N broken was the governing route once •OH was largely generated, with the production of DEA (m/z 188), DIA (m/z 174), DEIA (m/z 146) and DEIHA (m/z 128). Our results demonstrated that isotope fractionation can offer "isotopic footprints" for identifying the rate-limiting steps and bond breakage process, and opens new avenues for degradation pathways of contaminants.
Collapse
Affiliation(s)
- Ting Wang
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing, 100871, China.
| | - Taobo Huang
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China
| | - Huan Jiang
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China
| | - Ruoqi Ma
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China
| |
Collapse
|
19
|
Nehra M, Dilbaghi N, Marrazza G, Kaushik A, Sonne C, Kim KH, Kumar S. Emerging nanobiotechnology in agriculture for the management of pesticide residues. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123369. [PMID: 32763682 DOI: 10.1016/j.jhazmat.2020.123369] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 06/12/2020] [Accepted: 06/30/2020] [Indexed: 05/18/2023]
Abstract
Utilization of pesticides is often necessary for meeting commercial requirements for crop quality and yield. However, incessant global pesticide use poses potential risks to human and ecosystem health. This situation increases the urgency of developing nano-biotechnology-assisted pesticide formulations that have high efficacy and low risk of side effects. The risks associated with both conventional and nanopesticides are summarized in this review. Moreover, the management of residual pesticides is still a global challenge. The contamination of soil and water resources with pesticides has adverse impact over agricultural productivity and food security; ultimately posing threats to living organisms. Pesticide residues in the eco-system may be treated via several biological and physicochemical processes, such as microbe-based degradation and advanced oxidation processes. With these issues in mind, we present a review that explores both existing and emerging techniques for management of pesticide residues and environmental risks. These techniques can offer a sustainable solution to revitalize the tarnished water/soil resources. Further, state-of-the-art research approaches to investigate biotechnological alternatives to conventional pesticides are discussed along with future prospects and mitigation techniques are recommended.
Collapse
Affiliation(s)
- Monika Nehra
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Neeraj Dilbaghi
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Giovanna Marrazza
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Florence, Italy
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Natural Sciences, Division of Sciences, Arts & Mathematics, Florida Polytechnic University, Lakeland, FL, 33805-8531, United States
| | - Christian Sonne
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000, Roskilde, Denmark
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea
| | - Sandeep Kumar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India.
| |
Collapse
|
20
|
Bio-electrocatalytic dechlorination of 2,4-dichlorophenol. Effect of pH and operational configuration. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
21
|
Wu P, Zhang X, Niu T, Wang Y, Liu R, Zhang Y. The imidacloprid remediation, soil fertility enhancement and microbial community change in soil by Rhodopseudomonas capsulata using effluent as carbon source. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:114254. [PMID: 32911333 DOI: 10.1016/j.envpol.2020.114254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 02/09/2020] [Accepted: 02/21/2020] [Indexed: 05/20/2023]
Abstract
The effects of Rhodopseudomonas capsulata (R. capsulata) in the treated effluent of soybean processing wastewater (SPW) on the remediation of imidacloprid in soil, soil fertility, and the microbial community structure in soil were studied. Compared with the control group, with the addition of effluent containing R. capsulata, imidacloprid was effectively removed, soil fertility was enhanced, and the microbial community structure was improved. Molecular analysis indicated that imidacloprid could exert induction effects on expression of cpm gene and regulation effects on the synthesis of cytochrome P450 monooxygenases (P450) by activating HKs gene in two-component system (TCS). For R. capsulata, this induction process required 1 day. The synthesis of P450 occurred 1 day after inoculation, because R. capsulata are a type of archaea and imidacloprid is an environmental stress. Before expression of the cpm gene and synthesis of P450, R. capsulata need a period of time to adapt to external imidacloprid stimulation. However, the lack of organic matter in the soil cannot sustain R. capsulata growth for more than 1 day. In four groups with added effluent, the remaining organic matter in the effluent provided a sufficient carbon source and energy for R. capsulata. Five days later, the microbial community structure was improved by R. capsulata in the soil. The new technique could be used to remediate imidacloprid, enhance soil fertility, treat SPW and realize the recycling and reuse of wastewater and R. capsulata cells.
Collapse
Affiliation(s)
- Pan Wu
- School of Environment and Resources, Dalian Minzu University, Dalian, 116600, China; School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Xuewei Zhang
- School of Environment and Resources, Dalian Minzu University, Dalian, 116600, China
| | - Tong Niu
- School of Environment and Resources, Dalian Minzu University, Dalian, 116600, China
| | - Yanling Wang
- Department of Anesthesiology, The Third Affiliated Hospital of SunYat-Sen University, Guangzhou, 510630, China
| | - Rijia Liu
- School of Environment and Resources, Dalian Minzu University, Dalian, 116600, China.
| | - Ying Zhang
- School of Environment and Resources, Dalian Minzu University, Dalian, 116600, China.
| |
Collapse
|
22
|
Nejad HM, Moussavi G. Advanced biodegradation process of atrazine in the peroxidase-mediated sequencing batch reactor (SBR) and moving-bed SBR (MSBR): mineralization and detoxification. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2020; 18:433-439. [PMID: 33312572 PMCID: PMC7721974 DOI: 10.1007/s40201-020-00471-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/07/2020] [Indexed: 06/12/2023]
Abstract
The advanced biodegradation process of atrazine was stimulated with hydrogen peroxide (H2O2) in a sequencing batch reactor (SBR) under different operational conditions due to in situ generation of H2O2-peroxidase. The complete biodegradation and mineralization of 50 mg/L atrazine was achieved in the SBR with a biomass concentration of 328 mg/L stimulated with 10 mM of H2O2. The presence of H2O2 in the SBR induced the generation of H2O2-peroxidase resulted in acceleration of atrazine biodegradation. Adding moving media to the SBR system and converting it to the MSBR considerably improved the rate of atrazine biodegradation and mineralization under H2O2 mediation. The highest specific utilization rate of atrazine in the SBR operated at the biomass concentration of 55 mg/L was 19.4 mg/gbiomass.h, while it was 33.5 mg/gbiomass.h in the MSBR operated at the biomass concentration of 37 mg/L. The low ATZ removal along with no peroxidase activity in the bioreactor in absence of H2O2 clearly ideated that the biodegradation and mineralization of ATZ was considerably mediated by H2O2-peroxidase enzyme. The toxicity of atrazine solution decreased markedly when treated in the MSBR under optimum conditions. Accordingly, the MSBR stimulated with H2O2 is an efficient and thus promising process for biodegradation of recalcitrant compounds.
Collapse
Affiliation(s)
- Hossain Momeni Nejad
- Department of Environmental Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Gholamreza Moussavi
- Department of Environmental Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
23
|
Leon-Fernandez LF, Rodrigo MA, Villaseñor J, Fernandez-Morales FJ. Electrocatalytic dechlorination of 2,4-dichlorophenol in bioelectrochemical systems. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
24
|
Magnoli K, Carranza CS, Aluffi ME, Magnoli CE, Barberis CL. Herbicides based on 2,4-D: its behavior in agricultural environments and microbial biodegradation aspects. A review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:38501-38512. [PMID: 32770339 DOI: 10.1007/s11356-020-10370-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
One of the main herbicides used in the agricultural environments is 2,4-dichlorophenoxyacetic acid (2,4-D). It is a synthetic plant hormone auxin employed in many crops including rice, wheat, sorghum, sugar cane, and corn to control wide leaf weeds. The indiscriminate use of pesticides can produce numerous damages to the environment. Therefore, this review has the objective to provide an overview on the main characteristics of the herbicides based on 2,4-D, mostly on the role of microorganisms in its degradation and its main degradation metabolite, 2,4- dichlorophenol (2,4-DCP). The remediation processes carried out by microorganisms are advantageous to avoid the pollution of the environment as well as to safeguard the population health.
Collapse
Affiliation(s)
- Karen Magnoli
- Instituto de Investigación en Micología y Micotoxicología (IMICO-CONICET). Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico, Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional N° 36 Km 601, 5800, Río Cuarto, Córdoba, Argentina
| | - Cecilia Soledad Carranza
- Instituto de Investigación en Micología y Micotoxicología (IMICO-CONICET). Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico, Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional N° 36 Km 601, 5800, Río Cuarto, Córdoba, Argentina
| | - Melisa Eglé Aluffi
- Instituto de Investigación en Micología y Micotoxicología (IMICO-CONICET). Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico, Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional N° 36 Km 601, 5800, Río Cuarto, Córdoba, Argentina
| | - Carina Elizabeth Magnoli
- Instituto de Investigación en Micología y Micotoxicología (IMICO-CONICET). Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico, Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional N° 36 Km 601, 5800, Río Cuarto, Córdoba, Argentina
| | - Carla Lorena Barberis
- Instituto de Investigación en Micología y Micotoxicología (IMICO-CONICET). Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico, Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional N° 36 Km 601, 5800, Río Cuarto, Córdoba, Argentina.
| |
Collapse
|
25
|
Santos GOS, Eguiluz KIB, Salazar-Banda GR, Saez C, Rodrigo MA. Biodegradability improvement of clopyralid wastes through electrolysis using different diamond anodes. ENVIRONMENTAL RESEARCH 2020; 188:109747. [PMID: 32516635 DOI: 10.1016/j.envres.2020.109747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/08/2019] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
The use of boron-doped (BDDs) anodes for efficient removal of complex organic molecules, such as organochlorine compounds, is well stated in the literature. However, the role of the different characteristics of this anode on the transformation of these type of contaminants into more biodegradable molecules is a topic of interest that need to be clarified when aimed an efficient combination of an electrochemical system as a previous step to biological treatment. In this work, improvement in the biodegradability of synthetic wastes polluted with clopyralid, as an organochlorine model compound, is studied after electrolysis with different BDDs in the presence of the two most common supporting electrolytes (containing sulfate or chloride ions). For that, clopyralid removal, mineralization, aromatics intermediates, short-chain carboxylic acids, and inorganic ions were monitored. Improved results were found in sulfate media for BDD with 200 ppm, capable of removing 88.7% of contaminants and 85% of TOC, resulting in an improvement in biodegradability of almost 7-fold compared to the initial sample. These findings point out that lower doping levels are preferable when coupling studied technologies.
Collapse
Affiliation(s)
- Géssica O S Santos
- Electrochemistry and Nanotechnology Laboratory, Research and Technology Institute - ITP, Aracaju, SE, Brazil; Processes Engineering Post-graduation - PEP, Universidade Tiradentes, 49037-580, Aracaju, SE, Brazil; Department of Chemical Engineering, Universidad de Castilla-La Mancha, Campus Universitario S/n, 13071, Ciudad Real, Spain
| | - Katlin I B Eguiluz
- Electrochemistry and Nanotechnology Laboratory, Research and Technology Institute - ITP, Aracaju, SE, Brazil; Processes Engineering Post-graduation - PEP, Universidade Tiradentes, 49037-580, Aracaju, SE, Brazil
| | - Giancarlo R Salazar-Banda
- Electrochemistry and Nanotechnology Laboratory, Research and Technology Institute - ITP, Aracaju, SE, Brazil; Processes Engineering Post-graduation - PEP, Universidade Tiradentes, 49037-580, Aracaju, SE, Brazil
| | - Cristina Saez
- Department of Chemical Engineering, Universidad de Castilla-La Mancha, Campus Universitario S/n, 13071, Ciudad Real, Spain
| | - Manuel A Rodrigo
- Department of Chemical Engineering, Universidad de Castilla-La Mancha, Campus Universitario S/n, 13071, Ciudad Real, Spain.
| |
Collapse
|
26
|
Wu P, Liu Y, Song X, Wang Y, Sheng L, Wang H, Zhang Y. Rhodopseudomonas sphaeroides treating mesosulfuron-methyl waste-water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:114166. [PMID: 32443208 DOI: 10.1016/j.envpol.2020.114166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/23/2020] [Accepted: 02/10/2020] [Indexed: 06/11/2023]
Abstract
The soybean processing wastewater (SPW) supplementation to facilitate the simultaneously treatment (SPW and mesosulfuron-methyl) of wastewater and production of biological substances by Rhodopseudomonas sphaeroides (R. sphaeroides) was discussed. Compared with the control group, with the addition of SPW, mesosulfuron-methyl was removed, and the yields of single-cell proteins, carotenoids, and bacteriochlorophyll were increased. In the 3 mg/L dose group, the mesosulfuron-methyl removal rate reached 97% after 5 days. Molecular analysis revealed that mesosulfuron-methyl exhibited induction effects on expression of the cpm gene and regulation effects on the synthesis of cytochrome P450 monooxygenases (P450) by activating HKs gene in TCS signal transduction pathway. For R. sphaeroides, this induction process required 1 day. The synthesis of P450 occurred 1 day after inoculation. Prior to expressing cpm gene and synthesizing P450, R. sphaeroides need a period of time to adapt to external mesosulfuron-methyl stimulation. However, the R. sphaeroides growth could not be maintained for more than 1 day due to the lack of organic matter in the raw wastewater. The SPW supplementation provided a sufficient carbon source in four groups with added SPW. After 5 days, R. sphaeroides became the dominant microflora in the wastewater. This new method could complete the treatment of mixed wastewater, the increased of biological substances output and the reuse of wastewater and R. sphaeroides cells as resources at the same time.
Collapse
Affiliation(s)
- Pan Wu
- School of Environment and Resources, Dalian Minzu University, Dalian, 116600, China; School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Yuxin Liu
- School of Environment and Resources, Dalian Minzu University, Dalian, 116600, China; School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Xue Song
- School of Environment and Resources, Dalian Minzu University, Dalian, 116600, China; School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Yanling Wang
- Department of Anesthesiology, The Third Affiliated Hospital of SunYat-Sen University, Guangzhou, 510630, China
| | - Luying Sheng
- School of Environment and Resources, Dalian Minzu University, Dalian, 116600, China; School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China.
| | - Haimei Wang
- School of Environment and Resources, Dalian Minzu University, Dalian, 116600, China; School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China.
| | - Ying Zhang
- School of Environment and Resources, Dalian Minzu University, Dalian, 116600, China; School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
27
|
Carboneras Contreras MB, Villaseñor Camacho J, Fernández-Morales FJ, Cañizares PC, Rodrigo Rodrigo MA. Biodegradability improvement and toxicity reduction of soil washing effluents polluted with atrazine by means of electrochemical pre-treatment: Influence of the anode material. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 255:109895. [PMID: 31770704 DOI: 10.1016/j.jenvman.2019.109895] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 11/18/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
This work focuses on the partial anodic electro-oxidation of atrazine-polluted soil washing effluents (SWE) in order to reduce its toxicity and to improve its biodegradability. Concretely it has been evaluated the influence of the anodic material used. It is hypothesized that such partial oxidation step could be considered as a pre-treatment for a subsequent biological treatment. At first, atrazine was extracted from a polluted soil by means of a surfactant-aided soil-washing process. Then, four different anodic materials were studied in partial electro-oxidation pre-treatment batch experiments at different electric charges applied: Boron Doped Diamond (BDD), Carbon Felt (CF), and Mixed Metal Oxides Anodes with Iridium and Ruthenium. Atrazine, TOC, surfactant and sulphate species concentrations, as well as changes in toxicity and biodegradability, were monitored during electrochemical experiments, showing important differences in their evolution during the treatment. It was observed that BDD was the most powerful anodic material to completely degrade atrazine. The other materials achieve an atrazine degradation rate about 75%. Regarding mineralization of the organics in SWE, BDD overtakes clearly the rest of anodes tested. CF obtains good atrazine removal but low mineralization results. All the anodes tested slightly reduced the ecotoxicity of the water effluents. About the biodegradability, only the effluent obtained after the pre-treatment with BDD presented a high biodegradability. In this sense, it must be highlighted the mineralization obtained during the BDD pre-treatment was very strong. These results globally indicate that it is necessary to find a compromise between reaching efficient atrazine removal and biodegradability improvement, while also simultaneously avoiding strong mineralization. Additional efforts should be made to find the most adequate working conditions.
Collapse
Affiliation(s)
- María Belén Carboneras Contreras
- Chemical Engineering Department. Research Institute for Chemical and Environmental Technology (ITQUIMA), University of Castilla- La Mancha, 13071, Ciudad Real, Spain
| | - José Villaseñor Camacho
- Chemical Engineering Department. Research Institute for Chemical and Environmental Technology (ITQUIMA), University of Castilla- La Mancha, 13071, Ciudad Real, Spain.
| | - Francisco Jesús Fernández-Morales
- Chemical Engineering Department. Research Institute for Chemical and Environmental Technology (ITQUIMA), University of Castilla- La Mancha, 13071, Ciudad Real, Spain
| | - Pablo Cañizares Cañizares
- Chemical Engineering Department. Faculty of Chemical Sciences and Technology. University of Castilla- La Mancha, 13071, Ciudad Real, Spain
| | - Manuel Andrés Rodrigo Rodrigo
- Chemical Engineering Department. Faculty of Chemical Sciences and Technology. University of Castilla- La Mancha, 13071, Ciudad Real, Spain
| |
Collapse
|
28
|
Li H, Wang Y, Fu J, Hu S, Qu J. Degradation of acetochlor and beneficial effect of phosphate-solubilizing Bacillus sp. ACD-9 on maize seedlings. 3 Biotech 2020; 10:67. [PMID: 32030336 PMCID: PMC6981330 DOI: 10.1007/s13205-020-2056-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/04/2020] [Indexed: 12/30/2022] Open
Abstract
The biodegradation of acetochlor in solution and soil and improvements in the growth of maize seedlings by a phosphate-solubilizing bacterial strain were investigated in this research. The strain Bacillus sp. ACD-9 optimally degraded acetochlor at pH 6.0 and 42 °C in solution. And acetochlor with an initial concentration of 30 mg/L was efficiently (> 60%) degraded by the strain after 2 days in solution. Acetochlor biodegradation and the resulting beneficial products were also identified by LC-MS, and the probable degradation products of acetochlor and two kinds of plant growth hormones, namely, 2-chloro-N-(2-methyl-6-ethylphenyl) acetamide (CMEPA), indoleacetic acid (IAA), and zeatin, were detected from the fermentation broth of strain ACD-9. The effects of the strain on the growth and acetochlor accumulation of maize seedlings were also analyzed in laboratory-scale pot experiments. Inoculation of the strain in soil could significantly improve growth (> 9.4%) and phosphorus uptake (> 14.8%) and decrease the accumulation (> 70%) and toxic effects of acetochlor on seedlings. Taking the results together, strain ACD-9 may be useful in the degradation of acetochlor in soil and promotion of the growth and phosphorus uptake of maize.
Collapse
Affiliation(s)
- Haifeng Li
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001 Henan China
| | - Yuanli Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001 Henan China
| | - Jiake Fu
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001 Henan China
| | - Shuang Hu
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001 Henan China
| | - Jianhang Qu
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001 Henan China
| |
Collapse
|
29
|
Carboneras MB, Rodrigo MA, Canizares P, Villasenor J, Fernandez-Morales FJ. Removal of oxyfluorfen from polluted effluents by combined bio-electro processes. CHEMOSPHERE 2020; 240:124912. [PMID: 31574437 DOI: 10.1016/j.chemosphere.2019.124912] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 06/10/2023]
Abstract
In this work, the combination of biological and electrochemical processes to mineralize oxyfluorfen has been studied. First, an acclimatized mixed-culture biological treatment was used to degrade the biodegradable fraction of the pesticide, reaching up to 90% removal. After that, the non-biodegraded fraction was oxidised by electrolysis using boron-doped diamond as the anode. The results showed that the electrochemical technique was able to completely mineralize the residual pollutants. The study of the influence of the supporting electrolyte on the electrochemical process showed that the trace mineral solution used in the biological treatment was enough to completely mineralize the oxyfluorfen, resulting in total organic carbon removal rates that were well-fitted by a first-order model with a kinetic constant of 0.91 h-1. However, the first-order degradation rate increased approximately 20% when Na2SO4 was added as supporting electrolyte, reaching a degradation rate of 1.16 h-1 with a power consumption that was approximately 70% lower.
Collapse
Affiliation(s)
- M B Carboneras
- Department of Chemical Engineering, University of Castilla-La Macha, ITQUIMA, Avenida Camilo José Cela s/n, 13071, Ciudad Real, Spain
| | - M A Rodrigo
- Department of Chemical Engineering, University of Castilla-La Macha, ITQUIMA, Avenida Camilo José Cela s/n, 13071, Ciudad Real, Spain
| | - P Canizares
- Department of Chemical Engineering, University of Castilla-La Macha, ITQUIMA, Avenida Camilo José Cela s/n, 13071, Ciudad Real, Spain
| | - J Villasenor
- Department of Chemical Engineering, University of Castilla-La Macha, ITQUIMA, Avenida Camilo José Cela s/n, 13071, Ciudad Real, Spain
| | - F J Fernandez-Morales
- Department of Chemical Engineering, University of Castilla-La Macha, ITQUIMA, Avenida Camilo José Cela s/n, 13071, Ciudad Real, Spain.
| |
Collapse
|
30
|
Zhao X, Chen L, Ma H, Ma J, Gao D. Effective removal of polymer quaternary ammonium salt by biodegradation and a subsequent Fenton oxidation process. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 188:109919. [PMID: 31733935 DOI: 10.1016/j.ecoenv.2019.109919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/31/2019] [Accepted: 11/02/2019] [Indexed: 06/10/2023]
Abstract
In this paper, a process combining biodegradation and Fenton oxidation was proposed for the removal of polydiallyldimethylammonium chloride-acrylic-acrylamide-hydroxyethyl acrylate (PDM) in aqueous phase. Biodegradation of PDM was investigated in activated sludge systems, and the effects of the solution pH, mixed liquid suspended solids (MLSS), salinity, co-substrate, and initial substrate concentration, were studied. The biodegradation process was well-described with the Monod model and the values of the kinetics parameters vmax, ks were 0.05 h-1 and 333 mg/L. The optimal biodegradation conditions in the experimental range were determined to be: pH = 7.0, 0%-0.01% (w/v) NaCl, 4000 mg/L of MLSS, and 500 mg/L of glucose as co-substrate. FT-IR analysis indicated that PDM molecules biodegradation partly. The microbial community structures and dehydrogenase activity analysis revealed that PDM showed some toxicity to microorganisms in activated sludge. The effects of several parameters, including the pH and chemical doses, were investigated for removing PDM in Fenton oxidation process. The optimal Fenton oxidation process conditions in the experimental range were pH = 2.0, Fe2+ concentration of 40 mg/L, and H2O2 dosage of 23 mL/L. PDM was treated by biodegradation and subsequent Fenton oxidation under the optimal operating conditions. The removal efficiency was 44.5% after the biodegradation process and further increased to 85.5% after Fenton oxidation. The combined process was revealed to be a promising solution for achieving effective and economical removal of PDM.
Collapse
Affiliation(s)
- Xia Zhao
- College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China; Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Ling Chen
- College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Hongrui Ma
- College of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Jianzhong Ma
- College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Dangge Gao
- College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| |
Collapse
|
31
|
Wu P, Zhang Q, Wang Y, Zhang Y, Chen Z, Cao B, Wu Y, Zhu F, Li N. RETRACTED: Clothianidin wastewater treatment and the accumulation of high-value biochemical by Rhodopseudomonas spheroides. BIORESOURCE TECHNOLOGY 2019; 294:122073. [PMID: 31521982 DOI: 10.1016/j.biortech.2019.122073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/21/2019] [Accepted: 08/24/2019] [Indexed: 06/10/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of the Authors and the Editor-in-Chief. The paper is retracted because of a high level of duplication of "Rhodopseudomonas palustris wastewater treatment: cyhalofop-butyl removal, biochemicals production and mathematical model establishment. Bioresource. Tech. 2019, 282: 390-397 As such this article represents a severe abuse of the scientific publishing system. The scientific community takes a very strong view on this matter and apologies are offered to readers of the journal that this was not detected during the submission process. The first author, Pan Wu, takes full responsibility for these actions, a stance supported by Dalian Minzu University and Northeast Agricultural University, Harbin, where the research took place.
Collapse
Affiliation(s)
- Pan Wu
- School of Environment and Resources, Dalian Minzu University, Dalian116600, China; School of Resources and Environment, Northeast Agricultural University, Harbin150030, China
| | - Qian Zhang
- School of Environment and Resources, Dalian Minzu University, Dalian116600, China
| | - Yanling Wang
- Department of Anesthesiology, the Third Affiliated Hospital of SunYat-Sen University, Guangzhou510630, China
| | - Ying Zhang
- School of Environment and Resources, Dalian Minzu University, Dalian116600, China; School of Resources and Environment, Northeast Agricultural University, Harbin150030, China.
| | - Zhaobo Chen
- School of Environment and Resources, Dalian Minzu University, Dalian116600, China; School of Resources and Environment, Northeast Agricultural University, Harbin150030, China
| | - Bo Cao
- School of Environment and Resources, Dalian Minzu University, Dalian116600, China; School of Resources and Environment, Northeast Agricultural University, Harbin150030, China
| | - Yuan Wu
- School of Environment and Resources, Dalian Minzu University, Dalian116600, China; School of Resources and Environment, Northeast Agricultural University, Harbin150030, China
| | - Feifei Zhu
- Forest and Wastewater Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang110164, China
| | - Ning Li
- School of Environment and Resources, Dalian Minzu University, Dalian116600, China; School of Resources and Environment, Northeast Agricultural University, Harbin150030, China
| |
Collapse
|
32
|
Leon-Fernandez LF, Villaseñor J, Rodriguez L, Cañizares P, Rodrigo MA, Fernández-Morales FJ. Dehalogenation of 2,4-Dichlorophenoxyacetic acid by means of bioelectrochemical systems. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113564] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
33
|
Raschitor A, Llanos J, Rodrigo MA, Cañizares P. Combined electrochemical processes for the efficient degradation of non-polar organochlorine pesticides. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 248:109289. [PMID: 31344559 DOI: 10.1016/j.jenvman.2019.109289] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/11/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
This study deals with the development of efficient and economic electrochemical treatment processes to confront the treatment of liquid wastes containing non-polar organochlorine pesticides. In previous works, it was demonstrated that it is possible to use electrocoagulation (EC) as a concentration technique for a model organochlorine pesticide (oxyfluorfen). Within this framework, the present work describes a process for the degradation of wastes containing non-polar organochlorines (oxyfluorfen or lindane) in two consecutive stages: 1) a first stage of concentration by electrocoagulation; 2) a second stage of electrochemical degradation by electro-oxidation (EO) or electro-Fenton (EF). The first result reached in the present work is that it is possible to remove close to 50% of both pollutants using EO and more that 94% using EF. Additionally, it was proved that the addition of a pre-concentration stage decreases by a factor of 20 the power consumption needed to deplete by EO the same amount of the initial pollutant. Moreover, when EF process is performed to the concentrated stream, the power consumption is further reduced, getting values (for 1-log removal) as low as 14.51 kWh m-3 for oxyfluorfen decrease and 49.7 kWh m-3 for lindane. These results strengthen the fact that the removal efficiency increases with the concentration of the pollutant and demonstrate that the combination of concentration steps and electrochemical degradation technologies is an efficient and promising alternative for the degradation of non-polar organochlorines.
Collapse
Affiliation(s)
- A Raschitor
- Department of Chemical Engineering, Faculty of Chemical Sciences & Technologies, Ciudad Real, Universidad de Castilla-La Mancha, Ciudad Real 13071, Spain
| | - J Llanos
- Department of Chemical Engineering, Faculty of Chemical Sciences & Technologies, Ciudad Real, Universidad de Castilla-La Mancha, Ciudad Real 13071, Spain.
| | - M A Rodrigo
- Department of Chemical Engineering, Faculty of Chemical Sciences & Technologies, Ciudad Real, Universidad de Castilla-La Mancha, Ciudad Real 13071, Spain
| | - P Cañizares
- Department of Chemical Engineering, Faculty of Chemical Sciences & Technologies, Ciudad Real, Universidad de Castilla-La Mancha, Ciudad Real 13071, Spain
| |
Collapse
|
34
|
Serbent MP, Rebelo AM, Pinheiro A, Giongo A, Tavares LBB. Biological agents for 2,4-dichlorophenoxyacetic acid herbicide degradation. Appl Microbiol Biotechnol 2019; 103:5065-5078. [DOI: 10.1007/s00253-019-09838-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/12/2019] [Accepted: 04/07/2019] [Indexed: 12/22/2022]
|
35
|
Chen D, Liu SJ, Du W. Chemotactic screening of imidazolinone-degrading bacteria by microfluidic SlipChip. JOURNAL OF HAZARDOUS MATERIALS 2019; 366:512-519. [PMID: 30562663 DOI: 10.1016/j.jhazmat.2018.12.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/19/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
The group of imidazolinone herbicides, widely used for weed control, is hazardous to some sensitive rotational crops. Thus, rapid elimination of imidazolinones from contaminated soil is significant for the environment. Biodegradation studies have demonstrated the ability of chemotaxis to enhance the biodegradation of pollutants. In this study, we used our newly developed SlipChip device for chemotactic sorting and a microfluidic streak plate device for bacterial cultivation as a new pipeline for screening imidazolinone degraders. The degradation efficiencies of an enrichment consortium and a chemotaxis consortium were determined by HPLC-MS/MS. Both consortia degraded all tested imidazolinones, with the highest efficiency (71.8%) for imazethapyr, and the chemotaxis consortium degraded these compounds approximately 10% more efficiently than the enrichment consortium. Moreover, the community diversities of the enrichment consortium and the chemotaxis consortium were analyzed by 16S rRNA gene amplicon sequencing. The results indicated that members of genus Ochrobactrum primarily contribute to the degradation of imidazolinones. This work proved that chemotaxis toward biodegradable pollutants increases their bioavailability and enhances the biodegradation rate. It also provided a new way to screen effective pollutant degraders and can be applied for the selective isolation of other chemotactic species from environmental samples.
Collapse
Affiliation(s)
- Dongwei Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenbin Du
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of the Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
36
|
Carboneras MB, Villaseñor J, Fernández-Morales FJ, Rodrigo MA, Cañizares P. Biological treatment of wastewater polluted with an oxyfluorfen-based commercial herbicide. CHEMOSPHERE 2018; 213:244-251. [PMID: 30223129 DOI: 10.1016/j.chemosphere.2018.09.054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/24/2018] [Accepted: 09/09/2018] [Indexed: 06/08/2023]
Abstract
Fluoxil-24 is a commercial herbicide based on oxyfluorfen (a hazardous non-soluble organochlorinated compound) and additional compounds used as solvents. The aim of this work is to study the biotreatability of this commercial herbicide in water through batch experiments performed at different temperatures (15, 20, 25 and 30 °C) and initial concentrations (85, 150, 300 and 500 mg L-1 of oxyfluorfen). Activated sludge from an oil refinery wastewater treatment plant was acclimated and used for biodegradation experiments. Two main mechanisms, volatilization and biodegradation, were observed to be responsible of the herbicide removal. Fluoxil-24 removal efficiencies between approximately 40% and 80% were reached after 70 h, depending on the conditions used, and oxyfluorfen was not completely removed. Regarding the influence of the temperature, thermal inhibition problems appeared at 30 °C, and the volatilization rate of solvents increased, causing oxyfluorfen to become unavailable for microorganisms. An increase of herbicide initial concentration did not clearly affect the herbicide removal efficiency, whereas it negatively affected the biological mechanism. The experimental results were fitted to a mathematical model that included both simultaneous mechanisms of volatilization and Monod biodegradation kinetics. The model was able to predict the experimental results, and the calculated model parameters confirmed the effect of the variables under study.
Collapse
Affiliation(s)
- María Belén Carboneras
- Chemical Engineering Department, Research Institute for Chemical and Environmental Technology (ITQUIMA), University of Castilla- La Mancha, 13071, Ciudad Real, Spain.
| | - José Villaseñor
- Chemical Engineering Department, Research Institute for Chemical and Environmental Technology (ITQUIMA), University of Castilla- La Mancha, 13071, Ciudad Real, Spain
| | - Francisco Jesús Fernández-Morales
- Chemical Engineering Department, Research Institute for Chemical and Environmental Technology (ITQUIMA), University of Castilla- La Mancha, 13071, Ciudad Real, Spain
| | - Manuel Andrés Rodrigo
- Chemical Engineering Department, Faculty of Chemical Sciences and Technology, University of Castilla- La Mancha, 13071, Ciudad Real, Spain
| | - Pablo Cañizares
- Chemical Engineering Department, Faculty of Chemical Sciences and Technology, University of Castilla- La Mancha, 13071, Ciudad Real, Spain
| |
Collapse
|
37
|
Yu J, He H, Yang WL, Yang C, Zeng G, Wu X. Magnetic bionanoparticles of Penicillium sp. yz11-22N2 doped with Fe 3O 4 and encapsulated within PVA-SA gel beads for atrazine removal. BIORESOURCE TECHNOLOGY 2018; 260:196-203. [PMID: 29625292 DOI: 10.1016/j.biortech.2018.03.103] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/20/2018] [Accepted: 03/23/2018] [Indexed: 06/08/2023]
Abstract
A novel magnetic bionanomaterial, Penicillium sp. yz11-22N2 doped with nano Fe3O4 entrapped in polyvinyl alcohol-sodium alginate gel beads (PFEPS), was successfully synthesized. The factors including nutrient substance, temperature, pH, initial concentrations of atrazine and rotational speeds were presented and discussed in detail. Results showed that the highest removal efficiency of atrazine by PFEPS was 91.2% at 8.00 mg/L atrazine. The maximum removal capacity for atrazine was 7.94 mg/g. Meanwhile, it has been found that most of atrazine were removed by metabolism and degradation of Penicillium sp. yz11-22N2, which could use atrazine as the sole source of either carbon or nitrogen. Degradation kinetics of atrazine conformed to first-order kinetics model. The intermediates indicated that the possible pathway for atrazine degradation by PFEPS mainly included hydrolysis dechlorination, dealkylation, side-chain oxidation and ring-opening.
Collapse
Affiliation(s)
- Jiaping Yu
- College of Environmental Science and Engineering, Hunan University, and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Huijun He
- College of Environmental Science and Engineering, Hunan University, and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - William L Yang
- College of Environmental Science and Engineering, Hunan University, and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Chunping Yang
- College of Environmental Science and Engineering, Hunan University, and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China; Zhejiang Provincial Key Laboratory of Waste Treatment and Recycling, College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Xin Wu
- College of Environmental Science and Engineering, Hunan University, and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| |
Collapse
|
38
|
Wu X, He H, Yang WL, Yu J, Yang C. Efficient removal of atrazine from aqueous solutions using magnetic Saccharomyces cerevisiae bionanomaterial. Appl Microbiol Biotechnol 2018; 102:7597-7610. [DOI: 10.1007/s00253-018-9143-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 05/22/2018] [Accepted: 05/23/2018] [Indexed: 12/23/2022]
|
39
|
Blunt SM, Sackett JD, Rosen MR, Benotti MJ, Trenholm RA, Vanderford BJ, Hedlund BP, Moser DP. Association between degradation of pharmaceuticals and endocrine-disrupting compounds and microbial communities along a treated wastewater effluent gradient in Lake Mead. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 622-623:1640-1648. [PMID: 29056380 DOI: 10.1016/j.scitotenv.2017.10.052] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/30/2017] [Accepted: 10/06/2017] [Indexed: 06/07/2023]
Abstract
The role of microbial communities in the degradation of trace organic contaminants in the environment is little understood. In this study, the biotransformation potential of 27 pharmaceuticals and endocrine-disrupting compounds was examined in parallel with a characterization of the native microbial community in water samples from four sites variously impacted by urban run-off and wastewater discharge in Lake Mead, Nevada and Arizona, USA. Samples included relatively pristine Colorado River water at the upper end of the lake, nearly pure tertiary-treated municipal wastewater entering via the Las Vegas Wash, and waters of mixed influence (Las Vegas Bay and Boulder Basin), which represented a gradient of treated wastewater effluent impact. Microbial diversity analysis based on 16S rRNA gene censuses revealed the community at this site to be distinct from the less urban-impacted locations, although all sites were similar in overall diversity and richness. Similarly, Biolog EcoPlate assays demonstrated that the microbial community at Las Vegas Wash was the most metabolically versatile and active. Organic contaminants added as a mixture to laboratory microcosms were more rapidly and completely degraded in the most wastewater-impacted sites (Las Vegas Wash and Las Vegas Bay), with the majority exhibiting shorter half-lives than at the other sites or in a bacteriostatic control. Although the reasons for enhanced degradation capacity in the wastewater-impacted sites remain to be established, these data are consistent with the acclimatization of native microorganisms (either through changes in community structure or metabolic regulation) to effluent-derived trace contaminants. This study suggests that in urban, wastewater-impacted watersheds, prior exposure to organic contaminants fundamentally alters the structure and function of microbial communities, which in turn translates into greater potential for the natural attenuation of these compounds compared to more pristine sites.
Collapse
Affiliation(s)
- Susanna M Blunt
- Division of Earth and Ecosystems Sciences, Desert Research Institute, Las Vegas, Las Vegas, NV 89119, USA; School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV 89154-4004, USA
| | - Joshua D Sackett
- Division of Earth and Ecosystems Sciences, Desert Research Institute, Las Vegas, Las Vegas, NV 89119, USA; School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV 89154-4004, USA
| | - Michael R Rosen
- United States Geological Survey, Water Science Field Team, Carson City, NV 89701, USA
| | - Mark J Benotti
- Applied Research and Development Center, Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, NV 89193-9954, USA
| | - Rebecca A Trenholm
- Applied Research and Development Center, Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, NV 89193-9954, USA
| | - Brett J Vanderford
- Applied Research and Development Center, Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, NV 89193-9954, USA
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV 89154-4004, USA; Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, Las Vegas, NV 89154-4004, USA.
| | - Duane P Moser
- Division of Earth and Ecosystems Sciences, Desert Research Institute, Las Vegas, Las Vegas, NV 89119, USA.
| |
Collapse
|
40
|
Carboneras MB, Cañizares P, Rodrigo MA, Villaseñor J, Fernandez-Morales FJ. Improving biodegradability of soil washing effluents using anodic oxidation. BIORESOURCE TECHNOLOGY 2018; 252:1-6. [PMID: 29306123 DOI: 10.1016/j.biortech.2017.12.060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/17/2017] [Accepted: 12/18/2017] [Indexed: 06/07/2023]
Abstract
In this work, a combination of electrochemical and biological technologies is proposed to remove clopyralid from Soil Washing Effluents (SWE). Firstly, soil washing was carried out to extract clopyralid from soil. After that, four different anodes-Ir-MMO, Ru-MMO, pSi-BDD and Carbon Felt (CF)-were evaluated in order to increase the biodegradability of the SWE. CF was selected because was the only one able to transform the pesticide to a more biodegradable compounds without completely mineralizing it. Finally, biological oxidation tests were performed to determine the aerobic biodegradability of the SWE generated. From the obtained results, it was observed that at the beginning of the electrolysis the toxicity slightly increased and the biodegradability decreases. However, for electric current charges over 2.5 A·h dm-3 the toxicity drastically decreased, showing an EC50 of 143 mg L-1, and the BOD5/COD ratio increased from 0.02 to 0.23.
Collapse
Affiliation(s)
- María Belén Carboneras
- University of Castilla-La Mancha, ITQUIMA, Chemical Engineering Department, Avenida Camilo José Cela S/N, 13071 Ciudad Real, Spain
| | - Pablo Cañizares
- University of Castilla-La Mancha, ITQUIMA, Chemical Engineering Department, Avenida Camilo José Cela S/N, 13071 Ciudad Real, Spain
| | - Manuel Andrés Rodrigo
- University of Castilla-La Mancha, ITQUIMA, Chemical Engineering Department, Avenida Camilo José Cela S/N, 13071 Ciudad Real, Spain
| | - José Villaseñor
- University of Castilla-La Mancha, ITQUIMA, Chemical Engineering Department, Avenida Camilo José Cela S/N, 13071 Ciudad Real, Spain
| | | |
Collapse
|
41
|
Xu P, Lai C, Zeng G, Huang D, Chen M, Song B, Peng X, Wan J, Hu L, Duan A, Tang W. Enhanced bioremediation of 4-nonylphenol and cadmium co-contaminated sediment by composting with Phanerochaete chrysosporium inocula. BIORESOURCE TECHNOLOGY 2018; 250:625-634. [PMID: 29220806 DOI: 10.1016/j.biortech.2017.11.069] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/20/2017] [Accepted: 11/22/2017] [Indexed: 06/07/2023]
Abstract
Composting is identified as an effective approach for solid waste disposal. The bioremediation of 4-nonylphenol (4NP) and cadmium (Cd) co-contaminated sediment was investigated by composting with Phanerochaete chrysosporium (P. chrysosporium) inocula. P. chrysosporium inocula and proper C/N ratios (25.51) accelerated the composting process accompanied with faster total organic carbon loss, 4NP degradation and Cd passivation. Microbiological analysis demonstrated that elevated activities of lignocellulolytic enzymes and sediment enzymes was conducive to organic chemical transformation. Bacterial community diversity results illustrated that Firmicutes and Proteobacteria were predominant species during the whole composting process. Aerobic cellulolytic bacteria and organic degrading species played significant roles. Toxicity characteristic leaching procedure (TCLP) extraction and germination indices results indicated the efficient detoxification of 4NP and Cd co-contaminated sediment after 120 days of composting. Overall, results demonstrated that P. chrysosporium enhanced composting was available for the bioremediation of 4NP and Cd co-contaminated sediment.
Collapse
Affiliation(s)
- Piao Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Cui Lai
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China.
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Ming Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Biao Song
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Xin Peng
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Jia Wan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Liang Hu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Abing Duan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Wangwang Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| |
Collapse
|