1
|
Huang JJ, Xie Q, Lin S, Xu W, Cheung PCK. Microalgae-derived astaxanthin: bioactivities, biotechnological approaches and industrial technologies for its production. Crit Rev Food Sci Nutr 2025:1-35. [PMID: 39992396 DOI: 10.1080/10408398.2025.2468863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Microalgae are rich sources of astaxanthin well recognized for their potent bioactivities such as antioxidant, anti-cancer, and anti-inflammatory activities. Recent interests focused on the bioactivities of microalgae-derived astaxanthin on treating or preventing cancers mediated by their antioxidant and anti-inflammatory properties. This is due to the special structural configuration of microalgae-derived astaxanthin in terms of unsaturation (conjugated double bonds), stereochemical isomerism (3S,3'S optical isomer) and esterification (monoester), which display more potent bioactivities, compared with those from the other natural sources such as yeasts and higher plants, as well as synthetic astaxanthin. This review focuses on the recent advances on the bioactivities of microalgae-derived astaxanthin in association with cancers and immune diseases, with emphasis on their potential applications as natural antioxidants. Various well-developed biotechnological approaches for inducing astaxanthin production from microalgal culture, along with the proven and emerging industrial technologies to commercialize astaxanthin products in a large-scale manner, are also critically reviewed. These would facilitate the manufacture of bioactive microalgae-derived astaxanthin products to be applied in the food and pharmaceutical industries as salutary nutraceuticals.
Collapse
Affiliation(s)
- Jim Junhui Huang
- Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R, People's Republic of China
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore, Republic of Singapore
| | - Qun Xie
- Guangzhou Pharmaceutical Vocational School, Guangzhou, Guangdong Province, People's Republic of China
| | - Shaoling Lin
- Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R, People's Republic of China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, People's Republic of China
| | - Wenwen Xu
- Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R, People's Republic of China
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Peter Chi Keung Cheung
- Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R, People's Republic of China
| |
Collapse
|
2
|
Zhao Y, Li Q, Chen D, Yang M, Huang F, Liu J, Yu X, Yu L. Exploiting synergy of dopamine and stressful conditions in enhancing Haematococcus lacustris biomass and astaxanthin yield. BIORESOURCE TECHNOLOGY 2025; 417:131848. [PMID: 39566692 DOI: 10.1016/j.biortech.2024.131848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/12/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024]
Abstract
Dopamine (DA) has attracted attention because of its effects on Haematococcus lacustris biomass, astaxanthin production, and physiological responses. The alga treated with 25 μM DA combined with 1 g L-1 sodium chloride exhibited 7.63 %, 41.25 %, and 52.04 % increases in biomass (1.41 g L-1), astaxanthin content (32.37 mg/g), and astaxanthin productivity (3.51 mg L-1 d-1) respectively, compared with the salinity stress and high light. Exogenous DA treatment promoted lipid synthesis while reducing carbohydrate and protein contents. Moreover, carotenogenesis and lipogenesis-associated genes were upregulated under DA induction. Inhibition of reactive oxygen species and autophagy, along with mitogen-activated protein kinase activation, promoted astaxanthin accumulation under DA. Furthermore, DA application boosted astaxanthin biosynthesis by regulating the levels of respiratory metabolic intermediates, the γ-aminobutyric acid shunt, and important phytohormones. These findings present a potential and successful biotechnological approach for enhancing biomass and astaxanthin production in H. lacustris under stressful conditions.
Collapse
Affiliation(s)
- Yongteng Zhao
- College of Agronomy and Life Science, Kunming University, Kunming 650214, China; Yunnan Key Laboratory of Konjac Biology, Yunnan Urban Agricultural Engineering & Technological Research Center, Kunming University, Kunming 650214, China
| | - Qingqing Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Dan Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Min Yang
- College of Agronomy and Life Science, Kunming University, Kunming 650214, China; Yunnan Key Laboratory of Konjac Biology, Yunnan Urban Agricultural Engineering & Technological Research Center, Kunming University, Kunming 650214, China
| | - Feiyan Huang
- College of Agronomy and Life Science, Kunming University, Kunming 650214, China; Yunnan Key Laboratory of Konjac Biology, Yunnan Urban Agricultural Engineering & Technological Research Center, Kunming University, Kunming 650214, China
| | - Jiani Liu
- College of Agronomy and Life Science, Kunming University, Kunming 650214, China; Yunnan Key Laboratory of Konjac Biology, Yunnan Urban Agricultural Engineering & Technological Research Center, Kunming University, Kunming 650214, China
| | - Xuya Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Lei Yu
- College of Agronomy and Life Science, Kunming University, Kunming 650214, China; Yunnan Key Laboratory of Konjac Biology, Yunnan Urban Agricultural Engineering & Technological Research Center, Kunming University, Kunming 650214, China.
| |
Collapse
|
3
|
Yang M, Liu Z, Wang A, Nopens I, Hu H, Chen H. High biomass yields of Chlorella protinosa with efficient nitrogen removal from secondary effluent in a membrane photobioreactor. J Environ Sci (China) 2024; 146:272-282. [PMID: 38969455 DOI: 10.1016/j.jes.2023.10.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/28/2023] [Accepted: 10/29/2023] [Indexed: 07/07/2024]
Abstract
Further treatment of secondary effluents before their discharge into the receiving water bodies could alleviate water eutrophication. In this study, the Chlorella proteinosa was cultured in a membrane photobioreactor to further remove nitrogen from the secondary effluents. The effect of hydraulic retention time (HRT) on microalgae biomass yields and nutrient removal was studied. The results showed that soluble algal products concentration reduced in the suspension at low HRT, thereby alleviating microalgal growth inhibition. In addition, the lower HRT reduced the nitrogen limitation for Chlorella proteinosa's growth through the phase-out of nitrogen-related functional bacteria. As a result, the productivity for Chlorella proteinosa increased from 6.12 mg/L/day at an HRT of 24 hr to 20.18 mg/L/day at an HRT of 8 hr. The highest removal rates of 19.7 mg/L/day, 23.8 mg/L/day, and 105.4 mg/L/day were achieved at an HRT of 8 hr for total nitrogen (TN), ammonia, and chemical oxygen demand (COD), respectively. However, in terms of removal rate, TN and COD were the largest when HRT is 24 hr, which were 74.5% and 82.6% respectively. The maximum removal rate of ammonia nitrogen was 99.2% when HRT was 8 hr.
Collapse
Affiliation(s)
- Min Yang
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China; BIOMATH, Department of Data Analysis and Mathematical Modelling, Ghent University, Gent B 9000, Belgium
| | - Zhen Liu
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China
| | - Aijie Wang
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ingmar Nopens
- BIOMATH, Department of Data Analysis and Mathematical Modelling, Ghent University, Gent B 9000, Belgium
| | - Hairong Hu
- School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Hong Chen
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China.
| |
Collapse
|
4
|
Li Y, Zhao T, Gao W, Miao B, Fu Z, Zhang Z, Li Q, Sun D. Regulatory mechanisms of autophagy on DHA and carotenoid accumulation in Crypthecodinium sp. SUN. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:50. [PMID: 38566214 PMCID: PMC10985998 DOI: 10.1186/s13068-024-02493-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 03/14/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Autophagy is a crucial process of cellular self-destruction and component reutilization that can affect the accumulation of total fatty acids (TFAs) and carotenoids in microalgae. The regulatory effects of autophagy process in a docosahexaenoic acid (DHA) and carotenoids simultaneously producing microalga, Crypthecodinium sp. SUN, has not been studied. Thus, the autophagy inhibitor (3-methyladenine (MA)) and activator (rapamycin) were used to regulate autophagy in Crypthecodinium sp. SUN. RESULTS The inhibition of autophagy by 3-MA was verified by transmission electron microscopy, with fewer autophagy vacuoles observed. Besides, 3-MA reduced the glucose absorption and intracellular acetyl-CoA level, which resulting in the decrease of TFA and DHA levels by 15.83 and 26.73% respectively; Surprisingly, 3-MA increased intracellular reactive oxygen species level but decreased the carotenoids level. Comparative transcriptome analysis showed that the downregulation of the glycolysis, pentose phosphate pathway and tricarboxylic acid cycle may underlie the decrease of acetyl-CoA, NADPH and ATP supply for fatty acid biosynthesis; the downregulation of PSY and HMGCR may underlie the decreased carotenoids level. In addition, the class I PI3K-AKT signaling pathway may be crucial for the regulation of carbon and energy metabolism. At last, rapamycin was used to activate autophagy, which significantly enhanced the cell growth and TFA level and eventually resulted in 1.70-fold increase in DHA content. CONCLUSIONS Our findings indicate the mechanisms of autophagy in Crypthecodinium sp. SUN and highlight a way to manipulate cell metabolism by regulating autophagy. Overall, this study provides valuable insights to guide further research on autophagy-regulated TFA and carotenoids accumulation in Crypthecodinium sp. SUN.
Collapse
Affiliation(s)
- Yiming Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
- School of Life Sciences, Hebei University, Baoding, 071000, China
| | - Tiantian Zhao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Weizheng Gao
- School of Life Sciences, Hebei University, Baoding, 071000, China
| | - Bowen Miao
- School of Life Sciences, Hebei University, Baoding, 071000, China
| | - Zhongxiang Fu
- School of Life Sciences, Hebei University, Baoding, 071000, China
| | - Zhao Zhang
- School of Life Sciences, Hebei University, Baoding, 071000, China
| | - Qingyang Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Dongzhe Sun
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| |
Collapse
|
5
|
Zhao Y, Wang Q, Gu D, Huang F, Liu J, Yu L, Yu X. Melatonin, a phytohormone for enhancing the accumulation of high-value metabolites and stress tolerance in microalgae: Applications, mechanisms, and challenges. BIORESOURCE TECHNOLOGY 2024; 393:130093. [PMID: 38000641 DOI: 10.1016/j.biortech.2023.130093] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 11/26/2023]
Abstract
High-value metabolites, such as carotenoids, lipids, and proteins, are synthesized by microalgae and find applications in various fields, including food, health supplements, and cosmetics. However, the potential of the microalgal industry to serve these sectors is constrained by low productivity and high energy consumption. Environmental stressors can not only stimulate the accumulation of secondary metabolites in microalgae but also induce oxidative stress, suppressing cell growth and activity, thereby resulting in a decrease in overall productivity. Using melatonin (MT) under stressful conditions is an effective approach to enhance the productivity of microalgal metabolites. This review underscores the role of MT in promoting the accumulation of high-value metabolites and enhancing stress resistance in microalgae under stressful and wastewater conditions. It discusses the underlying mechanisms whereby MT enhances metabolite synthesis and improves stress resistance. The review also offers new perspectives on utilizing MT to improve microalgal productivity and stress resistance in challenging environments.
Collapse
Affiliation(s)
- Yongteng Zhao
- Yunnan Urban Agricultural Engineering & Technological Research Center, College of Agronomy and Life Science, Kunming University, Kunming 650214, China
| | - Qingwei Wang
- Yunnan Urban Agricultural Engineering & Technological Research Center, College of Agronomy and Life Science, Kunming University, Kunming 650214, China
| | - Dan Gu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Feiyan Huang
- Yunnan Urban Agricultural Engineering & Technological Research Center, College of Agronomy and Life Science, Kunming University, Kunming 650214, China
| | - Jiani Liu
- Yunnan Urban Agricultural Engineering & Technological Research Center, College of Agronomy and Life Science, Kunming University, Kunming 650214, China
| | - Lei Yu
- Yunnan Urban Agricultural Engineering & Technological Research Center, College of Agronomy and Life Science, Kunming University, Kunming 650214, China.
| | - Xuya Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
6
|
Zhang X, Zhang Z, Peng Y, Zhang Y, Li Q, Sun D. Salicylic acid enhances cell growth, fatty acid and astaxanthin production in heterotrophic Chromochloris zofingiensis without reactive oxygen species elevation. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:1. [PMID: 38172878 PMCID: PMC10765886 DOI: 10.1186/s13068-023-02449-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND The induction of lipid and astaxanthin accumulation in microalgae is often achieved through abiotic stress. However, this approach usually leads to oxidative stress, which results in relatively low growth rate. Phytohormones, as important small molecule signaling substances, not only affect the growth and metabolism of microalgae but also influence the intracellular reactive oxygen species level. This study aimed to screen phytohormones that could promote the fatty acids and astaxanthin yield of heterotrophic Chromochloris zofingiensis without causing oxidative damage, and further investigate the underlying mechanisms. RESULTS In the present study, among all the selected phytohormones, the addition of exogenous salicylic acid (SA) could effectively promote cell growth along with the yield of total fatty acids (TFA) and astaxanthin in heterotrophic C. zofingiensis. Notably, the highest yields of TFA and astaxanthin were achieved at 100 μM SA, 43% and 97.2% higher compared with the control, respectively. Interestingly, the intracellular reactive oxygen species (ROS) levels, which are usually increased with elevated TFA content under abiotic stresses, were significantly decreased by SA treatment. Comparative transcriptome analysis unveiled significant alterations in overall carbon metabolism by SA. Specifically, the upregulation of fatty acid synthesis pathway, upregulation of β-carotene-4-ketolase (BKT) in carotenoid synthesis aligned with biochemical findings. Weighted gene co-expression network analysis highlighted ABC transporters and GTF2B-like transcription factor as potential key regulators. CONCLUSION This study found that salicylic acid can serve as an effective regulator to promote the celling growth and accumulation of fatty acids and astaxanthin in heterotrophic C. zofingiensis without ROS elevation, which provides a promising approach for heterotrophic production of TFA and astaxanthin without growth inhibition.
Collapse
Affiliation(s)
- Xinwei Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
- School of Life Sciences, Hebei University, Baoding, 071000, China
| | - Zhao Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
- School of Life Sciences, Hebei University, Baoding, 071000, China
- Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China
| | - Yanmei Peng
- School of Life Sciences, Hebei University, Baoding, 071000, China
| | - Yushu Zhang
- School of Life Sciences, Hebei University, Baoding, 071000, China
| | - Qingyang Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Dongzhe Sun
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| |
Collapse
|
7
|
Li Q, Zhang J, Guan X, Lu Y, Liu Y, Liu J, Xu N, Cai C, Nan B, Li X, Liu J, Wang Y. Metabolite analysis of soybean oil on promoting astaxanthin production of Phaffia rhodozyma. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2997-3005. [PMID: 36448538 DOI: 10.1002/jsfa.12365] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/24/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Astaxanthin is a carotenoid with strong antioxidant property. In addition, it has anti-cancer, anti-tumor, anti-inflammatory and many other functions. The micro-organisms that mainly produce astaxanthin are Haematococcus pluvialis and Phaffia rhodozyma. Compared with H. pluvialis, P. rhodozyma has shorter fermentation cycle and easier to control culture conditions, but the yield of astaxanthin in P. rhodozyma is low. This article studied how to improve the astaxanthin production of P. rhodozyma. RESULTS The results showed that when 10 mL L-1 soybean oil was added to the culture medium, astaxanthin production increased significantly, reaching 7.35 mg L-1 , which was 1.4 times that of the control group, and lycopene and β-carotene contents also increased significantly. Through targeted metabolite analysis, the fatty acids in P. rhodozyma significantly increased under the soybean oil stimulation, especially the fatty acids closely related to the formation of astaxanthin esters, included palmitic acid (C16:0), stearic acid (C18:0), oleic acid (C18:1n9), linoleic acid (C18:2n6), α-linolenic acid (C18:3n3) and γ-linolenic acid (C18:3n6), thereby increasing the astaxanthin esters content. CONCLUSION It showed that the addition of soybean oil can promote the accumulation of astaxanthin by promoting the increase of astaxanthin ester content. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qingru Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Jing Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Xiaoyu Guan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Yanhong Lu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Yankai Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Jiahuan Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Na Xu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Chunyu Cai
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Bo Nan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Xia Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, China
| | - Yuhua Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
- National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, China
- National Processing Laboratory for Soybean Industry and Technology, Changchun, China
| |
Collapse
|
8
|
Shokravi H, Heidarrezaei M, Shokravi Z, Ong HC, Lau WJ, Din MFM, Ismail AF. Fourth generation biofuel from genetically modified algal biomass for bioeconomic development. J Biotechnol 2022; 360:23-36. [PMID: 36272575 DOI: 10.1016/j.jbiotec.2022.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/03/2022] [Accepted: 10/17/2022] [Indexed: 12/12/2022]
Abstract
Biofuels from microalgae have promising potential for a sustainable bioeconomy. Algal strains' oil content and biomass yield are the most influential cost drivers in the fourth generation biofuel (FGB) production. Genetic modification is the key to improving oil accumulation and biomass yield, consequently developing the bioeconomy. This paper discusses current practices, new insights, and emerging trends in genetic modification and their bioeconomic impact on FGB production. It was demonstrated that enhancing the oil and biomass yield could significantly improve the probability of economic success and the net present value of the FGB production process. The techno-economic and socioeconomic burden of using genetically modified (GM) strains and the preventive control strategies on the bioeconomy of FGB production is reviewed. It is shown that the fully lined open raceway pond could cost up to 25% more than unlined ponds. The cost of a plastic hoop air-supported greenhouse covering cultivation ponds is estimated to be US 60,000$ /ha. The competitiveness and profitability of large-scale cultivation of GM biomass are significantly locked to techno-economic and socioeconomic drivers. Nonetheless, it necessitates further research and careful long-term follow-up studies to understand the mechanism that affects these parameters the most.
Collapse
Affiliation(s)
- Hoofar Shokravi
- Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
| | - Mahshid Heidarrezaei
- Faculty of Chemical & Energy Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia; Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Zahra Shokravi
- Department of Microbiology, Faculty of Basic Science, Islamic Azad University, Science and Research Branch of Tehran, Markazi, 1477893855, Iran
| | - Hwai Chyuan Ong
- Future Technology Research Center, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin 64002, Taiwan.
| | - Woei Jye Lau
- Faculty of Chemical & Energy Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia; Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Mohd Fadhil Md Din
- Centre for Environmental Sustainability and Water Security (IPASA), School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
| | - Ahmad Fauzi Ismail
- Faculty of Chemical & Energy Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia; Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| |
Collapse
|
9
|
Sharma I, Kirti PB, Pati PK. Autophagy: a game changer for plant development and crop improvement. PLANTA 2022; 256:103. [PMID: 36307739 DOI: 10.1007/s00425-022-04004-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Manipulation of autophagic pathway represents a tremendous opportunity for designing climate-smart crops with improved yield and better adaptability to changing environment. For exploiting autophagy to its full potential, identification and comprehensive characterization of adapters/receptor complex and elucidation of its regulatory network in crop plants is highly warranted. Autophagy is a major intracellular trafficking pathway in eukaryotes involved in vacuolar degradation of cytoplasmic constituents, mis-folded proteins, and defective organelles. Under optimum conditions, autophagy operates at a basal level to maintain cellular homeostasis, but under stressed conditions, it is induced further to provide temporal stress relief. Our understanding of this highly dynamic process has evolved exponentially in the past few years with special reference to several plant-specific roles of autophagy. Here, we review the most recent advances in the field of autophagy in plants and discuss its potential implications in designing crops with improved stress and disease-tolerance, enhanced yield potential, and improved capabilities for producing metabolites of high economic value. We also assess the current knowledge gaps and the possible strategies to develop a robust module for biotechnological application of autophagy to enhance bioeconomy and sustainability of agriculture.
Collapse
Affiliation(s)
- Isha Sharma
- AgriBiotech Foundation, PJTS Agriculture University, Rajendranagar, Hyderabad, Telangana, 500032, India.
- International Crops Research Institute for the Semi-Arid Tropics, 502324, Patancheru, Telangana, India.
| | | | - Pratap Kumar Pati
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, 140301, India
| |
Collapse
|
10
|
Vrânceanu M, Galimberti D, Banc R, Dragoş O, Cozma-Petruţ A, Hegheş SC, Voştinaru O, Cuciureanu M, Stroia CM, Miere D, Filip L. The Anticancer Potential of Plant-Derived Nutraceuticals via the Modulation of Gene Expression. PLANTS 2022; 11:plants11192524. [PMID: 36235389 PMCID: PMC9571524 DOI: 10.3390/plants11192524] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/07/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022]
Abstract
Current studies show that approximately one-third of all cancer-related deaths are linked to diet and several cancer forms are preventable with balanced nutrition, due to dietary compounds being able to reverse epigenetic abnormalities. An appropriate diet in cancer patients can lead to changes in gene expression and enhance the efficacy of therapy. It has been demonstrated that nutraceuticals can act as powerful antioxidants at the cellular level as well as anticarcinogenic agents. This review is focused on the best studies on worldwide-available plant-derived nutraceuticals: curcumin, resveratrol, sulforaphane, indole-3-carbinol, quercetin, astaxanthin, epigallocatechin-3-gallate, and lycopene. These compounds have an enhanced effect on epigenetic changes such as histone modification via HDAC (histone deacetylase), HAT (histone acetyltransferase) inhibition, DNMT (DNA methyltransferase) inhibition, and non-coding RNA expression. All of these nutraceuticals are reported to positively modulate the epigenome, reducing cancer incidence. Furthermore, the current review addresses the issue of the low bioavailability of nutraceuticals and how to overcome the drawbacks related to their oral administration. Understanding the mechanisms by which nutraceuticals influence gene expression will allow their incorporation into an “epigenetic diet” that could be further capitalized on in the therapy of cancer.
Collapse
Affiliation(s)
- Maria Vrânceanu
- Department of Toxicology, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Damiano Galimberti
- Italian Association of Anti-Ageing Physicians, Via Monte Cristallo, 1, 20159 Milan, Italy
| | - Roxana Banc
- Department of Bromatology, Hygiene, Nutrition, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
- Correspondence: (R.B.); (O.D.); Tel.: +40-744-367-958 (R.B.); +40-733-040-917 (O.D.)
| | - Ovidiu Dragoş
- Department of Kinetotheraphy and Special Motricity, “1 Decembrie 1918” University of Alba Iulia, 510009 Alba Iulia, Romania
- Correspondence: (R.B.); (O.D.); Tel.: +40-744-367-958 (R.B.); +40-733-040-917 (O.D.)
| | - Anamaria Cozma-Petruţ
- Department of Bromatology, Hygiene, Nutrition, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Simona-Codruţa Hegheş
- Department of Drug Analysis, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Oliviu Voştinaru
- Department of Pharmacology, Physiology and Physiopathology, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Magdalena Cuciureanu
- Department of Pharmacology, University of Medicine and Pharmacy “Grigore T. Popa” Iasi, 16 Universităţii Street, 700115 Iași, Romania
| | - Carmina Mariana Stroia
- Department of Pharmacy, Oradea University, 1 Universităţii Street, 410087 Oradea, Romania
| | - Doina Miere
- Department of Bromatology, Hygiene, Nutrition, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Lorena Filip
- Department of Bromatology, Hygiene, Nutrition, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| |
Collapse
|
11
|
He Q, Zhang H, Ma M, He Y, Jia J, Hu Q, Gong Y. Critical assessment of protozoa contamination and control measures in mass culture of the diatom Phaeodactylum tricornutum. BIORESOURCE TECHNOLOGY 2022; 359:127460. [PMID: 35697259 DOI: 10.1016/j.biortech.2022.127460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
The diatom Phaeodactylum tricornutum is considered a promising "cell factory" for high-value products fucoxanthin and EPA. But its potential has not been realized due largely to microbial contamination. In this study, seven protozoan strains were identified, of which a heterolobosean amoeba was identified as the most frequently occurring and destructive predator in P. tricornutum culture. The addition of 400 mg L-1 NH4HCO3 inhibited amoeba proliferation with little impact on algal growth. Halting culture mixing at night induced a hypoxia environment that further inhibited amoeba growth. Regardless of culture systems employed, a periodical supply of proper amounts of NH4HCO3 alone or in combination with halting culture mixing at night may prevent or treat protozoa contamination in mass culture of P. tricornutum.
Collapse
Affiliation(s)
- Qing He
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hanwen Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingyang Ma
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Yue He
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Jing Jia
- Microalgal Biotechnology Center, State Investment and Development Corporation, Beijing 065200, China
| | - Qiang Hu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Microalgal Biotechnology Center, State Investment and Development Corporation, Beijing 065200, China; Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Yingchun Gong
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
12
|
Yu C, Wang HP, Yu X. The associative induction of succinic acid and hydrogen sulfide for high-producing biomass, astaxanthin and lipids in Haematococcus pluvialis. BIORESOURCE TECHNOLOGY 2022; 358:127397. [PMID: 35636672 DOI: 10.1016/j.biortech.2022.127397] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
To obtain higher yield of natural astaxanthin, the present study aims to develop a viable and economic induction strategy for astaxanthin production comprising succinic acid (SA) combined with sodium hydrosulfide (NaHS). The biomass (1.33 g L-1), astaxanthin concentration (44.96 mg L-1), astaxanthin content (163.55 pg cell-1), and lipid content (55.34%) were achieved under 1.0 mM SA and 100 μM NaHS treatment. These results were concomitant with enhanced hydrogen sulfide (H2S) but diminished reactive oxide species (ROS). Further study discovered that endogenous H2S could improve astaxanthin and lipid coproduction under SA induction by mediating related gene transcript levels and ROS signalling. Additionally, the concentrations of biomass and astaxanthin increased to 2.14 g L-1 and 66.25 mg L-1, respectively, under the induction of SA and NaHS in a scaled-up bioreactor. Briefly, the work proposed a novel feasible strategy for high yields of biomass and astaxanthin by H. pluvialis.
Collapse
Affiliation(s)
- Chunli Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Hui-Ping Wang
- Children's Hospital Affiliated to Kunming Medical University, Kunming 650228, China
| | - Xuya Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
13
|
Li X, Gu D, You J, Qiao T, Yu X. Gamma-aminobutyric acid coupled with copper ion stress stimulates lipid production of green microalga Monoraphidium sp. QLY-1 through multiple mechanisms. BIORESOURCE TECHNOLOGY 2022; 352:127091. [PMID: 35364236 DOI: 10.1016/j.biortech.2022.127091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Induction of copper ion (Cu2+) stress is a method used to increase lipid accumulation in microalgae, but it decreases cell growth. In this work, the impacts of gamma-aminobutyric acid (GABA) coupled with Cu2+ stress on the biomass and oil yield in Monoraphidium sp. QLY-1 were investigated. Results suggested that the combined treatment of GABA and Cu2+ resulted in a higher lipid content (55.13%) than Cu2+ treatment (48.43%). Furthermore, GABA addition upregulated the levels of lipid-relevant genes, cellular GABA, ethylene (ETH), and antioxidant enzyme activities and alleviated oxidative damage caused by Cu2+ stress. The autophagy-relevant gene atg8 was also upregulated by GABA treatment. Further exploration indicated that cell autophagy induced the lipid content up to 58.09% with GABA and Cu2+ stress treatment. This investigation demonstrates that the coupling strategy can stimulate lipid production and shed light on the underlying mechanisms in lipid biosynthesis, cell autophagy, and stress response of microalgae.
Collapse
Affiliation(s)
- Ximing Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Dan Gu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Jinkun You
- Kunming Edible Fungi Institute of All China Federation of Supply and Marketing Cooperatives, Kunming 650032, China
| | - Tengsheng Qiao
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao 266003, China
| | - Xuya Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
14
|
Zhao Y, Cui J, Li Q, Qiao T, Zhong DB, Zhao P, Yu X. A joint strategy comprising melatonin and 3-methyladenine to concurrently stimulate biomass and astaxanthin hyperaccumulation by Haematococcus pluvialis. BIORESOURCE TECHNOLOGY 2021; 341:125784. [PMID: 34419876 DOI: 10.1016/j.biortech.2021.125784] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
Haematococcus pluvialis is a commercial microalgae used for natural astaxanthin production. This study aims to investigate the roles of melatonin (MT) and 3-methyladenine (3-MA) in regulating the cell growth and biosynthesis of astaxanthin and fatty acids under adverse conditions by H. pluvialis. Upon the dual treatments, the maximum astaxanthin concentration (46.78 mg L-1) was 2.39- and 1.35-fold higher compared with the control and MT treatments, respectively. Concomitantly, the combined application of MT and 3-MA suppressed autophagy but promoted the production of biomass and lipids and upregulated carotenogenesis, lipogenesis and antioxidant enzyme-related genes at the transcriptional level, which were linked with astaxanthin and lipid biosynthesis and oxidative stress. Additionally, astaxanthin exhibited a noticeable increase under MT coupled with 3-MA in the other two strains of H. pluvialis. This study proposed a potential method for astaxanthin induction and provided insights into the function of autophagy in modulating cell growth and astaxanthin synthesis.
Collapse
Affiliation(s)
- Yongteng Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Jing Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Qingqing Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Tengsheng Qiao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Du-Bo Zhong
- Yunnan Yunce Quality Testing Co., Ltd, Kunming 650217, China
| | - Peng Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xuya Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
15
|
Zaytseva A, Chekanov K, Zaytsev P, Bakhareva D, Gorelova O, Kochkin D, Lobakova E. Sunscreen Effect Exerted by Secondary Carotenoids and Mycosporine-like Amino Acids in the Aeroterrestrial Chlorophyte Coelastrella rubescens under High Light and UV-A Irradiation. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122601. [PMID: 34961072 PMCID: PMC8704241 DOI: 10.3390/plants10122601] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 05/13/2023]
Abstract
The microalga Coelastrella rubescens dwells in habitats with excessive solar irradiation; consequently, it must accumulate diverse compounds to protect itself. We characterized the array of photoprotective compounds in C. rubescens. Toward this goal, we exposed the cells to high fluxes of visible light and UV-A and analyzed the ability of hydrophilic and hydrophobic extracts from the cells to absorb radiation. Potential light-screening compounds were profiled by thin layer chromatography and UPLC-MS. Coelastrella accumulated diverse carotenoids that absorbed visible light in the blue-green part of the spectrum and mycosporine-like amino acids (MAA) that absorbed the UV-A. It is the first report on the occurrence of MAA in Coelastrella. Two new MAA, named coelastrin A and coelastrin B, were identified. Transmission electron microscopy revealed the development of hydrophobic subcompartments under the high light and UV-A exposition. We also evaluate and discuss sporopollenin-like compounds in the cell wall and autophagy-like processes as the possible reason for the decrease in sunlight absorption by cells, in addition to inducible sunscreen accumulation. The results suggested that C. rubescens NAMSU R1 accumulates a broad range of valuable photoprotective compounds in response to UV-A and visible light irradiation, which indicates this strain as a potential producer for biotechnology.
Collapse
Affiliation(s)
- Anna Zaytseva
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119192 Moscow, Russia; (A.Z.); (P.Z.); (D.B.); (O.G.); (E.L.)
| | - Konstantin Chekanov
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119192 Moscow, Russia; (A.Z.); (P.Z.); (D.B.); (O.G.); (E.L.)
- Centre for Humanities Research and Technology, National Research Nuclear University MEPhI, 31 Kashirskoye Highway, 115522 Moscow, Russia
- Correspondence:
| | - Petr Zaytsev
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119192 Moscow, Russia; (A.Z.); (P.Z.); (D.B.); (O.G.); (E.L.)
- N.N. Semyonov Federal Research Center for Chemical Physics, Russian Academy of Science, 4 Kosygina Street, Building 1, 119192 Moscow, Russia
| | - Daria Bakhareva
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119192 Moscow, Russia; (A.Z.); (P.Z.); (D.B.); (O.G.); (E.L.)
| | - Olga Gorelova
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119192 Moscow, Russia; (A.Z.); (P.Z.); (D.B.); (O.G.); (E.L.)
| | - Dmitry Kochkin
- Department of Plant Physiology, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119192 Moscow, Russia;
- Timiryazev Institute of Plant Physiology, Russian Academy of Science, Botanicheskaya Street 35, 127276 Moscow, Russia
| | - Elena Lobakova
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119192 Moscow, Russia; (A.Z.); (P.Z.); (D.B.); (O.G.); (E.L.)
- Timiryazev Institute of Plant Physiology, Russian Academy of Science, Botanicheskaya Street 35, 127276 Moscow, Russia
| |
Collapse
|
16
|
Soleimani khorramdashti M, Samipoor Giri M, Majidian N. Extraction lipids from chlorella vulgaris by supercritical CO2 for biodiesel production. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2021. [DOI: 10.1016/j.sajce.2021.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
17
|
Zhao Y, Song X, Zhao P, Li T, Xu JW, Yu X. Role of melatonin in regulation of lipid accumulation, autophagy and salinity-induced oxidative stress in microalga Monoraphidium sp. QLY-1. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102196] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
18
|
Wang X, Song Y, Liu B, Hang W, Li R, Cui H, Li R, Jia X. Enhancement of astaxanthin biosynthesis in Haematococcus pluvialis via inhibition of autophagy by 3-methyladenine under high light. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101991] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
19
|
Zhang S, He Y, Sen B, Wang G. Reactive oxygen species and their applications toward enhanced lipid accumulation in oleaginous microorganisms. BIORESOURCE TECHNOLOGY 2020; 307:123234. [PMID: 32245673 DOI: 10.1016/j.biortech.2020.123234] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/17/2020] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
Oleaginous microorganisms are among the most promising alternative sources of lipids for oleochemicals and biofuels. However, in the course of lipid production, reactive oxygen species (ROS) are generated inevitably as byproducts of aerobic metabolisms. Although excessive accumulation of ROS leads to lipid peroxidation, DNA damage, and protein denaturation, ROS accumulation has been suggested to enhance lipid synthesis in these microorganisms. There are many unresolved questions concerning this dichotomous view of ROS influence on lipid accumulation. These include what level of ROS triggers lipid overproduction, what mechanisms and targets are vital and whether ROS act as toxic byproducts or cellular messengers in these microorganisms? Here we review the current state of knowledge on ROS generation, antioxidative defense system, the dual effects of ROS on microbial lipid production, and ROS-induced lipid peroxidation and accumulation mechanisms. Toward the end, the review summarizes strategies that enhance lipid production based on ROS manipulation.
Collapse
Affiliation(s)
- Sai Zhang
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yaodong He
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Biswarup Sen
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Guangyi Wang
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Qingdao Institute Ocean Engineering of Tianjin University, Qingdao 266237, China.
| |
Collapse
|
20
|
Liu Z, Hou Y, He C, Wang X, Chen S, Huang Z, Chen F. Enhancement of linoleic acid content stimulates astaxanthin esterification in Coelastrum sp. BIORESOURCE TECHNOLOGY 2020; 300:122649. [PMID: 31896045 DOI: 10.1016/j.biortech.2019.122649] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Abstract
Most natural astaxanthin is fatty acid-esterified in microalgae to prevent oxidation. However, the factors influencing astaxanthin esterification (AE) are poorly understood. In this study, obstacles to AE in Coelastrum sp. HA-1 were investigated. Only half of the astaxanthin molecules in HA-1 were esterified, but AE was stimulated with exogenous linoleic acid (LA) and ethanol treatment. Astaxanthin esters and total astaxanthin (TA) with exogenous LA were elevated to 3.82-fold and 2.18-fold of control levels, respectively. Treatment with 3% (v/v) ethanol enhanced transcription of the Δ12 fatty acid desaturase gene, which caused more oleic acid (OA) to be converted to LA. Furthermore, the contents of astaxanthin esters and TA were 2.42-fold and 1.61-fold control levels, respectively. These findings confirmed that AE was upregulated by increasing LA content. Thus, a large concentration of OA alone does not increase astaxanthin accumulation in HA-1, and a certain amount of LA was necessary for AE.
Collapse
Affiliation(s)
- Zhiyong Liu
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yuyong Hou
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Chunqing He
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Xuan Wang
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Shulin Chen
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Zhiyong Huang
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Fangjian Chen
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| |
Collapse
|
21
|
Tran QG, Cho K, Kim U, Yun JH, Cho DH, Heo J, Park SB, Kim JW, Lee YJ, Ramanan R, Kim HS. Enhancement of β-carotene production by regulating the autophagy-carotenoid biosynthesis seesaw in Chlamydomonas reinhardtii. BIORESOURCE TECHNOLOGY 2019; 292:121937. [PMID: 31408779 DOI: 10.1016/j.biortech.2019.121937] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
This work aimed to demonstrate a new strategy for enhancing the production of carotenoids through the regulation of seesaw cross-talk between autophagy and carotenoid biosynthesis pathways in Chlamydomonas reinhardtii. Autophagy-related ATG1 and ATG8 genes were first silenced using artificial microRNA, which in turn reduced the mRNA expression of ATG1 and ATG8 by 84.4% and 74.3%, respectively. While ATG1 kinase controls early step in autophagy induction and ATG8 is an essential factor for the downstream formation of autophagosome membranes, the decreased expression of these genes led to a 2.34-fold increase in the amount of β-carotene content (i.e., 23.75 mg/g DCW). Furthermore, all mutants seemed to exhibit greater biodiesel properties than that of wild-type due to increased accumulation of saturated and monounsaturated fatty acids. These results support the role of autophagy in regulating the production of valuable metabolites, which could contribute to uplifting the economic outlook of nascent algal biorefinery.
Collapse
Affiliation(s)
- Quynh-Giao Tran
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science & Technology (UST), Daejeon 34113, Republic of Korea
| | - Kichul Cho
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, Campus E 7.1, 66123 Saarbrücken, Germany
| | - Urim Kim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science & Technology (UST), Daejeon 34113, Republic of Korea
| | - Jin-Ho Yun
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Dae-Hyun Cho
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Jina Heo
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science & Technology (UST), Daejeon 34113, Republic of Korea
| | - Su-Bin Park
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science & Technology (UST), Daejeon 34113, Republic of Korea
| | - Ji Won Kim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science & Technology (UST), Daejeon 34113, Republic of Korea
| | - Yong Jae Lee
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Rishiram Ramanan
- Department of Environmental Science, Central University of Kerala, Kasaragod, Kerala, India
| | - Hee-Sik Kim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science & Technology (UST), Daejeon 34113, Republic of Korea.
| |
Collapse
|
22
|
Liu YH, Alimujiang A, Wang X, Luo SW, Balamurugan S, Yang WD, Liu JS, Zhang L, Li HY. Ethanol induced jasmonate pathway promotes astaxanthin hyperaccumulation in Haematococcus pluvialis. BIORESOURCE TECHNOLOGY 2019; 289:121720. [PMID: 31271916 DOI: 10.1016/j.biortech.2019.121720] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 06/09/2023]
Abstract
Haematococcus pluvialis is a main biological resource for the antioxidant astaxanthin production, however, potential modulators and molecular mechanisms underpinning astaxanthin accumulation remain largely obscured. We discovered that provision of ethanol (0.4%) significantly triggered the cellular astaxanthin content up to 3.85% on the 4th day of treatment. Amongst, 95% of the accumulated astaxanthin was esterified, particularly enriched with monoesters. Ultrastructural analysis revealed that ethanol altered cell wall structure and physiological properties. Antioxidant analyses revealed that astaxanthin accumulation offset the ethanol induced oxidative stress. Ethanol treatment reduced carbohydrates while increased lipids and jasmonic acid production. Transcriptomic analysis uncovered that ethanol orchestrated the expression of crucial genes involved in carotenogenesis, e.g. PSY, BKT and CRTR-b were significantly upregulated. Moreover, methyl jasmonic acid synthesis was induced and played a major role in regulating the carotenogenic genes. The findings uncovered the novel viewpoint in the intricate transcriptional regulatory mechanisms of astaxanthin biosynthesis.
Collapse
Affiliation(s)
- Yu-Hong Liu
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Adili Alimujiang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xiang Wang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Shan-Wei Luo
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Srinivasan Balamurugan
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Wei-Dong Yang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jie-Sheng Liu
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lin Zhang
- Department of Biostatistics, Bioinformatics, and Biomathematics, Georgetown University, Washington, DC 20057, USA
| | - Hong-Ye Li
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
23
|
Zhang Z, Sun D, Zhang Y, Chen F. Glucose triggers cell structure changes and regulates astaxanthin biosynthesis in Chromochloris zofingiensis. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101455] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
24
|
Sun D, Zhang Z, Zhang Y, Cheng KW, Chen F. Light induces carotenoids accumulation in a heterotrophic docosahexaenoic acid producing microalga, Crypthecodinium sp. SUN. BIORESOURCE TECHNOLOGY 2019; 276:177-182. [PMID: 30623873 DOI: 10.1016/j.biortech.2018.12.093] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/22/2018] [Accepted: 12/24/2018] [Indexed: 06/09/2023]
Abstract
In the present study, the effect of various light conditions on carotenoid accumulation in a novel heterotrophic microalga, Crypthecodinium sp. SUN was investigated. The results showed that C. sp. SUN mainly produced γ-carotene and β-carotene. The total carotenoid content could reach to 12.8 mg g-1 dry weight under high light intensity (100 μmol m-2 s-1), which was >100-fold higher than that under dark condition. Besides, along with the light intensity increased, the ROS level in vivo was decreased at 48 h and 72 h. Further study showed that, light could efficiently promote the gene expression of PSY and LCYb, which explain the molecular mechanisms of carotenoids accumulation under light conditions. Meanwhile, slightly inhibited fatty acids accumulation could promote the carotenoids yield. The present work proposed that C. sp. SUN could be a potential carotenoid producer, and provided valuable insight for carotenoids biosynthesis.
Collapse
Affiliation(s)
- Dongzhe Sun
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; Nutrition & Health Research Institute, COFCO, Beijing 102209, China
| | - Zhao Zhang
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China
| | - Yue Zhang
- BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China
| | - Ka-Wing Cheng
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China; Institute for Advanced Study, Shenzhen University, Nanshan, Shenzhen 518060, China
| | - Feng Chen
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China; Institute for Advanced Study, Shenzhen University, Nanshan, Shenzhen 518060, China.
| |
Collapse
|
25
|
Zhao Y, Wang HP, Han B, Yu X. Coupling of abiotic stresses and phytohormones for the production of lipids and high-value by-products by microalgae: A review. BIORESOURCE TECHNOLOGY 2019; 274:549-556. [PMID: 30558833 DOI: 10.1016/j.biortech.2018.12.030] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/07/2018] [Accepted: 12/09/2018] [Indexed: 05/03/2023]
Abstract
Microalgae can produce lipids and high-value by-products under abiotic stress conditions, including nutrient starvation, high light intensity, extreme temperature, high salinity and the presence of heavy metals. However, the growth and development of microalgae and the accumulation of metabolites may be inhibited by adverse stresses. In recent years, phytohormones have emerged as a topic of intense focus in microalgae research. Phytohormones could sustain the growth of microalgae under abiotic stress conditions. In addition, the combination of plant hormones and abiotic stresses could further promote the biosynthesis of metabolites and improve the ability of microalgae to tolerate abiotic stresses. This review primarily focuses on the regulatory effects of exogenous phytohormones on the biosynthesis of metabolites by microalgae under adverse environmental conditions and discusses the mechanisms of phytohormone-mediated cell growth, stress tolerance and lipid biosynthesis in microalgae under abiotic stress conditions.
Collapse
Affiliation(s)
- Yongteng Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Hui-Ping Wang
- Children's Hospital Affiliated to Kunming Medical University, Kunming 650228, China
| | - Benyong Han
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xuya Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
26
|
Sun Y, Chen D, Liu J, Xu Y, Shi X, Luo X, Pan Q, Yu J, Yang J, Cao H, Li L, Li L. Metabolic profiling associated with autophagy of human placenta-derived mesenchymal stem cells by chemical isotope labeling LC-MS. Exp Cell Res 2018; 372:52-60. [PMID: 30227120 DOI: 10.1016/j.yexcr.2018.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/12/2018] [Accepted: 09/14/2018] [Indexed: 12/18/2022]
Abstract
Autophagy has been reported to have a pivotal role in maintaining stemness, regulating immunomodulation and enhancing the survival of mesenchymal stem cells (MSCs). However, the effect of autophagy on MSC metabolism is largely unknown. Here, we report a workflow for examining the impact of autophagy on human placenta-derived MSC (hPMSC) metabolome profiling with chemical isotope labeling (CIL) LC-MS. Rapamycin or 3-methyladenine was successfully used to induce or inhibit autophagy, respectively. Then, 12C- and 13C-dansylation labeling LC-MS were used to profile the amine/phenol submetabolome. A total of 935 peak pairs were detected and 50 metabolites were positively identified using the dansylation metabolite standards library, and 669 metabolites were putatively identified based on an accurate mass match in metabolome databases. 12C/13C-p-dimethylaminophenacyl bromide labeling LC-MS was used to analyze the carboxylic acid submetabolome; 4736 peak pairs were detected, among which 33 metabolites were positively identified in the dimethylaminophenacyl metabolite standards library, and 3007 metabolites were putatively identified. PCA/OPLS-DA analysis combined with volcano plots and Venn diagrams was used to determine the significant metabolites. Metabolites pathway analysis demonstrated that hPMSCs appeared to generate more ornithine with the arginine and proline metabolism pathway and utilized more pantothenic acid to synthesize acetyl-CoA in the beta-alanine metabolism pathway when autophagy was activated. Meanwhile, acetyl-CoA conversion to fatty acids led to accumulation in the fatty acid biosynthesis pathway. In contrast, when autophagy was suppressed, a reduction in metabolites demonstrated weakened metabolic activity in these metabolic pathways. Our research provides a more comprehensive understanding of hPMSC metabolism associated with autophagy.
Collapse
Affiliation(s)
- Yanni Sun
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Road, Hangzhou 310003, China.
| | - Deying Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Road, Hangzhou 310003, China.
| | - Jingqi Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Road, Hangzhou 310003, China.
| | - Yanping Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Road, Hangzhou 310003, China.
| | - Xiaowei Shi
- Chu Kochen Honors College, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Xian Luo
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2.
| | - Qiaoling Pan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Road, Hangzhou 310003, China.
| | - Jiong Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Road, Hangzhou 310003, China.
| | - Jinfeng Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Road, Hangzhou 310003, China.
| | - Hongcui Cao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Road, Hangzhou 310003, China.
| | - Liang Li
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Road, Hangzhou 310003, China.
| |
Collapse
|
27
|
Effects of Astaxanthin on the Proliferation and Migration of Breast Cancer Cells In Vitro. Antioxidants (Basel) 2018; 7:antiox7100135. [PMID: 30287735 PMCID: PMC6210693 DOI: 10.3390/antiox7100135] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 09/27/2018] [Accepted: 10/02/2018] [Indexed: 12/21/2022] Open
Abstract
Astaxanthin (ASX) is a marine-based ketocarotenoid; an accessory pigment in plants in that it has many different potential functions. ASX is an antioxidant that is notably more potent than many other antioxidants. Antioxidants have anti-inflammatory and oxidative stress-reducing properties to potentially reduce the incidence of cancer or inhibit the expansion of tumor cells. In this study, we tested the hypothesis that ASX would inhibit proliferation and migration of breast cancer cells in vitro. We found that application of ASX significantly reduced proliferation rates and inhibited breast cancer cell migration compared to control normal breast epithelial cells. Based on these results, further investigation of the effects of ASX on not only breast cancer cells, but other forms of tumor cells, should be carried out.
Collapse
|
28
|
Ding W, Zhao Y, Xu JW, Zhao P, Li T, Ma H, Reiter RJ, Yu X. Melatonin: A Multifunctional Molecule That Triggers Defense Responses against High Light and Nitrogen Starvation Stress in Haematococcus pluvialis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:7701-7711. [PMID: 29975059 DOI: 10.1021/acs.jafc.8b02178] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Melatonin (MLT), a ubiquitously distributed small molecule, functions in plant responses to various biotic and abiotic stresses. However, the interactions between melatonin and other important molecules in Haematococcus pluvialis response stresses are largely unknown. In the present study, exogenous melatonin improved H. pluvialis resistance to nitrogen starvation and high light. We concluded that exogenous melatonin treatment prevented the reactive oxygen species (ROS) burst and limited cell damage induced by abiotic stress through activation of antioxidant enzymes and antioxidants. Astaxanthin, a major antioxidant in H. pluvialis cells, exhibited a 2.25-fold increase in content after treatment with melatonin. The maximal astaxanthin content was 32.4 mg g-1. The functional roles of the nitric oxide (NO)-mediated mitogen activated protein kinase (MAPK) signaling pathway and cyclic adenosine monophosphate (cAMP) signaling pathway induced by melatonin were also evaluated. The results clearly indicate that cAMP signaling pathways are positively associated with microalgal astaxanthin biosynthesis. Additionally, the NO-dependent MAPK signaling cascade is activated in response to astaxanthin accumulation induced by melatonin, confirming that MAPK is a target of NO action in physiological processes. This work is the first to use H. pluvialis as in vivo model and documents the influence of melatonin on the physiological response to abiotic stress in this microalgae.
Collapse
Affiliation(s)
- Wei Ding
- Faculty of Life Sciences and Technology , Kunming University of Science and Technology , Kunming , Yunnan 650500 , China
| | - Yongteng Zhao
- Faculty of Life Sciences and Technology , Kunming University of Science and Technology , Kunming , Yunnan 650500 , China
| | - Jun-Wei Xu
- Faculty of Life Sciences and Technology , Kunming University of Science and Technology , Kunming , Yunnan 650500 , China
| | - Peng Zhao
- Faculty of Life Sciences and Technology , Kunming University of Science and Technology , Kunming , Yunnan 650500 , China
| | - Tao Li
- Faculty of Life Sciences and Technology , Kunming University of Science and Technology , Kunming , Yunnan 650500 , China
| | - Huixian Ma
- School of Foreign Languages , Kunming University , Kunming 650200 , China
| | - Russel J Reiter
- Department of Cellular and Structural Biology , University of Texas Health Science Center , San Antonio , Texas 78229 , United States
| | - Xuya Yu
- Faculty of Life Sciences and Technology , Kunming University of Science and Technology , Kunming , Yunnan 650500 , China
| |
Collapse
|
29
|
Kong F, Romero IT, Warakanont J, Li-Beisson Y. Lipid catabolism in microalgae. THE NEW PHYTOLOGIST 2018; 218:1340-1348. [PMID: 29473650 DOI: 10.1111/nph.15047] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 01/15/2018] [Indexed: 05/03/2023]
Abstract
Lipid degradation processes are important in microalgae because survival and growth of microalgal cells under fluctuating environmental conditions require permanent remodeling or turnover of membrane lipids as well as rapid mobilization of storage lipids. Lipid catabolism comprises two major spatially and temporarily separated steps, namely lipolysis, which releases fatty acids and head groups and is catalyzed by lipases at membranes or lipid droplets, and degradation of fatty acids to acetyl-CoA, which occurs in peroxisomes through the β-oxidation pathway in green microalgae, and can sometimes occur in mitochondria in some other algal species. Here we review the current knowledge on the enzymes and regulatory proteins involved in lipolysis and peroxisomal β-oxidation and highlight gaps in our understanding of lipid degradation pathways in microalgae. Metabolic use of acetyl-CoA products via glyoxylate cycle and gluconeogenesis is also reviewed. We then present the implication of various cellular processes such as vesicle trafficking, cell cycle and autophagy on lipid turnover. Finally, physiological roles and the manipulation of lipid catabolism for biotechnological applications in microalgae are discussed.
Collapse
Affiliation(s)
- Fantao Kong
- Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Aix Marseille Université, UMR7265, Institut de Biosciences et Biotechnologies Aix Marseille, 13108, Cadarache, France
| | - Ismael Torres Romero
- Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Aix Marseille Université, UMR7265, Institut de Biosciences et Biotechnologies Aix Marseille, 13108, Cadarache, France
| | - Jaruswan Warakanont
- Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Aix Marseille Université, UMR7265, Institut de Biosciences et Biotechnologies Aix Marseille, 13108, Cadarache, France
- Department of Botany, Faculty of Science, Kasetsart University, 50 Ngamwongwan Rd, Chatuchak, Bangkok, 10900, Thailand
| | - Yonghua Li-Beisson
- Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Aix Marseille Université, UMR7265, Institut de Biosciences et Biotechnologies Aix Marseille, 13108, Cadarache, France
| |
Collapse
|