1
|
Carvalho MPD, Morais MGD, Santos LOD, Laroche C, Costa JAV. Production of biomass and biomolecules in Limnospira indica PCC 8005 cultivation under magnetic fields and polymeric nanofibers. J Biotechnol 2025; 405:48-56. [PMID: 40339655 DOI: 10.1016/j.jbiotec.2025.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 04/30/2025] [Accepted: 05/05/2025] [Indexed: 05/10/2025]
Abstract
Researchers often apply physical, chemical, or biological stresses to cyanobacteria cultivation to enhance biomass production by triggering cellular adaptation mechanisms, increasing growth or boosting target compound synthesis. Static magnetic fields (SMF) offer a non-toxic, cost-effective way to modulate microalgal growth, alter biomass composition, and promote metabolite production. Polymeric nanofibers (Nano) function as a physical barrier in cultivation, while monoethanolamine (MEA) acts as a chemical absorbent, reducing CO₂ loss and enhancing biofixation. This study investigated the effects of SMF and nanofibers on the biomass yield and molecular composition of Limnospira indica PCC 8005. The combined SMF and Nano treatment achieved the highest biomass yield (5.87 ± 0.06 g L⁻¹), a 28 % increase compared to the control. SMF application increased protein content by 16 % but reduced carbohydrate levels by 73 % relative to the nanofiber-only treatment (39.58 ± 0.98 % ww⁻¹). Exopolysaccharide (EPS) produced under the SMF+NanoMEA treatment contained 39.9 % uronic acid, while the Nano-only treatment had the highest sulphate content (8.4 %) but the lowest uronic acid concentration (25.4 %). The EPS were identified as acidic, sulphated polysaccharides. SMF and nanofibers significantly enhances biomass production, alters the carbohydrate and protein proportions in biomass, and influences the composition of sugars, acids, and sulphate in exopolysaccharides.
Collapse
Affiliation(s)
- Matheus Pereira de Carvalho
- Institut Pascal, Université Clermont Auvergne, UMR CNRS 6602, Clermont-Ferrand F-63000, France; Laboratory of Biochemical Engineering, College of Chemistry and Food Engineering, Federal University of Rio Grande, Rio Grande, RS 96203-900, Brazil
| | - Michele Greque de Morais
- Laboratory of Microbiology and Biochemistry, College of Chemistry and Food Engineering, Federal University of Rio Grande, Rio Grande, RS 96203-900, Brazil
| | - Lucielen Oliveira Dos Santos
- Laboratory of Biotechnology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS 96203-900, Brazil
| | - Céline Laroche
- Institut Pascal, Université Clermont Auvergne, UMR CNRS 6602, Clermont-Ferrand F-63000, France
| | - Jorge Alberto Vieira Costa
- Laboratory of Biochemical Engineering, College of Chemistry and Food Engineering, Federal University of Rio Grande, Rio Grande, RS 96203-900, Brazil.
| |
Collapse
|
2
|
Wang M, Deng Y, Wang Y, Chen J, Li X, Du P, Zheng X, Qu J, Gao BZ, Peng X, Shao Y. Multidimensional Characterization of the Physiological State of Hematococcuspluvialis Using Scanning Structured Illumination Super-Resolution Microscopy. Anal Chem 2025; 97:4379-4386. [PMID: 39726344 DOI: 10.1021/acs.analchem.4c05470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Haematococcus pluvialis (HP) is a freshwater alga known for its ability to accumulate the potent antioxidant astaxanthin, which has extensive applications in aquaculture, pharmaceuticals, and cosmetics. Astaxanthin rapidly accumulates under unfavorable environmental conditions. However, the mechanisms of astaxanthin accumulation under various stress conditions remain unclear. This mainly stems from the limitations of current imaging techniques, which lack super-resolution, label-free, and three-dimensional (3D) imaging capabilities. In this study, we employed scanning structured illumination microscopy (SSIM) to achieve dynamic 3D ultrastructural reconstructions of HP cells under various stress conditions. This advanced imaging approach allowed us to closely observe the stress responses of HP cells, revealing significant morphological changes induced by different stressors. Additionally, we examined alterations in the HP cell wall under these conditions and explored the relationship between these morphological changes and the rate of astaxanthin accumulation during identical stress durations. The results clearly demonstrate that light stress, which induces a more comprehensive disruption of the entire cell, leads to a faster rate of astaxanthin accumulation compared to salt stress, which exerts its effects from the exterior inward. The rate of astaxanthin accumulation under light stress is approximately twice that observed under salt stress conditions. Our findings offer new insights into the subcellular dynamics of astaxanthin accumulation in HP, underscoring the effectiveness of super-resolution techniques in clarifying these processes.
Collapse
Affiliation(s)
- Meiting Wang
- School of Mechanical and Electrical Engineering, Guangdong University of Science and Technology, Dongguan 523083, China
| | - Yifeng Deng
- Key Laboratory of Optoelectronic Devices and Systems of the Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yuye Wang
- Key Laboratory of Optoelectronic Devices and Systems of the Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jiajie Chen
- Key Laboratory of Optoelectronic Devices and Systems of the Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xinran Li
- Key Laboratory of Optoelectronic Devices and Systems of the Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Peng Du
- Key Laboratory of Optoelectronic Devices and Systems of the Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiaomin Zheng
- Key Laboratory of Optoelectronic Devices and Systems of the Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of the Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Bruce Zhi Gao
- Department of Bioengineering and COMSET, Clemson University, Clemson, South Carolina 29634, United States
| | - Xiao Peng
- Key Laboratory of Optoelectronic Devices and Systems of the Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yonghong Shao
- Key Laboratory of Optoelectronic Devices and Systems of the Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
3
|
Cortés-Castillo M, Encinas A, Aizpuru A, Arriaga S. Effect of applying a magnetic field on the biofiltration of hexane over long-term operation period. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:3261-3276. [PMID: 39172336 DOI: 10.1007/s11356-024-34671-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 08/02/2024] [Indexed: 08/23/2024]
Abstract
The present study reports on the effect of magnetic field (MF) intensity on the biofiltration of hexane vapors. MF ranging from 0 to 30 mT (millitesla) was used to evaluate the biofiltration of hexane for 191 days under a fixed inlet load of 40 g m-3 h-1. A homogeneous MF generated by Helmholtz coils was used. The performance of the reactors was evaluated in terms of removal efficiency (RE), elimination capacity (EC), biomass content, and exopolysaccharide (EPS) production. Maximal removal efficiencies of 25%, 36%, and 40% were found for the control (H0), 10 mT (H10), and 30 mT (H30) reactors, corresponding to ECs of 14.2, 15, and 18 g m-3 h-1, respectively. In the last period (days 94 to 162), H10 and H30 showed 40% of RE improvement compared with Ho. Also, the removal occurred all along the bioreactor height for biofilters exposed to MF. Reactors achieved a total biomass content of 152, 180, and 147 mg VS (volatile solids) g-1 dry perlite for H0, H10, and H30, correspondingly, associated with EPS production of 30, 30, and 40 mg EPS g-1 VS. The main components of EPS affected by the MF were carbohydrates and glucuronic acid; proteins were slightly affected. Experiments with MF pulses of 4 and 2 h confirmed that MF exposure improved the removal efficiency of hexane, and after the pulse, removal enhancement was maintained for 5 days. Thus, the MF application by pulses could be an economically and friendly technology to improve the RE of volatile organic compounds (VOCs).
Collapse
Affiliation(s)
- Mónica Cortés-Castillo
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, (IPICYT), Camino a La Presa San José 2055, Colonia Lomas 4Ta Sección, C.P. 78216, San Luis Potosí, S.L.P., México
- División de Materiales Avanzados, Instituto Potosino de Investigación Científica y Tecnológica, (IPICYT), Camino a La Presa San José 2055, Colonia Lomas 4Ta Sección, C.P. 78216, San Luis Potosí, S.L.P., México
| | - Armando Encinas
- División de Materiales Avanzados, Instituto Potosino de Investigación Científica y Tecnológica, (IPICYT), Camino a La Presa San José 2055, Colonia Lomas 4Ta Sección, C.P. 78216, San Luis Potosí, S.L.P., México
| | - Aitor Aizpuru
- Universidad del Mar, Campus Puerto Ángel, Ciudad Universitaria S/N, Colonia Puerto Ángel, C.P. 70902, San Pedro Pochutla, Oaxaca, México
| | - Sonia Arriaga
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, (IPICYT), Camino a La Presa San José 2055, Colonia Lomas 4Ta Sección, C.P. 78216, San Luis Potosí, S.L.P., México.
| |
Collapse
|
4
|
Chen S, Jin Y, Yang N, Wei L, Xu D, Xu X. Improving microbial production of value-added products through the intervention of magnetic fields. BIORESOURCE TECHNOLOGY 2024; 393:130087. [PMID: 38042431 DOI: 10.1016/j.biortech.2023.130087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/17/2023] [Accepted: 11/20/2023] [Indexed: 12/04/2023]
Abstract
The magnetic field application is emerging as an auxiliary physical strategy to facilitate rapid biomass accumulation and intracellular production of compounds. However, the underlying mechanisms and principles governing the application of magnetic fields for microbial growth and biotransformation are not yet fully understood. Therefore, a better understanding of interdisciplinary technologies integration, expanded magnetic field application, and scaled-up industrial implementation is crucial. In this review, the magnetic field characteristics, magnetic field-assisted fermentation devices, and the working mechanism of magnetic field have been reviewed comprehensively from both physical and microbiological perspectives. The review suggests that magnetic fields affect the biochemical processes in microorganisms by mediating nutrient transport across membranes, electron transfer during photosynthesis and respiration, enzyme activity and gene expression. Moreover, the recent advances in magnetic field application for microbial fermentation and conversion in biochemical, food and agricultural fields have been summarized.
Collapse
Affiliation(s)
- Sirui Chen
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China
| | - Yamei Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China.
| | - Na Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China
| | - Liwen Wei
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China
| | - Dan Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China
| | - Xueming Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China
| |
Collapse
|
5
|
Nascimento RRC, Moreno MR, Azevedo RS, Costa JAV, Marins LF, Santos LO. Magnetic Fields as Inducers of Phycobiliprotein Production by Synechococcus elongatus PCC 7942. Curr Microbiol 2023; 80:242. [PMID: 37300570 DOI: 10.1007/s00284-023-03348-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023]
Abstract
This study aimed to analyze the effect of magnetic field (MF) application on the metabolism of Synechococcus elongatus PCC 7942. Concentrations of biomass, carbohydrate, protein, lipid, and photosynthetic pigments (chlorophyll-a, C-phycocyanin, allophycocyanin and phycoerythrin) were determined. In cultures with MF application (30 mT for 24 h d-1), there were increases of 47.5% in total protein content, 87.4% in C-phycocyanin, and 332.8% in allophycocyanin contents, by comparison with the control. Allophycocyanin is the most affected pigment by MF application. Therefore, its biosynthetic route was investigated, and four genes related to its synthesis were found. However, the analysis of the gene expression showed no statistical differences from the control culture, which suggests that induction of such genes may occur soon after MF application with consequent stabilization over time. MF application may be a cost-effective alternative to increase production of compounds of commercial interest by cyanobacteria.
Collapse
Affiliation(s)
- Raphael R C Nascimento
- Laboratory of Biotechnology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil
| | - Matheus R Moreno
- Laboratory of Biotechnology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil
| | - Raíza S Azevedo
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil
| | - Jorge A V Costa
- Laboratory of Biochemical Engineering, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil
| | - Luis F Marins
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil
| | - Lucielen O Santos
- Laboratory of Biotechnology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil.
| |
Collapse
|
6
|
Bauer LM, da Gloria Esquível M, Costa JAV, da Rosa APC, Santos LO. Influence of Cell Wall on Biomolecules Biosynthesis in Chlamydomonas reinhardtii Strains Exposed to Magnetic Fields. Curr Microbiol 2023; 80:96. [PMID: 36737538 DOI: 10.1007/s00284-023-03189-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/12/2023] [Indexed: 02/05/2023]
Abstract
The application of magnetic fields (MF) has attracted the attention of researchers due to their efficiency to change cell metabolism. Chlamydomonas reinhardtii is a biotechnologically useful microalga with versatile metabolism that may be a valuable organism to study the effects of the MF in biology. Therefore, two C. reinhardtii strains, one with cell wall (2137) and other which lacks the cell wall (Wt-S1-cc4694), were evaluated that a new sensitivity factor in the analysis could be included. Comparative studies were undertaken with the two C. reinhardtii strains under the MF intensities of 0.005 mT (terrestrial MF - control), 11 and 20 mT. Results indicated that the physical cell wall barrier protected cells against the MF applied during the assays. Only with the highest MF applied (20 mT) a slight increase in lipid concentration in the cell wall strain was detected. The lowest growth of the strain that lacks cell wall (Wt-S1) indicated that these cells are under a negative effect. To cope with the two MF stresses conditions, Wt-S1 cells produced more pigments (chlorophylls and carotenoids) and lipids and enhanced the antioxidant defense system. The raise of these compounds under MF could potentially have a positive biotechnological impact on algal biomass.
Collapse
Affiliation(s)
- Lenon M Bauer
- Laboratory of Biotechnology, Chemistry and Food School, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil
| | - Maria da Gloria Esquível
- Landscape, Environment, Agriculture and Food - LEAF Centre, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017, Lisboa, Portugal
| | - Jorge Alberto V Costa
- Laboratory of Biochemical Engineering, Chemistry and Food School, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil
| | - Ana Priscila C da Rosa
- Laboratory of Biochemical Engineering, Chemistry and Food School, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil
| | - Lucielen O Santos
- Laboratory of Biotechnology, Chemistry and Food School, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil.
| |
Collapse
|
7
|
Enhanced Algal Biomass Production in a Novel Electromagnetic Photobioreactor (E-PBR). Curr Microbiol 2022; 79:395. [DOI: 10.1007/s00284-022-03100-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 10/22/2022] [Indexed: 11/11/2022]
|
8
|
Zhang X, Zheng Y, Kumar Awasthi M, Zhou C, Barba FJ, Cai Z, Liu L, Rene ER, Pan D, Cao J, Sindhu R, Xia Q. Strategic thermosonication-mediated modulation of lactic acid bacteria acidification kinetics for enhanced (post)-fermentation performance. BIORESOURCE TECHNOLOGY 2022; 361:127739. [PMID: 35940323 DOI: 10.1016/j.biortech.2022.127739] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/30/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
This study explored the feasibility of thermosonication (TS)-prestressed inoculum with different fermentation patterns for regulating microbial (post)-fermentation acidification kinetics. Through a Box-Behnken design, stimulative (20 min, 400 W, 33 kHz, 25 °C) and inhibitive (10 min, 600 W, 33 kHz, 20 °C) effects on the acidification capability of Lactobacillus plantarum A3 were achieved without observing greatly activated/inactivated strains growth, further confirmed by lactose fermentation performed by Streptococcus thermophilus and Lactobacillus bulgaricus. Lactic acid was the major contributing factor responsible for TS-induced acidification modifications corresponding to the potential fluctuations of CoA biosynthesis, fatty acid degradation and chain elongation pathways to TS prestress. Microscopy observations and quantitative extracellular substance assays showed palpable stress disturbance on microbes, but causing insignificant effects on product characteristics. This investigation demonstrated the potential of controlled sonication prestress strategies to achieve dual engineering effects on microbial metabolic behavior, for alleviating post-acidification problem or enhancing process efficiencies.
Collapse
Affiliation(s)
- Xiaohui Zhang
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Yuanrong Zheng
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, Shaanxi Province, China
| | - Changyu Zhou
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Francisco J Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain
| | - Zhendong Cai
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Lianliang Liu
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2601DA Delft, the Netherlands
| | - Daodong Pan
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Jinxuan Cao
- School of Food and Health, Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam 691 505, Kerala, India
| | - Qiang Xia
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa 999078, Macau.
| |
Collapse
|
9
|
Saletnik B, Saletnik A, Słysz E, Zaguła G, Bajcar M, Puchalska-Sarna A, Puchalski C. The Static Magnetic Field Regulates the Structure, Biochemical Activity, and Gene Expression of Plants. Molecules 2022; 27:molecules27185823. [PMID: 36144557 PMCID: PMC9506020 DOI: 10.3390/molecules27185823] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 01/09/2023] Open
Abstract
The purpose of this paper is to review the scientific results and summarise the emerging topic of the effects of statistic magnetic field on the structure, biochemical activity, and gene expression of plants. The literature on the subject reports a wide range of possibilities regarding the use of the magnetic field to modify the properties of plant cells. MFs have a significant impact on the photosynthesis efficiency of the biomass and vigour accumulation indexes. Treating plants with SMFs accelerates the formation and accumulation of reactive oxygen species. At the same time, the influence of MFs causes the high activity of antioxidant enzymes, which reduces oxidative stress. SMFs have a strong influence on the shape of the cell and the structure of the cell membrane, thus increasing their permeability and influencing the various activities of the metabolic pathways. The use of magnetic treatments on plants causes a higher content of proteins, carbohydrates, soluble and reducing sugars, and in some cases, lipids and fatty acid composition and influences the uptake of macro- and microelements and different levels of gene expression. In this study, the effect of MFs was considered as a combination of MF intensity and time exposure, for different varieties and plant species. The following article shows the wide-ranging possibilities of applying magnetic fields to the dynamics of changes in the life processes and structures of plants. Thus far, the magnetic field is not widely used in agricultural practice. The current knowledge about the influence of MFs on plant cells is still insufficient. It is, therefore, necessary to carry out detailed research for a more in-depth understanding of the possibilities of modifying the properties of plant cells and achieving the desired effects by means of a magnetic field.
Collapse
Affiliation(s)
- Bogdan Saletnik
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, College of Natural Science, Rzeszow University, Ćwiklińskiej 2D, 35-601 Rzeszow, Poland
- Correspondence:
| | - Aneta Saletnik
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, College of Natural Science, Rzeszow University, Ćwiklińskiej 2D, 35-601 Rzeszow, Poland
| | - Ewelina Słysz
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, College of Natural Science, Rzeszow University, Ćwiklińskiej 2D, 35-601 Rzeszow, Poland
| | - Grzegorz Zaguła
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, College of Natural Science, Rzeszow University, Ćwiklińskiej 2D, 35-601 Rzeszow, Poland
| | - Marcin Bajcar
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, College of Natural Science, Rzeszow University, Ćwiklińskiej 2D, 35-601 Rzeszow, Poland
| | - Anna Puchalska-Sarna
- Laboratory of Physiotherapy in Developmental Disorders, Institute of Health Sciences, College of Medical Sciences, Rzeszow University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszow, Poland
| | - Czesław Puchalski
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, College of Natural Science, Rzeszow University, Ćwiklińskiej 2D, 35-601 Rzeszow, Poland
| |
Collapse
|
10
|
Update on the application of magnetic fields to microalgal cultures. World J Microbiol Biotechnol 2022; 38:211. [PMID: 36053367 DOI: 10.1007/s11274-022-03398-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/21/2022] [Indexed: 12/14/2022]
Abstract
Several studies have shown that any magnetic field (MF) applied to microalgae modifies its cultivation conditions and may favor biomolecule production since it interacts with the microorganisms and affect their growth. As a result, there are changes in concentrations and compositions of biomass and biomolecules. This review aims at updating MF applications to microalga cultures that were reported by studies conducted in the last 5 years. It shows the main studies that reached positive results of carbohydrate, lipid, protein and pigment production. Effects of MFs may be positive, negative or null, depending on some factors, such as intensity, exposure time, physiological state of cells and application devices. Therefore, this review details cultivation conditions used for reaching high concentration of biomolecules, explains the action of MFs on microalgae and describes their applicability to the biorefinery concept.
Collapse
|
11
|
Magnetic Field Action on Limnospira indica PCC8005 Cultures: Enhancement of Biomass Yield and Protein Content. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The effects of a magnetic field (MF) on the cyanobacteria Limnospira indica PCC 8005 growth rate and biomass composition were investigated. A device to apply the MF during the cultivation was built and the cyanobacteria were exposed to a steady 11 mT transverse MF. The growth increased with MF application, and when it was applied for 1 h per day, 123% more biomass was produced than in the control group. The protein content in the biomass cultured under this condition increased, achieving 60.4 w/w, while the Chl-a increased by 326%. The MF application for 1 h per day was found to be more efficient than when applied continuously for 24 h per day, in addition to being more economical and sustainable. This study showed an inexpensive and non-toxic way to enhance biomass concentration, leading to amounts more than 100% higher than those obtained in the control group. Furthermore, the high protein content in the biomass gave us several possibilities to increase the nutritional value of food.
Collapse
|
12
|
Chen L, Zhang K, Wang M, Zhang Z, Feng Y. Enhancement of magnetic field on fermentative hydrogen production by Clostridium pasteurianum. BIORESOURCE TECHNOLOGY 2021; 341:125764. [PMID: 34438289 DOI: 10.1016/j.biortech.2021.125764] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Microbial fermentation plays important roles in hydrogen production. Various methods to promote hydrogen production are being developed. Here, different magnetic field intensities (2.7 mT, 3.2 mT and 9.1 mT) were applied to the glucose fermentation system of Clostridium pasteurianum to evaluate the feasibility and effect of statistic magnetic field on hydrogen production. The results showed that the magnetic field intensity of 3.2 mT effectively enhanced the hydrogen production. The total glucose consumption reached 0.64 ± 0.010 mmol, the maximum hydrogen yield reached 2.34 ± 0.020 mol H2/mol glucose, and the maximum hydrogen production rate reached 0.065 ± 0.002 mmol/h. Compared with the control, the maximum biomass, carbon conversion efficiency and energy conversion efficiency were elevated by 366%, 114%, and 26.8%, respectively. Our results provide a new way for promotion of hydrogen production, better understanding of the interaction mechanism between magnetic field and microorganisms and for optimizing the hydrogen production.
Collapse
Affiliation(s)
- Lei Chen
- School of Life Science, Qufu Normal University, Qufu, Shandong 273165, China
| | - Ke Zhang
- School of Life Science, Qufu Normal University, Qufu, Shandong 273165, China
| | - Mingpeng Wang
- School of Life Science, Qufu Normal University, Qufu, Shandong 273165, China
| | - Zhaojie Zhang
- Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, USA
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
13
|
Zhu YM, Xu D, Ren H, Geng J, Xu K. Metagenomic insights into the "window" effect of static magnetic field on nitrous oxide emission from biological nitrogen removal process at low temperature. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 298:113377. [PMID: 34375917 DOI: 10.1016/j.jenvman.2021.113377] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/11/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
This study aimed to explore whether the "window" effect of static magnetic field (SMF) on nitrous oxide (N2O) emission from the biological nitrogen removal process at low temperature existed and reveal its biological mechanism at the gene level. Four sequencing batch reactors (SBRs) with SMFs of 0, 10, 45, and 75 mT were operated continuously for 110 days at 10 °C and the lowest N2O-Gas cumulative emission (5.50 mg N/day) and N2O conversion rate (4.28 %) in 45 mT SMF-SBR verified the existence of the "window" effect. In 45 mT SMF-SBR, nearly all enzymatic activities related to N2O reduction and corresponding functional gene abundances improved significantly. Metagenomic high-throughput sequencing analysis revealed that Alicycliphilus denitricans, Paracoccus denitrificans, Rhodopseudomonas palustris, Pseudomonas stutzeri, and Dechloromonas aromatica, as species related to N2O reduction, could be separately enriched by applying suitable SMF intensity. Gene functions annotation based on KEGG and CAZy databases indicated that SMF not only accelerated the rate of free ammonia into ammonia-oxidizing bacteria and electrons delivered to the corresponding denitrification reductases, but also enhanced the degradation of complex organic matter into smaller molecules, and thus reducing the production of N2O via nitrifier denitrification and incomplete denitrification pathways at 10 °C. These findings provided a guideline and presented a blueprint of ecophysiology for the future application of magnetic field to the reduction of N2O emission in wastewater treatment plants in the cold region.
Collapse
Affiliation(s)
- Yuan-Mo Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, China; Nanjing University Yixing Environmental Protection Research Institute, Yixing, 214200, Jiangsu, China
| | - Dan Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, China; Nanjing University Yixing Environmental Protection Research Institute, Yixing, 214200, Jiangsu, China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, China; Nanjing University Yixing Environmental Protection Research Institute, Yixing, 214200, Jiangsu, China
| | - Jinju Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, China; Nanjing University Yixing Environmental Protection Research Institute, Yixing, 214200, Jiangsu, China
| | - Ke Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, China; Nanjing University Yixing Environmental Protection Research Institute, Yixing, 214200, Jiangsu, China.
| |
Collapse
|
14
|
Simultaneous Application of Mixotrophic Culture and Magnetic Fields as a Strategy to Improve Spirulina sp. LEB 18 Phycocyanin Synthesis. Curr Microbiol 2021; 78:4014-4022. [PMID: 34595548 DOI: 10.1007/s00284-021-02666-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 09/20/2021] [Indexed: 11/27/2022]
Abstract
Spirulina is a filamentous microalga which is considered a promising alternative source of essential nutrients and active biomolecules. High production cost and the space required to install a photobioreactor are two of the greatest challenges in the industrial application of microalga-based products. Thus, this study aimed to improve Spirulina sp. LEB 18 biomass and phycocyanin content by combining the application of mixotrophic culture and magnetic fields (MF). Zarrouk medium was modified with 1 and 3 g/L liquid molasses and the application of 30 mT for 1·h/d was investigated. Mixotrophic culture with 1 g/L molasses showed the highest biomass concentration (1.62 g/L), carbohydrate content (25.6%), and lipid contents (8.7%) after 15 days. Although the combination of 30 mT and 1 g/L liquid molasses decreased biomass production (1.44 g/L), there was increase in protein yield (76.9%) and protein productivity (73.8 mg/L·d). The proposed method increased phycocyanin production by 145% and its purity from 0.584 in the control culture to 0.627. Data described by this study show that the combination of mixotrophic culture and MF application is a promising alternative to increase microalga protein and phycocyanin production.
Collapse
|
15
|
Li W, Ma H, He R, Ren X, Zhou C. Prospects and application of ultrasound and magnetic fields in the fermentation of rare edible fungi. ULTRASONICS SONOCHEMISTRY 2021; 76:105613. [PMID: 34119905 PMCID: PMC8207300 DOI: 10.1016/j.ultsonch.2021.105613] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 04/30/2021] [Accepted: 05/27/2021] [Indexed: 05/14/2023]
Abstract
Ultrasound has the potential to be broadly applied in the field of agricultural food processing due to advantages such as environmental friendliness, low energy costs, no need for exogenous additives and ease of operation. High-frequency ultrasound is mainly used in medical diagnosis and in the food industry for the identification of ingredients and production line quality testing, while low-frequency ultrasounds is mainly used for extraction and separation, accelerating chemical reactions, auxiliary microbial fermentation and quality enhancement in food industry. Magnetic fields have many advantages of convenient use, such as non-toxic, nonpolluting and safe. High-intensity pulsed magnetic fields are widely used as a physical non-thermal sterilization technology in food processing, while weak magnetic fields are better at activating microorganisms and promoting their growth. Ultrasound and magnetic fields, due to their positive biological effects, have a wide range of applications in the food processing industry. This paper provides an overview of the research progress and applications of ultrasound and magnetic fields in food processing from the perspectives of their biological effects and mechanisms of action. Additionally, with the development and application of physical field technology, physical fields can now be used to provide significant technical advantages for assisting fermentation. Suitable physical fields can promote the growth of microbial cells, improve mycelial production and increase metabolic activity. Furthermore, the current status of research into the use of ultrasound and magnetic field technologies for assisting the fermentation of rare edible fungi, is discussed.
Collapse
Affiliation(s)
- Wen Li
- School of Food & Biological Engineering, Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China; Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China
| | - Haile Ma
- School of Food & Biological Engineering, Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China.
| | - Ronghai He
- School of Food & Biological Engineering, Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Xiaofeng Ren
- School of Food & Biological Engineering, Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Cunshan Zhou
- School of Food & Biological Engineering, Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
16
|
Static Magnetic Fields Effects on Polysaccharides Production by Different Microalgae Strains. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11115299] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Microalgae are able to produce many valuable biomolecules, such as polysaccharides, that presents a large diversity of biochemical structures and functions as antioxidant, antifungal, anticancer, among others. Static magnetic fields (SMF) influence the metabolism of microorganisms and has been shown as an alternative to increase microalgae biomass, yield and compounds production. Especially, some studies have highlighted that SMF application could enhance carbohydrate content. This study aimed to evaluate different conditions of SMF on Spirulina and Chlorella in indoor and outdoor conditions, in order to confirm the influence of SMF on polysaccharides production, evaluating which polysaccharidic fraction could be enhanced by SMF and highlighting a possible modification in EPS composition. Starch from Chlorella and exopolysaccharides (EPS) from Spirulina were quantified and characterized. SMF increased the starch content in Chorella fusca biomass. EPS productions from A. platensis and Spirulina sp. were not significantly increased, and global composition appeared similar to the controls (constituted basically of 80–86% neutral sugars and 13–19% uronic acids). However, the monosaccharide composition analysis revealed a significant modification of composition, i.e., the amount of fucose, arabinose, rhamnose, galactose and glucuronic acid was increased, while the glucose content was decreased. SMF application led to significant modification of polysaccharides production and this study demonstrate that combining the outdoor conditions with SMF, the starch content and EPS composition was positively affected.
Collapse
|
17
|
da Costa Menestrino B, Sala L, Costa JAV, Buffon JG, Santos LO. Magnetic fields exhibit a positive impact on lipid and biomass yield during phototrophic cultivation of Spirulina sp. Bioprocess Biosyst Eng 2021; 44:2087-2097. [PMID: 34027616 DOI: 10.1007/s00449-021-02585-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 05/07/2021] [Indexed: 10/21/2022]
Abstract
This study aimed to investigate the effects of magnetic field (MF) application (1, 12 and 24 h day -1) to Spirulina sp. LEB 18 in different photosynthesis cycles (dark and/or light) during short (15 days) and long periods (50 days) of cultivation. MF application was performed via two sources: ferrite magnets and solenoids. At the end of cultivation, the biomass was characterized in terms of lipids, proteins, and carbohydrates. In the 15 day cultures, the highest maximum biomass concentrations (2.06 g L-1 and 1.83 g L-1) were observed when 30 mT was applied for 24 h day -1 or 12 h day -1 (on the light cycle), respectively. MF application throughout cultivation (24 h day -1) for more than 30 days is not recommended. In all conditions, there was an increase in the lipid concentration (from 14 to 45%). The protein profile suggested important changes in photosystems I and II due to MF application. Cell morphology was not altered by MF application. In conclusion, the effects on the metabolism of Spirulina sp. are directly related to the photosynthesis cycle and time period in which the MF was applied.
Collapse
Affiliation(s)
- Bruno da Costa Menestrino
- Laboratory of Biotechnology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, Rio Grande do Sul, 96203-900, Brazil
| | - Luisa Sala
- Laboratory of Biotechnology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, Rio Grande do Sul, 96203-900, Brazil
| | - Jorge Alberto Vieira Costa
- Laboratory of Biochemical Engineering, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, Rio Grande do Sul, 96203-900, Brazil
| | - Jaqueline Garda Buffon
- Laboratory Mycotoxins and Food Science, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, Rio Grande do Sul, 96203-900, Brazil
| | - Lucielen Oliveira Santos
- Laboratory of Biotechnology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, Rio Grande do Sul, 96203-900, Brazil.
| |
Collapse
|
18
|
Deamici KM, Santos LO, Costa JAV. Magnetic field as promoter of growth in outdoor and indoor assays of Chlorella fusca. Bioprocess Biosyst Eng 2021; 44:1453-1460. [PMID: 33760985 DOI: 10.1007/s00449-021-02526-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/31/2021] [Indexed: 10/21/2022]
Abstract
This study aimed to evaluate the influence of a magnetic field (MF) intensity of 25 mT on Chlorella fusca cultivation in outdoor and indoor conditions, and evaluate the changes in the macromolecules, pigment content and protein profile. C. fusca was cultivated for 15 d in raceway photobioreactor. MF was applied for 24 h d-1 and 1 h d-1. In outdoor cultivation, MF applied for 24 h d-1 increased 23% in the biomass concentration, while indoor assays resulted in an increase in both modes, with biomass production increasing between 70 and 85%. Biomass composition was altered when MF was applied for 1 h d-1 in indoor assays; the highest protein content was achieved (32.7%). Nitrate consumption was higher in outdoor assays, while MF application did not alter the protein profile. The results showed that combining the outdoor conditions with MF is advantageous, as higher biomass concentration can be achieved with lower energy expenditure.
Collapse
Affiliation(s)
- Kricelle Mosquera Deamici
- Laboratory of Biochemical Engineering, College of Chemistry and Food Engineering, Federal University of Rio Grande, Rio Grande-RS, 96203-900, Brazil
| | - Lucielen Oliveira Santos
- Laboratory of Biotechnology, College of Chemistry and Food Engineering, Federal University of Rio Grande, Rio Grande-RS, 96203-900, Brazil
| | - Jorge Alberto Vieira Costa
- Laboratory of Biochemical Engineering, College of Chemistry and Food Engineering, Federal University of Rio Grande, Rio Grande-RS, 96203-900, Brazil.
| |
Collapse
|
19
|
Silva PGPD, Prescendo Júnior D, Sala L, Burkert JFDM, Santos LO. Magnetic field as a trigger of carotenoid production by Phaffia rhodozyma. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
20
|
Sarraf M, Kataria S, Taimourya H, Santos LO, Menegatti RD, Jain M, Ihtisham M, Liu S. Magnetic Field (MF) Applications in Plants: An Overview. PLANTS 2020; 9:plants9091139. [PMID: 32899332 PMCID: PMC7570196 DOI: 10.3390/plants9091139] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/27/2020] [Accepted: 08/30/2020] [Indexed: 01/21/2023]
Abstract
Crop yield can be raised by establishment of adequate plant stand using seeds with high germination ratio and vigor. Various pre-sowing treatments are adopted to achieve this objective. One of these approaches is the exposure of seeds to a low-to-medium level magnetic field (MF), in pulsed and continuous modes, as they have shown positive results in a number of crop seeds. On the basis of the sensitivity of plants to MF, different types of MF have been used for magnetopriming studies, such as weak static homogeneous magnetic fields (0–100 μT, including GMF), strong homogeneous magnetic fields (milliTesla to Tesla), and extremely low frequency (ELF) magnetic fields of low-to-moderate (several hundred μT) magnetic flux densities. The agronomic application of MFs in plants has shown potential in altering conventional plant production systems; increasing mean germination rates, and root and shoot growth; having high productivity; increasing photosynthetic pigment content; and intensifying cell division, as well as water and nutrient uptake. Furthermore, different studies suggest that MFs prevent the large injuries produced/inflicted by diseases and pests on agricultural crops and other economically important plants and assist in reducing the oxidative damage in plants caused by stress situations. An improved understanding of the interactions between the MF and the plant responses could revolutionize crop production through increased resistance to disease and stress conditions, as well as the superiority of nutrient and water utilization, resulting in the improvement of crop yield. In this review, we summarize the potential applications of MF and the key processes involved in agronomic applications. Furthermore, in order to ensure both the safe usage and acceptance of this new opportunity, the adverse effects are also discussed.
Collapse
Affiliation(s)
- Mohammad Sarraf
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China;
- Department of Horticulture Science, Shiraz Branch, Islamic Azad University, Shiraz 71987-74731, Iran
| | - Sunita Kataria
- School of Biochemistry, Devi Ahilya Vishwavidyalaya, Indore 452001, India; (S.K.); (M.J.)
| | - Houda Taimourya
- Department of Horticulture, Horticol complex of Agadir (CHA), Agronomy and Veterinary Institute Hassan II, Agadir 80000, Morocco;
| | - Lucielen Oliveira Santos
- Laboratory of Biotechnology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande-RS 96203-900, Brazil;
| | - Renata Diane Menegatti
- Department of Botany, Institute of Biology, Federal University of Pelotas, Rio Grande-RS 96203-900, Brazil;
| | - Meeta Jain
- School of Biochemistry, Devi Ahilya Vishwavidyalaya, Indore 452001, India; (S.K.); (M.J.)
| | - Muhammad Ihtisham
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China;
- College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: (M.I.); (S.L.); Tel.: +86-139-8064-5789 (S.L.)
| | - Shiliang Liu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China;
- Correspondence: (M.I.); (S.L.); Tel.: +86-139-8064-5789 (S.L.)
| |
Collapse
|
21
|
Lu H, Wang X, Hu S, Han T, He S, Zhang G, He M, Lin X. Bioeffect of static magnetic field on photosynthetic bacteria: Evaluation of bioresources production and wastewater treatment efficiency. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1131-1141. [PMID: 32056340 DOI: 10.1002/wer.1308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/31/2020] [Accepted: 02/09/2020] [Indexed: 06/10/2023]
Abstract
Photosynthetic bacteria (PSB) technology is a promising method for biomass, protein, pigments, and other value-added substances generation from wastewater. However, the above bioresources production efficiency is relatively low. In this work, a static magnetic field (SMF) was used to promote bioresources production. Results showed that SMF had positive effects on value-added substances production. With 0.35 Tesla (T) SMF, the PSB biomass, protein, carotenoids, and bacteriochlorophyll concentration were promoted by 31.1%, 22.6%, 56.7%, and 73.1% compared with the control group, respectively. Biomass yield finally reached 0.58 g biomass/g COD removal, which was promoted by 37.1%. The doubling time was shortened by 37.9% in 0.35 T group, showing that SMF can promote cell growth. With 0.35 T SMF, the intracellular NADH dehydrogenase and ATP synthase activities concentration increased by 23.4% and 29.1%, respectively, thus increased the ATP content by 38.0%. Succinic dehydrogenase activity concentration greatly increased by 609.0% at 48 hr, which potentially accelerated the tricarboxylic acid cycle and COD degradation as well as enhanced biomass production. PRACTITIONER POINTS: SMF promoted PSB bioresource production during wastewater treatment processing. Biomass, protein, carotenoids, and Bchl concentration were promoted by 31.1%, 22.6%, 56.7%, and 73.1%, respectively. PSB yield of 0.35 T group was promoted by 37.1% compared with the control group. SDH concentration of 0.35 T was promoted by 609.0% compared with the control group. Increased NADH and ATP synthase activity concentration by SMF enhanced energy metabolism.
Collapse
Affiliation(s)
- Haifeng Lu
- College of Water Resource and Civil Engineering, China Agriculture University, Beijing, China
- State Key Laboratory of Coal Resources and Safe Mining, Beijing, China
| | - Xiaodan Wang
- College of Water Resource and Civil Engineering, China Agriculture University, Beijing, China
- State Key Laboratory of Coal Resources and Safe Mining, Beijing, China
| | - Shunfan Hu
- College of Water Resource and Civil Engineering, China Agriculture University, Beijing, China
- State Key Laboratory of Coal Resources and Safe Mining, Beijing, China
| | - Ting Han
- College of Water Resource and Civil Engineering, China Agriculture University, Beijing, China
- State Key Laboratory of Coal Resources and Safe Mining, Beijing, China
| | - Shichao He
- College of Water Resource and Civil Engineering, China Agriculture University, Beijing, China
- State Key Laboratory of Coal Resources and Safe Mining, Beijing, China
| | - Guangming Zhang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China
| | - Mou He
- College of Water Resource and Civil Engineering, China Agriculture University, Beijing, China
- State Key Laboratory of Coal Resources and Safe Mining, Beijing, China
| | - Xinyu Lin
- College of Water Resource and Civil Engineering, China Agriculture University, Beijing, China
- State Key Laboratory of Coal Resources and Safe Mining, Beijing, China
| |
Collapse
|
22
|
Application of Static Magnetic Fields on the Mixotrophic Culture of Chlorella minutissima for Carbohydrate Production. Appl Biochem Biotechnol 2020; 192:822-830. [PMID: 32601858 DOI: 10.1007/s12010-020-03364-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/22/2020] [Indexed: 10/24/2022]
Abstract
Magnetic field (MF) can interact with the metabolism of microalgae and has an effect (positive or negative) on the synthesis of molecules. In addition to MF, the use of pentose as a carbon source for cultivating microalgae is an alternative to increase carbohydrate yield. This study aimed at evaluating the MF application on the mixotrophic culture of Chlorella minutissima in order to produce carbohydrates. MF of 30 mT was generated by ferrite magnets and applied diurnally for 12 days. The addition of 5% pentose, MF application of 30 mT, and nitrogen concentration reduced (1.25 mM of KNO3) was the best conditions to obtain higher carbohydrate concentrations. MF application of 30 mT increased biomass and carbohydrate contents in 30% and 163.1%, respectively, when compared with the assay without MF application. The carbohydrate produced can be used for bioethanol production.
Collapse
|
23
|
Feng X, Chen Y, Lv J, Han S, Tu R, Zhou X, Jin W, Ren N. Enhanced lipid production by Chlorella pyrenoidosa through magnetic field pretreatment of wastewater and treatment of microalgae-wastewater culture solution: Magnetic field treatment modes and conditions. BIORESOURCE TECHNOLOGY 2020; 306:123102. [PMID: 32179399 DOI: 10.1016/j.biortech.2020.123102] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 06/10/2023]
Abstract
The cultivation of microalgae in municipal wastewater not only purifies the wastewater but also transforms nutrients into biomass that contains high-value lipids. In this study, conventional static bottom-magnetic field (bottom-MF) equipment and cost-effective bypass-magnetic field (bypass-MF) equipment were designed and independently coupled with a microalgae-wastewater system in different positions to evaluate the effect of magnetic field (MF) on microalgae biomass production and lipid accumulation. When the MF equipment was applied in the wastewater pretreatment unit, the bottom-MF pretreatment mode exhibited a more beneficial effect on subsequent biomass and lipid accumulation. However, when the MF equipment was applied in the microalgae-wastewater culture unit, there was no significant difference between the bottom-MF and bypass-MF modes. The results of the orthogonal experiment suggested the optimum conditions for lipid production were wastewater pretreatment by bottom-MF at 5000 Gs for 1 h, followed by microalgae-wastewater culture treatment by bypass-MF at 5000 Gs for 3 h.
Collapse
Affiliation(s)
- Xiaochi Feng
- Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, PR China; School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, PR China
| | - Yangguang Chen
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, PR China; Guangzhou Metro Design & Research Institute Co., Ltd., Guangzhou, Guangdong 510010, PR China
| | - Junhong Lv
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, PR China
| | - Songfang Han
- Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, PR China; School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, PR China
| | - Renjie Tu
- Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, PR China; School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, PR China
| | - Xu Zhou
- Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, PR China; School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, PR China
| | - Wenbiao Jin
- Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, PR China; School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, PR China.
| | - Nanqi Ren
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
24
|
Huo S, Chen X, Zhu F, Zhang W, Chen D, Jin N, Cobb K, Cheng Y, Wang L, Ruan R. Magnetic field intervention on growth of the filamentous microalgae Tribonema sp. in starch wastewater for algal biomass production and nutrients removal: Influence of ambient temperature and operational strategy. BIORESOURCE TECHNOLOGY 2020; 303:122884. [PMID: 32035387 DOI: 10.1016/j.biortech.2020.122884] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/15/2020] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
This paper investigated the effects of temperature and cultivation methods (batch or semi-continuous culture) on the filamentous microalgae Tribonema sp. biomass production and nutrients removal in starch wastewater under low intensity magnetic field (MF) intervention. The MF significantly promoted algal growth in the late logarithmic-phase of batch cultivation, and the effect was even more obvious at lower temperatures. The MF treated group at 30 °C accumulated the highest biomass of 4.44 g/L of batch culture, an increase of 15.0% compared with the control group. The oil content of Tribonema sp. was enhanced with the MF intervention, especially for the batch culture. In the semi-continuous culture under MF intervention, Tribonema sp. reached the high biomass of 18.45 g/L after 25 days. When gradually reducing hydraulic retention time (HRT) to 1 day, the average removal rates for COD, TN, NH3-N and TP were all more than 90% in the semi-continuous cultivation.
Collapse
Affiliation(s)
- Shuhao Huo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN 55108, United States
| | - Xiu Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Feifei Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wanqin Zhang
- Institute of Agricultural Environment and Sustainable Development, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dongjie Chen
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN 55108, United States
| | - Nana Jin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Kirk Cobb
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN 55108, United States
| | - Yanling Cheng
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN 55108, United States
| | - Lu Wang
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN 55108, United States
| | - Roger Ruan
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN 55108, United States.
| |
Collapse
|
25
|
Takahashi T. Routine Management of Microalgae Using Autofluorescence from Chlorophyll. Molecules 2019; 24:molecules24244441. [PMID: 31817244 PMCID: PMC6943654 DOI: 10.3390/molecules24244441] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/01/2019] [Accepted: 12/02/2019] [Indexed: 12/30/2022] Open
Abstract
From a high-potential biomass perspective, microalgae have recently attracted considerable attention due to their extensive application in many areas. Although studies searching for algal species with extensive application potential are ongoing, technical development for their assessment and maintenance of quality in culture are also critical and inescapable challenges. Considering the sensitivity of microalgae to environmental changes, management of algal quality is one of the top priorities for industrial applications. Helping substitute for conventional methods such as manual hemocytometry, turbidity, and spectrophotometry, this review presents an image-based, automated cell counter with a fluorescence filter to measure chlorophyll autofluorescence emitted by algae. Capturing chlorophyll-bearing cells selectively, the device accomplished precise qualification of algal numbers. The results for cell density using the device with fluorescence detection were almost identical to those obtained using hemocytometry. The automated functions of the device allow operators to reduce working hours, for not only cell density analysis but simultaneous multiparametric analysis such as cell size and algal status based on chlorophyll integrity. The automated device boldly supports further development of algal application and might contribute to opening up more avenues in the microalgal industry.
Collapse
Affiliation(s)
- Toshiyuki Takahashi
- Department of Chemical Science and Engineering, National Institute of Technology (KOSEN), Miyakonojo College, Miyakonojo, Miyazaki 885-8567, Japan
| |
Collapse
|
26
|
Physical and biological fixation of CO 2 with polymeric nanofibers in outdoor cultivations of Chlorella fusca LEB 111. Int J Biol Macromol 2019; 151:1332-1339. [PMID: 31758984 DOI: 10.1016/j.ijbiomac.2019.10.179] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/13/2019] [Accepted: 10/22/2019] [Indexed: 11/21/2022]
Abstract
The objective of this study was to cultivate Chlorella fusca LEB 111 with nanofibers indoors and outdoors to verify the effect on CO2 biofixation and macromolecule production. The microalgae were cultured with 10% (w v-1) polyacrylonitrile (PAN)/dimethylformamide (DMF) nanofibers containing 4% (w v-1) iron oxide nanoparticles (NPsFe2O3), which were added to the cultivations at concentrations of 0, 0.1, 0.3 and 0.5 g L-1. The CO2 biofixation was higher in outdoor assays (270.6 and 310.9 mg L-1 d-1) than in indoor assays (124.6 and 131 mg L-1 d-1) with 0.1 and 0.3 g L-1 nanofibers, respectively. The outdoor assays with 0.3 g L-1 nanofibers had 10.9% greater lipid production than the assays without nanofibers. Thus, this first study of outdoor cultivations with nanofibers as physical adsorbents of CO2 showed the effect of nanostructures in maximizing gas biofixation and producing biomolecules that can be used to obtain bioproducts.
Collapse
|
27
|
Deamici KM, Cuellar-Bermudez SP, Muylaert K, Santos LO, Costa JAV. Quantum yield alterations due to the static magnetic fields action on Arthrospira platensis SAG 21.99: Evaluation of photosystem activity. BIORESOURCE TECHNOLOGY 2019; 292:121945. [PMID: 31404753 DOI: 10.1016/j.biortech.2019.121945] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
Static magnetic fields (SMF) influence the metabolism of microorganisms, however, there is no knowledge explaining how SMF act in cells. This study aimed at evaluating the SMF (30 mT) effect on photosynthetic performance, growth and biomass composition of the cyanobacterium Arthrospira platensis SAG 21.99. A. platensis was cultivated under 30 mT applied for 1 h d-1 and 24 h for 10 d in glass bottles. SMF in both conditions increased cellular growth, achieving a 30% higher biomass concentration. SMF applied for 1 h d-1 increased the pigments and carbohydrate content. The quantum yield was used as an indicator of the photosystem II (PSII) activity and was shown to have been positively affected. SMF for 1 h d-1 had a significant effect on the OJIP curves. This is the first study that evaluated the photosynthetic activity in cyanobacteria cultures under SMF action.
Collapse
Affiliation(s)
- Kricelle Mosquera Deamici
- Laboratory of Biochemical Engineering, College of Chemistry and Food Engineering, Federal University of Rio Grande, 96203-900 Rio Grande, RS, Brazil
| | | | - Koenraad Muylaert
- Laboratory Aquatic Biology, KU Leuven Kulak, E. Sabbelaan 53, Kortrijk, Belgium
| | - Lucielen Oliveira Santos
- Laboratory of Biotechnology, College of Chemistry and Food Engineering, Federal University of Rio Grande, 96203-900 Rio Grande, RS, Brazil
| | - Jorge Alberto Vieira Costa
- Laboratory of Biochemical Engineering, College of Chemistry and Food Engineering, Federal University of Rio Grande, 96203-900 Rio Grande, RS, Brazil.
| |
Collapse
|
28
|
Tang H, Wang P, Wang H, Fang Z, Yang Q, Ni W, Sun X, Liu H, Wang L, Zhao G, Zheng Z. Effect of static magnetic field on morphology and growth metabolism of Flavobacterium sp. m1-14. Bioprocess Biosyst Eng 2019; 42:1923-1933. [PMID: 31444633 DOI: 10.1007/s00449-019-02186-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/22/2019] [Accepted: 07/29/2019] [Indexed: 11/28/2022]
Abstract
Increasing evidence shows that static magnetic fields (SMFs) can affect microbial growth metabolism, but the specific mechanism is still unclear. In this study, we have investigated the effect of moderate-strength SMFs on growth and vitamin K2 biosynthesis of Flavobacterium sp. m1-14. First, we designed a series of different moderate-strength magnetic field intensities (0, 50, 100, 150, 190 mT) and exposure times (0, 24, 48, 72, 120 h). With the optimization of static magnetic field intensity and exposure time, biomass and vitamin K2 production significantly increased compared to control. The maximum vitamin K2 concentration and biomass were achieved when exposed to 100 mT SMF for 48 h; compared with the control group, they increased by 71.3% and 86.8%, respectively. Interestingly, it was found that both the cell viability and morphology changed significantly after SMF treatment. Second, the adenosine triphosphate (ATP) and glucose-6-phosphate dehydrogenase (G6PDH) metabolism is more vigorous after exposed to 100 mT SMF. This change affects the cell energy metabolism and fermentation behavior, and may partially explain the changes in bacterial biomass and vitamin K2 production. The results show that moderate-strength SMFs may be a promising method to promote bacterial growth and secondary metabolite synthesis.
Collapse
Affiliation(s)
- Hengfang Tang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China.,Science Island Branch of Graduate, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Peng Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
| | - Han Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China.,Science Island Branch of Graduate, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Zhiwei Fang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China.,Science Island Branch of Graduate, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Qiang Yang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China.,Science Island Branch of Graduate, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Wenfeng Ni
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China.,Science Island Branch of Graduate, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Xiaowen Sun
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China.,Science Island Branch of Graduate, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Hui Liu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
| | - Li Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
| | - Genhai Zhao
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China.
| | - Zhiming Zheng
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China.
| |
Collapse
|
29
|
Duarte JH, de Souza CO, Druzian JI, Costa JAV. Light emitting diodes applied in Synechococcus nidulans cultures: Effect on growth, pigments production and lipid profiles. BIORESOURCE TECHNOLOGY 2019; 280:511-514. [PMID: 30808591 DOI: 10.1016/j.biortech.2019.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/30/2019] [Accepted: 02/01/2019] [Indexed: 06/09/2023]
Abstract
Researches about light emitting diodes (LEDs) as energy source in microalgae cultivations has been growing in recent years due to its spectral quality, durability and reduced energy consumption. In this study, green, red and yellow LEDs were evaluated as energy source in Synechococcus nidulans LEB 115 cultures. Productivities and specific growth rates were up to 2.5 times greater than in cultures using fluorescent light. The different LED colors evaluated did not influence the chlorophyll, carotenoid or lipid productions. Biomass cultivated with LEDs showed high amounts of saturated fatty acids (above 48%), which is desirable for biodiesel production. In addition to the Synechococcus nidulans LEB 115 growth stimulation, the application of green, red and yellow LEDs in the cultivations produces potential biomass for biodiesel synthesis and other industrial interest biomolecules utilization.
Collapse
Affiliation(s)
- Jessica Hartwig Duarte
- Laboratory of Biochemical Engineering, College of Chemistry and Food Engineering, Federal University of Rio Grande, Rio Grande, Brazil
| | - Carolina Oliveira de Souza
- Laboratory of Fish and Applied Chromatography, Faculty of Pharmacy, Federal University of Bahia, Salvador, Brazil
| | - Janice Izabel Druzian
- Laboratory of Fish and Applied Chromatography, Faculty of Pharmacy, Federal University of Bahia, Salvador, Brazil
| | - Jorge Alberto Vieira Costa
- Laboratory of Biochemical Engineering, College of Chemistry and Food Engineering, Federal University of Rio Grande, Rio Grande, Brazil.
| |
Collapse
|
30
|
Deamici KM, Santos LO, Costa JAV. Use of static magnetic fields to increase CO 2 biofixation by the microalga Chlorella fusca. BIORESOURCE TECHNOLOGY 2019; 276:103-109. [PMID: 30612030 DOI: 10.1016/j.biortech.2018.12.080] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 12/21/2018] [Accepted: 12/23/2018] [Indexed: 06/09/2023]
Abstract
This study aimed to use different conditions of magnetic field (MF) application during Chlorella fusca cultivation and evaluate CO2 biofixation by the microalga through growth kinetics in addition to the biomass composition. For this purpose, we tested different MF intensities applied for 1 h d-1 and for 24 h. Cultures exposed to the MF for 1 h d-1 (in both intensities) had greater biomass concentrations (1.42 g L-1) and 34% more productivity in the same time as the control assay. The biofixation rate increased by 50% with 60 mT for 1 h d-1, and the protein content was enhanced by 30 mT (56.21% w w-1). This study was the first to consider the MF effect on CO2 biofixation. MF applied for 1 h d-1 proved to be an efficient alternative method to increase the CO2 biofixation and growth of C. fusca besides to be an inexpensive and nontoxic method.
Collapse
Affiliation(s)
- Kricelle Mosquera Deamici
- Laboratory of Biochemical Engineering, College of Chemistry and Food Engineering, Federal University of Rio Grande, 96203-900 Rio Grande-RS, Brazil
| | - Lucielen Oliveira Santos
- Laboratory of Biotechnology, College of Chemistry and Food Engineering, Federal University of Rio Grande, 96203-900 Rio Grande-RS, Brazil
| | - Jorge Alberto Vieira Costa
- Laboratory of Biochemical Engineering, College of Chemistry and Food Engineering, Federal University of Rio Grande, 96203-900 Rio Grande-RS, Brazil.
| |
Collapse
|
31
|
The antioxidant activity of nanoemulsions based on lipids and peptides from Spirulina sp. LEB18. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.09.069] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
32
|
Shanthi G, Premalatha M, Anantharaman N. Effects of l-amino acids as organic nitrogen source on the growth rate, biochemical composition and polyphenol content of Spirulina platensis. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
33
|
Shao W, Ebaid R, Abomohra AEF, Shahen M. Enhancement of Spirulina biomass production and cadmium biosorption using combined static magnetic field. BIORESOURCE TECHNOLOGY 2018; 265:163-169. [PMID: 29890441 DOI: 10.1016/j.biortech.2018.06.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/04/2018] [Accepted: 06/05/2018] [Indexed: 05/16/2023]
Abstract
The effect of static magnetic field (SMF) on Spirulina platensis growth and its influence on cadmium ions (Cd2+) removal efficiency were studied. Application of 6 h day-1 SMF resulted in the highest significant biomass productivity of 0.198 g L-1 day-1. However, 10 and 15 mg L-1 of Cd2+ resulted in significant reduction in biomass productivity by 8.8 and 12.5%, respectively, below the control. Combined SMF showed 30.1% significant increase in biomass productivity over the control. On the other hand, increase of initial Cd2+ concentration resulted in significant reduction of Cd2+ removal efficiency, representing 79.7% and 61.5% at 10 and 15 mg L-1, respectively, after 16 days. Interestingly, application of SMF for 6 h day-1 enhanced Cd2+ removal efficiency counted by 91.4% and 82.3% after 20 days for cultures with initial Cd2+ concentration of 10 and 15 mg L-1, representing increase by 6.3 and 25.3%, respectively, over the SMF-untreated cultures.
Collapse
Affiliation(s)
- Weilan Shao
- School of the Environment and Safety Engineering, Jiangsu University, 212013 Jiangsu, China
| | - Reham Ebaid
- School of the Environment and Safety Engineering, Jiangsu University, 212013 Jiangsu, China
| | - Abd El-Fatah Abomohra
- School of Energy and Power Engineering, Jiangsu University, 212013 Jiangsu, China; Faculty of Science, Tanta University, 31527 Tanta, Egypt.
| | - Mohamed Shahen
- Faculty of Science, Tanta University, 31527 Tanta, Egypt; College of Life Science, Northwest A & F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
34
|
Costa SS, Miranda AL, Andrade BB, Assis DDJ, Souza CO, de Morais MG, Costa JAV, Druzian JI. Influence of nitrogen on growth, biomass composition, production, and properties of polyhydroxyalkanoates (PHAs) by microalgae. Int J Biol Macromol 2018; 116:552-562. [DOI: 10.1016/j.ijbiomac.2018.05.064] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/27/2018] [Accepted: 05/12/2018] [Indexed: 11/29/2022]
|
35
|
Zhu C, Zhai X, Wang J, Han D, Li Y, Xi Y, Tang Y, Chi Z. Large-scale cultivation of Spirulina in a floating horizontal photobioreactor without aeration or an agitation device. Appl Microbiol Biotechnol 2018; 102:8979-8987. [PMID: 30056515 DOI: 10.1007/s00253-018-9258-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 07/09/2018] [Accepted: 07/13/2018] [Indexed: 12/16/2022]
Abstract
A low-cost floating photobioreactor (PBR) without the use of aeration and/or an agitation device, in which carbon was supplied in the form of bicarbonate and only wave energy was utilized for mixing, was developed in our previous study. Scaling up is a common challenge in the practical application of PBRs and has not yet been demonstrated for this new design. To fill this gap, cultivation of Spirulina platensis was conducted in this study. The results demonstrated that S. platensis had the highest productivity at 0.3 mol L-1 sodium bicarbonate, but the highest carbon utilization (104 ± 2.6%) was obtained at 0.1 mol L-1. Culture of Spirulina aerated with pure oxygen resulted in only minor inhibition of growth, indicating that its productivity will not be significantly reduced even if dissolved oxygen is accumulated to a high level due to intermittent mixing resulting from the use of wave energy. In cultivation using a floating horizontal photobioreactor at the 1.0 m2 scale, the highest biomass concentration of 2.24 ± 0.05 g L-1 was obtained with a culture depth of 5.0 cm and the highest biomass productivity of 18.9 g m-2 day-1 was obtained with a depth of 10.0 cm. This PBR was scaled up to 10 m2 (1000 L) with few challenges; biomass concentration and productivity during ocean testing were little different than those at the 1.0 m2 (100 L) scale. However, the larger PBR had an apparent carbon utilization efficiency of 45.0 ± 2.8%, significantly higher than the 39.4 ± 0.9% obtained at the 1 m2 scale. These results verified the ease of scaling up floating horizontal photobioreactors and showed their great potential in commercial applications.
Collapse
Affiliation(s)
- Chenba Zhu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Xiaoqian Zhai
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Jinghan Wang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Desen Han
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Yonghai Li
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Yimei Xi
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Yajie Tang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, China
| | - Zhanyou Chi
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|