1
|
Seidi F, Liu Y, Huang Y, Xiao H, Crespy D. Chemistry of lignin and condensed tannins as aromatic biopolymers. Chem Soc Rev 2025; 54:3140-3232. [PMID: 39976198 DOI: 10.1039/d4cs00440j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Aromatic biopolymers are the second largest group of biopolymers after polysaccharides. Depolymerization of aromatic biopolymers, as cheap and renewable substitutes for fossil-based resources, has been used in the preparation of biofuels, and a range of aromatic and aliphatic small molecules. Additionally, these polymers exhibit a robust UV-shielding function due to the high content of aromatic groups. Meanwhile, the abundance of phenolic groups in their structures gives these compounds outstanding antioxidant capabilities, making them well-suited for a diverse array of anti-UV and medical applications. Nevertheless, these biopolymers possess inherent drawbacks in their pristine states, such as rigid structure, low solubility, and lack of desired functionalities, which hinder their complete exploitation across diverse sectors. Thus, the modification and functionalization of aromatic biopolymers are essential to provide them with specific functionalities and features needed for particular applications. Aromatic biopolymers include lignins, tannins, melanins, and humic acids. The objective of this review is to offer a thorough reference for assessing the chemistry and functionalization of lignins and condensed tannins. Lignins represent the largest and most prominent category of aromatic biopolymers, typically distinguishable as either softwood-derived or hardwood-derived lignins. Besides, condensed tannins are the most investigated group of the tannin family. The electron-rich aromatic rings, aliphatic hydroxyl groups, and phenolic groups are the main functional groups in the structure of lignins and condensed tannins. Methoxy groups are also abundant in lignins. Each group displays varying chemical reactivity within these biopolymers. Therefore, the selective and specific functionalization of lignins and condensed tannins can be achieved by understanding the chemistry behavior of these functional groups. Targeted applications include biomedicine, monomers and surface active agents for sustainable plastics.
Collapse
Affiliation(s)
- Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.
| | - Yuqian Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Yang Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.
| |
Collapse
|
2
|
Ly TB, Nguyen DDB, Trinh AMH, Tran NTT, Truong THM, Le KA, Le HV, Le PK. Lignin nano/micro-particles from agricultural biomasses: Developing direct precipitation for integrated biorefinery. BIORESOURCE TECHNOLOGY 2025; 419:132025. [PMID: 39746381 DOI: 10.1016/j.biortech.2024.132025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/23/2024] [Accepted: 12/25/2024] [Indexed: 01/04/2025]
Abstract
The state-of-the-art, simple and scalable methods for lignin micro-/nano-particles recovery from agricultural biomasses were evaluated in this review. Being non-wood biomasses, these materials can be easily fibrillated, supporting the usage of mild soda or organic solvent pretreatment. Different approaches in particle recovery were compared to conclude that the bottom-up approach facilitates smaller particles towards the nano-size range whereas mechanical treatment can act as a supporting method to increase uniformity and reduce particle sizes after bottom-up precipitation. By combining with the pretreatment steps, direct one-pot lignin micro-/nano-particle recovery can be achieved using the lignin-containing black liquor or organosolv liquor. These lignin micro-/nano-particles can then be applied as high-value functional products in cosmetics, pharmaceuticals, environmental remediation, and energy sectors. The systematic evaluation of lignin micro-/nano-particles recovery from agricultural biomasses in this review can support the full utilization of these natural resources to aim towards a circular agriculture.
Collapse
Affiliation(s)
- Tuyen B Ly
- Institute for Tropical Technology and Environmental Protection, 57A Truong Quoc Dung, Phu Nhuan District, Ho Chi Minh City, Viet Nam
| | - Dat D B Nguyen
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Viet Nam
| | - Anh M H Trinh
- Institute for Tropical Technology and Environmental Protection, 57A Truong Quoc Dung, Phu Nhuan District, Ho Chi Minh City, Viet Nam
| | - Nhi T T Tran
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Viet Nam
| | - Thi H M Truong
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Viet Nam
| | - Kien A Le
- Institute for Tropical Technology and Environmental Protection, 57A Truong Quoc Dung, Phu Nhuan District, Ho Chi Minh City, Viet Nam
| | - Ha V Le
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Viet Nam
| | - Phung K Le
- CIRTECH Institute, HUTECH University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
3
|
Catucci G, Zhang C, Pernaci A, Cappa F, Sadeghi SJ, Di Nardo G, Gilardi G. Crystal structure and functional characterization of a novel bacterial lignin-degrading dye-decolorizing peroxidase. Int J Biol Macromol 2025; 297:139900. [PMID: 39818373 DOI: 10.1016/j.ijbiomac.2025.139900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
A new gene coding for an iron-containing enzyme was identified in the genome of Acinetobacter radioresistens. Bioinformatics analysis allowed the assignment of the protein to DyP peroxidases, due to the presence of conserved residues involved in heme binding and catalysis. Moreover, Ar-DyP is located in an operon coding also for other enzymes involved in iron uptake and regulation. The crystal structure of Ar-DyP determined at 1.85 Å resolution shows that the heme pocket Ar-DyP is "wet" forming a continuous hydrogen-bond network that enables the communication between heme and distal residues. Moreover, as shown by the crystal structure and covalent crosslinking experiments, Ar-DyP uses a long-range electron transfer pathway involving His-181 and Tyr-241, in the active site and on the surface of the enzyme, respectively. This pathway allows oxidation of substrates of different sizes, including Kraft lignin. Indeed, the biochemical characterization showed that Ar-Dyp oxidizes ABTS and Reactive Blue 19 (turnover numbers of 500 and 464 min-1, respectively), but also phenolic compounds such as guaiacol and pyrogallol (turnover numbers of 7.4 and 1.8 min-1 respectively). Overall, the data shows that Ar-DyP is a promising candidate for applications in lignin valorization, bioremediation and industrial processes involving the breakdown of phenolic compounds.
Collapse
Affiliation(s)
- G Catucci
- Department of Life Sciences and Systems Biology, University of Torino, Italy
| | - C Zhang
- Department of Life Sciences and Systems Biology, University of Torino, Italy
| | - A Pernaci
- Department of Life Sciences and Systems Biology, University of Torino, Italy
| | - F Cappa
- Department of Life Sciences and Systems Biology, University of Torino, Italy
| | - S J Sadeghi
- Department of Life Sciences and Systems Biology, University of Torino, Italy
| | - G Di Nardo
- Department of Life Sciences and Systems Biology, University of Torino, Italy.
| | - G Gilardi
- Department of Life Sciences and Systems Biology, University of Torino, Italy
| |
Collapse
|
4
|
Pan Y, Chen W, Kang Q, Hao L, Lu J, Zhu J. Enhanced physicochemical characteristics and biological activities of low-temperature ethylenediamine/urea pretreated lignin. Bioprocess Biosyst Eng 2025; 48:367-379. [PMID: 39614883 DOI: 10.1007/s00449-024-03113-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 11/22/2024] [Indexed: 02/27/2025]
Abstract
Low-temperature ethylenediamine (EDA)/urea pretreatment had been demonstrated to be an efficient pretreatment method for enzymatic hydrolysis and bioethanol production. For high-value utilization of the third main components of lignocellulosic biomass, the physicochemical structure characteristics and biological activities of low-temperature EDA/urea pretreated lignin (EUL) were comprehensively investigated in the present study. The results demonstrated that the pretreatment process facilitated the depolymerization of lignin, resulting in notable reduction in molecular weight and polydispersity index from 2.32 to 1.42 kg/mol and 1.44 to 1.20, respectively. The EDA/urea pretreated lignin (EUL) exhibited enhanced ultraviolet absorption capacity and the most significant DPPH radical scavenging and inhibition of Staphylococcus aureus in comparison to the primary lignin (PL) and the NaOH pretreated lignin (NL). Enhanced physicochemical characteristics and biological activities of EUL make it more suitable to be developed as sunscreen ingredient or antioxidant and antimicrobial agent in food preservation and conservation.
Collapse
Affiliation(s)
- Yongkang Pan
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Food Laboratory of Zhongyuan, Zhengzhou University, Luohe, 462300, China
| | - Weiwei Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Food Laboratory of Zhongyuan, Zhengzhou University, Luohe, 462300, China
| | - Qiaozhen Kang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Limin Hao
- Systems Engineering Institute, Academy of Military Sciences (AMS), Beijing, 100010, China
| | - Jike Lu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Food Laboratory of Zhongyuan, Zhengzhou University, Luohe, 462300, China.
| | - Jiaqing Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Food Laboratory of Zhongyuan, Zhengzhou University, Luohe, 462300, China.
| |
Collapse
|
5
|
Wang H, Meng H, Olowoyo JO, Zeng Y, Zheng Y. Advancements in Lignin Valorization for Energy Storage Applications: Sustainable Technologies for Lignin Extraction and Hydrothermal Carbonization. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:309. [PMID: 39997874 PMCID: PMC11858615 DOI: 10.3390/nano15040309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/15/2025] [Accepted: 02/17/2025] [Indexed: 02/26/2025]
Abstract
The conversion of industrial waste lignin into sustainable carbon materials is an essential step towards reducing dependency on fossil fuels and mitigating environmental impacts. This review explores various aspects of lignin utilization, with particular focus on the extraction of lignin and the application of lignin-derived carbon materials in energy storge applications. The review explores advanced chemical methods to improve the efficiency of biomass conversion, detailing emerging technologies for lignin extraction from various biomasses using innovative solvents and techniques, such as Ionic Liquids and Deep Eutectic Solvents (DESs). Additionally, it discusses the parameters that impact the hydrothermal carbonization (HTC) process. The produced hydrochar shows potential for use as optimized precursors for energy storage applications. This review also considers the implications of these technologies for environmental sustainability and the circular economy, suggesting future research directions to enhance and scale these processes for global impact. This comprehensive analysis highlights the critical role of advanced biomass conversion technologies in achieving sustainability and outlines pathways for future lignin-based carbon materials innovations.
Collapse
Affiliation(s)
- Haoyu Wang
- Department of Chemical and Biochemical Engineering, Western University, London, ON N6A 5B9, Canada; (H.W.); (H.M.); (J.O.O.)
| | - Haozheng Meng
- Department of Chemical and Biochemical Engineering, Western University, London, ON N6A 5B9, Canada; (H.W.); (H.M.); (J.O.O.)
| | - Joshua O. Olowoyo
- Department of Chemical and Biochemical Engineering, Western University, London, ON N6A 5B9, Canada; (H.W.); (H.M.); (J.O.O.)
| | - Yimin Zeng
- CanmetMATERIALS, NRCan, Hamilton, ON L8P 0A5, Canada
| | - Ying Zheng
- Department of Chemical and Biochemical Engineering, Western University, London, ON N6A 5B9, Canada; (H.W.); (H.M.); (J.O.O.)
| |
Collapse
|
6
|
Park JY, Han S, Kim D, Nguyen TVT, Nam Y, Kim SM, Chang R, Kim YH. Enhancing the thermostability of lignin peroxidase: Heme as a keystone cofactor driving stability changes in heme enzymes. Heliyon 2024; 10:e37235. [PMID: 39319129 PMCID: PMC11419925 DOI: 10.1016/j.heliyon.2024.e37235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/15/2024] [Accepted: 08/29/2024] [Indexed: 09/26/2024] Open
Abstract
Heme-containing enzymes, critical across life's domains and promising for industrial use, face stability challenges. Despite the demand for robust industrial biocatalysts, the mechanisms underlying the thermal stability of heme enzymes remain poorly understood. Addressing this, our research utilizes a 'keystone cofactor heme-interaction approach' to enhance ligand binding and improve the stability of lignin peroxidase (LiP). We engineered mutants of the white-rot fungus PcLiP (Phanerochaete chrysosporium) to increase thermal stability by 8.66 °C and extend half-life by 29 times without losing catalytic efficiency at 60 °C, where typically, wild-type enzymes degrade. Molecular dynamics simulations reveal that an interlocked cofactor moiety contributes to enhanced structural stability in LiP variants. Additionally, a stability index developed from these simulations accurately predicts stabilizing mutations in other PcLiP isozymes. Using milled wood lignin, these mutants achieved triple the conversion yields at 40 °C compared to the wild type, offering insights for more sustainable white biotechnology through improved enzyme stability.
Collapse
Affiliation(s)
- Joo Yeong Park
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Seunghyun Han
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Doa Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Trang Vu Thien Nguyen
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Youhyun Nam
- Department of Applied Chemistry, University of Seoul, 163, Seoulsiripdae-ro, Seoul, 02504, Republic of Korea
| | - Suk Min Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Rakwoo Chang
- Department of Applied Chemistry, University of Seoul, 163, Seoulsiripdae-ro, Seoul, 02504, Republic of Korea
| | - Yong Hwan Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Ulsan, 44919, Republic of Korea
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Ulsan, 44919, Republic of Korea
| |
Collapse
|
7
|
Don DMWW, Fabritius T, Omran M. The Reduction Reaction Behavior of Steelmaking Dusts with Lignin under Different Atmospheres. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3106. [PMID: 38998189 PMCID: PMC11242762 DOI: 10.3390/ma17133106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024]
Abstract
This study investigated lignin as a reducing agent instead of fossil carbon for the reduction of zinc oxide and zinc ferrite contained in steelmaking dusts. Three types of dusts from different steelmaking processes were considered: ferrochrome converter (CRC), electric arc furnace stainless steel (EAFSS) and electric arc furnace carbon steel (EAFCS). Zinc is primarily found in zincite phases within CRC dust, while EAFSS and EAFCS dusts contain franklinite and zincite phases as Zn-bearing minerals. The proximate analysis of lignin showed that the fixed carbon content is 28.9%. Thermogravimetric (TG) analysis coupled with differential scanning calorimetry (DSC) and mass spectrometry (MS) was used to study the reduction behavior of different mixtures of lignin and steel dusts under inert and air atmospheres. Simultaneously, the minimum ratio of lignin out of three different proportions required to achieve a complete reduction of franklinite and zincite phases into metallic zinc was identified. The results indicated that a 1.1 stoichiometric amount of lignin is sufficient for the complete reduction of zinc-bearing minerals into metallic zinc. In conclusion, lignin can be used efficiently for processing steelmaking dusts.
Collapse
Affiliation(s)
| | - Timo Fabritius
- Process Metallurgy Research Unit, Faculty of Technology, University of Oulu, Pentti Kaiteran Katu 1, 90570 Oulu, Finland;
| | - Mamdouh Omran
- Process Metallurgy Research Unit, Faculty of Technology, University of Oulu, Pentti Kaiteran Katu 1, 90570 Oulu, Finland;
| |
Collapse
|
8
|
Kim HJ, Jin X, Choi JW. Investigation of bio-based rigid polyurethane foams synthesized with lignin and castor oil. Sci Rep 2024; 14:13490. [PMID: 38866939 PMCID: PMC11169680 DOI: 10.1038/s41598-024-64318-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024] Open
Abstract
In this study, polyurethane (PU) foams were manufactured using kraft lignin and castor oil as bio-based polyols by replacing 5-20 wt% and 10-100 wt% of conventional polyol, respectively. To investigate the effects of unmodified bio-based polyols on PU foam production, reactivity and morphology within PU composites was analyzed as well as mechanical and thermal properties of the resulting foams. Bio-based PU foam production was carried out after characterizing the reagents used in the foaming process (including hydroxyl group content, molecular weight distribution, and viscosity). To compare the resulting bio-based PU foams, control foam were produced without any bio-based polyol under the same experimental conditions. For lignin-incorporated PU foams, two types, LPU and lpu, were manufactured with index ratio of 1.01 and 1.3, respectively. The compressive strength of LPU foams increased with lignin content from 5 wt% (LPU5: 147 kPa) to 20 wt% (LPU20: 207 kPa), although it remained lower than that of the control foam (PU0: 326 kPa). Similarly, the compressive strength of lpu foams was lower than that of the control foam (pu0: 441 kPa), with values of 164 kPa (lpu5), 163 kPa (lpu10), 167 kPa (lpu15), and 147 kPa (lpu20). At 10 wt% lignin content, both foams (LPU10 and lpu10) exhibited the smallest and most homogenous pore sizes and structures. For castor oil-incorporated PU foams with an index of 1.01, denoted as CPU, increasing castor oil content resulted in larger cell sizes and void fractions, transitioning to an open-cell structure and decreasing the compressive strength of the foams from 284 kPa (CPU10) to 23 kPa (CPU100). Fourier transform infrared (FT-IR) results indicated the formation of characteristic urethane linkages in PU foams and confirmed that bio-based polyols were less reactive with isocyanate compared to traditional polyol. Thermogravimetric analysis (TGA) showed that incorporating lignin and castor oil affected the thermal decomposition behavior. The thermal stability of lignin-incorporated PU foams improved as the lignin content increased with char yields increasing from 11.5 wt% (LPU5) to 15.8 wt% (LPU20) and from 12.4 wt% (lpu5) to 17.5 wt% (lpu20). Conversely, the addition of castor oil resulted in decreased thermal stability, with char yields decreasing from 10.6 wt% (CPU10) to 4.2 wt% (CPU100). This research provides a comprehensive understanding of PU foams incorporating unmodified biomass-derived polyols (lignin and castor oil), suggesting their potential for value-added utilization as bio-based products.
Collapse
Affiliation(s)
- Hyeon Jeong Kim
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, 25354, Republic of Korea
| | - Xuanjun Jin
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, 25354, Republic of Korea
| | - Joon Weon Choi
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, 25354, Republic of Korea.
- Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang, 25354, Republic of Korea.
| |
Collapse
|
9
|
Sosa FB, Abranches DO, da Costa Lopes AM, da Costa MC, Coutinho JAP. Role of Deep Eutectic Solvent Precursors as Hydrotropes: Unveiling Synergism/Antagonism for Enhanced Kraft Lignin Dissolution. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:8930-8940. [PMID: 38872955 PMCID: PMC11168089 DOI: 10.1021/acssuschemeng.4c02529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/10/2024] [Accepted: 05/23/2024] [Indexed: 06/15/2024]
Abstract
Lignin holds significant potential as a feedstock for generating valuable aromatic compounds, fuels, and functional materials. However, achieving this potential requires the development of effective dissolution methods. Previous works have demonstrated the remarkable capability of hydrotropes to enhance the aqueous solubility of lignin, an amphiphilic macromolecule. Notably, deep eutectic solvents (DESs) have exhibited hydrotropic behavior, significantly increasing the aqueous solubility of hydrophobic solutes, making them attractive options for lignin dissolution. This study aimed at exploring the influence of hydrogen bond acceptors (HBAs) and hydrogen bond donors (HBDs) on the performance of DESs as hydrotropes for lignin dissolution, while possible dissolution mechanisms in different water/DES compositions were discussed. The capacity of six alcohols (glycerol, ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, and 1,6-hexanediol) and cholinium chloride to enhance the solubility of Kraft lignin in aqueous media was investigated. A correlation between solubility enhancement and the alkyl chain length of the alcohol was observed. This was rationalized upon the competition between hydrotrope-hydrotrope and solute-hydrotrope aggregates with the latter being maximized for 1,4-butanediol. Interestingly, the hydrotropic effect of DESs on lignin solubility is well represented by the independent sum of the dissolving contributions from the corresponding HBAs and HBDs in the diluted region. Conversely, in the concentrated region, the solubility of lignin for a certain hydrotrope concentration was always found to be higher for the pure hydrotropes rather than their combined HBA/HBD counterparts.
Collapse
Affiliation(s)
- Filipe
H. B. Sosa
- CICECO, Aveiro
Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Dinis O. Abranches
- CICECO, Aveiro
Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - André M. da Costa Lopes
- CICECO, Aveiro
Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- CECOLAB—Collaborative
Laboratory Towards Circular Economy, R. Nossa Senhora da Conceição, 3405-155 Oliveira do Hospital, Portugal
| | - Mariana C. da Costa
- School of
Chemical Engineering (FEQ), University of
Campinas (UNICAMP), 13083-852, Campinas, São Paulo, Brazil
| | - João A. P. Coutinho
- CICECO, Aveiro
Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
10
|
Pena C, Rodil E, Rodríguez H. Capacity of Aqueous Solutions of the Ionic Liquid 1-Ethyl-3-methylimidazolium Acetate to Partially Depolymerize Lignin at Ambient Temperature and Pressure. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1136-1145. [PMID: 38183298 PMCID: PMC10797632 DOI: 10.1021/acs.jafc.3c04047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/02/2023] [Accepted: 12/22/2023] [Indexed: 01/08/2024]
Abstract
Lignin is a very attractive and abundant biopolymer with the potential to be a biorenewable source of a large number of value-added organic chemicals. The current state-of-the-art methods fail to provide efficient valorization of lignin in this regard without the involvement of harsh conditions and auxiliary substances that compromise the overall sustainability of the proposed processes. Making an original approach from the set of mildest temperature and pressure conditions, this work identifies and explores the capacity of an aqueous solution of the nonvolatile ionic liquid 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]) to partially depolymerize technical lignin (Indulin AT) by means of a treatment consisting in the simple contact at ambient temperature and pressure. Among a considerable number of valuable phenolic molecules that were identified in the resulting fluid, vanillin (yield of about 3 g/kg) and guaiacol (yield of about 1 g/kg) were the monophenolic compounds obtained in a higher concentration. The properties of the post-treatment solids recovered remain similar to those of the original lignin, although with a relatively lower abundance of guaiacyl units (in agreement with the generation of guaiacyl-derived phenolic molecules, such as vanillin and guaiacol). The assistance of the treatment with UV irradiation in the presence of nanoparticle catalysts does not lead to an improvement in the yields of phenolic compounds.
Collapse
Affiliation(s)
- Carlos
A. Pena
- CRETUS, Department of Chemical
Engineering, Universidade de Santiago de
Compostela, E-15782 Santiago de Compostela, Spain
| | - Eva Rodil
- CRETUS, Department of Chemical
Engineering, Universidade de Santiago de
Compostela, E-15782 Santiago de Compostela, Spain
| | - Héctor Rodríguez
- CRETUS, Department of Chemical
Engineering, Universidade de Santiago de
Compostela, E-15782 Santiago de Compostela, Spain
| |
Collapse
|
11
|
Heo JW, An L, Kim MS, Youn DH, Kim YS. Preparation and characterization of zwitterion-substituted lignin/Nafion composite membranes. Int J Biol Macromol 2023; 253:127421. [PMID: 37838126 DOI: 10.1016/j.ijbiomac.2023.127421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/16/2023]
Abstract
In this study, a novel zwitterion-substituted lignin (ZL) containing amino and sulfonic acid groups was synthesized, and ZL/Nafion composite membranes were fabricated as proton exchange membranes. Kraft lignin was modified using an aminosilane and 1,3-propanesultone via a continuous grafting reaction to provide zwitterionic moieties. Chemical structural analyses confirmed the successful introduction of the zwitterion moiety into lignin. In particular, the surface charge of ZL is positive in an acidic medium and negative in a basic medium, suggesting that ZL is a zwitterionic material. ZL was incorporated into a Nafion membrane to enhance its ion exchange capacity, thermal stability, and hydrophilicity. The proton conductivity of ZL/Nafion 0.5 %, 151.0 mS/cm, was 55.3 % higher than that of unmodified ML (methanol-soluble lignin)/Nafion 0.5 % (97.2 mS/cm), indicating that the zwitterion moiety of ZL enhances the proton transport ability. In addition, oxidative stability evaluation confirmed that ZL/Nafion 2 % was chemically more durable than pure Nafion. This confirmed that using lignin as a membrane additive yielded positive results in terms of chemical durability and oxidation stability in Nafion. Therefore, ZL is expected to be utilized as a multifunctional additive and exhibits the potential for fuel cell applications.
Collapse
Affiliation(s)
- Ji Won Heo
- Department of Paper Science & Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Liangliang An
- Faculty of Chemical and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Min Soo Kim
- Department of Paper Science & Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Duck Hyun Youn
- Department of Chemical Engineering, Department of Integrative Engineering for Hydrogen Safety, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - Yong Sik Kim
- Department of Paper Science & Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
12
|
Taher MA, Wang X, Faridul Hasan KM, Miah MR, Zhu J, Chen J. Lignin Modification for Enhanced Performance of Polymer Composites. ACS APPLIED BIO MATERIALS 2023; 6:5169-5192. [PMID: 38036466 DOI: 10.1021/acsabm.3c00783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
The biopolymer lignin, which is heterogeneous and abundant, is usually present in plant cell walls and gives them rigidity and strength. As a byproduct of the wood, paper, and pulp manufacturing industry, lignin ranks as the second most prevalent biopolymer worldwide, following cellulose. This review paper explores the extraction, modification, and prospective applications of lignin in various industries, including the enhancement of thermosetting and thermoplastic polymers, biomedical applications such as vanillin production, fuel development, carbon fiber composites, and the creation of nanomaterials for food packaging and drug delivery. The structural characteristics of lignin remain undefined due to its origin, separation, and fragmentation processes. This comprehensive overview encompasses state-of-the-art techniques, potential applications, diverse extraction methods, chemical modifications, carbon fiber utilization, and the extraction of vanillin. Moreover, the review focuses on the utilization of lignin-modified polymer blends across multiple manufacturing sectors, providing insights into the advantages and limitations of this innovative approach for the development of environmentally friendly materials.
Collapse
Affiliation(s)
- Muhammad Abu Taher
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Divisions of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaolin Wang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Divisions of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | | | - Mohammad Raza Miah
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Divisions of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jin Zhu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Divisions of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Jing Chen
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Divisions of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| |
Collapse
|
13
|
Sedira N, Pinto J, Ginja M, Gomes AP, Nepomuceno MCS, Pereira S. Investigating the Architecture and Characteristics of Asian Hornet Nests: A Biomimetics Examination of Structure and Materials. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7027. [PMID: 37959626 PMCID: PMC10647307 DOI: 10.3390/ma16217027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023]
Abstract
This study investigates the internal architecture of Asian hornet nests (AHNs) using advanced imaging techniques, such as CT scanning and X-ray radiography, to understand their construction and function. The primary objective and significance of this study centre on drawing inspiration from the creative way Asian hornets construct their nests, with a particular focus on the architecture, design, functionality, and building materials of these nests. The architectural principles governing the construction of these nests, such as the arrangement of hexagonal cells, pedicels for load bearing, and adhesive materials, serve as a source of inspiration for innovative and sustainable design practices. The pedicels in Asian hornet nests play a crucial role in transferring load and ensuring stability. Additionally, AHNs' adhesion to tree branches is essential for preventing collapse, and the pedicels provide necessary structural support. The knowledge gained from studying AHNs' internal architecture could be applied directly to the architecture and civil engineering fields to improve structure stability and durability. The microstructure analysis of the paper-like material that hornets produce to build their nests indicates a complex and heterogeneous structure, composed of various plant fragments and fibres. This unique composition creates intricate grooves and pores, which are essential for regulating temperature and humidity levels within the outer envelope of the nest. The study of Asian hornet nests' internal structure demonstrated that nature's engineering principles inspire the design of durable and resilient structures in the construction industry. Civil engineers can incorporate similar principles into their designs to enhance the structural integrity and performance of buildings, bridges, and other infrastructure.
Collapse
Affiliation(s)
- Naim Sedira
- University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (J.P.); (M.G.); (S.P.)
- C-MADE–Centre of Materials and Building Technologies, UBI, 6201-001 Covilhã, Portugal
| | - Jorge Pinto
- University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (J.P.); (M.G.); (S.P.)
- C-MADE–Centre of Materials and Building Technologies, UBI, 6201-001 Covilhã, Portugal
| | - Mário Ginja
- University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (J.P.); (M.G.); (S.P.)
- Centre for Animal Sciences and Veterinary Studies (CECAV), UTAD, 5000-801 Vila Real, Portugal
| | - Ana P. Gomes
- University of Beira Interior (UBI), 6201-001 Covilhã, Portugal; (A.P.G.); (M.C.S.N.)
- FibEnTech–Fiber Materials and Environmental Technologies, Optical Centre, UBI, 6201-001 Covilhã, Portugal
| | - Miguel C. S. Nepomuceno
- C-MADE–Centre of Materials and Building Technologies, UBI, 6201-001 Covilhã, Portugal
- University of Beira Interior (UBI), 6201-001 Covilhã, Portugal; (A.P.G.); (M.C.S.N.)
- Lab2PT, Landscape, Heritage and Territory Laboratory, 4800-058 Guimarães, Portugal
| | - Sandra Pereira
- University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (J.P.); (M.G.); (S.P.)
- C-MADE–Centre of Materials and Building Technologies, UBI, 6201-001 Covilhã, Portugal
| |
Collapse
|
14
|
Pokryshkin S, Sypalova Y, Ivahnov A, Kozhevnikov A. Optimization of Approaches to Analysis of Lignin by Thermal Decomposition. Polymers (Basel) 2023; 15:2861. [PMID: 37447505 DOI: 10.3390/polym15132861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
The ratio of monomeric units is one of the main characteristics of lignin, which affects the possibilities and strategies for further processing. Pyrolytic and thermal desorption decomposition of lignins followed by mass detection of macromolecule fragments are the most common methods for determining the amount of lignin structural units. Two methods of thermal decomposition of lignin were studied: thermal desorption-GC/MS (TD-GC/MS) and pyrolysis-GC/MS (Py-GC/MS). It was noted that, when using different thermal decomposition modes, the composition of the products changes, which affects the accuracy of determining the amount of lignin structural fragments. This article investigated the influence of the sample weight, the thermal decomposition temperature, and the duration of the process in various modes on the quantitation of the lignin structural units. The optimal process conditions were established. It was shown that the DS-Py-GC/MS with cryofocusing, a sample weight of 0.2-0.4 mg, and heating from 50 to 400 °C at a rate of 120 °C/min are preferable. The HSQC NMR was used as a comparison method to obtain the content of the S/G/H units. The results showed the applicability of the proposed approaches to hardwood lignins close to native.
Collapse
Affiliation(s)
- Sergey Pokryshkin
- Core Facility Center "Arktika", Northern (Arctic) Federal University Named after M.V. Lomonosov Northern Dvina Emb., 17, 163002 Arkhangelsk, Russia
| | - Yuliya Sypalova
- Core Facility Center "Arktika", Northern (Arctic) Federal University Named after M.V. Lomonosov Northern Dvina Emb., 17, 163002 Arkhangelsk, Russia
| | - Artem Ivahnov
- Core Facility Center "Arktika", Northern (Arctic) Federal University Named after M.V. Lomonosov Northern Dvina Emb., 17, 163002 Arkhangelsk, Russia
| | - Aleksandr Kozhevnikov
- Core Facility Center "Arktika", Northern (Arctic) Federal University Named after M.V. Lomonosov Northern Dvina Emb., 17, 163002 Arkhangelsk, Russia
| |
Collapse
|
15
|
Awasthi MK, Sar T, Gowd SC, Rajendran K, Kumar V, Sarsaiya S, Li Y, Sindhu R, Binod P, Zhang Z, Pandey A, Taherzadeh MJ. A comprehensive review on thermochemical, and biochemical conversion methods of lignocellulosic biomass into valuable end product. FUEL 2023; 342:127790. [DOI: 10.1016/j.fuel.2023.127790] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
|
16
|
Zhang Z, Li F, Heo JW, Kim JW, Kim MS, Xia Q, Kim YS. Decoration of sodium carboxymethylcellulose gel microspheres with modified lignin to enhanced methylene blue removal. Int J Biol Macromol 2023:125041. [PMID: 37236561 DOI: 10.1016/j.ijbiomac.2023.125041] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/13/2023] [Accepted: 05/21/2023] [Indexed: 05/28/2023]
Abstract
The introduction of active groups from biomass is currently the most promising alternative method for increasing the adsorption effect of dyes. In this study, modified aminated lignin (MAL) rich in phenolic hydroxyl and amine groups was prepared by amination and catalytic grafting. The factors influencing the modification conditions of the content of amine and phenolic hydroxyl groups were explored. Chemical structural analysis results confirmed that MAL was successfully prepared using a two-step method. The content of phenolic hydroxyl groups in MAL significantly increased to 1.46 mmol/g. MAL/sodium carboxymethylcellulose (NaCMC) gel microspheres (MCGM) with enhanced methylene blue (MB) adsorption capacity owing to the formation of a composite with MAL were synthesized by a sol-gel process followed by freeze-drying and using multivalent cations Al3+ as cross-linking agents. In addition, the effects of the MAL to NaCMC mass ratio, time, concentration, and pH on the adsorption of MB were explored. Benefiting from a sufficient number of active sites, MCGM exhibited an ultrahigh adsorption capacity for MB removal, and the maximum adsorption capacity was 118.30 mg/g. These results demonstrated the potential of MCGM for wastewater treatment applications.
Collapse
Affiliation(s)
- Zhili Zhang
- Changgang Institute of Paper Science and Technology, Kangwon National University, Chuncheon 24341, Republic of Korea; Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Fengfeng Li
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Ji Won Heo
- Department of Paper Science & Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ji Woo Kim
- Department of Paper Science & Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Min Soo Kim
- Department of Paper Science & Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Qian Xia
- Department of Paper Science & Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Yong Sik Kim
- Department of Paper Science & Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
17
|
Zhang J, Tian Z, Ji XX, Zhang F. Light-colored lignin extraction by ultrafiltration membrane fractionation for lignin nanoparticles preparation as UV-blocking sunscreen. Int J Biol Macromol 2023; 231:123244. [PMID: 36639084 DOI: 10.1016/j.ijbiomac.2023.123244] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/29/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
A wide range of applications are available for kraft lignin (KL). However, the dark color and wide size distribution of KL make it challenging to use in cosmetics and nanoparticle preparation. In this study, we fractionated KL from a paper-making enterprise using ultrafiltration membrane fractionation, and obtained four kinds of lignin with different molecular weights, namely ultrafiltration lignin (UL). Following that, lignin nanoparticles (ULNPs) were formed by self-assembly from four types of UL. Analyzing the UL and ULNP properties, the low molecular weight lignin, such as ULA, exhibited good antioxidant properties (89.47 %, 5 mg/mL), high brightness (ISO% = 7.55), high L⁎ value (L⁎ = 72.3) and low polydispersity index (PDI = 1.41). The ULNP showed a narrow size distribution (0.8-1.4 m) and high dispersibility in sunscreen. When ULNP was added to sunscreen with 5 % load, its sun protection factor (SPF) value increased from 14.93 to 63.74. Therefore, this study offered an effective way for the comprehensive utilization of pulping waste KL.
Collapse
Affiliation(s)
- Jiawei Zhang
- State Key Laboratory of Bio-based Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, Shandong 250353, China
| | - Zhongjian Tian
- State Key Laboratory of Bio-based Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, Shandong 250353, China; Shandong Huatai Paper Co., Ltd, Dongying, Shandong 257355, China.
| | - Xing-Xiang Ji
- State Key Laboratory of Bio-based Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, Shandong 250353, China.
| | - Fengshan Zhang
- Shandong Huatai Paper Co., Ltd, Dongying, Shandong 257355, China
| |
Collapse
|
18
|
Sharma M, Alves P, Gando-Ferreira LM. Lignin Recovery from Black Liquor Using Integrated UF/NF Processes and Economic Analysis. MEMBRANES 2023; 13:237. [PMID: 36837740 PMCID: PMC9961576 DOI: 10.3390/membranes13020237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Lignin is a polyphenolic biopolymer present in large amounts in black liquor (BL). This work investigated the recovery of lignin from BL (pre-filtered by ultrafiltration (UF)) by nanofiltration (NF). For the NF tests, laboratory-made mixed matrix membrane (MMM) prepared with 0.1% activated carbon (AC) nanoparticles were used in crossflow filtration mode. The effect of pressure (6-15 bar) and volume reduction (VR) (~65%) were analyzed, and the filtration performance was evaluated in terms of permeate flux, lignin rejection rate, and flux reduction. The lignin rejection rate varied in the range of 67-80% with the pressure, however, the highest increases in flux and rejection were observed at 12 bar, which was found to be the optimum pressure. At a VR of ~65%, the permeate flux decreased by ~55% and the lignin rejection rate increased from 78% to 86%. In addition, an economic evaluation was performed for the preparation of UF and NF MMM. The minimum-to-maximum price range was estimated considering the costs of the laboratory and commercial grade regents. It showed a difference of ~10-fold and ~14-fold for UF and NF membranes, respectively. The results of the laboratory-scale study were used to evaluate the economic feasibility of the process for recovering lignin- and hemicellulose-rich retentate streams.
Collapse
|
19
|
Bélanger N, Prasher S, Dumont MJ. Tailoring biochar production for use as a reinforcing bio-based filler in rubber composites: a review. POLYM-PLAST TECH MAT 2023. [DOI: 10.1080/25740881.2022.2089584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Nicole Bélanger
- Bioresource Engineering Department, McGill University, QC, Canada
| | - Shiv Prasher
- Bioresource Engineering Department, McGill University, QC, Canada
| | - Marie-Josée Dumont
- Bioresource Engineering Department, McGill University, QC, Canada
- Chemical Engineering Department, Université Laval, QC, Canada
| |
Collapse
|
20
|
Han Y, Ma Z, Cong H, Wang Q, Wang X. Surface Chitosan-coated Fe3O4 immobilized lignin for adsorbed phosphate radicals in solution. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Abdelaziz OY, Clemmensen I, Meier S, Costa CAE, Rodrigues AE, Hulteberg CP, Riisager A. On the Oxidative Valorization of Lignin to High-Value Chemicals: A Critical Review of Opportunities and Challenges. CHEMSUSCHEM 2022; 15:e202201232. [PMID: 36004569 PMCID: PMC9825943 DOI: 10.1002/cssc.202201232] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/24/2022] [Indexed: 05/22/2023]
Abstract
The efficient valorization of lignin is crucial if we are to replace current petroleum-based feedstock and establish more sustainable and competitive lignocellulosic biorefineries. Pulp and paper mills and second-generation biorefineries produce large quantities of low-value technical lignin as a by-product, which is often combusted on-site for energy recovery. This Review focuses on the conversion of technical lignins by oxidative depolymerization employing heterogeneous catalysts. It scrutinizes the current literature describing the use of various heterogeneous catalysts in the oxidative depolymerization of lignin and includes a comparison of the methods, catalyst loadings, reaction media, and types of catalyst applied, as well as the reaction products and yields. Furthermore, current techniques for the determination of product yields and product recovery are discussed. Finally, challenges and suggestions for future approaches are outlined.
Collapse
Affiliation(s)
- Omar Y. Abdelaziz
- Department of Chemical EngineeringLund UniversityNaturvetarvägen 14SE-221 00LundSweden
| | - Ida Clemmensen
- Department of ChemistryTechnical University of DenmarkKemitorvet 207DK-2800 Kgs.LyngbyDenmark
| | - Sebastian Meier
- Department of ChemistryTechnical University of DenmarkKemitorvet 207DK-2800 Kgs.LyngbyDenmark
| | - Carina A. E. Costa
- Laboratory of Separation and Reaction Engineering–Laboratory of Catalysis and Materials (LSRE-LCM)Department of Chemical EngineeringFaculty of EngineeringUniversity of PortoRua Dr. Roberto Frias4200-465PortoPortugal
- Associate Laboratory in Chemical Engineering (ALiCE)Department of Chemical EngineeringFaculty of EngineeringUniversity of PortoRua Dr. Roberto Frias4200-465PortoPortugal
| | - Alírio E. Rodrigues
- Laboratory of Separation and Reaction Engineering–Laboratory of Catalysis and Materials (LSRE-LCM)Department of Chemical EngineeringFaculty of EngineeringUniversity of PortoRua Dr. Roberto Frias4200-465PortoPortugal
- Associate Laboratory in Chemical Engineering (ALiCE)Department of Chemical EngineeringFaculty of EngineeringUniversity of PortoRua Dr. Roberto Frias4200-465PortoPortugal
| | | | - Anders Riisager
- Department of ChemistryTechnical University of DenmarkKemitorvet 207DK-2800 Kgs.LyngbyDenmark
| |
Collapse
|
22
|
Júnior SV, Gravina ÉG, Moraes MCB, Zaioncz S, Valadares LF, Borges M, Magalhães WLE. Synthesis of an organic-inorganic composite from calcium carbonate and Kraft lignin and its use as carrier material for controlled release of semiochemical agents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:72670-72682. [PMID: 35614351 DOI: 10.1007/s11356-022-21028-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
The control of pests in agricultural systems is currently based on the widespread use of pesticides that efficiently control pests but have negative effects on the environment and humans. Thus, several studies have been conducted to develop alternative sustainable ways to control pests in agriculture. The use of semiochemicals presents a good alternative to develop a sustainable tool monitoring and control insect pests in crops areas. The dispensing carriers of semiochemicals are typically made of non-degradable material, often petroleum derivatives such as butyl rubber, that become polluting waste after application. To develop a biodegradable and low-cost dispenser for semiochemicals, particles of CaCO3 and a CaCO3/Kraft lignin composite were synthesized using CO2 bubbling, characterized and evaluated for 30 days as a dispenser of the limonene molecule, which is a common semiochemical in plants and also pheromone component is some insect species, such as the lesser mealworm Alphitobius diaperinus. Furthermore, limonene is volatile molecule that is easy to acquire and low-cost, which makes it an ideal semiochemical to evaluate the potential of the CaCO3 particles and CaCO3/Kraft lignin composite as a semiochemical dispenser for use in agriculture. The pure calcium carbonate I, pure calcium carbonate II, and composite I synthesized particles presented a larger specific surface area than the other composites. All the particles evaluated showed a slow limonene release rate between the 5th and 30th days evaluated, indicating the potential of these materials as pheromone dispensers. The composites with higher specific surface area, calcium carbonate II (19.5 m2/g) and composite I (23.1 m2/g), released a higher level of limonene during the 30 days evaluated.
Collapse
Affiliation(s)
- Silvio Vaz Júnior
- Brazilian Agricultural Research Corporation (Embrapa), Parque Estação Biológica - PqEB s/no, CEP 70770-901, Brasília, DF, Brazil.
| | - Érica Gonçalves Gravina
- Brazilian Agricultural Research Corporation (Embrapa), Parque Estação Biológica - PqEB s/no, CEP 70770-901, Brasília, DF, Brazil
| | - Maria Carolina Blassioli Moraes
- Brazilian Agricultural Research Corporation (Embrapa), Parque Estação Biológica - PqEB s/no, CEP 70770-901, Brasília, DF, Brazil
| | - Soraia Zaioncz
- Brazilian Agricultural Research Corporation (Embrapa), Parque Estação Biológica - PqEB s/no, CEP 70770-901, Brasília, DF, Brazil
| | - Leonardo Fonseca Valadares
- Brazilian Agricultural Research Corporation (Embrapa), Parque Estação Biológica - PqEB s/no, CEP 70770-901, Brasília, DF, Brazil
| | - Miguel Borges
- Brazilian Agricultural Research Corporation (Embrapa), Parque Estação Biológica - PqEB s/no, CEP 70770-901, Brasília, DF, Brazil
| | | |
Collapse
|
23
|
Xu T, Zong QJ, Liu H, Wang L, Liu ZH, Li BZ, Yuan YJ. Identifying ligninolytic bacteria for lignin valorization to bioplastics. BIORESOURCE TECHNOLOGY 2022; 358:127383. [PMID: 35644455 DOI: 10.1016/j.biortech.2022.127383] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Biological valorization of lignin to bioplastics is a promising route to improve biorefinery efficiency and address environmental challenges. A two-stage screening procedure had been designed to successfully identify four ligninolytic bacteria from soil samples. The isolated bacteria displayed substrate preference of guaiacyl- and hydroxyphenyl-based aromatics, but they effectively synthesized polyhydroxyalkanoates (PHAs). B. cepacia B1-2 and P. putida KT3-1 accumulated 27.3% and 20.9% PHA in cells and achieved a titer of 280.9 and 204.1 mg/L, respectively, from p-hydroxybenzoic acid. The isolated bacteria exhibited good ligninolytic performance indicated by the degradation of β-O-4 linkage and small molecules. B. cepacia B1-2 grew well on actual lignin substrate and yielded a PHA titer of 87.2 mg/L. With the design of fed-batch mode, B. cepacia B1-2 produced the highest PHA titer of 1420 mg/L from lignin-derived aromatics. Overall, isolated ligninolytic bacteria show good PHA accumulation capacity, which are the promising host strains for lignin valorization.
Collapse
Affiliation(s)
- Tao Xu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Qiu-Jin Zong
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - He Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Li Wang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Zhi-Hua Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China.
| | - Bing-Zhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| |
Collapse
|
24
|
Solvent Effect in Catalytic Lignin Hydrogenolysis. Catalysts 2022. [DOI: 10.3390/catal12060664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The solvent effect in the catalytic depolymerization of the three-dimensional network of lignin is discussed based on recent reports in this field. Also, the results of an experimental study on the depolymerization of kraft lignin are presented. The cleavage of ether bonds within the lignin network was promoted using ruthenium and platinum on activated carbon (Ru/C and Pt/C), two common hydrogenolysis catalysts. Methanol was identified as a suitable solvent. Noteworthy, under the chosen reaction conditions, the catalysts showed significant resilience to the sulfur present in kraft lignin. The conversion of kraft lignin to lignin oil was strongly affected by the reaction conditions. Although the Ru/C catalyst provided the highest yield at supercritical conditions, a maximum yield was obtained for the Pt/C catalyst at near-critical conditions. The formation of guaiacol, 4-alkylguaiacols, isoeugenol, and 4-ethyl-2,6-dimethoxyphenol is attributed to the solubility of oligomeric lignin fragments in the solvent and the relative propensity of specific groups to adsorb on the catalyst surface.
Collapse
|
25
|
Athinarayanan J, Periasamy VS, Alshatwi AA. Unveiling the Biocompatible Properties of Date Palm Tree ( Phoenix dactylifera L.) Biomass-Derived Lignin Nanoparticles. ACS OMEGA 2022; 7:19270-19279. [PMID: 35721957 PMCID: PMC9202292 DOI: 10.1021/acsomega.2c00753] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Searching for sustainable, ecofriendly, and renewable precursors for nanostructured material synthesis is a fascinating area pertaining to feasibility in various applications. Especially, lignin-based material preparation is essential for unraveling the usage of lignin by valorization. Hence, we have synthesized lignin nanoparticles (LNPs) using date palm tree (Phoenix dactylifera L.) biomass as a precursor in this investigation. The LNP's morphological and thermal features were assessed. Moreover, we have evaluated the LNP's cytocompatibility properties by adopting in vitro approach. The P. dactylifera L. (PD) biomass-derived LNP's morphological features show a spherical shape with a 10-100 nm diameter. The LNPs have a decreased cell viability of ∼8% at a high concentration exposure to human mesenchymal stem cells (hMSCs) for 48 h. However, the LNPs do not cause any cellular and nuclear morphology changes in hMSCs. The mitochondrial membrane potential assessment results confirm healthy mitochondria with high mitochondrial membrane potential in LNP-treated cells. The intracellular reactive oxygen species (ROS) generation assay results revealed that LNPs do not trigger ROS generation in hMSCs. We examined the upregulation of GSTM3 and GSR genes and the downregulation of SOD1 genes in LNP-treated hMSCs, but no significant changes were observed. Our study concluded that PD biomass-derived LNPs have a good cytocompatibility and an antioxidant property. Thus, they can be applicable for various biological, cosmetic, and environmental applications.
Collapse
Affiliation(s)
- Jegan Athinarayanan
- Nanobiotechnology and Molecular
Biology
Research Laboratory, Department of Food Science and Nutrition, College
of Food Science and Agriculture, King Saud
University, Riyadh 11451, Saudi Arabia
| | - Vaiyapuri Subbarayan Periasamy
- Nanobiotechnology and Molecular
Biology
Research Laboratory, Department of Food Science and Nutrition, College
of Food Science and Agriculture, King Saud
University, Riyadh 11451, Saudi Arabia
| | - Ali A. Alshatwi
- Nanobiotechnology and Molecular
Biology
Research Laboratory, Department of Food Science and Nutrition, College
of Food Science and Agriculture, King Saud
University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
26
|
Quan P, Kiziltas A, Gondaliya A, Siahkamari M, Nejad M, Xie X. Kraft Lignin with Improved Homogeneity Recovered Directly from Black Liquor and Its Application in Flexible Polyurethane Foams. ACS OMEGA 2022; 7:16705-16715. [PMID: 35601301 PMCID: PMC9118373 DOI: 10.1021/acsomega.2c01206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/18/2022] [Indexed: 06/15/2023]
Abstract
An effective method that can produce a large amount of Kraft lignin with improved homogeneity is strongly desired for Kraft lignin's high-value applications and scientific advancements. Herein, a one-pot acid-catalyzed liquefaction method was developed to recover Kraft lignin directly from black liquor. The recovery rate and properties of the recovered lignin were affected by the reaction time, reaction temperature, moisture content (MC), pH, and acid categories. The highest lignin recovery rate of 75% was achieved when the concentrated black liquor (MC = 25%) reacted with methanol at pH = 7 and 160 °C for 10 min using acetic acid as the catalyst. Most of the recovered lignin from this method showed an average molecular weight (Mw) value less than 2000 Da and a polydispersity (PDI) value less than 2.0. Such a PDI value was lower than that of current acid precipitated lignin (around 2.2-5.4). The recovered lignin was directly used to replace 20% of the petroleum-based polyol in the formula of a flexible polyurethane (PU) foam, and it was found that the molecular weight characteristics of the lignin affected the physical and mechanical properties of the flexible PU foams. The recovered lignin with the Mw value of 1600 Da and the PDI value of 1.8 was able to maintain the major physical and mechanical properties of the flexible PU foams. This study provided a promising way to recover lignin with improved homogeneity from black liquor with the potential to customize lignin properties to meet the requirements of downstream processes.
Collapse
Affiliation(s)
- Peng Quan
- College
of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Alper Kiziltas
- Research
and Innovation Center, Ford Motor Company, Dearborn, Michigan 48124, United States
| | - Akash Gondaliya
- Chemical
Engineering and Materials Science, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Mohsen Siahkamari
- Department
of Forestry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Mojgan Nejad
- Department
of Forestry, Chemical Engineering and Materials Science Department, Michigan State University, East Lansing, Michigan 48824, United States
| | - Xinfeng Xie
- College
of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan 49931, United States
| |
Collapse
|
27
|
Catalytic conversion of Kraft lignin into platform chemicals in supercritical ethanol over a Mo(OCH2CH3)x/NaCl catalyst. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
Scholten PBV, Figueirêdo MB. Back to the Future with Biorefineries: Bottom‐Up and Top‐Down Approaches toward Polymers and Monomers. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Philip B. V. Scholten
- Bloom Biorenewables Route de l'Ancienne Papeterie 106 Case postal 146 Marly 1723 Switzerland
| | - Monique B. Figueirêdo
- Bloom Biorenewables Route de l'Ancienne Papeterie 106 Case postal 146 Marly 1723 Switzerland
| |
Collapse
|
29
|
Khan RJ, Lau CY, Guan J, Lam CH, Zhao J, Ji Y, Wang H, Xu J, Lee DJ, Leu SY. Recent advances of lignin valorization techniques toward sustainable aromatics and potential benchmarks to fossil refinery products. BIORESOURCE TECHNOLOGY 2022; 346:126419. [PMID: 34838966 DOI: 10.1016/j.biortech.2021.126419] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 06/13/2023]
Abstract
Aromatic compounds are important fuels and key chemical precursors for organic synthesis, however the current aromatics market are mainly relying on fossil resources which will eventually contribute to carbon emissions. Lignin has been recognized as a drop-in substitution to conventional aromatics, with its values gradually realized after tremendous research efforts in the recent five years. To facilitate the development of a possible lignin economics, this study overviewed the recent advances of various biorefinery techniques and the remaining challenging for lignin valorization. Starting with recent discovery of unexplored lignin structures, the potential functions of lignin related chemical structures were emphasized. The important breakthrough of lignin-first pretreatment, catalytic lignin depolymerization, and the high value products with possible benchmark with modern aromatics were reviewed with possible future targets. Possible retrofit of conventional petroleum refinery for lignin products were also introduced and hopefully paving a way to progressively migrate the industry towards carbon neutrality.
Collapse
Affiliation(s)
- Rabia Jalil Khan
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Chun Yin Lau
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Jianyu Guan
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Chun Ho Lam
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, China
| | - Jun Zhao
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Ying Ji
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Huaimin Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Jingliang Xu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, China
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Shao-Yuan Leu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| |
Collapse
|
30
|
Mendes SF, Pasquini D, Cardoso VL, Reis MHM. Ultrafiltration process for lignin-lean black liquor treatment at different acid conditions. SEP SCI TECHNOL 2021. [DOI: 10.1080/01496395.2021.2013890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Sophia F. Mendes
- Faculdade de Engenharia Química, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Daniel Pasquini
- Instituto de Química, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Vicelma L. Cardoso
- Faculdade de Engenharia Química, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Miria H. M. Reis
- Faculdade de Engenharia Química, Universidade Federal de Uberlândia, Uberlândia, Brazil
| |
Collapse
|
31
|
Mendes SF, Rodrigues JS, de Lima VH, Botaro VR, Cardoso VL, Reis MHM. Forward Black Liquor Acid Precipitation: Lignin Fractionation by Ultrafiltration. Appl Biochem Biotechnol 2021; 193:3079-3097. [PMID: 34019249 DOI: 10.1007/s12010-021-03580-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/04/2021] [Indexed: 11/28/2022]
Abstract
Lignin recovery from black liquor is an important task for producing valuable chemical products. Acidification processes are currently applied by pulp and paper industries for black liquor treatment, in which two main streams are produced: the precipitated lignin fraction and a lignin-lean black liquor. Membrane filtration is a suitable alternative for lignin recovery from black liquor, but studies on lignin-lean black liquor filtration are scarce. Here, we evaluated the ultrafiltration process for lignin recovery from the both fractions of black liquor acidification. The lignin-lean black liquor presented 22 wt% of total solids with 4.6 wt% of lignin. Lignin retention from the lignin-lean black liquor by the 5 kDa ultrafiltration membrane was equal to 85%, with reduction in total solid concentration from 219.8 to 68.1 g L-1. Due to the relatively high solid concentration in the lignin-lean black liquor, cake formation was the main fouling mechanism during ultrafiltrations. The precipitated lignin solution presented 4.8 wt% of total solids with equivalent lignin concentration (4.7 wt%). The used membrane was able to retain almost 100% of solids and lignin from the solution prepared from the precipitated lignin. All fouling mechanisms were responsible for flux decay in ultrafiltration of the precipitated lignin solution. Steady state fluxes for lignin-lean black liquor and precipitated lignin solution were 0.9 and 15.9 L h-1 m-2, respectively. According to TGA analyses up to 800 °C, precipitated lignin and lignin-lean black liquor presented total mass losses of 63.5% and 44.3%, respectively. Also, the permeate samples presented lower mass losses than their respective feed samples. The ultrafiltration process reduced the average weight molar mass (Mw) of the precipitated lignin solution and lignin-lean black liquor from 1817 to 486 g mol-1and from 2876 to 1095 g mol-1, respectively. Thus, the 5 kDa ultrafiltration membrane was efficient for lignin recovery from the lignin-lean black liquor, while membranes with lower cut-off should be proposed for lignin purification from the precipitated fraction.
Collapse
Affiliation(s)
- Sophia F Mendes
- Chemical Engineering Faculty, Federal University of Uberlândia, Av. João Naves de Ávila, 2121, Uberlândia, Minas Gerais, 38400-902, Brazil
| | - Jéssica S Rodrigues
- Laboratory of Lignocellulosic Materials, Federal University of São Carlos, Science and Technology Center for Sustainability, Rod. João Leme dos Santos, km 110, Sorocaba, 18052-780, Brazil
| | - Vitor Hugo de Lima
- Laboratory of Lignocellulosic Materials, Federal University of São Carlos, Science and Technology Center for Sustainability, Rod. João Leme dos Santos, km 110, Sorocaba, 18052-780, Brazil
| | - Vagner R Botaro
- Laboratory of Lignocellulosic Materials, Federal University of São Carlos, Science and Technology Center for Sustainability, Rod. João Leme dos Santos, km 110, Sorocaba, 18052-780, Brazil
| | - Vicelma L Cardoso
- Chemical Engineering Faculty, Federal University of Uberlândia, Av. João Naves de Ávila, 2121, Uberlândia, Minas Gerais, 38400-902, Brazil
| | - Miria H M Reis
- Chemical Engineering Faculty, Federal University of Uberlândia, Av. João Naves de Ávila, 2121, Uberlândia, Minas Gerais, 38400-902, Brazil.
| |
Collapse
|
32
|
Tang Y, Jean M, Pourebrahimi S, Rodrigue D, Ye Z. Influence of lignin structure change during extrusion on properties and recycling of lignin‐polyethylene thermoplastic composites. CAN J CHEM ENG 2021. [DOI: 10.1002/cjce.23960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yong Tang
- Department of Chemical and Materials Engineering Concordia University Montreal Québec Canada
| | - Michel Jean
- Department of Advanced Fibers Domtar Corporation Espanola Ontario Canada
| | - Sina Pourebrahimi
- Department of Chemical and Materials Engineering Concordia University Montreal Québec Canada
| | - Denis Rodrigue
- Department of Chemical Engineering Laval University Laval Québec Canada
| | - Zhibin Ye
- Department of Chemical and Materials Engineering Concordia University Montreal Québec Canada
| |
Collapse
|
33
|
Monteiro VAC, da Silva KT, da Silva LRR, Mattos ALA, de Freitas RM, Mazzetto SE, Lomonaco D, Avelino F. Selective acid precipitation of Kraft lignin: a tool for tailored biobased additives for enhancing PVA films properties for packaging applications. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104980] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Hofmann L, Altmann LM, Fischer O, Prusko L, Xiao G, Westwood NJ, Heinrich MR. Cleavage of Organosolv Lignin to Phenols Using Nitrogen Monoxide and Hydrazine. ACS OMEGA 2021; 6:19400-19408. [PMID: 34368527 PMCID: PMC8340100 DOI: 10.1021/acsomega.1c00996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
From the variety of methods known for the depolymerization of organosolv lignin, a broad range of diversely substituted aromatic compounds are available today. In the present work, a novel two-step reaction sequence is reported, which is focused on the formation of phenols. While the first step of the depolymerization strategy comprises the 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ)-catalyzed oxidation of organosolv lignin with nitrogen monoxide so that two waste materials are combined, cleavage to the phenolic target compounds is achieved in the second step employing hydrazine and potassium hydroxide under Wolff-Kishner-type conditions. Besides the fact that the novel strategy proceeds via an untypical form of oxidized organosolv lignin, the two-step sequence is further able to provide phenols as cleavage products, which bear no substituent at the 4-position.
Collapse
Affiliation(s)
- Laura
Elena Hofmann
- Department
of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Lisa-Marie Altmann
- Department
of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Oliver Fischer
- Department
of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Lea Prusko
- Department
of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Ganyuan Xiao
- School
of Chemistry and Biomedical Sciences Research Complex, University of St. Andrews and EaStCHEM North Haugh, St Andrews KY16 9ST, Fife, United Kingdom
| | - Nicholas J. Westwood
- School
of Chemistry and Biomedical Sciences Research Complex, University of St. Andrews and EaStCHEM North Haugh, St Andrews KY16 9ST, Fife, United Kingdom
| | - Markus R. Heinrich
- Department
of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| |
Collapse
|
35
|
Abstract
Lignin is a natural biopolymer present in lignocellulosic biomass. During paper pulp production with the Kraft process, it is solubilized and degraded in Kraft lignin and then burned to recover energy. In this paper, the solvolysis of Kraft lignin was studied in water and in water/alcohol mixtures to produce oligomers and monomers of interest, at mild temperatures (200–275 °C) under inert atmosphere. It was found that the presence of alcohol and the type of alcohol (methanol, ethanol, isopropanol) greatly influenced the amount of oligomers and monomers formed from lignin, reaching a maximum of 48 mg·glignin−1 of monomers with isopropanol as a co-solvent. The impact of the addition of various solid catalysts composed of a metal phase (Pd, Pt or Ru) supported on an oxide (Al2O3, TiO2, ZrO2) was investigated. In water, the yield in monomers was enhanced by the presence of a catalyst and particularly by Pd/ZrO2. However, with an alcoholic co-solvent, the catalyst only enhanced the formation of oligomers. Detailed characterizations of the products with FTIR, 31P-NMR, 1H-NMR and HSQC NMR were performed to elucidate the chemical transformations occurring during solvolysis. The nature of the active catalytic specie was also investigated by testing homogeneous palladium catalysts.
Collapse
|
36
|
Qi F, Chaoqun Z, Weijun Y, Qingwen W, Rongxian O. Lignin-based polymers. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2020-0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
On the basis of the world’s continuing consumption of raw materials, there was an urgent need to seek sustainable resources. Lignin, the second naturally abundant biomass, accounts for 15–35% of the cell walls of terrestrial plants and is considered waste for low-cost applications such as thermal and electricity generation. The impressive characteristics of lignin, such as its high abundance, low density, biodegradability, antioxidation, antibacterial capability, and its CO2 neutrality and enhancement, render it an ideal candidate for developing new polymer/composite materials. In past decades, considerable works have been conducted to effectively utilize waste lignin as a component in polymer matrices for the production of high-performance lignin-based polymers. This chapter is intended to provide an overview of the recent advances and challenges involving lignin-based polymers utilizing lignin macromonomer and its derived monolignols. These lignin-based polymers include phenol resins, polyurethane resins, polyester resins, epoxy resins, etc. The structural characteristics and functions of lignin-based polymers are discussed in each section. In addition, we also try to divide various lignin reinforced polymer composites into different polymer matrices, which can be separated into thermoplastics, rubber, and thermosets composites. This chapter is expected to increase the interest of researchers worldwide in lignin-based polymers and develop new ideas in this field.
Collapse
Affiliation(s)
- Fan Qi
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University , Guangzhou , 510642 , P. R. China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology , Guangzhou , P. R. China
| | - Zhang Chaoqun
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University , Guangzhou , 510642 , P. R. China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology , Guangzhou , P. R. China
| | - Yang Weijun
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University , 214122 Wuxi , P. R. China
| | - Wang Qingwen
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University , Guangzhou , 510642 , P. R. China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology , Guangzhou , P. R. China
| | - Ou Rongxian
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University , Guangzhou , 510642 , P. R. China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology , Guangzhou , P. R. China
| |
Collapse
|
37
|
Son H, Seo H, Han S, Kim SM, Pham LTM, Khan MF, Sung HJ, Kang SH, Kim KJ, Kim YH. Extra disulfide and ionic salt bridge improves the thermostability of lignin peroxidase H8 under acidic condition. Enzyme Microb Technol 2021; 148:109803. [PMID: 34116764 DOI: 10.1016/j.enzmictec.2021.109803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 04/10/2021] [Accepted: 04/13/2021] [Indexed: 11/30/2022]
Abstract
The development of a lignin peroxidase (LiP) that is thermostable even under acidic pH conditions is a main issue for efficient enzymatic lignin degradation due to reduced repolymerization of free phenolic products at acidic pH (< 3). Native LiP under mild conditions (half-life (t1/2) of 8.2 days at pH 6) exhibits a marked decline in thermostability under acidic conditions (t1/2 of only 14 min at pH 2.5). Thus, improving the thermostability of LiP in acidic environments is required for effective lignin depolymerization in practical applications. Here, we show the improved thermostability of a synthetic LiPH8 variant (S49C/A67C/H239E, PDB: 6ISS) capable of strengthening the helix-loop interactions under acidic conditions. This variant retained excellent thermostability at pH 2.5 with a 10-fold increase in t1/2 (2.52 h at 25 °C) compared with that of the native enzyme. X-ray crystallography analysis showed that the recombinant LiPH8 variant is the only unique lignin peroxidase containing five disulfide bridges, and the helix-loop interactions of the synthetic disulfide bridge and ionic salt bridge in its structure are responsible for stabilizing the Ca2+-binding region and heme environment, resulting in an increase in overall structural resistance against acidic conditions. Our work will allow the design of biocatalysts for ligninolytic enzyme engineering and for efficient biocatalytic degradation of plant biomass in lignocellulose biorefineries.
Collapse
Affiliation(s)
- Haewon Son
- Department of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Hogyun Seo
- School of Life Sciences (KNU Creative BioResearch Group), KNU Institute for Microorganisms, Kyungpook National University, Daehak-ro 80, Buk-gu, Daegu, 41566, Republic of Korea
| | - Seunghyun Han
- Department of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Suk Min Kim
- Department of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Le Thanh Mai Pham
- Department of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Mohd Faheem Khan
- Department of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Ho Joon Sung
- Department of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Sung-Heuck Kang
- Department of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Kyung-Jin Kim
- School of Life Sciences (KNU Creative BioResearch Group), KNU Institute for Microorganisms, Kyungpook National University, Daehak-ro 80, Buk-gu, Daegu, 41566, Republic of Korea.
| | - Yong Hwan Kim
- Department of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea.
| |
Collapse
|
38
|
Wu X, Zhou X, Bjelić S, Hemberger P, Bodi A. Valence Photoionization and Energetics of Vanillin, a Sustainable Feedstock Candidate. J Phys Chem A 2021; 125:3327-3340. [PMID: 33872037 DOI: 10.1021/acs.jpca.1c00876] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We studied the valence photoionization of vanillin by photoelectron photoion coincidence spectroscopy in the 8.20-19.80 eV photon energy range. Vertical ionization energies by EOM-IP-CCSD calculations reproduce the photoelectron spectral features. Composite method calculations and Franck-Condon simulation of the weak, ground-state band yield the adiabatic ionization energy of the most stable vanillin conformer as 8.306(20) eV. The lowest energy dissociative photoionization channels correspond to hydrogen atom, carbon monoxide, and methyl losses, which form the dominant C8H7O3+ (m/z 151) and the less intense C7H8O2+ (m/z 124) and C7H5O3+ (m/z 137) fragment ions in parallel dissociation channels at modeled 0 K appearance energies of 10.13(1), 10.40(3), and 10.58(10) eV, respectively. On the basis of the breakdown diagram, we explore the energetics of sequential methyl and carbon monoxide loss channels, which dominate the fragmentation mechanism at higher photon energies. The 0 K appearance energy for sequential CO loss from the m/z 151 fragment to C7H7O2+ (m/z 123) is 12.99(10) eV, and for sequential CH3 loss from the m/z 123 fragment to C6H4O2+ (m/z 108), it is 15.40(20) eV based on the model. Finally, we review the thermochemistry of the bi- and trifunctionalized benzene derivatives guaiacol, hydroxybenzaldehyde, anisaldehyde, and vanillin. On the basis of isodesmic functional group exchange reactions, we propose new enthalpies of formations, among them ΔfH°298K(vanillin, g) = -383.5 ± 2.9 kJ mol-1. These mechanistic insights and ab initio thermochemistry results will support analytical works to study lignin conversion involving vanillin.
Collapse
Affiliation(s)
- Xiangkun Wu
- Paul Scherrer Institute, 5232 Villigen, Switzerland.,Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xiaoguo Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Saša Bjelić
- Paul Scherrer Institute, 5232 Villigen, Switzerland
| | | | - Andras Bodi
- Paul Scherrer Institute, 5232 Villigen, Switzerland
| |
Collapse
|
39
|
Manorma, Ferreira I, Alves P, Gil M, Gando-Ferreira LM. Lignin separation from black liquor by mixed matrix polysulfone nanofiltration membrane filled with multiwalled carbon nanotubes. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118231] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
40
|
Arruda MDM, da Paz Leôncio Alves S, da Cruz Filho IJ, de Sousa GF, de Souza Silva GA, do Nascimento Santos DKD, do Carmo Alves de Lima M, de Moraes Rocha GJ, de Souza IA, de Melo CML. Characterization of a lignin from Crataeva tapia leaves and potential applications in medicinal and cosmetic formulations. Int J Biol Macromol 2021; 180:286-298. [PMID: 33737189 DOI: 10.1016/j.ijbiomac.2021.03.077] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/08/2021] [Accepted: 03/13/2021] [Indexed: 12/18/2022]
Abstract
Lignins are phenolic macromolecules that have several applications. In this work, we examine some biological activities of a lignin-like macromolecule isolated from the Crataeva tapia leaves, not yet studied to evaluate its potential applications in medicinal and cosmetic formulations. Lignin was obtained by alkaline delignification and its physical-chemical characterization was made by means of FT-IR, UV-Vis, NMR spectroscopy, elementary analysis, molecular mass determination and thermal analysis. Lignin is of the GSH type, with levels of hydrogen (5.10%), oxygen (27.18%), carbon (67.60%), nitrogen (0.12%) and phenolic content of 189.6 ± 9.6 mg GAE/g. In addition, it is a thermally stable macromolecule with low antioxidant activity. Cytotoxicity and cytokine production were assessed by flow cytometry. The photoprotective activity was evaluated by adding different concentrations of lignin to a commercial cream. Lignin was not cytotoxic, it stimulated the production of TNF-α, IL-6 and IL-10 and did not promote a significant change in nitric oxide levels. In addition, this macromolecule was able to promote increased absorption of ultraviolet light from a commercial cream. These results reinforce the ethnopharmacological use of C. tapia leaves and suggest the need for further studies to determine the potential medicinal and cosmetic applications (sunscreen) of lignin from C. tapia leaves.
Collapse
Affiliation(s)
- Marcela Daniela Muniz Arruda
- Department of Antibiotics, Biosciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Artur de Sá, s/n, 50740-520 Recife, PE, Brazil
| | - Simone da Paz Leôncio Alves
- Department of Antibiotics, Biosciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Artur de Sá, s/n, 50740-520 Recife, PE, Brazil
| | - Iranildo José da Cruz Filho
- Department of Antibiotics, Biosciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Artur de Sá, s/n, 50740-520 Recife, PE, Brazil
| | - Georon Ferreira de Sousa
- Department of Antibiotics, Biosciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Artur de Sá, s/n, 50740-520 Recife, PE, Brazil
| | - Guilherme Antonio de Souza Silva
- Department of Antibiotics, Biosciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Artur de Sá, s/n, 50740-520 Recife, PE, Brazil
| | | | - Maria do Carmo Alves de Lima
- Department of Antibiotics, Biosciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Artur de Sá, s/n, 50740-520 Recife, PE, Brazil
| | - George Jackson de Moraes Rocha
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Polo II de Alta Tecnologia, Rua Giuseppe Máximo Scolfaro, 10.000, PO Box 6192, 13083-100 Campinas, SP, Brazil.
| | - Ivone Antonia de Souza
- Department of Antibiotics, Biosciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Artur de Sá, s/n, 50740-520 Recife, PE, Brazil
| | - Cristiane Moutinho Lagos de Melo
- Department of Antibiotics, Biosciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Artur de Sá, s/n, 50740-520 Recife, PE, Brazil
| |
Collapse
|
41
|
Cavali M, Soccol CR, Tavares D, Zevallos Torres LA, Oliveira de Andrade Tanobe V, Zandoná Filho A, Woiciechowski AL. Effect of sequential acid-alkaline treatment on physical and chemical characteristics of lignin and cellulose from pine (Pinus spp.) residual sawdust. BIORESOURCE TECHNOLOGY 2020; 316:123884. [PMID: 32889386 DOI: 10.1016/j.biortech.2020.123884] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 05/22/2023]
Abstract
Timber industry generates large amounts of residues such as sawdust. Softwoods have a significant economic value for timber production and the Pinus genus is widely utilized. Thus, the aim of this work was to study the hemicellulose extraction and lignin recovery from pine (Pinus spp.) residual sawdust (PRS) by sequential acid-alkaline treatment, generating a cellulose-rich solid fraction. The hemicellulose removed was 87.11% (wt·wt-1) after dilute acid treatment at 130 °C, 4.5% (wt·wt-1) of H2SO4 for 20 min at 120 rpm. Three temperatures were evaluated for recovering the lignin and the highest yield, 93.97% (wt·wt-1), was achieved at 170 °C, 10% (wt·wt-1) of NaOH for 90 min at 120 rpm. Lignin was characterized by Fourier-transform infrared spectroscopy, nuclear magnetic resonance and thermogravimetry. The resulting cellulose-rich fraction exhibited polymorphic transformation. The results demonstrated that PRS is a promising lignocellulosic residue whose lignin and carbohydrates can be readily obtained.
Collapse
Affiliation(s)
- Matheus Cavali
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná, Centro Politécnico, CP 19011, Curitiba-PR 81531-908, Brazil
| | - Carlos Ricardo Soccol
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná, Centro Politécnico, CP 19011, Curitiba-PR 81531-908, Brazil
| | - Débora Tavares
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná, Centro Politécnico, CP 19011, Curitiba-PR 81531-908, Brazil
| | - Luis Alberto Zevallos Torres
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná, Centro Politécnico, CP 19011, Curitiba-PR 81531-908, Brazil
| | - Valcineide Oliveira de Andrade Tanobe
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná, Centro Politécnico, CP 19011, Curitiba-PR 81531-908, Brazil; Chemistry Department, University of Guadalajara, Mexico Centro Universitario de Ciencias Exactas e Ingenierías, CP 44430 Guadalajara-Jalisco, Mexico
| | - Arion Zandoná Filho
- Chemical Engineering Department, Federal University of Paraná, Centro Politécnico, CP 19011, Curitiba-PR 81531-908, Brazil
| | - Adenise Lorenci Woiciechowski
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná, Centro Politécnico, CP 19011, Curitiba-PR 81531-908, Brazil.
| |
Collapse
|
42
|
Wulandari YR, Chen SS, Hermosa GC, Hossain MSA, Yamauchi Y, Ahamad T, Alshehri SM, Wu KCW, Wu HS. Effect of N 2 flow rate on kinetic investigation of lignin pyrolysis. ENVIRONMENTAL RESEARCH 2020; 190:109976. [PMID: 32750555 DOI: 10.1016/j.envres.2020.109976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/08/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
Fast pyrolysis of lignin can obtain valuable products such as bio-oil, bio-chemical, syngas, and biochar. In this study, two types of lignin known as brown solid from the byproduct of cellulosic ethanol fermentation and commercial dealkaline lignin from the papermaking process were used for pyrolysis in a 3-L batch reactor at 300-450 °C. The product composition in the liquid and gas phases were analyzed by using gas chromatography-mass spectrometry/Flame-ionization detector/thermal conductivity detector (GC-MS/FID/TCD). Increasing the N2 flow rate to 150 mL/min was sufficient to increase the production of bio-oil/bio-organics up to 15% for brown solid pyrolysis. In contrast, the biochemical production during dealkaline lignin pyrolysis was not sensitive to the change of the N2 flow rate. The amount of biochar produced in the pyrolysis (~60%) slightly changed at various pyrolysis temperature and gas flow rate, which could be due to the relatively low pyrolysis temperature that was insufficient to decompose the lignin. The GC-MS analysis also revealed that C7-C8 compounds, which represented the phenolic compounds, were the most abundant in the liquid products. Kinetic models of the pyrolysis were established based on the thermogravimetric analysis.
Collapse
Affiliation(s)
- Yeni Ria Wulandari
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-li, Taoyuan, 32003, Taiwan.
| | - Season S Chen
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan.
| | - Glemarie C Hermosa
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-li, Taoyuan, 32003, Taiwan.
| | - Md Shahriar A Hossain
- School of Mechanical & Mining Engineering, and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Yusuke Yamauchi
- School of Mechanical & Mining Engineering, and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia; Department of Plant and Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 446-701, South Korea
| | - Tansir Ahamad
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Saad M Alshehri
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Kevin C W Wu
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Ho-Shing Wu
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-li, Taoyuan, 32003, Taiwan.
| |
Collapse
|
43
|
Souza LAD, Benvenuti T, Buzzi DC, Rodrigues MAS, Amado FDR. Electrodialysis reversal applied to tertiary treatment of Kraft pulp mill effluent. CHEM ENG COMMUN 2020. [DOI: 10.1080/00986445.2020.1789603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Luan Amaral de Souza
- Universidade Estadual de Santa Cruz, UESC, Programa de Pós-Graduação em Ciência, Inovação e Modelagem em Materiais, PROCIMM, Ilhéus, Brazil
| | - Tatiane Benvenuti
- Universidade Estadual de Santa Cruz, UESC, Programa de Pós-Graduação em Ciência, Inovação e Modelagem em Materiais, PROCIMM, Ilhéus, Brazil
| | - Daniella Cardoso Buzzi
- Rede Temática em Engenharia de Materiais – REDEMAT. Praça Tiradentes, Universidade Federal de Ouro Preto (UFOP), Ouro Preto, Brazil
| | | | - Franco Dani Rico Amado
- Universidade Estadual de Santa Cruz, UESC, Programa de Pós-Graduação em Ciência, Inovação e Modelagem em Materiais, PROCIMM, Ilhéus, Brazil
| |
Collapse
|
44
|
Manikandan NA, Pakshirajan K, Pugazhenthi G. A closed-loop biorefinery approach for polyhydroxybutyrate (PHB) production using sugars from carob pods as the sole raw material and downstream processing using the co-product lignin. BIORESOURCE TECHNOLOGY 2020; 307:123247. [PMID: 32234592 DOI: 10.1016/j.biortech.2020.123247] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
A novel closed-loop biorefinery model using carob pods as the feed material was developed for PHB production. The carob pods were delignified, and as the second step, sugars present in the delignified carob pods were extracted using water. Ralstonia eutropha and Bacillus megaterium were cultivated on the carob pod extract and its performance was evaluated using Taguchi experimental design. R. eutropha outperformed the B. megaterium in terms of its capability to grow at a maximum initial sugar concentration of 40 g L-1 with a maximum PHB production of 12.2 g L-1. Finally, the concentrated lignin from the first step was diluted with different proportion of chloroform to extract PHB from the bacterial biomass. The PHB yield and purity obtained were more than 90% respectively using either R. eutropha or B. megaterium. Properties of the PHB produced in this study were examined to establish its application potential.
Collapse
Affiliation(s)
- N Arul Manikandan
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Kannan Pakshirajan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - G Pugazhenthi
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
45
|
Mahmood F, Zhang H, Lin J, Wan C. Laser-Induced Graphene Derived from Kraft Lignin for Flexible Supercapacitors. ACS OMEGA 2020; 5:14611-14618. [PMID: 32596598 PMCID: PMC7315590 DOI: 10.1021/acsomega.0c01293] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/25/2020] [Indexed: 05/20/2023]
Abstract
Porous graphene was photothermally induced from kraft lignin via direct laser writing. This laser-induced graphene (LIG) possessed a hierarchical structure with a three-dimensional (3D) interconnected network ideal for its transfer from the kraft lignin/poly(ethylene oxide) (KL/PEO) film onto polydimethylsiloxane (PDMS). The resultant LIG/PDMS composite was shown to keep the intrinsic porous structure and electrically active sites of LIG. The supercapacitors (SCs) fabricated using the LIG/PDMS composite exhibited good electrochemical performance and excellent cyclic stability. More than 90% capacitance was retained after 10 000 cycles. Moreover, due to their high flexibility, the SCs were able to endure bending deformation without significantly sacrificing their capacitance. The proposed technology for the fabrication of flexible SCs based on lignin-derived LIG demonstrated great potential to use a low-cost, renewable material for the manufacture of portable and wearable electronics.
Collapse
Affiliation(s)
- Faisal Mahmood
- Department
of Biomedical, Biological, and Chemical Engineering, University of Missouri, Columbia, Missouri 65211, United States
- Department
of Energy Systems Engineering, University
of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Hanwen Zhang
- Department
of Biomedical, Biological, and Chemical Engineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Jian Lin
- Department
of Mechanical and Aerospace Engineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Caixia Wan
- Department
of Biomedical, Biological, and Chemical Engineering, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
46
|
Junghans U, Bernhardt JJ, Wollnik R, Triebert D, Unkelbach G, Pufky-Heinrich D. Valorization of Lignin via Oxidative Depolymerization with Hydrogen Peroxide: Towards Carboxyl-Rich Oligomeric Lignin Fragments. Molecules 2020; 25:molecules25112717. [PMID: 32545377 PMCID: PMC7321170 DOI: 10.3390/molecules25112717] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/15/2020] [Accepted: 05/22/2020] [Indexed: 11/16/2022] Open
Abstract
The extraction and characterization of defined and carboxyl-rich oligomeric lignin fragments with narrow molecular weight distribution is presented herein. With regard to the well-known pulp bleaching process, oxidative lignin depolymerization was investigated using hydrogen peroxide in an aqueous alkaline solution (i.e., at T = 318 K, t = 1 h) and subsequent selective fractionation with a 10/90 (v/v) acetone/water mixture. While the weight average molecular weight (MW) of lignin in comparison to the starting material was reduced by 82% after oxidation (T = 318 K, t = 1 h, clignin = 40 g L−1, cH2O2 = 80 g L−1, cNaOH = 2 mol L−1) and subsequent solvent fractionation (T = 298 K, t = 18 h, ccleavage product = 20 g L−1), the carboxyl group (–COOH) content increased from 1.29 mmol g−1 up to 2.66 mmol g−1. Finally, the successful scale-up of this whole process to 3 L scale led to gram amounts (14% yield) of oligomeric lignin fragments with a MW of 1607 g mol−1, a number average molecular weight (MN) of 646 g mol−1, a narrow polydispersity index of 3.0, and a high –COOH content of 2.96 mmol g−1. Application of these oligomeric lignin fragments in epoxy resins or as adsorbents is conceivable without further functionalization.
Collapse
|
47
|
Gonçalves CC, Bruce T, Silva CDOG, Fillho EXF, Noronha EF, Carlquist M, Parachin NS. Bioprospecting Microbial Diversity for Lignin Valorization: Dry and Wet Screening Methods. Front Microbiol 2020; 11:1081. [PMID: 32582068 PMCID: PMC7295907 DOI: 10.3389/fmicb.2020.01081] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/30/2020] [Indexed: 01/02/2023] Open
Abstract
Lignin is an abundant cell wall component, and it has been used mainly for generating steam and electricity. Nevertheless, lignin valorization, i.e. the conversion of lignin into high value-added fuels, chemicals, or materials, is crucial for the full implementation of cost-effective lignocellulosic biorefineries. From this perspective, rapid screening methods are crucial for time- and resource-efficient development of novel microbial strains and enzymes with applications in the lignin biorefinery. The present review gives an overview of recent developments and applications of a vast arsenal of activity and sequence-based methodologies for uncovering novel microbial strains with ligninolytic potential, novel enzymes for lignin depolymerization and for unraveling the main metabolic routes during growth on lignin. Finally, perspectives on the use of each of the presented methods and their respective advantages and disadvantages are discussed.
Collapse
Affiliation(s)
- Carolyne Caetano Gonçalves
- Department of Genomic Science and Biotechnology, Universidade Católica de Brasília - UCB, Brasília, Brazil
| | - Thiago Bruce
- Department of Genomic Science and Biotechnology, Universidade Católica de Brasília - UCB, Brasília, Brazil
| | | | | | - Eliane Ferreira Noronha
- Laboratory of Enzymology, Department of Cellular Biology, University of Brasília, Brasília, Brazil
| | - Magnus Carlquist
- Division of Applied Microbiology, Department of Chemistry, Faculty of Engineering, Lund University, Lund, Sweden
| | - Nádia Skorupa Parachin
- Department of Genomic Science and Biotechnology, Universidade Católica de Brasília - UCB, Brasília, Brazil
| |
Collapse
|
48
|
Liu H, An QD, Kim J, Guo L, Zhao YM, Xiao ZY, Zhai SR. Facile fabrication of Cu xS y/Carbon composites using lignosulfonate for efficient palladium recovery under strong acidic conditions. JOURNAL OF HAZARDOUS MATERIALS 2020; 391:122253. [PMID: 32062350 DOI: 10.1016/j.jhazmat.2020.122253] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/31/2020] [Accepted: 02/05/2020] [Indexed: 06/10/2023]
Abstract
The recovery of noble metals from aqueous systems is of great significance for constructing sustainable framework of modern industry yet remains challenging. Herein, CuxSy/Carbon composites with superior thermal stability and adsorption capacity were successfully synthesized via one-pot hydrothermal method using lignosulfonate as dual role of raw materials. The optimal synthesis conditions were investigated via tailoring the temperature and the mass ratio of reagents. The morphologies and physical properties of the composites were characterized by scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). The surface chemistry was analyzed by Zeta potential analysis, Brunauer-Emmet-Teller (BET), and X-ray photoelectron spectroscopy (XPS). The Langmuir model and the pseudo-second-order model well described the adsorption of Pd(II) and Pd(IV) delivered by fabricated composites. The adsorption capacity obtained from Langmuir isotherm model towards Pd(IV) was 114 mg/g and Pd(II) was 101 mg/g, respectively. More importantly, the adsorbed palladium species could be desorbed with hydrochloric acid and thiourea, which suggested good durability and recycling performance of the typical composite. This work might provide a new guidance for the utilization of lignin or its derivatives and enriched the research in the field of noble metal recovery.
Collapse
Affiliation(s)
- Hao Liu
- Faculty of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Qing-da An
- Faculty of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Jeonghun Kim
- Department of Chemistry, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul, 02707 Republic of Korea
| | - Lin Guo
- Faculty of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Yu-Meng Zhao
- Faculty of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Zuo-Yi Xiao
- Faculty of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Shang-Ru Zhai
- Faculty of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China.
| |
Collapse
|
49
|
Nunes RS, Tudino TC, Vieira LM, Mandelli D, Carvalho WA. Rational production of highly acidic sulfonated carbons from kraft lignins employing a fractionation process combined with acid-assisted hydrothermal carbonization. BIORESOURCE TECHNOLOGY 2020; 303:122882. [PMID: 32036328 DOI: 10.1016/j.biortech.2020.122882] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 06/10/2023]
Abstract
Highly acidic lignin-derived sulfonated carbons (LDSCs) were produced from hardwood and softwood kraft lignins under mild conditions by applying fractionation and/or pre-carbonization treatments combined with acid-assisted hydrothermal carbonization. The use of lignin fraction with higher amount oxygen, obtained from the fractionation process, resulted in carbon with the highest density of surface acid groups and improved catalytic activity. The LDSCs were successful tested in the dehydration reaction of fructose to obtain 5-hydroxymethylfurfural, and the best catalyst can be recycled without loss in its catalytic activity after perform a simple regeneration process. In contrast, the pre-carbonization step, commonly performed in several works, resulted in LDSCs with low acidity. A simple and optimized methodology for obtaining LDSCs under mild conditions was developed, and the correlations between the preparation method and the physicochemical and catalytic properties established in this work may be extendible to other starting materials for rational sulfonated carbons production.
Collapse
Affiliation(s)
- Renan S Nunes
- Center for Natural Sciences and Humanities, Federal University of ABC (UFABC), Santo André, Brazil
| | - Tatiane C Tudino
- Center for Natural Sciences and Humanities, Federal University of ABC (UFABC), Santo André, Brazil
| | - Ligia M Vieira
- Institute of Exact Sciences, Federal Fluminense University (UFF), Volta Redonda, Brazil
| | - Dalmo Mandelli
- Center for Natural Sciences and Humanities, Federal University of ABC (UFABC), Santo André, Brazil
| | - Wagner A Carvalho
- Center for Natural Sciences and Humanities, Federal University of ABC (UFABC), Santo André, Brazil.
| |
Collapse
|
50
|
Kumar A, Biswas B, Bhaskar T. Effect of cobalt on titania, ceria and zirconia oxide supported catalysts on the oxidative depolymerization of prot and alkali lignin. BIORESOURCE TECHNOLOGY 2020; 299:122589. [PMID: 31865149 DOI: 10.1016/j.biortech.2019.122589] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/06/2019] [Accepted: 12/07/2019] [Indexed: 06/10/2023]
Abstract
The production of phenolics by oxidative depolymerization of prot lignin and alkali lignin were studied in the presence of cobalt impregnated TiO2, CeO2 and ZrO2 catalysts at 140 °C for 1 h. Maximum bio-oil yield of 78.0 and 60.2 wt% were observed with Co/CeO2 catalyst for prot lignin and alkali lignin, respectively. The characterizations of the bio-oils were carried out using GC-MS, FTIR, and 1H NMR. The GC-MS compounds have been classified into four categories (G, H, S-type and others). The depolymerization of prot lignin showed a mixture of G, H and S type phenolic monomers. Interestingly, higher selectivity of acetosyringone (47.1%) was obtained in the presence of Co/TiO2 catalyst with prot lignin. The depolymerization of alkali lignin exhibited only G-type phenolic monomers production, and was effectively produced 67.4% (G-type monomer) in the presence of Co/ZrO2 catalyst.
Collapse
Affiliation(s)
- Avnish Kumar
- Biomass Conversion Area (BCA), Material Resource Efficiency Division (MRED), CSIR-Indian Institute of Petroleum (IIP), Dehradun 248005, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Bijoy Biswas
- Biomass Conversion Area (BCA), Material Resource Efficiency Division (MRED), CSIR-Indian Institute of Petroleum (IIP), Dehradun 248005, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Thallada Bhaskar
- Biomass Conversion Area (BCA), Material Resource Efficiency Division (MRED), CSIR-Indian Institute of Petroleum (IIP), Dehradun 248005, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi, India.
| |
Collapse
|