1
|
Adghim M, Sartaj M, Abdehagh N, Strehlar B. Post-hydrolysis versus side-stream ammonia stripping in semi-continuous two-stage anaerobic digestion of high nitrogen feedstock. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 168:74-82. [PMID: 37285638 DOI: 10.1016/j.wasman.2023.05.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 06/09/2023]
Abstract
With the increased popularity of two-stage anaerobic digesters, post-hydrolysis ammonia stripping (PHAS) has resurfaced as a new possible treatment configuration. This study discusses for the first time the semi-continuous operation of PHAS and compares it with the most used stripping configuration nowadays, side-stream ammonia stripping (SSAS), under similar conditions using air or renewable natural gas (RNG) as stripping mediums. Ammonia stripping operating conditions were set to pH 9.5, 55 °C, and flowrate of 100 L gas/L/hour. RNG removed 50-58% of ammonia while air removed 70-78%. Interestingly, the PHAS system showed more flexibility and resilience than the SSAS system when testing parameters were changed. Volumetric and specific biogas production from PHAS and SSAS scenarios averaged up to 1.91 and 1.26 L/L/day and 831 and 701 L biogas/ kg VS/day under organic loading rates of 2.61 and 1.8 g VS/L/day, respectively.
Collapse
Affiliation(s)
- M Adghim
- Department of Civil Engineering, University of Ottawa, Ottawa, Canada.
| | - M Sartaj
- Department of Civil Engineering, University of Ottawa, Ottawa, Canada
| | - N Abdehagh
- Department of Civil Engineering, University of Ottawa, Ottawa, Canada; CH Four Biogas Inc, Manotick, Ontario, Canada
| | - B Strehlar
- CH Four Biogas Inc, Manotick, Ontario, Canada
| |
Collapse
|
2
|
Yamamoto-Ikemoto R, Matsuura N, Honda R, Hara-Yamamura H, Some K, Prak S, Koike K, Togari T. Ammonia tolerance and microbial community in thermophilic co-digestion of sewage sludge initiated with lignocellulosic biomass. BIORESOURCE TECHNOLOGY 2023; 376:128834. [PMID: 36889603 DOI: 10.1016/j.biortech.2023.128834] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Rice straw is a useful lignocellulosic biomass for controlling ammonia inhibition in the thermophilic anaerobic digestion of sewage sludge. However, it is challenging to procure rice straw throughout the year because of its seasonal production. This study investigated methane production in a laboratory-scale digester by gradually decreasing rice straw addition to solid thermophilic sewage sludge digestion. The decrease in rice straw did not accumulate volatile fatty acids and stabilized methane production. Even with increased sludge concentration without rice straw, methane production continued under high ammonia conditions. Ammonia tolerance of the digested sludge of the experimental digester was higher than that of conventionally digested sludge. The cellulose-degrading bacteria Clostridia and high ammonia-resistant archaea Methanosarcina were dominant in the experimentally digested sludge. The community was maintained for over 200 days after discontinuing the rice straw supply. These findings suggest that anaerobic digestion initiation with rice straw is appropriate to facilitate ammonia-tolerant communities.
Collapse
Affiliation(s)
| | - Norihisa Matsuura
- Faculty of Geosciences and Civil Engineering, Kanazawa University, Ishikawa, Japan
| | - Ryo Honda
- Faculty of Geosciences and Civil Engineering, Kanazawa University, Ishikawa, Japan
| | - Hiroe Hara-Yamamura
- Faculty of Geosciences and Civil Engineering, Kanazawa University, Ishikawa, Japan
| | - Kanhchany Some
- Graduate School of Natural Science & Technology, Kanazawa University, Ishikawa, Japan
| | - Sereyroth Prak
- Graduate School of Natural Science & Technology, Kanazawa University, Ishikawa, Japan
| | - Kazuyoshi Koike
- Graduate School of Natural Science & Technology, Kanazawa University, Ishikawa, Japan
| | - Taketo Togari
- Faculty of Environmental Studies, Tottori University of Environmental Studies, Tottori, Japan
| |
Collapse
|
3
|
Orner KD, Smith S, Nordahl S, Chakrabarti A, Breunig H, Scown CD, Leverenz H, Nelson KL, Horvath A. Environmental and Economic Impacts of Managing Nutrients in Digestate Derived from Sewage Sludge and High-Strength Organic Waste. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17256-17265. [PMID: 36409840 DOI: 10.1021/acs.est.2c04020] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Increasingly stringent limits on nutrient discharges are motivating water resource recovery facilities (WRRFs) to consider the implementation of sidestream nutrient removal or recovery technologies. To further increase biogas production and reduce landfilled waste, WRRFs with excess anaerobic digestion capacity can accept other high-strength organic waste (HSOW) streams. The goal of this study was to characterize and evaluate the life-cycle global warming potential (GWP), eutrophication potential, and economic costs and benefits of sidestream nutrient management and biosolid management strategies following digestion of sewage sludge augmented by HSOW. Five sidestream nutrient management strategies were analyzed using environmental life-cycle assessment (LCA) and life-cycle cost analysis (LCCA) for codigestion of municipal sewage sludge with and without HSOW. As expected, thermal stripping and ammonia stripping were characterized by a much lower eutrophication potential than no sidestream treatment; significantly higher fertilizer prices would be needed for this revenue stream to cover the capital and chemical costs. Composting all biosolids dramatically reduced the GWP relative to the baseline biosolid option but had slightly higher eutrophication potential. These complex environmental and economic tradeoffs require utilities to consider their social, environmental, and economic values in addition to present or upcoming nutrient discharge limits prior to making decisions in sidestream and biosolids management.
Collapse
Affiliation(s)
- Kevin D Orner
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
- National Science Foundation Engineering Research Center for Re-inventing the Nation's Urban Water Infrastructure, Berkeley, California 94720, United States
| | - Sarah Smith
- Energy Analysis and Environmental Impacts Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Sarah Nordahl
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
- Energy Analysis and Environmental Impacts Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Alicia Chakrabarti
- East Bay Municipal Utility District, Oakland, California 94607, United States
| | - Hanna Breunig
- Energy Analysis and Environmental Impacts Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Corinne D Scown
- Energy Analysis and Environmental Impacts Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Energy and Biosciences Institute, University of California, Berkeley, California 94720, United States
- Life-Cycle, Economics, and Agronomy Division, Joint BioEnergy Institute, Emeryville, California 94608, United States
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Harold Leverenz
- Department of Civil and Environmental Engineering, University of California, Davis, California 95616, United States
| | - Kara L Nelson
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
- National Science Foundation Engineering Research Center for Re-inventing the Nation's Urban Water Infrastructure, Berkeley, California 94720, United States
| | - Arpad Horvath
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
- National Science Foundation Engineering Research Center for Re-inventing the Nation's Urban Water Infrastructure, Berkeley, California 94720, United States
| |
Collapse
|
4
|
Adghim M, Sartaj M, Abdehagh N. Post-hydrolysis ammonia stripping as a new approach to enhance the two-stage anaerobic digestion of poultry manure: Optimization and statistical modelling. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 319:115717. [PMID: 35868184 DOI: 10.1016/j.jenvman.2022.115717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/27/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Post-hydrolysis ammonia stripping was investigated as a new approach to enhance the methane potential of high ammonia substrates, such as poultry manure. The objective of the proposed approach is to address some of the noticeable disadvantages in the existing ammonia-stripping techniques i.e., treatment of raw samples and side-stream stripping. Poultry manure (PM) and a co-substrate (mixed wastes from a cheese factory and a coffee house, referred to as MS) characterized by a high carbon-to-nitrogen ratio were mixed at five different ratios: PM:MS of 100:0, 75:25, 50:50, 25:75, and 0:100. Samples were hydrolyzed for six days to promote ammonia conversion from organic nitrogen and then the samples with higher ammonia levels (>2000 mg NH3-N/L) were stripped with air at initial pH values of 9 and 10 and temperatures of 40 and 55 °C. Biochemical methane potential (BMP) test results showed that post-hydrolysis ammonia stripping had alleviated ammonia inhibition and improved methane potential up to 200% when compared with untreated samples. The ammonia removal efficiency was mostly affected by pH. On the other hand, methane potential was highest in the samples treated at a higher temperature as their biodegradability was enhanced when compared with the samples treated at lower temperatures. Post-BMP characterization showed that the proposed approach had also limited the increase of ammonia in the digestate which ensured proper growth of methanogenic microorganisms.
Collapse
Affiliation(s)
- Mohamad Adghim
- Department of Civil Engineering, University of Ottawa, Ottawa, Canada.
| | - Majid Sartaj
- Department of Civil Engineering, University of Ottawa, Ottawa, Canada
| | - Niloofar Abdehagh
- Department of Civil Engineering, University of Ottawa, Ottawa, Canada; CH Four Biogas Inc, Manotick, Ontario, Canada
| |
Collapse
|
5
|
Palakodeti A, Rupani PF, Azman S, Dewil R, Appels L. Novel approach to ammonia recovery from anaerobic digestion via side-stream stripping at multiple pH levels. BIORESOURCE TECHNOLOGY 2022; 361:127685. [PMID: 35878773 DOI: 10.1016/j.biortech.2022.127685] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Ammonia recovery from anaerobic digesters via side-stream stripping is a technique to recover nitrogen from manure wastes. This study demonstrated a novel approach to determining ammonia recovery to maintain total ammonia concentrations in the digester in the range of 1.7-2.1 gN/L. Increasing the pH during stripping from 8, 8.5 to 9.5 did not affect the stability of the digester. Methane yields of 60-80 mL/(gVS.d) and volatile fatty acid concentrations of 0-500 mg/L were reported throughout its operation. The low solubilisation increase upon recirculation of the digestate explained the lack of change in methane yields due to side-stream stripping. Increasing the pH during stripping also did not affect the digester's operating pH, which was attributed to the neutralising effect of biogas as stripping gas. Therefore, total ammonia concentrations in the digester can be controlled by determining the extent of ammonia recovery, and the pH during stripping can be increased without compromising the digester's stability.
Collapse
Affiliation(s)
- Advait Palakodeti
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, B-2860 Sint-Katelijne-Waver, Belgium.
| | - Parveen Fatemeh Rupani
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, B-2860 Sint-Katelijne-Waver, Belgium.
| | - Samet Azman
- Avans University of Applied Sciences, Academy of Life Sciences and Technology, Lovensdijkstraat 61, 4818 AJ, Breda, Netherlands
| | - Raf Dewil
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, B-2860 Sint-Katelijne-Waver, Belgium; University of Oxford, Department of Engineering Science, Parks Road, Oxford OX1 3PJ, United Kingdom.
| | - Lise Appels
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, B-2860 Sint-Katelijne-Waver, Belgium.
| |
Collapse
|
6
|
Dry Anaerobic Digestion of the Organic Fraction of Municipal Solid Waste: Biogas Production Optimization by Reducing Ammonia Inhibition. ENERGIES 2022. [DOI: 10.3390/en15155515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The aim of this work is to optimize biogas production from thermophilic dry anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW) by comparing various operational strategies to reduce ammonia inhibition. A pilot-scale plug flow reactor (PFR) operated semi-continuously for 170 days. Three scenarios with different feedstock, namely solely OFMSW, OFMSW supplemented with structural material, and OFMSW altered to have an optimal carbon-to-nitrogen (C/N) ratio, were tested. Specific biogas production (SGP), specific methane production (SMP), the biogas production rate (GPR), and bioenergy recovery were evaluated to assess the process performance. In addition, process stability was monitored to highlight process problems, and digestate was characterized for utilization as fertilizer. The OFMSW and the structural material revealed an unbalanced content of C and N. The ammonia concentration decreased when the optimal C/N ratio was tested and was reduced by 72% if compared with feeding solely OFMSW. In such conditions, optimal biogas production was obtained, operating with an organic loading rate (OLR) equal to 12.7 gVS/(L d). In particular, the SGP result was 361.27 ± 30.52 NLbiogas/kgVS, the GPR was 5.11 NLbiogas/(Lr d), and the potential energy recovery was 8.21 ± 0.9 MJ/kgVS. Nevertheless, the digestate showed an accumulation of heavy metals and low aerobic stability.
Collapse
|
7
|
Ahmad WA, Latif NA, Zaidel DNA, Ghazi RM, Terada A, Aguilar CN, Zakaria ZA. Microbial Biotransformation and Biomineralization of Organic-Rich Waste. CURRENT POLLUTION REPORTS 2021; 7:435-447. [DOI: 10.1007/s40726-021-00205-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/14/2021] [Indexed: 09/02/2023]
|
8
|
Chen B, Shao Y, Shi M, Ji L, He Q, Yan S. Anaerobic digestion of chicken manure coupled with ammonia recovery by vacuum-assisted gas-permeable membrane process. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Zhang W, Alessi AM, Heaven S, Chong JPJ, Banks CJ. Dynamic changes in anaerobic digester metabolic pathways and microbial populations during acclimatisation to increasing ammonium concentrations. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 135:409-419. [PMID: 34619622 DOI: 10.1016/j.wasman.2021.09.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Transitions in microbial community structure in response to increasing ammonia concentrations were determined by monitoring mesophilic anaerobic digesters seeded with a predominantly acetoclastic methanogenic community from a sewage sludge digester. Ammonia concentration was raised by switching the feed to source segregated domestic food waste and applying two organic loading rates (OLR) and hydraulic retention times (HRT) in paired digesters. One of each pair was dosed with trace elements (TE) known to be essential to the transition, with the other unsupplemented digester acting as a control. Samples taken during the trial were used to determine the metabolic pathway to methanogenesis using 14C labelled acetate. Partitioning of 14C between the product gases was interpreted via an equation to indicate the proportion produced by acetoclastic and hydrogenotrophic routes. Archaeal and selected bacterial groups were identified by 16S rRNA sequencing, to determine relative abundance and diversity. Acclimatisation for digesters with TE was relatively smooth, but OLR and HRT influenced both metabolic route and community structure. The 14C ratio could be used quantitatively and, when interpreted alongside archaeal community structure, showed that at longer HRT and lower loading Methanobacteriaceae were dominant and hydrogenotrophic activity accounted for 77% of methane production. At the higher OLR and shorter HRT, Methanosarcinaceae were dominant with the 14C ratio indicating simultaneous production of methane by acetoclastic and hydrogenotrophic pathways: the first reported observation of this in digestion under mesophilic conditions. Digesters without TE supplementation showed similar initial changes but, as expected failed to complete the transition to stable operation.
Collapse
Affiliation(s)
- Wei Zhang
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Anna M Alessi
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK; Biorenewables Development Centre Ltd., 1 Hassacarr Close, Chessingham Park, Dunnington, York YO19 5SN, UK
| | - Sonia Heaven
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, UK.
| | - James P J Chong
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Charles J Banks
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, UK
| |
Collapse
|
10
|
Usmani Z, Sharma M, Awasthi AK, Sharma GD, Cysneiros D, Nayak SC, Thakur VK, Naidu R, Pandey A, Gupta VK. Minimizing hazardous impact of food waste in a circular economy - Advances in resource recovery through green strategies. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126154. [PMID: 34492935 DOI: 10.1016/j.jhazmat.2021.126154] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/08/2021] [Accepted: 05/15/2021] [Indexed: 06/13/2023]
Abstract
Recent trends in food waste and its management have increasingly started to focus on treating it as a reusable resource. The hazardous impact of food waste such as the release of greenhouse gases, deterioration of water quality and contamination of land areas are a major threat posed by food waste. Under the circular economy principles, food waste can be used as a sustainable supply of high-value energy, fuel, and nutrients through green techniques such as anaerobic digestion, co-digestion, composting, enzymatic treatment, ultrasonic, hydrothermal carbonization. Recent advances made in anaerobic co-digestion are helping in tackling dual or even multiple waste streams at once with better product yields. Integrated approaches that employ pre-processing the food waste to remove obstacles such as volatile fractions, oils and other inhibitory components from the feedstock to enhance their bioconversion to reduce sugars. Research efforts are also progressing in optimizing the operational parameters such as temperature, pressure, pH and residence time to enhance further the output of products such as methane, hydrogen and other platform chemicals such as lactic acid, succinic acid and formic acid. This review brings together some of the recent progress made in the green strategies towards food waste valorization.
Collapse
Affiliation(s)
- Zeba Usmani
- Department of Applied Biology, University of Science and Technology, Meghalaya 793101, India
| | - Minaxi Sharma
- Department of Applied Biology, University of Science and Technology, Meghalaya 793101, India; Food Technology, Akal College of Agriculture, Eternal University, Baru Sahib, Himachal Pradesh 173101, India
| | | | | | | | - S Chandra Nayak
- DOS in Biotechnology, University of Mysore Manasagangotri, Mysore, India
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Faculty of Science, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, India; Centre for Energy and Environmental Sustainability, Lucknow-226 029, India
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK; Center for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK.
| |
Collapse
|
11
|
Brienza C, Sigurnjak I, Meier T, Michels E, Adani F, Schoumans O, Vaneeckhaute C, Meers E. Techno-economic assessment at full scale of a biogas refinery plant receiving nitrogen rich feedstock and producing renewable energy and biobased fertilisers. JOURNAL OF CLEANER PRODUCTION 2021; 308:127408. [PMID: 34316100 PMCID: PMC8216695 DOI: 10.1016/j.jclepro.2021.127408] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/15/2021] [Accepted: 05/04/2021] [Indexed: 06/13/2023]
Abstract
Anaerobic digestion of nitrogen (N) rich substrates might be hindered when ammonia (NH3) formation reaches toxic levels for methanogenic microorganisms. One possible strategy to avoid inhibiting conditions is the removal of NH3 from digestate by stripping and scrubbing technology and by recirculating N depleted digestate back to the digester. This study aimed to i) monitor the performance (mass and energy balances) of a full scale digestate processing cascade that includes an innovative vacuum side stream NH3stripping and scrubbing system, ii) assess the production cost of ammonium sulphate (AS) solution and iii) evaluate its fertiliser quality. The use of gypsum to recover NH3 in the scrubbing unit, instead of the more common sulphuric acid, results in the generation of AS and a fertilising liming substrate. Mass and nutrient balances indicated that 57% and 7.5% of ammonium N contained in digestate was recovered in the form of a 22% AS and liming substrate, respectively. The energy balance showed that about 3.8 kWhel and 59 kWhth were necessary to recover 1 kg of N in the form of AS. Furthermore, the production cost of AS, including both capital and operational costs, resulted to be 5.8 € t-1 of digestate processed. According to the fertiliser quality assessment, this technology allows for the recovery of NH3in the form of salt solutions that can be utilised as a substitute for synthetic mineral nitrogen fertilisers.
Collapse
Affiliation(s)
- C. Brienza
- Green Chemistry and Technology Department, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - I. Sigurnjak
- Green Chemistry and Technology Department, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - T. Meier
- GNS - Gesellschaft für Nachhaltige Stoffnutzung mbH, Weinbergweg 23, 06120, Halle, Germany
| | - E. Michels
- Green Chemistry and Technology Department, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - F. Adani
- Gruppo Ricicla, Dipartimento di Science Agrarie e Ambientali: Produzione, Territorio, Agroenergia, Università degli Studi di Milano, Via Celoria 2, Milano, 20133, Italy
| | - O. Schoumans
- Wageningen Environmental Research, PO Box 47, 6700, AA, Wageningen, the Netherlands
| | - C. Vaneeckhaute
- BioEngine – Research Team on Green Process Engineering and Biorefineries, Chemical Engineering Department, Université Laval, 1065 Ave. de la Médecine, Québec, QC, G1V 0A6, Canada
| | - E. Meers
- Green Chemistry and Technology Department, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| |
Collapse
|
12
|
Begum S, Juntupally S, Anupoju GR, Eshtiaghi N. Comparison of mesophilic and thermophilic methane production potential of acids rich and high-strength landfill leachate at different initial organic loadings and food to inoculum ratios. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 715:136658. [PMID: 32041037 DOI: 10.1016/j.scitotenv.2020.136658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/30/2019] [Accepted: 01/10/2020] [Indexed: 06/10/2023]
Abstract
Landfill leachate (LL), which can contaminate both ground and surface water is a major global environmental issue. The aim of the present study was to investigate the biomethane potential (BMP) of a high-strength LL with low pH (5.0), high solids concentration (16%), and high organic matter (170 g/L of chemical oxygen demand (COD); 55 g/L of volatile fatty acids (VFA)) with ammonia nitrogen (NH3-N) (17 g/L). We investigated the BMP of LL at four different initial organic loadings (IOL) of 170 g/L, 85 g/L, 42.5 g/L and 21 g/L of COD and Food to inoculum (F/I) ratios of 0.5; 1; 2 and 3 at mesophilic (35 ± 2 °C) and thermophilic temperatures (55 ± 2 °C). We found that the highest cumulative CH4 could be obtained at an IOL of 42.5 g/L of COD regardless of the F/I ratio and temperature. The highest methane content results in biogas at an IOL of 42.5 g/L were 72% and 74% at mesophilic and thermophilic temperatures respectively. About 80-100% of cumulative methane was produced within 15 days in thermophilic reactors, and 40-72% in mesophilic reactors. The kinetic study revealed a fourfold reduction of lag phase in thermophilic compared to mesophilic reactors. The methane yield and organic matter removal rate increased as the concentration of IOL in LL decreased from 170 g/L to 21 g/L regardless of temperature. There exists an inverse correlation between IOL and organic matter removal efficiency. About 80% COD reduction was obtained at mesophilic temperature, and 90% at thermophilic temperature, at an IOL of 42.5 g/L and 21 g/L of COD. The modified Gompertz model showed a good fit to the experimental data, with R2 > 0.98 in all cases. Overall, the findings of this study conclude that treatment of acids rich and high-strength LL both at mesophilic and thermophilic temperature is feasible at an optimum IOL of 42.5 g/L of COD. However, treatment of LL at thermophilic temperature outperformed compared to mesophilic over the digestion time.
Collapse
Affiliation(s)
- Sameena Begum
- Bioengineering and Environmental Sciences Division, EEFF Department, CSIR-Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad 500007, India; Chemical and Environmental Engineering Department, School of Engineering, RMIT University, 124 La Trobe St, Melbourne, VIC 3000, Australia
| | - Sudharshan Juntupally
- Bioengineering and Environmental Sciences Division, EEFF Department, CSIR-Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad 500007, India
| | - Gangagni Rao Anupoju
- Bioengineering and Environmental Sciences Division, EEFF Department, CSIR-Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad 500007, India
| | - Nicky Eshtiaghi
- Chemical and Environmental Engineering Department, School of Engineering, RMIT University, 124 La Trobe St, Melbourne, VIC 3000, Australia.
| |
Collapse
|
13
|
Zhang W, Venetsaneas N, Heaven S, Banks CJ. Impact of low loading on digestion of the mechanically-separated organic fraction of municipal solid waste. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 107:101-112. [PMID: 32334149 DOI: 10.1016/j.wasman.2020.03.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 06/11/2023]
Abstract
Changing waste management practice, introduction of new technologies, and population demographics and behaviour will impact on both quantity and composition of future waste streams. Laboratory-scale anaerobic digestion of the mechanically-separated organic fraction of municipal solid waste (ms-OFMSW) was carried out at relatively low organic loading rates (OLR), and results analysed using an energy modelling tool. Thermophilic operation with water addition and liquor recycle was compared to co-digestion with dilution water replaced by sewage sludge digestate (SSD); thermophilic and mesophilic mono-digestion were also tested at low OLR. All thermophilic conditions showed stable operation, with specific methane production (SMP) from 0.203 to 0.296 m3 CH4 kg-1 volatile solids (VS). SSD addition increased biogas production by ~20% and there was evidence of further hydrolysis and degradation of the SSD. Long-term operation at 1 kg VS m-3 day-1 had no adverse effect except in mesophilic conditions where SMP was lower at 0.256 m3 CH4 kg-1 VS and stability was reduced, especially during OLR increases. This was probably due to low total ammonia nitrogen, which stabilised at ~0.2 g N kg-1 and limited the buffering capacity. Energy analysis showed thermophilic operation at OLR 2 g VS L-1 day-1 gave 42% of the theoretical methane potential and 38% of the higher heating value, reducing to 37% and 34% respectively in mesophilic conditions. Scenario modelling indicated that under low ms-OFMSW load even an energy-depleted co-substrate such as SSD could contribute to the energy balance, and would be a better diluent than water due to its nutrient and buffering capacity.
Collapse
Affiliation(s)
- Wei Zhang
- Faculty of Engineering and Physical Sciences, University of Southampton, UK
| | - Nikolaos Venetsaneas
- Faculty of Engineering and Physical Sciences, University of Southampton, UK; School of Civil Engineering, University of Birmingham, UK; National Buried Infrastructure Facility, University of Birmingham, UK.
| | - Sonia Heaven
- Faculty of Engineering and Physical Sciences, University of Southampton, UK
| | - Charles J Banks
- Faculty of Engineering and Physical Sciences, University of Southampton, UK
| |
Collapse
|
14
|
Sigurnjak I, Brienza C, Snauwaert E, De Dobbelaere A, De Mey J, Vaneeckhaute C, Michels E, Schoumans O, Adani F, Meers E. Production and performance of bio-based mineral fertilizers from agricultural waste using ammonia (stripping-)scrubbing technology. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 89:265-274. [PMID: 31079739 DOI: 10.1016/j.wasman.2019.03.043] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 03/19/2019] [Accepted: 03/21/2019] [Indexed: 05/10/2023]
Abstract
Development and optimization of nutrient recovery technologies for agricultural waste is on the rise. The full scale adoption of these technologies is however hindered by complex legal aspects that result from lack of science-based knowledge on characterization and fertilizer performance of recovered end-products. Ammonium sulfate (AS) and ammonium nitrate (AN), end-products of (stripping-)scrubbing technology, are currently listed by the European Commission as high priority products with the potential of replacing synthetic N fertilizers. The legal acceptance of AS and AN will be highly dependent on critical mass of scientific evidence. This study describes four different (stripping-)scrubbing pathways to recover ammonia with an aim to (i) assess product characteristics of ammonium nitrate (AN) and ammonium sulfate (AS) produced from different installations, (ii) evaluate fertilizer performance of recovered end-products in greenhouse (Lactuca sativa L.) and full field (Zea mays L.) scale settings and (iii) compare the observed performances with other published studies. Results have indicated that the recovered products might have a different legal status, as either mineral N fertilizer or yet as animal manure, depending on the used (stripping-)scrubbing process pathway. Nevertheless, no significant differences in respect to product characterization and fertilizer performance of AN and AS have been identified in this study as compared to the conventional use of synthetic N fertilizers. This indicates that recovered AS and AN are valuable N sources and therefore might be used as N fertilizers in crop cultivation.
Collapse
Affiliation(s)
- I Sigurnjak
- Laboratory of Analytical Chemistry and Applied Ecochemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| | - C Brienza
- Laboratory of Analytical Chemistry and Applied Ecochemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| | - E Snauwaert
- Flemish Coordination Centre for Manure Processing, Baron Ruzettelaan 1 B0.3, B-8310 Brugge, Belgium.
| | - A De Dobbelaere
- Inagro, Provincial Research and Advice Center for Agriculture and Horticulture, Ieperseweg 87, B-8800 Beitem, Belgium.
| | - J De Mey
- Inagro, Provincial Research and Advice Center for Agriculture and Horticulture, Ieperseweg 87, B-8800 Beitem, Belgium; Biogas-E vzw, Graaf Karel de Goedelaan 34, B-8500 Kortrijk, Belgium.
| | - C Vaneeckhaute
- BioEngine, Research Team on Green Process Engineering and Biorefineries, Chemical Engineering Department, Université Laval, 1065, Avenue de la Médecine, Quebec, QC G1V 0A6, Canada.
| | - E Michels
- Laboratory of Analytical Chemistry and Applied Ecochemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| | - O Schoumans
- Alterra, Part of Wageningen UR, PO Box 47, 6700 AA Wageningen, the Netherlands.
| | - F Adani
- Gruppo Ricicla, Dipartimento di Science Agrarie e Ambientali: Produzione, Territorio, Agroenergia, Università degli Studi di Milano, Via Celoria 2, Milano 20133, Italy.
| | - E Meers
- Laboratory of Analytical Chemistry and Applied Ecochemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| |
Collapse
|
15
|
Guilayn F, Jimenez J, Rouez M, Crest M, Patureau D. Digestate mechanical separation: Efficiency profiles based on anaerobic digestion feedstock and equipment choice. BIORESOURCE TECHNOLOGY 2019; 274:180-189. [PMID: 30504101 DOI: 10.1016/j.biortech.2018.11.090] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 11/23/2018] [Accepted: 11/25/2018] [Indexed: 06/09/2023]
Abstract
Digestate mechanical separation is present in numerous anaerobic digestion plants. In this study, data from literature and from unpublished analysis were gathered to evaluate digestate separation efficiency for different mechanical separators. For the first time, efficiency indicators allowed the definition of two mass distribution profiles. The low-performance profile was characterized by each component being mainly destined to the liquid fraction, excluding P, Mg and Ca in a few cases. Screw presses represented 68% of these separators and 78% of digestates came from mainly fibrous inputs such as cow manure and silage. In the high-performance profile, digestate compounds were effectively concentrated in the solid fraction, except nitrogen. The great majority of separators were decanting centrifuges, and the anaerobic digestion inputs were principally non-fibrous such as pig slurry, sludge and agro-industrial waste. This study represents a source for benchmarking digestate separation and opens a possibility to forecast more realistically digestate separation performance.
Collapse
Affiliation(s)
- F Guilayn
- LBE, INRA, Univ Montpellier, 102 avenue des Etangs, 11100 Narbonne, France; Suez, CIRSEE, 38 rue du Président Wilson, 78230 Le Pecq, France.
| | - J Jimenez
- LBE, INRA, Univ Montpellier, 102 avenue des Etangs, 11100 Narbonne, France
| | - M Rouez
- Suez, CIRSEE, 38 rue du Président Wilson, 78230 Le Pecq, France
| | - M Crest
- Suez, CIRSEE, 38 rue du Président Wilson, 78230 Le Pecq, France
| | - D Patureau
- LBE, INRA, Univ Montpellier, 102 avenue des Etangs, 11100 Narbonne, France
| |
Collapse
|
16
|
Zhang R, Anderson E, Chen P, Addy M, Cheng Y, Wang L, Liu Y, Ruan R. Intermittent-vacuum assisted thermophilic co-digestion of corn stover and liquid swine manure: Salinity inhibition. BIORESOURCE TECHNOLOGY 2019; 271:16-23. [PMID: 30261332 DOI: 10.1016/j.biortech.2018.09.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/13/2018] [Accepted: 09/14/2018] [Indexed: 06/08/2023]
Abstract
In this study, the effects of Intermittent-Vacuum Stripping (IVS) on activities of methanogenesis in co-digestion of corn stover with liquid swine manure (LSM + CS) under thermophilic anaerobic digestion (TAD) conditions were evaluated. A 65% methanogenesis activity inhibition was observed in pretreated LSM plus corn stover (pLSM + CS), while 60 and 165 mL/L/day CH4 productions were achieved in pLSM + CS and LSM + CS, respectively. The high salinity condition (5.28%) after IVS pretreatment was considered the primary inhibitor in pLSM + CS, while the ammonia (≤600 mg/L), C:N ratio (15.52) and volatile solid loading rate (3 g/kg-1·day-1) didn't show a negative effect on CH4 production. When salinities were increased from 2% to 4% and 8%, 50% and 100% inhibition were observed respectively. The butyrate accumulation was a potential indicator of the non-salinity-inhibition status for methanogenesis in TAD.
Collapse
Affiliation(s)
- Renchuan Zhang
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Avenue, St. Paul, MN 55112, USA
| | - Erik Anderson
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Avenue, St. Paul, MN 55112, USA
| | - Paul Chen
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Avenue, St. Paul, MN 55112, USA
| | - Min Addy
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Avenue, St. Paul, MN 55112, USA
| | - Yanling Cheng
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Avenue, St. Paul, MN 55112, USA
| | - Lu Wang
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Avenue, St. Paul, MN 55112, USA
| | - Yuhuan Liu
- The Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, 235 Nanjing Road, Nanchang City, Jiangxi 330047, China
| | - Roger Ruan
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Avenue, St. Paul, MN 55112, USA.
| |
Collapse
|
17
|
Li Y, Sun Y, Li L, Yuan Z. Acclimation of acid-tolerant methanogenic propionate-utilizing culture and microbial community dissecting. BIORESOURCE TECHNOLOGY 2018; 250:117-123. [PMID: 29161570 DOI: 10.1016/j.biortech.2017.11.034] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 05/28/2023]
Abstract
The acid-tolerant methanogenic propionate degradation culture was acclimated in a propionate-fed semi-continuous bioreactor by daily adjusting the digestate pH. The performance of propionate fermentation, the respond of microbial community structure to the acidic environment, and the microbial network for propionate degradation in the acid-tolerant culture was investigated. The results demonstrated that after long term of acclimation to low pH, the digester could produce methane from propionate at pH 4.8-5.5 with 0.3-0.4 L g-1 propionic acid (HPr) d-1 of the volatile solids (VS) methane production. The predominant methanogens shifted from acetoclastic methanogens (∼87%) to hydrogenotrophic methanogens (∼67%) in the bioreactor with the dropping pH, indicating that hydrogenotrophic methanogens were more acid-tolerant than acetoclastic methanogens. Smithella (∼11%), Syntrophobacter (∼7%) and Pelotomaculum (∼3%) were the main propionate oxidizers in the acid-tolerant propionate-utilizing culture. Methanothrix dominant acetoclastic methanogens, while Methanolinea and Methanospirillum were the major H2 scavengers to support Syntrophobacter and Pelotomaculum syntrophic propionate degradation.
Collapse
Affiliation(s)
- Ying Li
- Laboratory of Biomass Bio-chemical Conversion, GuangZhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Yongming Sun
- Laboratory of Biomass Bio-chemical Conversion, GuangZhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Lianhua Li
- Laboratory of Biomass Bio-chemical Conversion, GuangZhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China.
| | - Zhenhong Yuan
- Laboratory of Biomass Bio-chemical Conversion, GuangZhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| |
Collapse
|
18
|
Ren Y, Yu M, Wu C, Wang Q, Gao M, Huang Q, Liu Y. A comprehensive review on food waste anaerobic digestion: Research updates and tendencies. BIORESOURCE TECHNOLOGY 2018; 247:1069-1076. [PMID: 28965913 DOI: 10.1016/j.biortech.2017.09.109] [Citation(s) in RCA: 237] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/14/2017] [Accepted: 09/15/2017] [Indexed: 05/22/2023]
Abstract
Anaerobic digestion has been practically applied in agricultural and industrial waste treatment and recognized as an economical-effective way for food waste disposal. This paper presented an overview on the researches about anaerobic digestion of food waste. Technologies (e.g., pretreatment, co-digestion, inhibition and mitigation, anaerobic digestion systems, etc.) were introduced and evaluated on the basis of bibliometric analysis. Results indicated that ethanol and aerobic prefermentation were novel approaches to enhance substrates hydrolysis and methane yield. With the promotion of resource recovery, more attention should be paid to biorefinery technologies which can produce more useful products toward zero emissions. Furthermore, a technological route for food waste conversion based on anaerobic digestion was proposed.
Collapse
Affiliation(s)
- Yuanyuan Ren
- Department of Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Miao Yu
- Department of Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Chuanfu Wu
- Department of Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Qunhui Wang
- Department of Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China.
| | - Ming Gao
- Department of Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Qiqi Huang
- Department of Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Yu Liu
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| |
Collapse
|