1
|
Chen J, Lin H, Cao L, Sui J, Wang X, Wang K. Unraveling the protein corona formation during the surface-enhanced Raman spectroscopy detection of malachite green in fish. Food Chem 2025; 485:144474. [PMID: 40288336 DOI: 10.1016/j.foodchem.2025.144474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 04/15/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
In surface-enhanced Raman spectroscopy (SERS) detection of drug residues, food matrices, especially the protein corona around nanomaterials, pose challenges to accurate detection. This study used sea bass, a fish product with a complex matrix, and malachite green as a target fish drug to investigate these effects. Multiple techniques were used to elucidate the interactions among proteins, malachite green, and gold nanoparticles (AuNPs). The detection limit of malachite green in fish extract (740 μg/L) was much higher than in standard solutions (0.42 μg/L). At a protein concentration of 0.5 mg/mL, a uniform protein corona formed around the AuNPs, resulting in an aggregation-sedimentation rate of 9.23 %. Malachite green adsorption by AuNPs decreased by 99 % after protein corona formation. The work reveals how protein corona affects SERS detection of fish drugs, guiding development of signal regulation strategies for enhanced SERS sensitivity in food safety.
Collapse
Affiliation(s)
- Junlin Chen
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Hong Lin
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Limin Cao
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Jianxin Sui
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Xiudan Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Kaiqiang Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| |
Collapse
|
2
|
Debroy A, Sinha AK, Maity C, Pulimi M, Peijnenburg WJGM, Mukherjee A. In-situ and ex-situ EPS-corona formation on ZnO QDs mitigates their environmental toxicity in the freshwater microalgae Chlorella sp. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:137034. [PMID: 39752834 DOI: 10.1016/j.jhazmat.2024.137034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/02/2024] [Accepted: 12/27/2024] [Indexed: 03/12/2025]
Abstract
The current work seeks to understand how the interactions between ZnO QDs and extracellular polymeric substances (EPS) may vary based on the types of EPS (loosely and tightly bound) and modes of eco-corona formation (In-situ or ex-situ). In-situ eco-corona refers to formation of an EPS layer on the QDs during the interactions with the algae whereas the ex-situ condition refers to forming the layer before the interactions. ZnO QDs were added at 0.25, 0.5, and 1.0 mg/L concentrations for pristine, in-situ, and ex-situ corona treatments with the cells. Pristine ZnO QDs induced significant oxidative stress in algal cells, as evident from increased levels of reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD), and catalase activity. This decreased the photosynthetic efficiency and caused significant growth inhibition in algae. In contrast, both the in-situ and ex-situ corona treatments with loosely bound and tightly bound EPS reduced the oxidative stress, improved the photosynthetic efficiency, and diminished growth inhibition effects. This study asserts the importance of EPS in reducing the toxicity of ZnO QDs, while maintaining the fluorescence activity. This ensures the sustainable usage of the ZnO QDs without any harm to aquatic ecosystems.
Collapse
Affiliation(s)
- Abhrajit Debroy
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Abhinav Kumar Sinha
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Chandan Maity
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India; (Organic) Material Science and Engineering Lab, Department of Chemistry, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Mrudula Pulimi
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, Leiden 2300 RA, the Netherlands; National Institute of Public Health and the Environment, Centre for the Safety of Substances and Products, Bilthoven 3720 BA, the Netherlands
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
3
|
Du T, Meng R, Qian L, Wang Z, Li T, Wu L. Formation of extracellular polymeric substances corona on TiO 2 nanoparticles: Roles of crystalline phase and exposed facets. WATER RESEARCH 2024; 249:120990. [PMID: 38086209 DOI: 10.1016/j.watres.2023.120990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024]
Abstract
Nanoparticles (NPs) in the environment can interact with macromolecules in the surrounding environment to form eco-corona on their surfaces, which in turn affects the environmental fate and toxicity of nanoparticles. Wastewater treatment plants containing large amounts of microbial extracellular polymeric substances (EPS) are an important source of NPs into the environment, where the formation of EPS coronas on NPs is critical. However, it remains unclear how the crystalline phase and exposed facets, which are intrinsic properties of NPs, affect the formation of EPS coronas on NPs. This study investigated the formation of EPS corona on three TiO2 NPs (representing the most widely used engineered NPs) with different crystalline phases and exposed facets. The protein type and abundance in EPS coronas on TiO2 NPs varied depending on the crystalline phase and exposed facets. Anatase with {101} facets and {001} facets preferred to adsorb proteins with lower molecular weights and higher H-bonding relevant amino acids, respectively, while EPS corona on rutile with {110} facets had proteins with higher hydrophobicity. In addition, the selective adsorption of proteins was primarily determined by steric hindrance, hydrogen bonding, and hydrophobic interaction between TiO2 NPs and proteins, which were affected by changes in aggregation state, surface hydroxyl density, and hydrophobicity of TiO2 NPs induced by crystalline phase and exposed facets. Moreover, crystalline phase and exposed facets-induced EPS corona changes altered the aggregation state and oxidation potential of TiO2-EPS corona complexes. These findings emphasize the important role of crystalline phase and exposed facets in the environmental behavior of nanoparticles and may provide insights into the safe design of nanoparticles.
Collapse
Affiliation(s)
- Tingting Du
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China.
| | - Ru Meng
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China; School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Liwen Qian
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Ziyan Wang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Tong Li
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China.
| | - Lijun Wu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| |
Collapse
|
4
|
Wu J, Wei W, Ahmad W, Li S, Ouyang Q, Chen Q. Enhanced detection of endocrine disrupting chemicals in on-chip microfluidic biosensors using aptamer-mediated bridging flocculation and upconversion luminescence. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:132025. [PMID: 37453351 DOI: 10.1016/j.jhazmat.2023.132025] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
Exposure to endocrine-disrupting chemicals (EDCs) can lead to detrimental impacts on human health, making their detection a critical issue. A novel approach utilizing on-chip microfluidic biosensors was developed for the simultaneous detection of two EDCs, namely, bisphenol A (BPA) and diethylstilbestrol (DES), based on upconversion nanoparticles doped with thulium (Tm) and erbium (Er), respectively. From the perspective of single nanoparticles, the construction of an active core-inert shell structure enhanced the luminescence of nanoparticles by 2.28-fold (Tm) and 1.72-fold (Er). From the perspective of the nanoparticle population, the study exploited an aptamer-mediated bridging flocculation mechanism and effectively enhanced the upconversion luminescence of biosensors by 8.94-fold (Tm) and 7.10-fold (Er). A chip with 138 tangential semicircles or quarter-circles was designed and simulated to facilitate adequate mixing, reaction, magnetic separation, and detection conditions. The on-chip microfluidic biosensor demonstrated exceptional capabilities for the simultaneous detection of BPA and DES with ultrasensitive detection limits of 0.0076 µg L-1, and 0.0131 µg L-1, respectively. The first reported aptamer-mediated upconversion nanoparticle bridging flocculation provided enhanced luminescence and detection sensitivity for biosensors, as well as offering a new perspective to address the instability of nanobiosensors.
Collapse
Affiliation(s)
- Jizhong Wu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Wenya Wei
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Waqas Ahmad
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Shuhua Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Qin Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China.
| |
Collapse
|
5
|
Guo WB, Wu C, Pan K, Yang L, Miao AJ. Pre-exposure to Fe 2O 3 or TiO 2 Nanoparticles Inhibits Subsequent Biological Uptake of 55Fe-Labeled Fe 2O 3 Nanoparticles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4831-4840. [PMID: 36938933 DOI: 10.1021/acs.est.2c08747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Aquatic organisms are frequently exposed to various nanoparticles (NPs) in the natural environment. Thus, studies of NP bioaccumulation should include organisms that have been previously exposed to NPs. Our study investigated the effects of pre-exposure of Tetrahymena thermophila (T. thermophila) to Fe2O3 or TiO2 NPs on the protozoan's subsequent uptake of 55Fe-labeled Fe2O3 (55Fe2O3) NPs. Molecular mechanisms underlying the pre-exposure effects were explored in transcriptomic and metabolomic experiments. Pre-exposure to either NPs inhibited the subsequent uptake of 55Fe2O3 NPs. The results of the transcriptomic experiment indicated that NP pre-exposure influenced the expression of genes related to phagosomes and lysosomes and physiological processes such as glutathione and lipid metabolism, which are closely associated with the endocytosis of 55Fe2O3 NPs. The differentially expressed metabolites obtained from the metabolomic experiments showed an enrichment of energy metabolism and antioxidation pathways in T. thermophila pre-exposed to NPs. Together, these results demonstrate that the pre-exposure of T. thermophila to Fe2O3 or TiO2 NPs inhibited the protozoan's subsequent uptake of 55Fe2O3 NPs, possibly by mechanisms involving the alteration of endocytosis-related organelles, the induction of oxidative stress, and a lowering of the intracellular energy supply. Thus, NP pre-exposure represents a scenario which can inform increasingly realistic estimates of NP bioaccumulation.
Collapse
Affiliation(s)
- Wen-Bo Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu Province, China PRC
| | - Chao Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu Province, China PRC
| | - Ke Pan
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China PRC
| | - Liuyan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu Province, China PRC
| | - Ai-Jun Miao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu Province, China PRC
| |
Collapse
|
6
|
Xiong Z, Zhang X, White JC, Liu L, Sun W, Zhang S, Zeng J, Deng S, Liu D, Zhao X, Wu F, Zhao Q, Xing B. Transcriptome Analysis Reveals the Growth Promotion Mechanism of Enteropathogenic Escherichia coli Induced by Black Phosphorus Nanosheets. ACS NANO 2023; 17:3574-3586. [PMID: 36602915 DOI: 10.1021/acsnano.2c09964] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
With the extensive production and application of black phosphorus (BP) nanosheets, release to the environment is inevitable, which raises concerns about the fate and effects of this two-dimensional (2D) material on sensitive receptors such as environmental microbes. Although the bacterial toxicity of BP nanosheets has been demonstrated, whether the biological response differs in pathogenic and nonpathogenic strains of a microorganism is unknown. Here, enteropathogenic Escherichia coli (EPEC) and nonpathogenic Escherichia coli DH5α (E. coli DH5α), Escherichia coli k12 (E. coli k12), and Bacillus tropicus (B. tropicus) are used to comparatively study the microbial toxicity of BP nanosheets. Upon exposure to BP nanosheets across a range of doses from 10 to 100 μg mL-1 for 12 h, EPEC experienced enhanced growth and E. coli DH5α and E. coli k12 were not affected, whereas B. tropicus exhibited clear toxicity. By combining transcriptome sequencing, proteome analysis, and other sensitive biological techniques, the mechanism of BP-induced growth promotion for EPEC was uncovered. Briefly, BP nanosheets activate the antioxidation system to resist oxidative stress, promote protein synthesis and secretion to attenuate membrane damage, enhance the energy supply, and activate growth-related pathways. None of these impacts were evident with nonpathogenic strains. By describing the mechanism of strain-dependent microbial effects, this study not only highlights the potential risks of BP nanosheets to the environment and to human health but also calls attention to the importance of model strain selection when evaluating the hazard and toxicity of emerging nanomaterials.
Collapse
Affiliation(s)
- Zhiqiang Xiong
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuejiao Zhang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Jason C White
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06504, United States
| | - Liwei Liu
- Li Dak Sum Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Siyu Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Jin Zeng
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuo Deng
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daxu Liu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Qing Zhao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
7
|
Zhang H, Li X, Wu D, Yu B, Lu S, Wang J, Ding J. A novel strategy for efficient capture of intact harmful algal cells using Zinc oxide modified carbon nitride composites. ALGAL RES 2023. [DOI: 10.1016/j.algal.2022.102932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Xiao T, Zhang L, Chen S, Dai X, Dong B. A novel application of dissolved ozone flotation on sewage sludge thickening: Performance and mechanism investigation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156874. [PMID: 35753468 DOI: 10.1016/j.scitotenv.2022.156874] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/31/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
Sludge thickening in sewage treatment plants is an essential step to reduce the sewage sludge volume and provide space for collaborative anaerobic digestion of sludge and other urban organic wastes. Dissolved ozone flotation (DOF) is a novel choice worthy of application in the field of sludge thickening. In order to investigate the effect of DOF thickening, the total solid content (TS %) was used to characterize the thickening performance under different O3 dosage. The optimal condition was determined to be polyacrylamide (PAM) dosage = 3 ‰ TS, air floatation time = 2 h and O3 dosage = 12 mg/g TS, under which the TS % of raw-sewage sludge (RS) increased from 0.33 ± 0.01 % to 8.03 ± 0.06 %. In this study, the relationship between the sludge thickening performance, physicochemical properties, and the changes of organic matter (content, structure and molecular weight) in extracellular polymers (EPS) was systematically clarified. The results indicated that the DOF couple with PAM could change the sludge surface properties, destroy the sludge floc structure, release intracellular organic matter, and increase moisture fluidity. The surface hydrophilicity/hydrophobicity, protein (PN) secondary structure and moisture distribution were mainly responsible for sludge thickening performance. Moreover, the change of TS % during the DOF thickening process was mainly caused by the variations of the organic matter content in EMPS layer. The identification of key influencing factors was conducive to the further regulation and upgrading of the novel application for enhanced sludge thickening in sewage treatment plants.
Collapse
Affiliation(s)
- Tingting Xiao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Lingjun Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Sisi Chen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Bin Dong
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; YANGTZE Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing 100038, PR China.
| |
Collapse
|
9
|
Formation of protein corona on interaction of pepsin with chitin nanowhiskers in simulated gastric fluid. Food Chem 2022; 383:132393. [PMID: 35182870 DOI: 10.1016/j.foodchem.2022.132393] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/09/2022] [Accepted: 02/06/2022] [Indexed: 11/21/2022]
Abstract
Protein corona (PC) usually changes the physicochemical properties of nanoparticles (NPs) and determines their ultimate fate in the physiological environment. As NPs are widely used in food, it is important to obtain a deep understanding of PC formation in the gastrointestinal fluid. Herein, we explored the adsorption of pepsin to chitin nanowhiskers (CNWs) and their interactions in simulated gastric fluid. Results suggest that the binding of pepsin reduced the surface potential of CNWs from 22.4 ± 0.15 to 12.9 ± 0.51 mV and caused their aggregation. CNWs quenched the fluorescence of pepsin and induced slightly changes in its secondary structure containing a reduction in the β-sheet content (∼ 3%) and an increase in the random coils (∼ 2%). The isothermal titration calorimetry (ITC) data suggested that the interaction forces between CNWs and pepsin were mainly hydrogen bonds and van der Waals forces.
Collapse
|
10
|
Assenhöj M, Eriksson P, Dönnes P, Ljunggren SA, Marcusson-Ståhl M, Du Rietz A, Uvdal K, Karlsson H, Cederbrant K. Protein interaction, monocyte toxicity and immunogenic properties of cerium oxide crystals with 5% or 14% gadolinium, cobalt oxide and iron oxide nanoparticles - an interdisciplinary approach. Nanotoxicology 2021; 15:1035-1058. [PMID: 34468264 DOI: 10.1080/17435390.2021.1966115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Metal oxide nanoparticles are widely used in both consumer products and medical applications, but the knowledge regarding exposure-related health effects is limited. However, it is challenging to investigate nanoparticle interaction processes with biological systems. The overall aim of this project was to improve the possibility to predict exposure-related health effects of metal oxide nanoparticles through interdisciplinary collaboration by combining workflows from the pharmaceutical industry, nanomaterial sciences, and occupational medicine. Specific aims were to investigate nanoparticle-protein interactions and possible adverse immune reactions. Four different metal oxide nanoparticles; CeOx nanocrystals with 5% or 14% Gd, Co3O4, and Fe2O3, were characterized by dynamic light scattering and high-resolution transmission electron microscopy. Nanoparticle-binding proteins were identified and screened for HLA-binding peptides in silico. Monocyte interaction with nanoparticle-protein complexes was assessed in vitro. Herein, for the first time, immunogenic properties of nanoparticle-binding proteins have been characterized. The present study indicates that especially Co3O4-protein complexes can induce both 'danger signals', verified by the production of inflammatory cytokines and simultaneously bind autologous proteins, which can be presented as immunogenic epitopes by MHC class II. The clinical relevance of these findings should be further evaluated to investigate the role of metal oxide nanoparticles in the development of autoimmune disease. The general workflow identified experimental difficulties, such as nanoparticle aggregate formation and a lack of protein-free buffers suitable for particle characterization, protein analyses, as well as for cell studies. This confirms the importance of future interdisciplinary collaborations.
Collapse
Affiliation(s)
- Maria Assenhöj
- Division of Occupational and Environmental Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Peter Eriksson
- Division of Molecular Surface Physics and Nanoscience, Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, Sweden
| | | | - Stefan A Ljunggren
- Division of Occupational and Environmental Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | | | - Anna Du Rietz
- Division of Molecular Surface Physics and Nanoscience, Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, Sweden
| | - Kajsa Uvdal
- Division of Molecular Surface Physics and Nanoscience, Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, Sweden
| | - Helen Karlsson
- Division of Occupational and Environmental Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | | |
Collapse
|
11
|
Wheeler KE, Chetwynd AJ, Fahy KM, Hong BS, Tochihuitl JA, Foster LA, Lynch I. Environmental dimensions of the protein corona. NATURE NANOTECHNOLOGY 2021; 16:617-629. [PMID: 34117462 DOI: 10.1038/s41565-021-00924-1] [Citation(s) in RCA: 184] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 05/04/2021] [Indexed: 05/02/2023]
Abstract
The adsorption of biomolecules to the surface of engineered nanomaterials, known as corona formation, defines their biological identity by altering their surface properties and transforming the physical, chemical and biological characteristics of the particles. In the first decade since the term protein corona was coined, studies have focused primarily on biomedical applications and human toxicity. The relevance of the environmental dimensions of the protein corona is still emerging. Often referred to as the eco-corona, a biomolecular coating forms upon nanomaterials as they enter the environment and may include proteins, as well as a diverse array of other biomolecules such as metabolites from cellular activity and/or natural organic matter. Proteins remain central in studies of eco-coronas because of the ease of monitoring and structurally characterizing proteins, as well as their crucial role in receptor engagement and signalling. The proteins within the eco-corona are optimal targets to establish the biophysicochemical principles of corona formation and transformation, as well as downstream impacts on nanomaterial uptake, distribution and impacts on the environment. Moreover, proteins appear to impart a biological identity, leading to cellular or organismal recognition of nanomaterials, a unique characteristic compared with natural organic matter. We contrast insights into protein corona formation from clinical samples with those in environmentally relevant systems. Principles specific to the environment are also explored to gain insights into the dynamics of interaction with or replacement by other biomolecules, including changes during trophic transfer and ecotoxicity. With many challenges remaining, we also highlight key opportunities for method development and impactful systems on which to focus the next phase of eco-corona studies. By interrogating these environmental dimensions of the protein corona, we offer a perspective on how mechanistic insights into protein coronas in the environment can lead to more sustainable, environmentally safe nanomaterials, as well as enhancing the efficacy of nanomaterials used in remediation and in the agri-food sector.
Collapse
Affiliation(s)
- Korin E Wheeler
- Department of Chemistry and Biochemistry, Santa Clara University, Santa Clara, CA, USA.
| | - Andrew J Chetwynd
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Kira M Fahy
- Department of Chemistry and Biochemistry, Santa Clara University, Santa Clara, CA, USA
| | - Brian S Hong
- Department of Chemistry and Biochemistry, Santa Clara University, Santa Clara, CA, USA
| | - Jose A Tochihuitl
- Department of Chemistry and Biochemistry, Santa Clara University, Santa Clara, CA, USA
| | - Lilah A Foster
- Department of Chemistry and Biochemistry, Santa Clara University, Santa Clara, CA, USA
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| |
Collapse
|
12
|
Zhang P, Xu XY, Zhang XL, Zou K, Liu BZ, Qing TP, Feng B. Nanoparticles-EPS corona increases the accumulation of heavy metals and biotoxicity of nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124526. [PMID: 33218909 DOI: 10.1016/j.jhazmat.2020.124526] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 11/07/2020] [Accepted: 11/07/2020] [Indexed: 05/25/2023]
Abstract
Microbial extracellular polymeric substances (EPS) coating nanoparticles (NPs) surface can form NPs-EPS corona, which significantly affect the adsorption of NPs to toxic substances and alter the ecotoxicological effect of NPs. In this work, the EPS coronas on TiO2 NPs (TNPs) and CeO2 NPs (CNPs) were characterized and the adsorption characteristics of NPs with and without EPS corona to five heavy metals were investigated in single-metal and multiple-metal systems. The results of spectral analysis showed that NPs-EPS corona exhibited new crystalline phases and abundant functional groups. Moreover, 42 and 13 proteins were identified in the TNPs-EPS and CNPs-EPS coronas, respectively. The rates of Cd2+, Pb2+, Cu2+, Ni2+ and Ag+ adsorption by NPs-EPS corona increased to values that were 6.7-7.6, 4.4-5.1, 4.2-5.5, 3.9-4.9 and 8.5-8.8 times those of NPs without EPS corona, respectively, in single-metal system. NPs-EPS coronas are effective in absorbing Ag+, Pb2+ and Cu2+ compared with Cd2+and Ni2+ in multiple metal adsorption. These results indicated that NPs-EPS corona effectively adsorb and remove heavy metals by forming NPs-EPS-metal complexes and inducing precipitation. However, NPs-EPS corona can enhance the toxicity of NPs by accumulating highly-toxic heavy metals in aquatic environments.
Collapse
Affiliation(s)
- Peng Zhang
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Xiao-Yan Xu
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Xue-Lin Zhang
- Cotton Sciences Research Institute of Hunan, Changde 415101, Hunan, China
| | - Kui Zou
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Bing-Zhi Liu
- Faculty of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Tai-Ping Qing
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Bo Feng
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, Hunan, China.
| |
Collapse
|
13
|
Tang R, Lan P, Ding C, Wang J, Zhang T, Wang X. A new perspective on the toxicity of arsenic-contaminated soil: Tandem mass tag proteomics and metabolomics in earthworms. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122825. [PMID: 32768809 DOI: 10.1016/j.jhazmat.2020.122825] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
The toxicity of low-level arsenic (As)-contaminated soil is not well understood. An integrated proteomic and metabolomic approach combined with morphological examination was used to investigate the potential biological toxicity of As-contaminated soil based on an exposure experiment with the earthworm Eisenia fetida. The results showed that the earthworm hindgut accumulated high As concentrations resulting in injury to the intestinal epithelia, chloragogenous tissues and coelom tissues. Furthermore, As-contaminated soil induced a significant increase in betaine levels and a decrease in dimethylglycine and myo-inositol levels in the earthworms, suggesting that the osmoregulatory metabolism of the earthworms may have been disturbed. The significantly altered levels of asparagine and dimethylglycine were proposed as potential biomarkers of As-contaminated soil. The upregulation of soluble calcium-binding proteins and profilin, the downregulation of sodium/potassium-transporting ATPase, and the proteins changes identified by gene ontology enrichment analysis confirmed that the earthworms suffered from osmotic stress. In addition, the significant changes in glycine-tRNA ligase activity and coelomic tissue injury revealed that As accumulation may disturb the earthworm immune system. This work provided new insight into the proteomic and metabolic toxicity of low-level As-contaminated soil ecosystems in earthworms, extended our knowledge of dual omics and highlighted the mechanisms underlying toxicity.
Collapse
Affiliation(s)
- Ronggui Tang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Ping Lan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Changfeng Ding
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Junsong Wang
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210014, China
| | - Taolin Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xingxiang Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of the Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
14
|
Zhang W, Dai X, Dong B, Dai L. New insights into the effect of sludge proteins on the hydrophilic/hydrophobic properties that improve sludge dewaterability during anaerobic digestion. WATER RESEARCH 2020; 173:115503. [PMID: 32035278 DOI: 10.1016/j.watres.2020.115503] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/09/2020] [Accepted: 01/11/2020] [Indexed: 06/10/2023]
Abstract
Extracellular polymer proteins have been reported to play an important role in enhancing sludge dewaterability during anaerobic digestion in our previous study. However, how the proteins in sludge determine sludge dewaterability remains to be determined. In this work, proteins from digested sludge were identified using label free proteomics analysis, and its hydrophilicity/hydrophobicity properties and functional groups were analysed. We determined that the microbial community variation between the three stages during the anaerobic digestion process was responsible for enhancing sludge dewaterability; The transformation from hydrophilicity to hydrophobicity of digested sludge surface is the result of functional groups distribution variation which caused by the proteins and microbial communities. This study provides a new insight into the development of anaerobic digestion based on sludge dewaterability.
Collapse
Affiliation(s)
- Wei Zhang
- School of Environmental Science and Engineering. Tongji University, Shanghai, 200092, PR China
| | - Xiaohu Dai
- School of Environmental Science and Engineering. Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| | - Bin Dong
- School of Environmental Science and Engineering. Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Lingling Dai
- School of Environmental Science and Engineering. Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| |
Collapse
|
15
|
Böhmert L, Voß L, Stock V, Braeuning A, Lampen A, Sieg H. Isolation methods for particle protein corona complexes from protein-rich matrices. NANOSCALE ADVANCES 2020; 2:563-582. [PMID: 36133244 PMCID: PMC9417621 DOI: 10.1039/c9na00537d] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/08/2020] [Indexed: 05/20/2023]
Abstract
Background: Nanoparticles become rapidly encased by a protein layer when they are in contact with biological fluids. This protein shell is called a corona. The composition of the corona has a strong influence on the surface properties of the nanoparticles. It can affect their cellular interactions, uptake and signaling properties. For this reason, protein coronae are investigated frequently as an important part of particle characterization. Main body of the abstract: The protein corona can be analyzed by different methods, which have their individual advantages and challenges. The separation techniques to isolate corona-bound particles from the surrounding matrices include centrifugation, magnetism and chromatographic methods. Different organic matrices, such as blood, blood serum, plasma or different complex protein mixtures, are used and the approaches vary in parameters such as time, concentration and temperature. Depending on the investigated particle type, the choice of separation method can be crucial for the subsequent results. In addition, it is important to include suitable controls to avoid misinterpretation and false-positive or false-negative results, thus allowing the achievement of a valuable protein corona analysis result. Conclusion: Protein corona studies are an important part of particle characterization in biological matrices. This review gives a comparative overview about separation techniques, experimental parameters and challenges which occur during the investigation of the protein coronae of different particle types.
Collapse
Affiliation(s)
- Linda Böhmert
- German Federal Institute for Risk Assessment, Dept. Food Safety Max-Dohrn-Str. 8-10 10589 Berlin Germany +49 (30) 18412-25800
| | - Linn Voß
- German Federal Institute for Risk Assessment, Dept. Food Safety Max-Dohrn-Str. 8-10 10589 Berlin Germany +49 (30) 18412-25800
| | - Valerie Stock
- German Federal Institute for Risk Assessment, Dept. Food Safety Max-Dohrn-Str. 8-10 10589 Berlin Germany +49 (30) 18412-25800
| | - Albert Braeuning
- German Federal Institute for Risk Assessment, Dept. Food Safety Max-Dohrn-Str. 8-10 10589 Berlin Germany +49 (30) 18412-25800
| | - Alfonso Lampen
- German Federal Institute for Risk Assessment, Dept. Food Safety Max-Dohrn-Str. 8-10 10589 Berlin Germany +49 (30) 18412-25800
| | - Holger Sieg
- German Federal Institute for Risk Assessment, Dept. Food Safety Max-Dohrn-Str. 8-10 10589 Berlin Germany +49 (30) 18412-25800
| |
Collapse
|
16
|
Li C, Wang J, Wang Y, Gao H, Wei G, Huang Y, Yu H, Gan Y, Wang Y, Mei L, Chen H, Hu H, Zhang Z, Jin Y. Recent progress in drug delivery. Acta Pharm Sin B 2019; 9:1145-1162. [PMID: 31867161 PMCID: PMC6900554 DOI: 10.1016/j.apsb.2019.08.003] [Citation(s) in RCA: 469] [Impact Index Per Article: 78.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/10/2019] [Accepted: 07/16/2019] [Indexed: 01/05/2023] Open
Abstract
Drug delivery systems (DDS) are defined as methods by which drugs are delivered to desired tissues, organs, cells and subcellular organs for drug release and absorption through a variety of drug carriers. Its usual purpose to improve the pharmacological activities of therapeutic drugs and to overcome problems such as limited solubility, drug aggregation, low bioavailability, poor biodistribution, lack of selectivity, or to reduce the side effects of therapeutic drugs. During 2015-2018, significant progress in the research on drug delivery systems has been achieved along with advances in related fields, such as pharmaceutical sciences, material sciences and biomedical sciences. This review provides a concise overview of current progress in this research area through its focus on the delivery strategies, construction techniques and specific examples. It is a valuable reference for pharmaceutical scientists who want to learn more about the design of drug delivery systems.
Collapse
Affiliation(s)
- Chong Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Jiancheng Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yiguang Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Huile Gao
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Gang Wei
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai 201203, China
| | - Yongzhuo Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Haijun Yu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yong Gan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yongjun Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lin Mei
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Huabing Chen
- School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Haiyan Hu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhiping Zhang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yiguang Jin
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| |
Collapse
|
17
|
Liu L, Li JH, Zi SF, Liu FR, Deng C, Ao X, Zhang P. AgNP combined with quorum sensing inhibitor increased the antibiofilm effect on Pseudomonas aeruginosa. Appl Microbiol Biotechnol 2019; 103:6195-6204. [PMID: 31129741 DOI: 10.1007/s00253-019-09905-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/21/2019] [Accepted: 05/08/2019] [Indexed: 10/26/2022]
Abstract
Pseudomonas aeruginosa biofilm lifestyle exhibits multidrug resistance in chronic bacterial infections. Alternative antimicrobial compounds or combination drug therapies must be urgently developed. In this work, the antibiofilm effect of Ag nanoparticle (AgNP) combined with the quorum sensing inhibitor (QSI) 4-nitropyridine N-oxide (4NPO) on P. aeruginosa biofilms was investigated. The biofilm biomass of P. aeruginosa was considerably reduced by 1.56-50 mg/L AgNP. However, 4NPO enhanced the ability of AgNP to inhibit P. aeruginosa biofilm formation (P < 0.05). The combination of AgNP with 4NPO could continuously inhibit biofilm development after 12 h, and 50 mg/L AgNP combined with 6.25 mg/L 4NPO thoroughly suppressed biofilm growth. The expression levels of QS genes and exopolysaccharide genes of biofilm treated with the combination of AgNP with 4NPO (AgNP-4NPO combination) were lower than those treated with AgNP alone (P < 0.05). Additional extracellular proteins and polysaccharides were determined in the samples treated with AgNP-4NPO combination. Based on proteomic analysis, this result was attributed to cell rupture caused by antimicrobial agents and intracellular materials released. The combination of the two antimicrobial agents could weaken the swimming ability of bacterial cells by damaging bacterial flagella and blocking rhlA gene expression. Thus, AgNP combined with QSI showed stronger antibiofilm ability than AgNP alone. These results may contribute to the development of antimicrobial agents.
Collapse
Affiliation(s)
- Lei Liu
- Department of Critical Care Medicine, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, China
| | - Jing-Hui Li
- Department of Critical Care Medicine, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, China.
| | - Shuang-Feng Zi
- Department of Critical Care Medicine, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, China
| | - Fu-Rong Liu
- Department of Critical Care Medicine, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, China
| | - Chao Deng
- Department of Critical Care Medicine, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, China
| | - Xue Ao
- Department of Critical Care Medicine, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, China
| | - Peng Zhang
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China.
| |
Collapse
|
18
|
Zhang P, Zhu J, Xu XY, Qing TP, Dai YZ, Feng B. Identification and function of extracellular protein in wastewater treatment using proteomic approaches: A minireview. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 233:24-29. [PMID: 30553123 DOI: 10.1016/j.jenvman.2018.12.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 11/04/2018] [Accepted: 12/09/2018] [Indexed: 06/09/2023]
Abstract
Microbial extracellular proteins serve as important functions in wastewater treatment process. Analysis of their compositions and properties is crucial to probe their specific functions. However, conventional analytical techniques cannot obtain interest protein information from complex proteins. Recently, the extracellular proteomics method has been applied to resolve the composition of extracellular proteins. In order to better understand the roles of extracellular protein in wastewater treatment process, this review provides the information on the proteomics methods and their application in investigating extracellular proteins involved in microbial attachment/aggregation, biodegradation of pollutants, and response to environmental stresses. Future work needs to exploit the full capability of the proteome.
Collapse
Affiliation(s)
- Peng Zhang
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China.
| | - Jing Zhu
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Xiao-Yan Xu
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Tai-Ping Qing
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - You-Zhi Dai
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Bo Feng
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China.
| |
Collapse
|
19
|
Muraleetharan V, Mantaj J, Swedrowska M, Vllasaliu D. Nanoparticle modification in biological media: implications for oral nanomedicines. RSC Adv 2019; 9:40487-40497. [PMID: 35542629 PMCID: PMC9076262 DOI: 10.1039/c9ra08403g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 11/28/2019] [Indexed: 11/21/2022] Open
Abstract
Nanomedicine has shown potential in enabling oral administration of poorly absorbable drugs, such as biologics. As part of the process related to optimisation of the safety and efficacy of nanomedicines, it is imperative that the interaction of nanoparticles with the biological systems – including the gut – is fully characterised. In this article, we provide an overview of the major mechanisms by which nanoparticles may transform upon introduction in biological media. Specifically, the phenomena of association, dissolution and biomolecule adsorption are discussed, together with factors which influence the occurrence of each phenomenon. The implications of these phenomena within the context of therapeutic action of nanomedicines, which includes reduced targeting efficiency, are also explored. Finally, we will comment on nanoparticle modification within the gut environment, including the currently available gastrointestinal models for the study of nano-bio interactions, with implications in the area of nanomedicines for oral administration. Nanomedicines undergo transformation in biological media, which impacts biological effects. Such transformation in the gut environment has implications in use of nanomedicines for oral administration.![]()
Collapse
Affiliation(s)
- Vishnaka Muraleetharan
- Institute of Pharmaceutical Science
- School of Cancer and Pharmaceutical Science
- King's College London
- London
- UK
| | - Julia Mantaj
- Institute of Pharmaceutical Science
- School of Cancer and Pharmaceutical Science
- King's College London
- London
- UK
| | - Magda Swedrowska
- Institute of Pharmaceutical Science
- School of Cancer and Pharmaceutical Science
- King's College London
- London
- UK
| | - Driton Vllasaliu
- Institute of Pharmaceutical Science
- School of Cancer and Pharmaceutical Science
- King's College London
- London
- UK
| |
Collapse
|