1
|
Panghal V, Singh A, Hooda V, Arora D, Bhateria R, Kumar S. Recent progress, challenges, and future prospects in constructed wetlands employing biochar as a substrate: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:1139-1166. [PMID: 39739227 DOI: 10.1007/s11356-024-35846-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 12/21/2024] [Indexed: 01/02/2025]
Abstract
Constructed wetlands (CWs) are a cost-effective, efficient, and long-term wastewater treatment solution in various countries. The efficacy and performance of constructed wetlands are greatly influenced by the substrate. Recently, biochar as a substrate, along with sand and gravel in constructed wetlands, has gained importance due to its various physical, chemical, and biological properties. This review presents a detailed study of biochar as a substrate in CWs and the mechanism involved in efficiency enhancement in pollutant removal. Different methods for producing biochar using various types of biomasses are also addressed. The effect of biochar in removing pollutants like biological oxygen demand (BOD), chemical oxygen demand (COD), nitrogen, heavy metals, and non-conventional pollutants (microcystin, phenanthrene, antibiotics, etc.) are also discussed. Furthermore, post-harvest utilization of constructed wetland macrophytic biomass via bioenergy production, biochar formation, and biosorbent formation is explained. Various challenges and future prospects in biochar-amended constructed wetlands are also discussed. Biochar proved to be an effective substrate in the removal of pollutants and proved to be a promising technique for wastewater treatment, especially for developing countries where the cost of treatment is a constraint. Biochar is an effective substrate; further modification in biochar with the right plant combination for different wastewater needs to be explored in the future. Future researchers in the field of constructed wetlands will benefit from this review during the utilization of biochar in constructed wetlands and optimization of biochar characteristics, viz., quantity, size, preparation method, and other biochar modifications.
Collapse
Affiliation(s)
- Vishal Panghal
- Department of Environmental Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Asha Singh
- Department of Environmental Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Vishwajit Hooda
- Department of Environmental Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Dinesh Arora
- Department of Environmental Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Rachna Bhateria
- Department of Environmental Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Sunil Kumar
- Department of Environmental Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| |
Collapse
|
2
|
Guo C, Chen C, Yan M, Huang X, Jiang J, Zhou L, Yang G. Carbon sources derived from the invasive plant Spartina alterniflora improved the nitrogen removal in seawater constructed wetland. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:1404-1414. [PMID: 39731670 DOI: 10.1007/s11356-024-35845-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/21/2024] [Indexed: 12/30/2024]
Abstract
Invasive alien plants pose a great threat to local plants and ecosystems. How to effectively alleviate this hazard is an unresolved issue. This study explored the carbon release characteristics of an invasive plant Spartina alterniflora and evaluated the ability of nitrogen removal from shrimp culture wastewater through constructing seawater wetland. The results showed that fresh S. alterniflora had a significantly higher carbon release potential and bioavailability than that of withered S. alterniflora, and alkali-heat treatment could increase the carbon release with an average COD release rate of 33.39 mg/g from fresh S. alterniflora. The removal rate of total nitrogen was improved by about 22% in seawater constructed wetlands by adding fresh S. alterniflora biomass. Moreover, the addition of fresh S. alterniflora biomass was beneficial to the increase in the abundance of denitrification-related genera Vibrio, which might be the key to the improvement of nitrate removal efficiency in seawater constructed wetland systems. These findings indicated that invasive plants S. alterniflora as carbon sources of seawater wetland was a feasible and effective resource utilization strategy.
Collapse
Affiliation(s)
- Chong Guo
- School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| | - Chen Chen
- Zhejiang Key Laboratory of Exploitation and Preservation of Costal Bio-Resource, Zhejiang Mariculture Research Institute, Wenzhou, 325000, China
| | - Maocang Yan
- Zhejiang Key Laboratory of Exploitation and Preservation of Costal Bio-Resource, Zhejiang Mariculture Research Institute, Wenzhou, 325000, China
| | - Xiaofeng Huang
- Wuxi Taihu Lake Restoration Co., Ltd., Wuxi, 214062, China
| | - Jun Jiang
- Wuxi Taihu Lake Restoration Co., Ltd., Wuxi, 214062, China
| | - Li Zhou
- Wuxi Taihu Lake Restoration Co., Ltd., Wuxi, 214062, China
| | - Guijun Yang
- School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
3
|
Zhang G, Hao Q, Xu S, Li Y, Zhang W, Liang Z, Jiang C. Optimizing nitrogen removal in constructed wetlands for low C/N ratio wastewater treatment: Insights from fermentation liquid utilization. WATER RESEARCH 2024; 262:122124. [PMID: 39053209 DOI: 10.1016/j.watres.2024.122124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/13/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
The inefficient nitrogen removal in constructed wetlands (CWs) can be attributed to insufficient carbon sources for low carbon-to-nitrogen (C/N) ratio wastewater. In this study, sugarcane bagasse fermentation liquid (SBFL) was used as a supplemental carbon source in intermittently aerated CWs to enhance nitrogen removal. The impact of different regulated influent C/N ratios on nitrogen removal and greenhouse gas (GHG) emissions was investigated. Results demonstrated that SBFL addition significantly enhanced the denitrification capacity, resulting in faster NO3--N removal compared to sucrose. Moreover, intermittently aerated CWs significantly improved NH4+-N removal efficiency compared to non-aerated CWs. The highest total nitrogen removal efficiency (98.3 %) was achieved at an influent C/N ratio of 5 in intermittently aerated CWs with SBFL addition. The addition of SBFL resulted in a reduction of N2O emissions by 17.8 %-43.7 % compared to sucrose. All CWs exhibited low CH4 emissions, with SBFL addition (0.035-0.066 mg·m-2h-1) resulting in lower emissions compared to sucrose. Additionally, higher abundance of denitrification (nirK, nirS and nosZ) genes as well as more abundant denitrifying bacteria were shown in CWs of SBFL inputs. The results of this study provide a feasible strategy for applying SBFL as a carbon source to improve nitrogen removal efficiency and mitigate GHG emissions in CWs.
Collapse
Affiliation(s)
- Guosheng Zhang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Qingju Hao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China; Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Shiwen Xu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Yanxun Li
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Wenxiao Zhang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Zhenghao Liang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Changsheng Jiang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China; Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China.
| |
Collapse
|
4
|
Zhang G, Hao Q, Xu S, Li Y, Zhang W, Liang Z, Jiang C. Mitigating nitrous oxide emissions from low carbon to nitrogen ratio wastewater treatment: Utilizing sugarcane bagasse fermentation liquid for constructed wetlands. BIORESOURCE TECHNOLOGY 2024; 406:131088. [PMID: 38981553 DOI: 10.1016/j.biortech.2024.131088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/02/2024] [Accepted: 07/06/2024] [Indexed: 07/11/2024]
Abstract
Sugarcane bagasse was recycled to produce fermentation liquid (FL) as a supplementary carbon source that was added to constructed wetlands (CWs) for regulating influent carbon to nitrogen ratio (C/N), and then being applied to investigate nitrogen transformations and greenhouse gas emissions. Results showed that this FL achieved faster NO3--N removal and lower N2O fluxes than sucrose did, and the lowest N2O flux (67.6 μg m-2h-1) was achieved when FL was added to CWs in a C/N of 3. In contrast, CH4 emissions were higher by the FL addition than by the sucrose addition, although the fluxes under both additions were in a lower range of 0.06-0.17 mg m-2h-1. The utilization of FL also induced significant variations in microbial communities and increased the abundance of denitrification genes. Results showed the application of FL from sugarcane bagasse can be an effective strategy for improving nitrogen removal and mitigating N2O emissions in CWs.
Collapse
Affiliation(s)
- Guosheng Zhang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Qingju Hao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China; Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Shiwen Xu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Yanxun Li
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Wenxiao Zhang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Zhenghao Liang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Changsheng Jiang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China; Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China.
| |
Collapse
|
5
|
Zhang X, Zhao Y, Wang Y, Qian H, Xing J, Joseph A, Rene ER, Li J, Zhu N. The interplay of hematite and photic biofilm triggers the acceleration of biotic nitrate removal. CHEMOSPHERE 2024; 358:142136. [PMID: 38692363 DOI: 10.1016/j.chemosphere.2024.142136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/03/2024]
Abstract
The soil-water interface is replete with photic biofilm and iron minerals; however, the potential of how iron minerals promote biotic nitrate removal is still unknown. This study investigates the physiological and ecological responses of photic biofilm to hematite (Fe2O3), in order to explore a practically feasible approach for in-situ nitrate removal. The nitrate removal by photic biofilm was significantly higher in the presence of Fe2O3 (92.5%) compared to the control (82.8%). Results show that the presence of Fe2O3 changed the microbial community composition of the photic biofilm, facilitates the thriving of Magnetospirillum and Pseudomonas, and promotes the growth of photic biofilm represented by the extracellular polymeric substance (EPS) and the content of chlorophyll. The presence of Fe2O3 also induces oxidative stress (•O2-) in the photic biofilm, which was demonstrated by electron spin resonance spectrometry. However, the photic biofilm could improve the EPS productivity to prevent the entrance of Fe2O3 to cells in the biofilm matrix and mitigate oxidative stress. The Fe2O3 then promoted the relative abundance of Magnetospirillum and Pseudomonas and the activity of nitrate reductase, which accelerates nitrate reduction by the photic biofilm. This study provides an insight into the interaction between iron minerals and photic biofilm and demonstrates the possibility of combining biotic and abiotic methods to improve the in-situ nitrate removal rate.
Collapse
Affiliation(s)
- Xiguo Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Yanhui Zhao
- Changjiang Basin Ecology and Environment Monitoring and Scientific Research Center, Changjiang Basin Ecology and Environment Administration, Ministry of Ecology and Environment, Wuhan, 430010, China
| | - Yimin Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Haoliang Qian
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Jun Xing
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Akaninyene Joseph
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX, Delft, the Netherlands
| | - Jizhou Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Ningyuan Zhu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; Institute of Soil Sciences, Chinese Academy of Sciences, 71 East Beijing Road, 210008, China.
| |
Collapse
|
6
|
Zhao L, Tang J, Xu Y, Zhang Y, Song Z, Fu G, Hu Z. A vertical-flow constructed wetland-microalgal membrane photobioreactor integrated system for treating high-pollution-load marine aquaculture wastewater: A lab-scale study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170465. [PMID: 38290681 DOI: 10.1016/j.scitotenv.2024.170465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/01/2024]
Abstract
Individual biological water treatment techniques often prove ineffective in removing accumulated high concentrations of nitrogen and phosphorus in the late stages of biofloc aquaculture. To address this issue, we integrated a previously developed autotrophic denitrification and nitrification integrated constructed wetland (ADNI-CW) with a microalgal membrane photobioreactor (MPBR). Under high nitrogen and phosphorus pollution loads in the influent, the standalone ADNI-CW system achieved removal rates of only 24.17 % ± 2.82 % for total nitrogen (TN) and 25.30 % ± 2.59 % for total phosphorus (TP). The optimal conditions for TN and TP degradation and microalgal biomass production in the Chlorella MPBR, determined using response surface methodology, were an inoculum OD680 of 0.394, light intensity of 161.583 μmol/m2/s, and photoperiod of 16.302 h light:7.698 h dark. Under the optimal operating conditions, the integrated ADNI-CW-MPBR system achieved remarkable TN and TP removal rates of 92.63 % ± 2.8 % and 77.46 % ± 8.41 %, respectively, and a substantial microalgal biomass yield of 54.58 ± 6.8 mg/L/day. This accomplishment signifies the successful achievement of efficient nitrogen and phosphorus removal from high-pollution-load marine aquaculture wastewater along with the acquisition of valuable microalgal biomass. A preliminary investigation of the microbial community composition and algal-bacterial interactions in different operational stages of the MPBR system revealed that unclassified_d__Bacteria, Chlorophyta, and Planctomycetes were predominant phyla. The collaborative relationships between bacteria and Chlorella surpassed competition, ensuring highly efficient nitrogen and phosphorus removal in the MPBR system. This study laid the foundation for the green and sustainable development of the aquaculture industry.
Collapse
Affiliation(s)
- Lin Zhao
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, College of Biology and Food engineering, Fuyang Normal University, Fuyang 236037, China; Guangdong Technology Research Center for Marine Algal Bioengineering, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Jun Tang
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, College of Biology and Food engineering, Fuyang Normal University, Fuyang 236037, China
| | - Yuwei Xu
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, College of Biology and Food engineering, Fuyang Normal University, Fuyang 236037, China
| | - Yifan Zhang
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, College of Biology and Food engineering, Fuyang Normal University, Fuyang 236037, China
| | - Zihao Song
- Guangdong Technology Research Center for Marine Algal Bioengineering, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Guiping Fu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| | - Zhangli Hu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
7
|
Bhattacharya R. Removal of nitric oxide in bioreactors: a review on the pathways, governing factors and mathematical modelling. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:12617-12646. [PMID: 38236567 DOI: 10.1007/s11356-024-31919-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/04/2024] [Indexed: 01/19/2024]
Abstract
The constant surge in nitric oxide in the atmosphere results in severe environmental degradation, negatively impacting human health and ecosystems, and is presently a global concern. Widely used physicochemical technologies for nitric oxide (NO) removal comes with high installation and operational costs and the production of secondary pollutants. Thus, biological treatment has been emphasized over the last two decades, but the poor solubility of NO in water makes it a challenging issue. The present article reviews the various technical aspects of biological treatment of nitric oxide, including the removal pathways and reactor configurations involved in the process. The most widely used technologies in this regard are chemical adsorption processes followed by biological reactors like biofilters, biotrickling filters and membrane bioreactors that enhance NO solubility and offer the flexibility and scope of further improvement in process design. The effect of various experimental and operational parameters on NO removal, including pH, carbon source, gas flow rate, gas residence time and presence of inhibitory components in the flue gas, is also discussed along with the developed mathematical models for predicting NO removal in a biological treatment system. There is an extensive scope of investigation regarding the development of an economical system to remove NO, and an exhaustive model that would optimize the process considering maximum practical parameters encountered during such operation. A detailed discussion made in this article gives a proper insight into all these areas.
Collapse
Affiliation(s)
- Roumi Bhattacharya
- Civil Engineering Department, Indian Institute of Engineering Science and Technology, Howrah, Shibpur, 711103, India.
| |
Collapse
|
8
|
Gupta N, Parsai T, Kulkarni HV. A review on the fate of micro and nano plastics (MNPs) and their implication in regulating nutrient cycling in constructed wetland systems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 350:119559. [PMID: 38016236 DOI: 10.1016/j.jenvman.2023.119559] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/06/2023] [Accepted: 11/04/2023] [Indexed: 11/30/2023]
Abstract
This review discusses the micro-nano plastics (MNPs) and their interaction with physical, chemical and biological processes in a constructed wetland (CW) system that is typically used as a nature-based tertiary wastewater treatment for municipal as well as industrial applications. Individual components of the CW system such as substrate, microorganisms and plants were considered to assess how MNPs influence the CW processes. One of the main functions of a CW system is removal of nutrients like nitrogen (N) and phosphorus (P) and here we highlight the pathways through which the MNPs influence CW's efficacy of nutrient removal. The presence of morphologically (size and shape) and chemically different MNPs influence the growth rate of microorganisms important in N and P cycling, invertebrates, decomposers, and the plants which affect the overall efficiency of a CW treatment system. Certain plant species take up the MNPs, and some toxicity has been observed. This review focuses on two significant aspects: (1) the presence of MNPs in a significant concentration affects the efficiency of N and P removal, and (2) the removal of MNPs. Because MNPs reduce the enzyme activities in abundance and overproduction of ROS oxidizes the enzyme active sites, resulting in the depletion of proteins, ultimately inhibiting nitrogen and phosphorus removal within the substrate layer. The review found that the majority of the studies used sand-activated carbon (SAC), granular-activated carbon (GAC), rice straw, granular limestone, and calcium carbonate, as a substrate for CW treatment systems. Common plant species used in the CW include Phragmites, Arabidopsis thaliana, Lepidium sativum, Thalia dealbata, and Canna indica, which were also found to be dominant in the uptake of the MNPs in the CWs. The MNPs were found to affect earthworms such as Eisenia fetida, Caenorhabditis elegans, and, Enchytraeus crypticus, whereas Metaphire vulgaris were found unaffected. Though various mechanisms take place during the removal process, adsorption and uptake mechanism effectively emphasize the removal of MNPs and nitrogen and phosphorus in CW. The MNPs characteristics (type, size, and concentration) play a crucial role in the removal efficiency of nano-plastics (NPs) and micro-plastics (MPs). The enhanced removal efficiency of NPs compared to MPs can be attributed to their smaller size, resulting in a faster reaction rate. However, NPs dose variation showed fluctuating removal efficiency, whereas MPs dose increment reduces removal efficiency. MP and NPs dose variation also affected toxicity to plants and earthworms as observed from data. Understanding the fate and removal of microplastics in wetland systems will help determine the reuse potential of wastewater and restrict the release of microplastics. This study provides information on various aspects and highlights future gaps and needs for MNP fate study in CW systems.
Collapse
Affiliation(s)
- Nikita Gupta
- School of Civil and Environmental Engineering, Indian Institute of Technology (IIT) Mandi, Kamand, Himachal Pradesh, 175005, India.
| | - Tanushree Parsai
- Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, 600036, India.
| | - Harshad Vijay Kulkarni
- School of Civil and Environmental Engineering, Indian Institute of Technology (IIT) Mandi, Kamand, Himachal Pradesh, 175005, India.
| |
Collapse
|
9
|
Zhang S, Liu F, Zhu H, Lv S, Wang B. Simultaneous nitrate and phosphorus removal in novel steel slag biofilters: Optimization and mechanism study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119558. [PMID: 37979385 DOI: 10.1016/j.jenvman.2023.119558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/16/2023] [Accepted: 11/04/2023] [Indexed: 11/20/2023]
Abstract
The simultaneous nitrate (NO3--N) and phosphorus (P) removal systems are considered to be an effective wastewater treatment technology. However, so far, there are few studies on system optimization to improve NO3--N and P removal. In this study, nine simultaneous NO3--N and P removal biofilters (SNPBs) were constructed to treat simulated wastewater. In order to optimize the NO3--N and P removal, different material loading positions were set: (1) red soil, steel slag, and rice straw (RSR), (2) steel slag, red soil, and rice straw (SRR), and (3) red soil, rice straw, and steel slag (RRS). Results showed that the above three treatments had mean removal efficiencies of 58%-91% for NO3--N and 55%-81% for TP, with the best N and P removal occurring in the SRR. The TN mass balance indicated that microbial removal was responsible for 78.2% of the influent TN in the SRR biofilter. The key microorganisms were Enterobacter, Klebsiella, Pseudomonas, Diaphorobacter, and unclassified_f_Enterobacteriaceae, which accounted for 61.9% of the total microorganisms. The main P-removal mechanism was the formation of Al-P, Fe-P, and Ca-P in red soil or steel slag layer. In addition, the decrease of SRR effluent pH from 11.86 in 1-7 days to 7.75 in 8-50 days indicated that red soil and rice straw had a synergistic effect on water pH reduction. These results suggest that a reasonable combination of steel slag with red soil and rice straw not only simultaneously removes NO3--N and P but also additionally solves the problem of high pH caused by steel slag.
Collapse
Affiliation(s)
- Shunan Zhang
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, PR China
| | - Feng Liu
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, PR China; University of Chinese Academy of Sciences, Beijing, 100039, PR China.
| | - Huixiang Zhu
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, PR China; University of Chinese Academy of Sciences, Beijing, 100039, PR China
| | - Shuangtong Lv
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, PR China; University of Chinese Academy of Sciences, Beijing, 100039, PR China
| | - Biaoyi Wang
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, PR China; College of Resources, Hunan Agricultural University, Hunan, 410128, PR China
| |
Collapse
|
10
|
Zhang Y, Sun S, Gu X, Yu Q, He S. Role of hydrophytes in constructed wetlands for nitrogen removal and greenhouse gases reduction. BIORESOURCE TECHNOLOGY 2023; 388:129759. [PMID: 37716572 DOI: 10.1016/j.biortech.2023.129759] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/18/2023]
Abstract
With the prominence of global climate change and proposal of carbon reduction concept, how to maximize the comprehensive effect of nitrogen removal and greenhouse gases (GHGs) reduction in constructed wetlands (CWs) has become crucial. As indispensable biological component of CWs, hydrophytes have received extensive attention owing to their application potential. This review comprehensively evaluates the functions of hydrophytes in nitrogen removal and GHGs reduction in CWs in terms of plants themselves, plant-mediated microbes and plant residues (hydrophyte carbon sources and hydrophyte-derived biochars). On this basis, the strategies for constructing an ideal CW system are put forward from the perspective of full life-cycle utilization of hydrophytes. Finally, considering the variability of plant species composition in CWs, outlooks for future research are specifically proposed. This review provides guidance and novel perspectives for the full life-cycle utilization of hydrophytes in CWs, as well as for the construction of an ideal CW system.
Collapse
Affiliation(s)
- Yu Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shanshan Sun
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xushun Gu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qingjiang Yu
- Daqing Water Group Company Limited, Daqing 163000, China
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Engineering Research Center of Landscape Water Environment, Shanghai 200031, China.
| |
Collapse
|
11
|
Zhang M, Sun S, Gu X, Peng Y, Yan P, Huang JC, He S, Bai X, Tian Y, Hu Y. Efficient nitrogen removal pathways and corresponding microbial evidence in tidal flow constructed wetlands for saline water treatment. ENVIRONMENTAL RESEARCH 2023; 234:116548. [PMID: 37414392 DOI: 10.1016/j.envres.2023.116548] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/14/2023] [Accepted: 07/02/2023] [Indexed: 07/08/2023]
Abstract
The artificial tidal wetlands ecosystem was believed to be a useful device in treating saline water, and it played a significant part in global nitrogen cycles. However, limited information is available on nitrogen-cycling pathways and related contributions to nitrogen loss in tidal flow constructed wetlands (TF-CWs) for saline water treatment. This study operated seven experimental tidal flow constructed wetlands to remove nitrogen from saline water at salinities of 0-30‰. Stable and high NH4+-N removal efficiency (∼90.3%) was achieved, compared to 4.8-93.4% and 23.5-88.4% for nitrate and total nitrogen (TN), respectively. Microbial analyses revealed the simultaneous occurrence of anaerobic ammonium oxidation (anammox), dissimilatory nitrate reduction to ammonium (DNRA), nitrification and denitrification, contributing to nitrogen (N) loss from the mesocosms. The absolute abundances were 5.54 × 103-8.35 × 107 (nitrogen functional genes) and 5.21 × 107-7.99 × 109 copies/g (16S rRNA), while the related genera abundances ranged from 1.81% to 10.47% (nitrate reduction) and from 0.29% to 0.97% (nitrification), respectively. Quantitative response relationships showed ammonium transformation were controlled by nxrA, hzsB and amoA, and nitrate removal by nxrA, nosZ and narG. Collectively, TN transformation were determined by narG, nosZ, qnorB, nirS and hzsB through denitrification and anammox pathways. The proportion of nitrogen assimilation by plants was 6.9-23.4%. In summary, these findings would advance our understanding of quantitative molecular mechanisms in TF-CW mesocosms for treating nitrogen pollution that caused algal blooms in estuarine/coastal ecosystems worldwide.
Collapse
Affiliation(s)
- Manping Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China; School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Shanshan Sun
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Xushun Gu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Yuanyuan Peng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Pan Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Jung-Chen Huang
- Department of Environmental Engineering, National Cheng Kung University, Tainan City, 701, Taiwan.
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| | - Xiaohui Bai
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Yun Tian
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, 361102, PR China
| | - Yang Hu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, PR China
| |
Collapse
|
12
|
Zhao L, Fu G, Zeng A, Cheng B, Song Z, Hu Z. Effects of different aeration strategies and ammonia-nitrogen loads on nitrification performance and microbial community succession of mangrove constructed wetlands for saline wastewater treatment. CHEMOSPHERE 2023; 339:139685. [PMID: 37532202 DOI: 10.1016/j.chemosphere.2023.139685] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 07/25/2023] [Accepted: 07/29/2023] [Indexed: 08/04/2023]
Abstract
In highly salinized environments, nitrification is the process that limits the rate of nitrogen transformation and removal. Therefore, this study concentrated on the impacts of different aeration strategies and NH4+-N loads on the nitrification performance of mangrove constructed wetlands (CWs), as well as investigating the succession mechanism of ammonia-oxidizing microorganisms (AOMs). The results showed that both the CW with continuous aeration (CA-CW) and intermittent aeration (IA-CW) achieved a nitrification efficiency of more than 98% under an NH4+-N loading of 1.25-4.7 g/(m2·d). However, the total nitrogen removal rates of IA-CW under low and high ammonia-nitrogen loads (LAL, 20.09 ± 4.4% and HAL, 8.77 ± 1.35%, respectively) were higher than those of CA-CW (16.11 ± 4.7% and 3.32 ± 2.3%, respectively), especially under HAL (p < 0.05). Pearson correlation analysis showed that under different operating conditions, the differential secretion of Kandelia candel rhizosphere organic matter had a certain regulatory effect on nitrification and denitrification groups such as Candidatus Nitrocosmicus, Nitrancea, Truepera, Pontibacter, Halomonas, and Sulfurovum in the wetland root layer. The quantitative polymerase chain reaction revealed that the NH4+-N load rate was the primary factor driving the succession of the AOMs, with different aeration strategies exacerbating this process. Overall, this study revealed that the dominant AOMs in mangrove CWs could be significantly altered by regulating the aeration modes and pollution loads to adjust the rhizosphere organic matter in situ, thereby resulting in more efficient nitrification.
Collapse
Affiliation(s)
- Lin Zhao
- Guangdong Technology Research Center for Marine Algal Bioengineering, Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China; Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen, 518055, China; Anhui Province Key Laboratory of Environmental Hormone and Reproduction, College of Biology and Food engineering, Fuyang Normal University, Fuyang, 236037, China.
| | - Guiping Fu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.
| | - Anzu Zeng
- Guangdong Technology Research Center for Marine Algal Bioengineering, Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Bingzhen Cheng
- Guangdong Technology Research Center for Marine Algal Bioengineering, Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Zihao Song
- Guangdong Technology Research Center for Marine Algal Bioengineering, Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Zhangli Hu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China; Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen, 518055, China.
| |
Collapse
|
13
|
Song X, Zhang G, Luan J, Liu G, Wang J. Effect of magnetic fields on simultaneous nitrification and denitrification microbial systems. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:517-529. [PMID: 37578871 PMCID: wst_2023_250 DOI: 10.2166/wst.2023.250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Magnetic fields positively influence the nitrogen removal efficiency in activated sludge systems. However, the structural succession pattern of microorganisms by magnetic fields still remains further explored. In this paper, a magnetic simultaneous nitrification and denitrification (MSND) reactor was constructed, and the influence of optimized magnetic field intensity (0, 10, 20 and 30 mT) on the nitrogen removal efficiency was investigated at HRT 6 h, 28.0-30.0 °C, and pH 7.0-8.0. Molecular biology was used to investigate the succession process of the dominant microbial flora and the functional gene structure of MSND systems. The results showed that the denitrification effects of the MSND system were significantly enhanced, which contributed to the lower concentration of total nitrogen in the effluent of the magnetic reactor than that of the nonmagnetic group reactor. The magnetic fields induced the succession of microbial community structure and improved the stability of microbial communities, thereby the relative abundances of nitrifying and denitrifying bacteria, and the functional genes were improved. In particular, the abundance of functional genes related to gene proliferation and transmembrane transport was increased. Therefore, the efficient nitrogen removal was achieved, which gives inspiration in the enhanced wastewater treatment by magnetic fields.
Collapse
Affiliation(s)
- Xintong Song
- School of Civil Engineering and Architecture, University of Jinan, Jinan 250022, China E-mail:
| | - Guanglu Zhang
- Jinan Urban Construction Group Co., Ltd, Jinan 250014, China
| | - Jiajia Luan
- Logistics Service Office of Weifang Vocational College, Weifang 262737, China
| | - Guicai Liu
- School of Civil Engineering and Architecture, University of Jinan, Jinan 250022, China
| | - Jiabin Wang
- School of Civil Engineering and Architecture, University of Jinan, Jinan 250022, China
| |
Collapse
|
14
|
Zhang H, Yan D, Zhu Y, Li Y, Zhang G, Jiao Y, Chen Q, Li S. Effect of Cd(II) shock loading on performance, microbial enzymatic activity and microbial community in a sequencing batch reactor. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118108. [PMID: 37201390 DOI: 10.1016/j.jenvman.2023.118108] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/20/2023]
Abstract
The performance, microbial enzymatic activity and microbial community of a sequencing batch reactor (SBR) were explored under instantaneous Cd(II) shock loading. After a 24-h Cd(II) shock loading of 100 mg/L, the chemical oxygen demand and NH4+-N removal efficiencies decreased significantly from 92.73% and 99.56% on day 22 to 32.73% and 43% on day 24, respectively, and then recovered to the normal values gradually. The specific oxygen utilization rate (SOUR), specific ammonia oxidation rate (SAOR), specific nitrite oxidation rate (SNOR), specific nitrite reduction rate (SNIRR) and specific nitrate reduction rate (SNRR) decreased by 64.81%, 73.28%, 77.77%, 56.84% and 52.46% on day 23 in comparison with the absence of Cd(II) shock loading, respectively, and they gradually returned to the normal levels. The changing trends of their associated microbial enzymatic activities including dehydrogenase, ammonia monooxygenase, nitrite oxidoreductase, nitrite reductase and nitrate reductase were in accordance with SOUR, SAOR, SNOR, SNIRR and SNRR, respectively. Cd(II) shock loading promoted the microbial reactive oxygen species production and lactate dehydrogenase release, indicating that instantaneous shock caused oxidative stress and damaged to cell membranes of the activated sludge. The microbial richness and diversity, and the relative abundance of Nitrosomonas and Thauera obviously decreased under the stress of Cd(II) shock loading. PICRUSt prediction showed that Cd (II) shock loading significantly affected Amino acid biosynthesis, Nucleoside and nucleotide biosynthesis. The present results are conducive to take adequate precautions to reduce the adverse effect on bioreactor performance in wastewater treatment systems.
Collapse
Affiliation(s)
- Hanlin Zhang
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Duosen Yan
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yaqi Zhu
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yun Li
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Guodong Zhang
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yan Jiao
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qinghua Chen
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shanshan Li
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
15
|
Xiao J, Lin G, Cao Z, Chu S, Cui L, Yang Y, Wu X. A shallow constructed wetland combining porous filter material and Rotala rotundifolia for advanced treatment of municipal sewage at low HRT. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:27593-27602. [PMID: 36383319 DOI: 10.1007/s11356-022-24111-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Water scarcity is a worldwide problem. Recycled municipal wastewater is considered a useful alternative to the conventional types of water resources. In this study, a shallow constructed wetland (SCW) with porous filter material and Rotala rotundifolia was used for advanced municipal sewage treatment. The wetland without plant was set as the control (SCW-C). The pollutant removal performance of the system at different hydraulic retention times (HRTs) was investigated. The diversity of the microbial community was analyzed, and the fate of nutrients, mainly N and P, in the system was discussed. Results showed that SCW was efficient in pollutant removal. Effluent concentrations of chemical oxygen demand (COD), total phosphorus (TP), and ammonium nitrogen (NH4+-N) were 15.0-23.6, 0.19-0.28, and 0.83-1.16 mg/L, separately, with average removal efficiencies of 61.2%, 46.3%, and 88.1% at HRT 18 h, which met the requirements of type [Formula: see text] water set by the environmental quality standards for surface water in China. The richness and evenness of the bacterial community were significantly higher in the plant-rooted SCW. They increased along with the system. The dominant genera in the system were phosphate-solubilizing bacteria, nitrifying bacteria, and denitrifying bacteria. The P in the influent mainly flowed to the substrate and plant. At the same time, most N was removed by nitrification and denitrification. These findings suggested that the SCW could remove pollutants from the municipal sewage effluent and meet the standard requirement at low HRT.
Collapse
Affiliation(s)
- Jibo Xiao
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou, 325035, China
| | - Guo Lin
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Zhuangzhuang Cao
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Shuyi Chu
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou, 325035, China.
- Wenzhou Vocational College of Science and Technology, Wenzhou, 325000, China.
| | - Lingzhou Cui
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou, 325035, China
| | - Yunlong Yang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou, 325035, China
| | - Xiangting Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| |
Collapse
|
16
|
Huang L, Bao J, Zhao F, Liang Y, Chen Y. New insight for purifying polluted river water using the combination of large-scale rotating biological contactors and integrated constructed wetlands in the cold season. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116433. [PMID: 36352732 DOI: 10.1016/j.jenvman.2022.116433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/19/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Ecological treatment technologies, applied to deal with polluted river water in the low temperature season, remain limited. In this study, a new insight was put forward for purifying polluted river water using a combination system (CS) of large-scale rotating biological contactors (RBCs) and integrated constructed wetlands in autumn and winter. The treatment performance, average removal contribution (RC), nitrification and denitrification rates, microbial community structure, and ecosystem service value were considered to estimate the combination system. Results revealed that the average removal efficiencies of ammonium (NH4+-N), total nitrogen (TN), total phosphorus (TP), and chemical oxygen demand (COD) reached 93.9%, 20.8%, 36.5%, and 37.1%, respectively. The combination system showed excellent removal efficiency of NH4+-N regardless of the effect of low temperature. The maximum values of nitrification and denitrification rates were 59.57 g N/(m3·d) and 0.78 g N/(m2·d), respectively. Considerable differences in bacterial community diversity, richness and relative abundance of functional microbes were observed in the main treatment units, resulting in different average RC to pollutants. The unit capital cost of CS purifying polluted river water was 260 USD/m3 and the operation and maintenance cost was 0.144 million USD/yr. Meanwhile, the ecosystem service value of the CS was 0.334 million USD in autumn and winter. CS not only possessed excellent pollutant purifying efficiencies, but also achieved high ecological service value in the cold season.
Collapse
Affiliation(s)
- Lei Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, 400716, China.
| | - Jun'an Bao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Fang Zhao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Yinkun Liang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Yucheng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, 400716, China.
| |
Collapse
|
17
|
Zhang M, Peng Y, Yan P, Huang JC, He S, Sun S, Bai X, Tian Y. Molecular analysis of microbial nitrogen transformation and removal potential in the plant rhizosphere of artificial tidal wetlands across salinity gradients. ENVIRONMENTAL RESEARCH 2022; 215:114235. [PMID: 36055394 DOI: 10.1016/j.envres.2022.114235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
This study explored the microbial nitrogen transformation and removal potential in the plant rhizosphere of seven artificial tidal wetlands under different salinity gradients (0-30‰). Molecular biological and stable isotopic analyses revealed the existence of simultaneous anammox (anaerobic ammonium oxidation), nitrification, DNRA (dissimilatory nitrate reduction to ammonium) and denitrification processes, contributing to nitrogen loss in rhizosphere soil. The microbial abundances were 2.87 × 103-9.12 × 108 (nitrogen functional genes) and 1.24 × 108-8.43 × 109 copies/g (16S rRNA gene), and the relative abundances of dissimilatory nitrate reduction and nitrification genera ranged from 6.75% to 24.41% and from 0.77% to 1.81%, respectively. The bacterial 16S rRNA high-throughput sequencing indicated that Bacillus, Zobellella and Paracoccus had obvious effects on nitrogen removal by heterotrophic nitrifying/aerobic denitrifying process (HN-AD), and autotrophic nitrification (Nitrosomonas, Nitrospira and Nitrospina), conventional denitrification (Bradyrhizobium, Burkholderia and Flavobacterium), anammox (Candidatus Brocadia and Candidatus Scalindua) and DNRA (Clostridium, Desulfovibrio and Photobacterium) organisms co-existed with HN-AD bacteria. The potential activities of DNRA, nitrification, anammox and denitrification were 1.23-9.23, 400.03-755.91, 3.12-35.24 and 30.51-300.04 nmolN2·g-1·d-1, respectively. The denitrification process contributed to 73.59-88.65% of NOx- reduction, compared to 0.71-13.20% and 8.20-15.42% via DNRA and anammox, as 83.83-90.74% of N2 production was conducted by denitrification, with the rest through anammox. Meanwhile, the nitrification pathway accounted for 95.28-99.23% of NH4+ oxidation, with the rest completed by anammox bacteria. Collectively, these findings improved our understanding on global nitrogen cycles, and provided a new idea for the removal of contaminants in saline water treatment.
Collapse
Affiliation(s)
- Manping Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China; School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yuanyuan Peng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Pan Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Jung-Chen Huang
- Department of Environmental Engineering, National Cheng Kung University, Tainan City 701, Taiwan
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Shanshan Sun
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Xiaohui Bai
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yun Tian
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361102, PR China
| |
Collapse
|
18
|
Yu X, Luo K, Rao W, Chen P, Lei K, Liu C, Cui Z, Zhang W, Mai K. Effects of replacing dietary fish meal with enzyme-treated soybean meal on growth performance, intestinal microbiota, immunity and mTOR pathway in abalone Haliotis discus hannai. FISH & SHELLFISH IMMUNOLOGY 2022; 130:9-21. [PMID: 36084886 DOI: 10.1016/j.fsi.2022.08.073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/15/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
In addition to eliminating most of the anti-nutritional factors in soybean meal, enzyme-treated soybean meal (ESBM) can also increase the proportion of small peptides. It was found that ESBM can replace fish meal (FM) either partially or completely in diets for some fish and shrimp species. In the present study, the effects of replacing dietary FM with ESBM on growth performance, intestinal microbiota, immunity and mTOR pathway in abalone Haliotis discus hannai (initial weight: 16.75 ± 0.09 g) were investigated after a 100-day feeding trial. Five experimental diets were designed to replace 0%, 25%, 50%, 75% and 100% of dietary FM by ESBM, which were named as ESBM0 (control), ESBM25, ESBM50, ESBM75 and ESBM100, respectively. Results showed that ESBM could replace up to 75% of FM in the diet without significant effect on the weight gain rate (WGR, 118.05%-124.16%) of abalone. The increasing dietary ESBM levels significantly decreased the trypsin activity from 418.52 to 286.52 U/mg protein in the digestive gland. No significant differences in the contents of total cholesterol (T-CHO), ammonia (BLA) and malondialdehyde (MDA) in cell-free hemolymph were observed among the groups with replacement levels of dietary FM by ESBM from 0% to 75%. Excessive replacement level of FM with ESBM (ESBM100) significantly increased the MDA content (2.33 nmol/mg prot.) and pro-inflammatory-related gene expression in digestive gland. Compared with the control group, the mTOR pathway in muscle was significantly upregulated in the ESBM75 group. The digestive gland in the ESBM100 group contained more golden refractile spherules than those in the other groups. The abundance of intestinal microbes such as Halomonas, Zobellella and Bacillus was decreased in the ESBM100 group. In conclusion, up to 75% of replacement of dietary FM by ESBM had no negative effects on the growth performance, intestinal microbiota, immunity and mTOR pathway of abalone.
Collapse
Affiliation(s)
- Xiaojun Yu
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Kai Luo
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Wanxiu Rao
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Peng Chen
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Keke Lei
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Chang Liu
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Zhengyi Cui
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Wenbing Zhang
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Wen Hai Road, Qingdao, 266237, China.
| | - Kangsen Mai
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Wen Hai Road, Qingdao, 266237, China
| |
Collapse
|
19
|
The intrinsic characteristics of microalgae biofilm and their potential applications in pollutants removal — A review. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Zhao L, Fu G, Pang W, Tang J, Guo Z, Hu Z. Biochar immobilized bacteria enhances nitrogen removal capability of tidal flow constructed wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155728. [PMID: 35523327 DOI: 10.1016/j.scitotenv.2022.155728] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
To improve the nitrogen removal (NR) capability of tidal flow constructed wetlands (TFCWs) for treatment of saline wastewater, biochar, produced from Cyperus alternifolius, was used to adsorb and immobilize a salt tolerant aerobic denitrifying bacteria (Zobellella sp. A63), and then was added as a substrate into the systems. Under low (2:1) or high (6:1) C/N ratio, the removal of NO3--N and total nitrogen (TN) in the biochar immobilized bacteria (BIB) dosing system (TFCW3) was significantly higher (q < 0.05) than that in the untreated system (TFCW1) and the biochar dosing system (TFCW2). At low C/N ratio, the removal rates of NO3--N, TN and chemical oxygen demand (COD) of TFCW3 were 68.2%, 72.6% and 82.5%, respectively, 15-20% higher than TFCW1 and 5-10% higher than TFCW2. When C/N ratio was further increased to 6, the pollutant removal rate of each system was greatly improved, but the removal rate of TFCW3 for NO3--N/TN was still nearly 10% and 5% higher than TFCW1 and TFCW2, respectively. Microbial community analysis showed that aerobic denitrifying bacteria, sulfate reducing bacteria and sulfur-driven denitrifiers (DNSOB) played the most important role of NR in TFCWs. Moreover, biochar bacterial agent significantly increased the abundances of genes involved in NR. The total copy numbers of bacterial 16S rRNA, nirS, nirK, drsA and drsB genes in the TFCW3 were 1.1- to 3.76-fold higher than those in the TFCW1; Especially at low C/N ratio, the copy number of drsA and drsB in the upper layer of TFCW3 were 85.5 and 455 times that of TFCW1, respectively. Thus, BIB provide a more feasible and effective amendment for constructed wetlands to improve the N removal of the saline wastewater by enhancing the microbial NR capacity mainly via aerobic and sulfur autotrophic denitrification.
Collapse
Affiliation(s)
- Lin Zhao
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Guiping Fu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| | - Weicheng Pang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Jia Tang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Zhipeng Guo
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Zhangli Hu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
21
|
Wang H, Zhang M, Lv Q, Xue J, Yang J, Han X. Effective co-treatment of synthetic acid mine drainage and domestic sewage using multi-unit passive treatment system supplemented with silage fermentation broth as carbon source. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 310:114803. [PMID: 35240564 DOI: 10.1016/j.jenvman.2022.114803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/04/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
A multi-unit passive treatment system was constructed for co-treatment of synthetic acid mine drainage (AMD) and domestic sewage supplemented with silage fermentation broth as carbon source. AMD and domestic sewage mixing pretreatment (unit 1) improved influent quality with pH increase, metals removal and nutrients supplement. The generated metal-rich sludge in unit 1 retained the metals (69.95% of Fe, 97.36% of Cu, 96.53% of Cd, 72.52% of Zn, and 8.59% of Mn) of influent prior to entering subsequent bioreactors. Silage fermentation broth performed well to promote bacterial sulfate reduction in sulfate reducing bioreactor system (unit 2). Residual metals (Mn) and organic/nutrient pollutants were further polished in surface-flow aerobic wetland (unit 3), where relatively high pH (7.4-8.6), aerobic condition, potential Mn-oxidizing bacteria, limestone layer and low concentrations of Fe(II) (0.04-3.5 mg/L) favored the efficient removal of Mn. After 210-day continuous flow-through experiment, this passive treatment system demonstrated the efficient performance, increasing pH from 2.5 to 8.0 with removal of metals (99%), sulfate and organic/nutrient pollutants. Diverse sulfate reducing bacteria including complete organic oxidizers (e.g. Desulfobacter) and incomplete organic oxidizers (e.g. Desulfovibrio) promoted sulfate reduction and organic/nutrient pollutants removal. Ammonia oxidizing bacteria (e.g. Nitrosomonas) and nitrite oxidizing bacteria (e.g. unidentified_Nitrospiraceae) were the potential nitrifiers for ammonia removal. Collaboration of anaerobic denitrifiers (e.g. Denitratisoma) and potential heterotrophic nitrifying and aerobic denitrifiers (HN-AD) achieved effective nitrate removal. This multi-unit treatment system with domestic sewage and silage fermentation broth as stimulation substrates provided an attractive option for AMD treatment.
Collapse
Affiliation(s)
- Haixia Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Mingliang Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China.
| | - Qi Lv
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Junbing Xue
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Jie Yang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Xuemei Han
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| |
Collapse
|
22
|
Chen X, Yang L, Chen F, Song Q, Feng C, Liu X, Li M. High efficient bio-denitrification of nitrate contaminated water with low ammonium and sulfate production by a sulfur/pyrite-based bioreactor. BIORESOURCE TECHNOLOGY 2022; 346:126669. [PMID: 34995779 DOI: 10.1016/j.biortech.2021.126669] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Sulfur-based autotrophic denitrification (SAD) and pyrite-based autotrophic denitrification (PAD) are important technologies that address nitrate pollution, but high sulfate production and low denitrification efficiency, respectively, limit their application in engineering. A bio-denitrification reactor with sulfur and pyrite as filler materials was studied to remove NO3--N from nitrate contaminated water. At an influent NO3--N concentration of 50 mg/L, NO3--N removal efficiency of the sulfur/pyrite-based bioreactor was 99.2%, producing less NH4+-N and SO42- than the sulfur-based bioreactor, even after long-term operation. Denitrification performance was significantly related to environmental variable, especially dissolved oxygen. Proteobacteria and Epsilonbacteraeota were the predominant phyla in the sulfur/pyrite-based bioreactor, and fewer dissimilatory nitrate reductions to ammonia process-related bacteria were enriched compared to those in the sulfur-based bioreactor. Sulfur-pyrite bio-denitrification provides an efficient alternative method for treatment of nitrate contaminated water.
Collapse
Affiliation(s)
- Xiaoyu Chen
- School of Environment, Tsinghua University, Beijing 100084, PR China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Lei Yang
- School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Fei Chen
- School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Qinan Song
- School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Chuanping Feng
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Xiang Liu
- School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Miao Li
- School of Environment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
23
|
Ji Z, Tang W, Pei Y. Constructed wetland substrates: A review on development, function mechanisms, and application in contaminants removal. CHEMOSPHERE 2022; 286:131564. [PMID: 34298298 DOI: 10.1016/j.chemosphere.2021.131564] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Constructed wetlands (CWs) are economical, efficient, and sustainable wastewater treatment method. Substrates in CWs inextricably link with the other key components and significantly influence the performance and sustainability of CWs. Gradually, CWs have been applied to treat more complex contaminants from different fields, thus has brought forward new demand on substrates for enhancing the performance and sustainability of CWs. Various materials have been used as substrates in CWs, and their individual characteristics and application advantages have been extensively studied in recent years. Therefore, this review summarizes the development, function mechanisms (e.g., filtration, adsorption, electron supply, supporting plant growth and microbial reproduction), categories, and applications of substrates in CWs. The interaction mechanisms of substrates with contaminants/plants/microorganisms are comprehensively described, and the characteristics and advantages of different substrate categories (e.g., Natural mineral materials, chemical products, biomass materials, industrial and municipal by-products, modified functional materials, and novel materials) are critically evaluated. Meanwhile, the influences of substrate layer arrangement and synergism on contaminants removal are firstly systematically reviewed. Furthermore, further research about substrates (e.g., clogging, life cycle assessment/management, internal relationship between components) should be systematically carried out for improving efficiency and sustainability of CWs.
Collapse
Affiliation(s)
- Zehua Ji
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China
| | - Wenzhong Tang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuansheng Pei
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China.
| |
Collapse
|
24
|
Cheng S, Huai J, Zhong F, Wu J, Yu S. Enhancing denitrification in constructed wetland with algae addition. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:1949-1960. [PMID: 34363152 DOI: 10.1007/s11356-021-15755-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Constructed wetlands (CWs) can be used for tertiary treatment of wastewater; however, carbon source shortages limit denitrification. We studied the effect of algae addition as an external carbon source in CWs and found that the nitrogen removal efficiency of CWs is highly dependent on the algae dosage. Optimal nitrogen removal percentage (80.5%) can be achieved by adding 81.1 mg·L-1 dry weight algae to the influent when the chemical oxygen demand/nitrogen (COD/N) ratio reaches 5.3. Longitudinal changes in the nitrogen concentrations, organic matter concentrations, and nitrogen functional genes were also analyzed. The algae addition strengthened the anoxic environment, boosted the volatile fatty acid concentrations, and improved the ratio of nitrite reductase gene (nirS) and copper-containing nitrite reductase (nirK)/16S rRNA, as well as the ratio of nitrate reductase gene (narG)/16S rRNA, thereby expanding the active space for denitrification. The addition of algae could potentially provide enough carbon to enhance denitrification during treatment of wastewater with a low COD/N ratio.
Collapse
Affiliation(s)
- Shuiping Cheng
- College of Environmental Science and Engineering, Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China.
- Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai, 200092, People's Republic of China.
| | - Jing Huai
- College of Environmental Science and Engineering, Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China
| | - Fei Zhong
- School of Life Science, Nantong University, 9 Seyuan Road, Nantong, Jiangsu, 226019, People's Republic of China
| | - Juan Wu
- College of Environmental Science and Engineering, Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai, 200092, People's Republic of China
| | - Shaole Yu
- China Construction Eighth Engineering Division Co., Ltd., Shanghai, 200135, People's Republic of China
| |
Collapse
|
25
|
Chi Z, Hou L, Li H. Effects of pollution load and salinity shock on nitrogen removal and bacterial community in two-stage vertical flow constructed wetlands. BIORESOURCE TECHNOLOGY 2021; 342:126031. [PMID: 34582988 DOI: 10.1016/j.biortech.2021.126031] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
To understand the denitrification performance and microbial community of two-stage vertical flow constructed wetlands (TS-VFCWs) with iron ore/manganese ore and wood chips, COD and nitrogen removal were investigated under pollution load and salinity shock. High removal of COD (87%), NH4+-N (97%), and NO3--N (98%) were achieved with increasing load, but the high pollutant load inhibited the denitrification performance in TS-VFCW with iron ore and wood chips. TS-VFCW with iron ore and wood chips showed good recovery potential with decreasing load. High NH4+-N removal was observed in TS-VFCW with manganese ore and wood chips. Treatment with 3% salinity decreased COD and NH4+-N removal but improved NO3--N removal, maintaining relatively good nitrogen removal. The addition of iron ore and manganese ore enriched nitrifying bacteria Flavobacterium and autotrophic denitrifying bacteria, while wood chips promoted heterotrophic denitrification and organic degradation. In addition, ubiquitous denitrifying bacteria under salinity ensured excellent denitrification performance.
Collapse
Affiliation(s)
- Zifang Chi
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, PR China
| | - Lining Hou
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, PR China
| | - Huai Li
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China.
| |
Collapse
|
26
|
Tan X, Yang YL, Li X, Gao YX, Fan XY. Multi-metabolism regulation insights into nutrients removal performance with adding heterotrophic nitrification-aerobic denitrification bacteria in tidal flow constructed wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:149023. [PMID: 34280639 DOI: 10.1016/j.scitotenv.2021.149023] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Constructed wetlands (CWs) usually exhibit limits in functional redundancy and diversity of microbial community contributing to lower performances of nutrients removal in decentralized domestic sewage treatment. To address this quandary, heterotrophic nitrification-aerobic denitrification (HN-AD) bacteria was added in tidal flow CWs (TFCWs) developing for nitrogen (N) and phosphorus (P) removal. With addition of HN-AD bacteria, TFCWs could be setup more rapidly and obtained better removal efficiencies of 66.9%-70.1% total nitrogen (TN), and 88.2%-92.4% total phosphorus (TP) comparing with control systems (TN: 53.9%; TP: 83.9%) during stable operation. Typical-cycles variations showed that TFCWs with addition of HN-AD bacteria promoted NO3--N and NH4+-N removal respectively under hydraulic retention time (HRT) of 14 h and 8 h with slight NO2--N accumulation. Activated alumina (AA) coupled with HN-AD bacteria decreased P release and relieved its poor removal performance in CWs. Based on metagenomic taxa and functional annotation, Pseudomonas and Thauera played pivotal roles in N removal in TFCWs. Furthermore, gradient oxic environments by 8 h-HRT promoted co-occurrence of heterotrophic nitrifiers (mostly Pseudomonas stutzeri) and autotrophic nitrifiers (mostly Nitrosomonas europaea. and Nitrospira sp.) which potentially accelerated NH4+-N transformation by elevated nitrification and denitrification related genes (e. g. amoABC, hao, napA and nirS genes). Meanwhile, the addition of HN-AD bacteria stimulated nirA and gltD genes of N assimilation processes probably leading to NH4+-N directly removal. The conceptual model of multi-metabolism regulation by HN-AD process highlighted importance of glk, gap2 and PK genes in glycolysis pathway which were vital drivers to nutrients metabolism. Overall, this study provides insights into how ongoing HN-AD bacteria-addition effected microbial consortia and metabolic pathways, serving theoretical basis for its engineered applications of TFCWs in decentralized domestic sewage treatment.
Collapse
Affiliation(s)
- Xu Tan
- Faculty of Architecture, Civil And Transportation Engineering, Beijing University of Technology, Beijing 100124, P. R. China
| | - Yan-Ling Yang
- Faculty of Architecture, Civil And Transportation Engineering, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Xing Li
- Faculty of Architecture, Civil And Transportation Engineering, Beijing University of Technology, Beijing 100124, P. R. China
| | - Yu-Xi Gao
- Faculty of Architecture, Civil And Transportation Engineering, Beijing University of Technology, Beijing 100124, P. R. China
| | - Xiao-Yan Fan
- Faculty of Architecture, Civil And Transportation Engineering, Beijing University of Technology, Beijing 100124, P. R. China.
| |
Collapse
|
27
|
Tan X, Yang YL, Liu YW, Li X, Zhu WB. Quantitative ecology associations between heterotrophic nitrification-aerobic denitrification, nitrogen-metabolism genes, and key bacteria in a tidal flow constructed wetland. BIORESOURCE TECHNOLOGY 2021; 337:125449. [PMID: 34320737 DOI: 10.1016/j.biortech.2021.125449] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
This study explored the quantitative mechanisms of heterotrophic nitrification-aerobic denitrification (HN-AD) in a pilot-scale two-stage tidal flow constructed wetland (TFCW). The TFCW packed shale ceramsite (SC) and activated alumina (AA) at each stage, respectively, and aimed to improve decentralized wastewater treatment efficiency. In start-up phases, AA-TFCW accelerated NH4+-N decline, reaching transformation rates of 6.68 mg NH4+-N/(L·h). In stable phases, SC-AA-TFCW resisted low-temperatures (<13 °C), achieving stable NH4+-N and TN removal with effluents ranging 6.36-8.13 mg/L and 9.43-14.7 mg/L, respectively. The dominant genus, Ferribacterium, was the core of HN-AD bacteria, simultaneously removing NH4+-N and NO3--N by nitrate assimilation and complete denitrification (NO3--N → N2), respectively. The quantitative associations highlighted importance of nitrification, nitrate assimilation, and denitrification in nitrogen removal. HN-AD bacteria (e.g., Lactococcus, Thauera, and Aeromonas) carried high-weight genes in quantitative associations, including napAB, nasA and gltBD, implying that HN-AD bacteria have multiple roles in SC-AA-TFCW operation.
Collapse
Affiliation(s)
- Xu Tan
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yan-Ling Yang
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yong-Wang Liu
- China Architecture Design and Research Group, Beijing 100044, China.
| | - Xing Li
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China
| | - Wen-Bo Zhu
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
28
|
Zhang M, Wang ZJ, Huang JC, Sun S, Cui X, Zhou W, He S. Salinity-driven nitrogen removal and its quantitative molecular mechanisms in artificial tidal wetlands. WATER RESEARCH 2021; 202:117446. [PMID: 34314924 DOI: 10.1016/j.watres.2021.117446] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/30/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
The present study investigated the performance in nitrogen removal and associated nitrogen transformation processes in seven mesocosms fed with saline water (0‰ to 30‰) to simulate tidal flow constructed wetlands (TF CWs). The highly effective and steady removal of NH4+-N (84.74% averagely) was obtained at various salinities, while the rates varied from 6.34% to 89.19% and 22.54% to 87.48% for NO3--N and total nitrogen (TN), respectively. Overall, nitrogen removal efficiencies were greater at lower salinities. Molecular biological analyses verified the co-occurrence of dissimilatory nitrate reduction to ammonium (DNRA), denitrification, anaerobic ammonium oxidation (anammox) and nitrification in the mesocosms, reportedly contributing to nitrogen removal in TF CWs. The absolute copy numbers of nitrogen functional genes and total bacterial 16S rRNA were 2.54 × 103-7.35 × 107 and 3.21 × 107-7.82 × 109 copies g-1 dg (dry gravel), respectively, with the dominant phyla, i.e., Chloroflexi, Proteobacteria, Actinobacteriota, Cyanobacteria, and Firmicutes, accounting for over 80% of the sequences. The relative abundances of the genera related to nitrification and dissimilatory nitrate reduction processes, i.e., denitrification, anammox and DNRA, varied from 0.16% to 0.89% and from 3.66% to 11.59%, respectively, while quantitative relationships confirmed NH4+-N transformation rate was jointly controlled by amoA, hzsB, nxrA and nrfA, and NO3--N removal rate by nirS, nosZ, narG, qnorB and nxrA. These findings may shed light on quantitative molecular mechanisms for nitrogen removal in TF CWs for the saline water treatment, providing a sustainable solution to nitrogen pollution problem in the estuary ecosystem.
Collapse
Affiliation(s)
- Manping Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Zi-Jing Wang
- Department of Environmental Engineering, National Cheng Kung University, Tainan City 701, Taiwan
| | - Jung-Chen Huang
- Department of Environmental Engineering, National Cheng Kung University, Tainan City 701, Taiwan.
| | - Shanshan Sun
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xijun Cui
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, PR China
| | - Weili Zhou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| |
Collapse
|
29
|
Zhao L, Fu G, Wu J, Pang W, Hu Z. Bioaugmented constructed wetlands for efficient saline wastewater treatment with multiple denitrification pathways. BIORESOURCE TECHNOLOGY 2021; 335:125236. [PMID: 33991883 DOI: 10.1016/j.biortech.2021.125236] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Six laboratory-scale constructed wetlands (CWs) were used to quantify the nitrogen removal (NR) capacity in the treatment of saline wastewater at high (6:1) and low (2:1) carbon-nitrogen ratios (C/N), with and without bioaugmentation of aerobic-denitrifying bacterium. Sustained high-efficiency nitrification was observed throughout the operation. However, under different C/N ratios, although the bioaugmentation of aerobic-denitrifying bacterium promoted the removal of NO3--N and TN, there were still great differences in denitrification. Molecular biology experiments revealed ammonia-oxidizing archaea, together with the Nitrosomonas and Nitrospira, led to highly efficient nitrification. Furthermore, aerobic-denitrifying bacterium and sulfur-driven denitrifiers were the core denitrification groups in CWs. By performing these combined experiments, it was possible to determine the optimal CW design and the most relevant NR processes for the treatment of salty wastewater. The results suggest that the bioaugmentation of salt-tolerant functional bacteria with multiple NR pathways are crucial for the removal of salty wastewater pollutants.
Collapse
Affiliation(s)
- Lin Zhao
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Guiping Fu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| | - Jinfa Wu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Weicheng Pang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Zhangli Hu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
30
|
Silveira DD, Filho PB, Philippi LS, Cantão ME, Foulquier A, Bayle S, Delforno TP, Molle P. In-depth assessment of microbial communities in the full-scale vertical flow treatment wetlands fed with raw domestic wastewater. ENVIRONMENTAL TECHNOLOGY 2021; 42:3106-3121. [PMID: 31997722 DOI: 10.1080/09593330.2020.1723709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 01/23/2020] [Indexed: 06/10/2023]
Abstract
A multiphase study was proposed to examine microbial communities linked to the nitrogen cycle in the first stage of four full-scale French vertical flow treatment systems. To this end, denaturing gradient gel electrophoresis (DGGE) was performed for structural assessment and quantitative PCR (qPCR) to enumerate the abundance of ammonia-oxidizing (AOB). 16S rRNA sequencing was used to assess the taxonomic profile followed by putative assessment of functional genes. The samples were collected under different conditions, such as operational time (presence/absence of sludge layer on the surface of the filters), season (winter and summer), sampling depth (0, 15 and 30 cm) and operation cycle (rest and feed periods). A structural disparity was noted in the upper layers, whereas higher similarity at 30 cm was observed highlighting the effect of organic matter on bacterial diversity. The 7th rest day was highlighted by an apparent decline in the microbial community abundance. Additionally, qPCR indicated that the largest amount of AOB was found at 30 cm depth and during the feeding period. From the taxonomic profile, Mycobacterium, Acinetobacter, Flavobacterium, and Nitrospira were the most abundant genre found in all systems. The functional prediction results showed predicted genes linked to the denitrification process. The results suggested that operating time and season were responsible for the pattern of the microbial community behavior. This study allowed us to further understand the bacterial dynamics and to advance the idea of design modifications made in the first stage of the classical French system to improve nitrogen removal are promising.
Collapse
Affiliation(s)
- D D Silveira
- UFSC, Federal University of Santa Catarina, Florianópolis, Brazil
- INRAE, Villeurbanne, France
| | - P Belli Filho
- UFSC, Federal University of Santa Catarina, Florianópolis, Brazil
| | - L S Philippi
- UFSC, Federal University of Santa Catarina, Florianópolis, Brazil
| | - M E Cantão
- EMBRAPA SUÍNOS E AVES, Concórdia, Brazil
| | - A Foulquier
- CNRS, LECA, Univ. Grenoble Alpes, Univ. Savoie Mont Blanc Grenoble, France
| | - S Bayle
- LGEI, IMT Mines Ales, Univ. Montpellier, Ales, France
| | - T P Delforno
- Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), Campinas University - UNICAMP, Campinas, Brazil
| | | |
Collapse
|
31
|
Gao F, Liu G, She Z, Ji J, Gao M, Zhao Y, Guo L, Jin C. Effects of salinity on pollutant removal and bacterial community in a partially saturated vertical flow constructed wetland. BIORESOURCE TECHNOLOGY 2021; 329:124890. [PMID: 33662852 DOI: 10.1016/j.biortech.2021.124890] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 06/12/2023]
Abstract
This study investigated the influence of salinity on pollutant removal and bacterial community within a partially saturated vertical flow constructed wetland (PS-VFCW). High removal rates of NH4+-N (88.29 ± 4.97-100 ± 0%), total inorganic nitrogen (TIN) (50.00 ± 7.21-62.81 ± 7.21%) and COD (91.08 ± 2.66-100 ± 0%) were achieved at 0.4-2.4% salinity levels. The removal of ammonia, TIN and organic matter occurred mainly in unsaturated zone. Salt-adaptable microbes became the dominant bacteria with salinity elevated. The proportion of ammonia-oxidizing bacteria (AOB) in the 0-5 cm depth layer (unsaturated zone) decreased obviously as the salinity increased to 2.4%. Nitrite-oxidizing bacteria (NOB) in the 0-5 cm depth layer showed a decreasing trend with elevated salinity. Denitrifying bacteria (DNB) in the 0-5 cm depth layer maintained high abundance (27.70-53.60%) at 0.4-2.4% salinity levels. At 2.4% salinity, AOB, NOB and DNB were observed in the unsaturated zones and saturated zones, and showed higher abundance in the unsaturated zone.
Collapse
Affiliation(s)
- Feng Gao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China
| | - Guochen Liu
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China
| | - Zonglian She
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China; College of Environmental Science and Engineering, Ocean University of China, 266100 Qingdao, China.
| | - Junyuan Ji
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China; College of Environmental Science and Engineering, Ocean University of China, 266100 Qingdao, China
| | - Mengchun Gao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China; College of Environmental Science and Engineering, Ocean University of China, 266100 Qingdao, China
| | - Yangguo Zhao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China; College of Environmental Science and Engineering, Ocean University of China, 266100 Qingdao, China
| | - Liang Guo
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China; College of Environmental Science and Engineering, Ocean University of China, 266100 Qingdao, China
| | - Chunji Jin
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China; College of Environmental Science and Engineering, Ocean University of China, 266100 Qingdao, China
| |
Collapse
|
32
|
Wei JM, Cui LJ, Li W, Ping YM, Li W. Denitrifying bacterial communities in surface-flow constructed wetlands during different seasons: characteristics and relationships with environment factors. Sci Rep 2021; 11:4918. [PMID: 33649362 PMCID: PMC7921683 DOI: 10.1038/s41598-021-82438-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/11/2021] [Indexed: 11/20/2022] Open
Abstract
Denitrification is an important part of the nitrogen cycle and the key step to removal of nitrogen in surface-flow wetlands. In this study, we explored space–time analysis with high-throughput sequencing to elucidate the relationships between denitrifying bacteria community structures and environmental factors during different seasons. Our results showed that along the flow direction of different processing units, there were dynamic changes in physical and chemical indicators. The bacterial abundance indexes (ACEs) in May, August, and October were 686.8, 686.8, and 996.2, respectively, whereas the Shannon-Weiner indexes were 3.718, 4.303, and 4.432, respectively. Along the flow direction, the denitrifying bacterial abundance initially increased and then decreased subsequently during the same months, although diversity tended to increase. The abundance showed similar changes during the different months. Surface flow wetlands mainly contained the following denitrifying bacteria genus: unclassified Bacteria (37.12%), unclassified Proteobacteria (18.16%), Dechloromonas (16.21%), unranked environmental samples (12.51%), unclassified Betaproteobacteria (9.73%), unclassified Rhodocyclaceae (2.14%), and Rhodanobacter (1.51%). During different seasons, the same unit showed alternating changes, and during the same season, bacterial community structures were influenced by the second genus proportion in different processing units. ACEs were strongly correlated with temperature, dissolved oxygen, and pH. Bacterial diversity was strongly correlated with temperature, electrical conductivity, pH, and oxidation reduction potential. Denitrifying bacteria are greatly affected by environmental factors such as temperature and pH.
Collapse
Affiliation(s)
- Jia-Ming Wei
- Beijing Construction Engineering Group Environmental Remediation Co. Ltd, Beijing, 100051, China.,National Engineering Laboratory for Site Remediation Technologies, Beijing, 100872, China
| | - Li-Juan Cui
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing, 100091, China. .,The Beijing Key Laboratory of Wetland Ecological Function and Restoration, Beijing, 100091, China. .,Beijing Hanshiqiao National Wetland Ecosystem Research Station, Beijing, 101399, China.
| | - Wei Li
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing, 100091, China.,The Beijing Key Laboratory of Wetland Ecological Function and Restoration, Beijing, 100091, China.,Beijing Hanshiqiao National Wetland Ecosystem Research Station, Beijing, 101399, China
| | - Yun-Mei Ping
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing, 100091, China.,The Beijing Key Laboratory of Wetland Ecological Function and Restoration, Beijing, 100091, China.,Beijing Hanshiqiao National Wetland Ecosystem Research Station, Beijing, 101399, China
| | - Wan Li
- Beijing Construction Engineering Group Environmental Remediation Co. Ltd, Beijing, 100051, China.,National Engineering Laboratory for Site Remediation Technologies, Beijing, 100872, China
| |
Collapse
|
33
|
Chen J, Li X, Jia W, Shen S, Deng S, Ji B, Chang J. Promotion of bioremediation performance in constructed wetland microcosms for acid mine drainage treatment by using organic substrates and supplementing domestic wastewater and plant litter broth. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124125. [PMID: 33049629 DOI: 10.1016/j.jhazmat.2020.124125] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/20/2020] [Accepted: 09/26/2020] [Indexed: 06/11/2023]
Abstract
Gravel-based subsurface-flow constructed wetlands (CWs) amended with a walnut shell (WS) substrate were established to treat synthetic acid mine drainage (AMD) in this study, and artificial domestic wastewater (DW) and plant litter broth (PLB) were supplemented to enhance the performance. The CW media rapidly reached adsorption saturation with respect to metals (except Fe and Cr) without an external carbon source, while the addition of DW and PLB stimulated sulfate reduction activity and achieved efficient biogenic metal removal, primarily by the formation of hydroxide and sulfide precipitates and concomitant co-precipitation. The WS-amended CWs performed notably better than the control systems, not only in sequestering more metals and rapidly establishing favourable environments for biogenic metal abatement but also in supporting better growth of plants and functional microbes. The external organic carbon input greatly shaped the bacterial community compositions in the CWs, with substantial increases in the proportions of core functional populations involved in AMD biotreatment. Cooperation among Cellulomonas, Propioniciclava and sulfate-reducing bacteria (SRB), dominated by Desulfobulbus and Desulfatirhabdium, was the primary biogenic mechanism of AMD remediation in the CWs. Cellulosic waste-amended CWs with DW and PLB addition offer a promising eco-technology for AMD remediation.
Collapse
Affiliation(s)
- Jinquan Chen
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming 650091, China
| | - Xuan Li
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; Institute of International Rivers and Eco-security, Yunnan University, Kunming 650091, China
| | - Wei Jia
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; China Machinery International Engineering Design and Research Institute Co., Ltd, Changsha 410007, China
| | - Shili Shen
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming 650091, China
| | - Shengjiong Deng
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; Institute of International Rivers and Eco-security, Yunnan University, Kunming 650091, China
| | - Bohua Ji
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; Institute of International Rivers and Eco-security, Yunnan University, Kunming 650091, China
| | - Junjun Chang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming 650091, China.
| |
Collapse
|
34
|
Rampuria A, Kulshreshtha NM, Gupta A, Brighu U. Novel microbial nitrogen transformation processes in constructed wetlands treating municipal sewage: a mini-review. World J Microbiol Biotechnol 2021; 37:40. [PMID: 33544217 DOI: 10.1007/s11274-021-03001-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/08/2021] [Indexed: 01/18/2023]
Abstract
Traditionally nitrogen transformation in constructed wetlands (CWs) has been attributed to the activities of aerobic autotrophic nitrifiers followed by anoxic heterotrophic denitrifiers. However, the nitrogen balances in such systems are far from being explained as a large fraction of the losses remain unaccounted for. The classical nitrification-denitrification theory has been successfully employed in certain unit processes by culturing fast-growing bacteria, but the CWs offer an ideal environment for slow-growing bacteria that may be beneficially exploited to achieve enhanced nitrogen removal by manipulating the environmental conditions in their favor. In the last three decades, many novel microorganisms have been isolated from CWs that have led to the discovery of some other routes that have made researchers believe could play a significant role in nitrogen transformation processes. The increased understanding of novel discerned pathways like anaerobic ammonium oxidation (ANAMMOX), heterotrophic nitrification and aerobic denitrification, which are mediated by specialized bacteria has indicated that these microorganisms could be enriched by applying selection pressures within CWs for achieving high rates of nitrogen removal. Understanding these novel nitrogen transformation processes along with the associated microbial population can provide new dimensions to the design of CWs for enhanced nitrogen removal.
Collapse
Affiliation(s)
- Aakanksha Rampuria
- Department of Civil Engineering, Malaviya National Institute of Technology, Jaipur, India
| | | | | | - Urmila Brighu
- Department of Civil Engineering, Malaviya National Institute of Technology, Jaipur, India
| |
Collapse
|
35
|
Li B, Jing F, Wu D, Xiao B, Hu Z. Simultaneous removal of nitrogen and phosphorus by a novel aerobic denitrifying phosphorus-accumulating bacterium, Pseudomonas stutzeri ADP-19. BIORESOURCE TECHNOLOGY 2021; 321:124445. [PMID: 33276210 DOI: 10.1016/j.biortech.2020.124445] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/18/2020] [Accepted: 11/21/2020] [Indexed: 06/12/2023]
Abstract
A novel denitrifying phosphorus-accumulating bacterium was isolated from contaminated sediment and identified as Pseudomonas stutzeri ADP-19. Bio-safety assays demonstrated that the strain was γ-hemolytic, antibiotic-sensitive, and had no decarboxylase activity. It removed 96.5% of NH4+-N and 73.3% of PO43--P (at initial concentrations of 100 mg/L and 20 mg/L) under aerobic conditions, and the corresponding maximum removal rates were 3.44 and 0.41 mg/L/h, respectively. Nitrogen removal was achieved through a fully nitrification-denitrification pathway [NH4+-N → NH2OH → NO2--N → NO3--N → NO2--N → (NxO) → N2], while phosphorus removal mainly depended on the phosphate assimilation and the excessive poly-P accumulation. Strain ADP-19 also showed a strong salt tolerance within a wide salinity range of 0-5%. The enhanced biological treatment of anaerobic-digested wastewater in a sequencing batch reactor (SBR) indicated that the strain improved the microbial diversity of the activated sludge and significantly enhanced the nitrogen and phosphorus removal efficiency.
Collapse
Affiliation(s)
- Bingtang Li
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Fangyuan Jing
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Dingshan Wu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Bo Xiao
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Zhiquan Hu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
36
|
Li M, Duan R, Hao W, Li Q, Arslan M, Liu P, Qi X, Huang X, El-Din MG, Liang P. High-rate nitrogen removal from carbon limited wastewater using sulfur-based constructed wetland: Impact of sulfur sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 744:140969. [PMID: 32721681 DOI: 10.1016/j.scitotenv.2020.140969] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/12/2020] [Accepted: 07/12/2020] [Indexed: 06/11/2023]
Abstract
This study aims to explore the application of sulfur-based constructed wetlands (CWs) for effective nitrogen (N) removal from wastewater. Two solid sulfur sources namely elemental sulfur (S0) and pyrite (FeS2) were used as substrates in two CWs, i.e. S-CW and P-CW, respectively. The CWs were vegetated with a common wetland plant Iris pseudacorus, and were operated to investigate the effects of hydraulic retention time (HRT) and temperature on N removal. The use of S0 resulted in the highest denitrification rate (19.0 ± 7.5 g m-2 d-1), whereas up to 20 times slower total inorganic nitrogen (TIN) removal was observed with FeS2. Different sulfur sources had negligible effects on the growth of I. pseudacorus, but the element contents (e.g., N, S, and P) within the plant tissues were different. Iris roots in S-CW had higher S content compared with those in P-CW, which resulted in the difference in shoots colors. The characteristics of rhizospheric microbial communities were closely related to the sulfur and nitrogen sources. Briefly, denitrifying and sulfur-oxidizing genera (e.g., Denitratisoma, Sulfurimonas, Thiobacillus) were dominating in the S-CW, suggesting the occurrence of both autotrophic and heterotrophic denitrification processes in the wetland. On the other hand, nitrifying bacteria were more abundant (e.g. Nitrospira, Piscinibacter) in the P-CW. S0 layer and rhizosphere accounted for 99.3% of nitrogen removal and the former part most likely played important roles with a decrease in HRT. Low temperature strongly affected the rate and efficiency of denitrification but recovered to 49.2 ± 25.8% when added with 30 mg L-1 sodium acetate. This study broadens the applications of sulfur-based CWs and provides a promising management strategy for denitrification at low temperatures.
Collapse
Affiliation(s)
- Meng Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China; International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing 100084, PR China
| | - Rui Duan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China; International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing 100084, PR China
| | - Wen Hao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China; International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing 100084, PR China
| | - Qingcheng Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Muhammad Arslan
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Panpan Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Xiang Qi
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
37
|
Pang H, Ma W, He J, Pan X, Ma Y, Guo D, Yan Z, Nan J. Hydrolase activity and microbial community dynamic shift related to the lack in multivalent cations during cation exchange resin-enhanced anaerobic fermentation of waste activated sludge. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122930. [PMID: 32464562 DOI: 10.1016/j.jhazmat.2020.122930] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/06/2020] [Accepted: 05/10/2020] [Indexed: 06/11/2023]
Abstract
The correlation of the lack in multivalent cations with hydrolase activity and microbial community in anaerobic fermentation of waste activated sludge was investigated in this study. It was demonstrated that considerable solid phase reduction of 41 % (7.87 g/L) was achievable through a cation exchange resin-enhanced anaerobic fermentation of 4 days. The protease and α-glucosidase, especially α-glucosidase, were easily influenced by a lack in multivalent cations. Furthermore, species abundance and diversity of microbial community gradually decreased. Meanwhile, the bacteria community structure presented obvious dynamic shifts. Ruminococcaceae_UCG_009, Bacteroides and Macellibacteroides responsible for organic matter biodegradation and SCFAs production became dominant bacteria in cation exchange resin-enhanced anaerobic fermentation, which was less influenced by the lack in multivalent cations, while the SCFA consumers (e.g. methanogens) were inhibited with reduced abundances due to their susceptibility to the lack in multivalent cations. Redundancy analysis revealed that the lack in multivalent cations were responsible for the microbial community evolution, which was proved by the high Grey relational coefficients (0.747-0.820) and significant negative Spearman coefficients (-0.5798 to -0.9429) between multivalent cation and microbial community. Obviously, the cation exchange resin-induced removal of multivalent cations reduced enzyme activity and modified microbial community structure, which created a beneficial environment for enhancing anaerobic fermentation.
Collapse
Affiliation(s)
- Heliang Pang
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| | - Weiwei Ma
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| | - Junguo He
- School of Civil Engineering, Guangzhou University, Guangzhou, 510006, PR China.
| | - Xinlei Pan
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Yingqun Ma
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore
| | - Dabin Guo
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Zhongsen Yan
- College of Civil Engineering, Fuzhou University, Fujian, 350116, PR China
| | - Jun Nan
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| |
Collapse
|
38
|
Xia Z, Liu G, She Z, Gao M, Zhao Y, Guo L, Jin C. Performance and bacterial communities in unsaturated and saturated zones of a vertical-flow constructed wetland with continuous-feed. BIORESOURCE TECHNOLOGY 2020; 315:123859. [PMID: 32707509 DOI: 10.1016/j.biortech.2020.123859] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/12/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
In this study, a partially-saturated vertical-flow constructed wetland (VFCW) with continuous-feed was operated to investigate nutrients transformation and possible pathways in unsaturated and saturated zones. Effect of temperature on nutrients removal and microbial community was also evaluated. The variation of temperature barely affected removal of NH4+-N and COD, achieving removal efficiencies of 99.5-100.0% and 96.8-100.0% at effluent temperature of 14.9-27.7 °C. The removal of COD, NH4+-N, total inorganic nitrogen (TIN) and total phosphorus mainly occurred in unsaturated zone, achieving much higher removal rates than saturated zone. Nitrification process in the VFCW was associated with autotrophic/heterotrophic ammonia oxidizing bacteria and nitrite oxidizing bacteria. Denitrification process relied on both autotrophic and heterotrophic denitrifiers. Anaerobic ammonium oxidizing bacteria was also detected, contributing to TIN removal. All of the groups for nutrients removal exhibited higher abundance in unsaturated zone. Diverse pathways co-existed for nitrogen removal, while the main metabolic pathways were different along the depth.
Collapse
Affiliation(s)
- Zhengang Xia
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China. 266100 Qingdao, China
| | - Guochen Liu
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China. 266100 Qingdao, China
| | - Zonglian She
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China. 266100 Qingdao, China; College of Environmental Science and Engineering, Ocean University of China. 266100 Qingdao, China.
| | - Mengchun Gao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China. 266100 Qingdao, China; College of Environmental Science and Engineering, Ocean University of China. 266100 Qingdao, China
| | - Yangguo Zhao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China. 266100 Qingdao, China; College of Environmental Science and Engineering, Ocean University of China. 266100 Qingdao, China
| | - Liang Guo
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China. 266100 Qingdao, China; College of Environmental Science and Engineering, Ocean University of China. 266100 Qingdao, China
| | - Chunji Jin
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China. 266100 Qingdao, China; College of Environmental Science and Engineering, Ocean University of China. 266100 Qingdao, China
| |
Collapse
|
39
|
Zhang Q, Chen X, Zhang Z, Luo W, Wu H, Zhang L, Zhang X, Zhao T. Performance and microbial ecology of a novel moving bed biofilm reactor process inoculated with heterotrophic nitrification-aerobic denitrification bacteria for high ammonia nitrogen wastewater treatment. BIORESOURCE TECHNOLOGY 2020; 315:123813. [PMID: 32702578 DOI: 10.1016/j.biortech.2020.123813] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/02/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
To overcome long start-up time, poor ammonia tolerance and removal performance of traditional moving bed biofilm reactor (MBBR) inoculated with activated sludge for high-ammonia wastewater treatment, a novel MBBR based on heterotrophic nitrification-aerobic denitrification (HN-AD) was proposed. Start-up of MBBR was firstly performed via inoculated with HN-AD bacteria. Start-up time was shortened from 39 d to 15 d, NH4+ tolerance was enhanced from 200 mg/L to 1000 mg/L, and TN removal was increased from 30.4% to 80.7%. The carrier types and NH4+ concentration had significant effects on nitrogen removal and microbial ecology. When the NH4+ concentration was increased to 900 mg/L in MBBR using polyvinyl alcohol gel as carrier, the TN removal, the abundance of HN-AD bacteria Acinetobacter, Pseudomonas and Paracoccus, which played a key role in TN removal and ammonia tolerance, and the abundance of genes related to nitrogen removal were much higher than those of MBBR using kaldness.
Collapse
Affiliation(s)
- Qian Zhang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 40054, China
| | - Xue Chen
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 40054, China
| | - Zhengyi Zhang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 40054, China
| | - Wandong Luo
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 40054, China
| | - Heng Wu
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 40054, China
| | - Lijie Zhang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Xiaoping Zhang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 40054, China
| | - Tiantao Zhao
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 40054, China.
| |
Collapse
|
40
|
Liang J, Wang Q, Li QX, Jiang L, Kong J, Ke M, Arslan M, Gamal El-Din M, Chen C. Aerobic sludge granulation in shale gas flowback water treatment: Assessment of the bacterial community dynamics and modeling of bioreactor performance using artificial neural network. BIORESOURCE TECHNOLOGY 2020; 313:123687. [PMID: 32574748 DOI: 10.1016/j.biortech.2020.123687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
Flowback water from shale gas extraction is highly saline and comprises complex organic substances, thereby posing a significant challenge for the environmental management of the unconventional natural gas industry. In this work, an aerobic granular sludge (AGS) method was successfully used for the treatment of flowback water from shale gas extraction. The formed AGS had a diameter of 0.25-2.0 mm and the total sludge volume index was 23.40 mL g-1. The AGS efficiently removed COD, NH4+-N and TN by 70.1%, 92.1%, and 59.2%, respectively. The bacterial communities responsible for the removal of nitrogen and degradation of organics were enriched in AGS. The dynamics of contaminant removal was further explained with a three-layered artificial neural network model. The results showed that the initial concentration of COD, TDS, NH4+-N and TN governed the contaminants' removal. As for operating parameters, aerating time showed a strong effect on NH4+-N and TN removal, whereas settling time impacted the COD removal.
Collapse
Affiliation(s)
- Jiahao Liang
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing 102249, China
| | - Qinghong Wang
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing 102249, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, United States
| | - Liangyan Jiang
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing 102249, China
| | - Jiawen Kong
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing 102249, China
| | - Ming Ke
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing 102249, China
| | - Muhammad Arslan
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Chunmao Chen
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing 102249, China.
| |
Collapse
|
41
|
YANG RUILAN, LI JING, WEI-XIE LUYAO, SHAO LIN. Oligotrophic Nitrification and Denitrification Bacterial Communities in a Constructed Sewage Treatment Ecosystem and Nitrogen Removal of Delftia tsuruhatensis NF4. Pol J Microbiol 2020; 69:99-108. [PMID: 32189483 PMCID: PMC7256856 DOI: 10.33073/pjm-2020-013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/13/2020] [Accepted: 02/15/2020] [Indexed: 12/13/2022] Open
Abstract
Oligotrophic nitrifiers and denitrifiers play important roles in the removal of nitrogen from wastewater. Here, we studied the dominant bacterial populations of the sewage treatment ecosystem (STE) water from different processes and those of culture on oligotrophic heterotrophic nitrification (OHN) medium and oligotrophic aerobic denitrification (OAD) medium, using co-analysis of Illumina HiSeq DNA sequencing and traditional culture methods. The results showed that the STE water had no dominant population of oligotrophic nitrifiers or oligotrophic denitrifiers. However, after culturing on OHN medium and OAD medium, the core genera Pseudomonas, Aeromonas, and Acinetobacter that have the nitrogen removal capacity in oligotrophic environments, dominated in the bacterial community. The principal component analysis (PCA) showed that the bacterial community in the constructed rapid infiltration (CRI) effluent water of STE had high similarity with those of cultures on OHN medium and OAD medium, which prompt the special purification role of nitrogen in the CRI system. The sodium alginate immobilized OAD bacteria strain Delftia tsuruhatensis NF4 was isolated from the CRI system, with total nitrogen (TN) removal efficiency of 43.3% in sterilized STE influent water, and 60.1% in OAD medium on day three. The immobilization significantly influenced the TN and nitrate removal efficiency in OAD medium (p < 0.05), but not in sterilized STE influent water (p > 0.05). This study would lay the foundation for resource discovery of oligotrophic heterotrophic nitrifiers and aerobic denitrifiers in STE and further functional application of them on the bioremediation of wastewater. Oligotrophic nitrifiers and denitrifiers play important roles in the removal of nitrogen from wastewater. Here, we studied the dominant bacterial populations of the sewage treatment ecosystem (STE) water from different processes and those of culture on oligotrophic heterotrophic nitrification (OHN) medium and oligotrophic aerobic denitrification (OAD) medium, using co-analysis of Illumina HiSeq DNA sequencing and traditional culture methods. The results showed that the STE water had no dominant population of oligotrophic nitrifiers or oligotrophic denitrifiers. However, after culturing on OHN medium and OAD medium, the core genera Pseudomonas, Aeromonas, and Acinetobacter that have the nitrogen removal capacity in oligotrophic environments, dominated in the bacterial community. The principal component analysis (PCA) showed that the bacterial community in the constructed rapid infiltration (CRI) effluent water of STE had high similarity with those of cultures on OHN medium and OAD medium, which prompt the special purification role of nitrogen in the CRI system. The sodium alginate immobilized OAD bacteria strain Delftia tsuruhatensis NF4 was isolated from the CRI system, with total nitrogen (TN) removal efficiency of 43.3% in sterilized STE influent water, and 60.1% in OAD medium on day three. The immobilization significantly influenced the TN and nitrate removal efficiency in OAD medium (p < 0.05), but not in sterilized STE influent water (p > 0.05). This study would lay the foundation for resource discovery of oligotrophic heterotrophic nitrifiers and aerobic denitrifiers in STE and further functional application of them on the bioremediation of wastewater.
Collapse
Affiliation(s)
- RUILAN YANG
- College of Environment and Ecology, Chengdu University of Technology, China
| | - JING LI
- College of Environment and Ecology, Chengdu University of Technology, China
| | - LUYAO WEI-XIE
- College of Environment and Ecology, Chengdu University of Technology, China
| | - LIN SHAO
- College of Environment and Ecology, Chengdu University of Technology, China
| |
Collapse
|
42
|
Yang J, Feng L, Pi S, Cui D, Ma F, Zhao HP, Li A. A critical review of aerobic denitrification: Insights into the intracellular electron transfer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 731:139080. [PMID: 32417477 DOI: 10.1016/j.scitotenv.2020.139080] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/04/2020] [Accepted: 04/26/2020] [Indexed: 05/23/2023]
Abstract
Aerobic denitrification is a novel biological nitrogen removal technology, which has been widely investigated as an alternative to the conventional denitrification and for its unique advantages. To fully comprehend aerobic denitrification, it is essential to clarify the regulatory mechanisms of intracellular electron transfer during aerobic denitrification. However, reports on intracellular electron transfer during aerobic denitrification are rather limited. Thus, the purpose of this review is to discuss the molecular mechanism of aerobic denitrification from the perspective of electron transfer, by summarizing the advancements in current research on electron transfer based on conventional denitrification. Firstly, the implication of aerobic denitrification is briefly discussed, and the status of current research on aerobic denitrification is summarized. Then, the occurring foundation and significance of aerobic denitrification are discussed based on a brief review of the key components involved in the electron transfer of denitrifying enzymes. Moreover, a strategy for enhancing the efficiency of aerobic denitrification is proposed on the basis of the regulatory mechanisms of denitrification enzymes. Finally, scientific outlooks are given for further investigation on aerobic denitrification in the future. This review could help clarify the mechanism of aerobic denitrification from the perspective of electron transfer.
Collapse
Affiliation(s)
- Jixian Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Liang Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Shanshan Pi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Di Cui
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China; Engineering Research Center for Medicine, College of Pharmacy, Harbin University of Commerce, Harbin 150076, People's Republic of China
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - He-Ping Zhao
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Ang Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China.
| |
Collapse
|
43
|
Chen J, Liu Y, Yang Y, Tang M, Wang R, Jiang L, Tian Y, Hu H, Zhang X, Wei Y. Bacterial community structure and gene function prediction in response to long-term running of dual graphene modified bioelectrode bioelectrochemical systems. BIORESOURCE TECHNOLOGY 2020; 309:123398. [PMID: 32325382 DOI: 10.1016/j.biortech.2020.123398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
This work studied bacterial community structure and gene function prediction in long-term running of dual graphene modified bioelectrode bioelectrochemical systems (LT D-GM-BE BES, 2 year). The maximum power density of LT D-GM-BE BES was 99.03 ± 3.64 mW/m2, which was 3.66 times of dual control BES (D-C-BE BES), and the transfer resistance of LT GM-BE was just approximately 1/4 of control bioelectrode (C-BE). Proteobacteria and Firmicutes were dominant bacteria in long-term modified bioanode (LT GM-BA, 30.03% and 45.64%), and in long-term modified biocathode (LT GM-BC) was Armatimonadetes (47.14%) in phylum level. The dominant bacteria in LT GM-BA was Clostridium (30.56%), in GM-BC was Chthonomonas (47.14%) in genus level. Gene function related with substrate, energy metabolism and environmental adaptation were enriched. LT GM-BE was tended to enrich dominant bacteria and enrich gene to adapt to micro-environmental changes. This study would provide metagenomics information for long-term running of BES in future.
Collapse
Affiliation(s)
- Junfeng Chen
- Department of Environmental Science, School of Life Science, Qufu Normal University, Qufu 273165, PR China.
| | - Yanyan Liu
- Department of Environmental Science, School of Life Science, Qufu Normal University, Qufu 273165, PR China
| | - Yuewei Yang
- Department of Environmental Science, School of Life Science, Qufu Normal University, Qufu 273165, PR China
| | - Meizhen Tang
- Department of Environmental Science, School of Life Science, Qufu Normal University, Qufu 273165, PR China
| | - Renjun Wang
- Department of Environmental Science, School of Life Science, Qufu Normal University, Qufu 273165, PR China
| | - Liting Jiang
- Department of Environmental Science, School of Life Science, Qufu Normal University, Qufu 273165, PR China
| | - Yuping Tian
- Department of Environmental Science, School of Life Science, Qufu Normal University, Qufu 273165, PR China
| | - Hanwen Hu
- Department of Environmental Science, School of Life Science, Qufu Normal University, Qufu 273165, PR China
| | - Xiao Zhang
- Department of Environmental Science, School of Life Science, Qufu Normal University, Qufu 273165, PR China
| | - Yushan Wei
- Department of Environmental Science, School of Life Science, Qufu Normal University, Qufu 273165, PR China
| |
Collapse
|
44
|
Liu R, Li S, Gao X, Yu N, Zhao C, Gao C, Lv W. Single and combined impacts of nickel and cadmium on the performance, microbial community and enzymatic activity of sequencing batch reactors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 727:138571. [PMID: 32335452 DOI: 10.1016/j.scitotenv.2020.138571] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/01/2020] [Accepted: 04/07/2020] [Indexed: 05/27/2023]
Abstract
The performance, microbial enzymatic activities and the microbial community of sequencing batch reactors (SBRs) were evaluated under the single and combined nickel (Ni2+) at 20 mg/L and cadmium (Cd2+) at 10 mg/L. The single and combined Ni2+ and Cd2+ had no adverse impacts on the COD removal, whereas the NH4+-N removal efficiency declined sharply from about 99% to 34.42% and 42.67% under the single Ni2+ and combined Ni2+ and Cd2+. Compared with the absence of Ni2+ or Cd2+, the specific oxygen uptake rate (SOUR), ammonia-oxidizing rate (SAOR), nitrite-oxidizing rate (SNOR), nitrite-reducing rate (SNIRR) and nitrate-reducing rate (SNRR) declined by 24.09%, 56.63%, 51.50%, 58.01% and 52.09% under the combined Ni2+ and Cd2+, which were slower than the sum of those under single Ni2+ and Cd2+. The dehydrogenase, ammonia monooxygenase, nitrite oxidoreductase, nitrate reductase and nitrite reductase activities showed the similar varying trends to the SOUR, SAOR, SNOR, SNIRR and SNRR, suggesting that the combined Ni2+ and Cd2+ displayed antagonistic inhibition on the nitrogen removal rates and microbial enzyme activities. The combined Ni2+ and Cd2+ declined the microbial diversity and richness less than the sum of those under single Ni2+ and Cd2+. The relative abundance of Nitrosomonas, Nitrospira and identified denitrifying bacteria displayed some changes under single and combined Ni2+ and Cd2+. These findings would contribute to better understand the combined impacts of multiple heavy metals on biological wastewater treatment systems.
Collapse
Affiliation(s)
- Ruicong Liu
- College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Shanshan Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Xueli Gao
- College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| | - Naling Yu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Changkun Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Congjie Gao
- College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Wenzhou Lv
- School of Civil and Environmental Engineering, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
45
|
Nguyen XC, Nguyen DD, Tran QB, Nguyen TTH, Tran TKA, Tran TCP, Nguyen THG, Tran TNT, La DD, Chang SW, Balasubramani R, Chung WJ, Yoon YS, Nguyen VK. Two-step system consisting of novel vertical flow and free water surface constructed wetland for effective sewage treatment and reuse. BIORESOURCE TECHNOLOGY 2020; 306:123095. [PMID: 32172086 DOI: 10.1016/j.biortech.2020.123095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 06/10/2023]
Abstract
This study developed a unique system by combining the novel vertical flow (NVF) using expanded clay (ExC) and free flow surface constructed wetland (FWS) for dormitory sewage purification and reuse. The NVF tank consisted of filter layers of ExC, sandy soil, sand, and gravel. The FWS consisted of sandy soil substrate and was installed after the NVF. Colocasia esculenta and Dracaena sanderiana was planted in NVF and FWS, respectively. The treatment system was operated and tested for more than 21 weeks by increasing the hydraulic loading rate (HLR) from 0.02 m/d to 0.12 m/d. The results demonstrated that effluents in the system changed proportionally to the HLRs, except for nitrate nitrogen. Furthermore, the maximum removal efficiencies for TSS, BOD5, NH4-N, and Tcol were 76 ± 13%, 74 ± 11%, 90 ± 3%, and 59 ± 18% (0.37 ± 0.19 log10MPN/100 mL), respectively. At HLRs of 0.04-0.06 m/d, the treatment system satisfied the limits of agriculture irrigation.
Collapse
Affiliation(s)
- X Cuong Nguyen
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| | - D Duc Nguyen
- Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam; Department of Environmental Energy Engineering, Kyonggi University, Suwon, South Korea
| | - Q Ba Tran
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| | - T T Huyen Nguyen
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| | - T K Anh Tran
- Faculty of Environmental Engineering Technology, Hue University-Quang Tri Campus, Quang Tri, Vietnam
| | - T C Phuong Tran
- Faculty of Environmental Engineering Technology, Hue University-Quang Tri Campus, Quang Tri, Vietnam
| | - T H Giang Nguyen
- Faculty of Environmental Engineering Technology, Hue University-Quang Tri Campus, Quang Tri, Vietnam
| | - T N Thao Tran
- Faculty of Environmental Engineering Technology, Hue University-Quang Tri Campus, Quang Tri, Vietnam
| | - D Duong La
- Institute of Chemistry and Materials, Nghia Do, Cau Giay, Hanoi, Vietnam
| | - S Woong Chang
- Department of Environmental Energy Engineering, Kyonggi University, Suwon, South Korea
| | | | - W Jin Chung
- Department of Environmental Energy Engineering, Kyonggi University, Suwon, South Korea
| | - Y Soo Yoon
- Department of Chemical Engineering, Dankook University, South Korea
| | - V Khanh Nguyen
- Laboratory of Advanced Materials Chemistry, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam; Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
46
|
Tan X, Yang YL, Li X, Zhou ZW, Liu CJ, Liu YW, Yin WC, Fan XY. Intensified nitrogen removal by heterotrophic nitrification aerobic denitrification bacteria in two pilot-scale tidal flow constructed wetlands: Influence of influent C/N ratios and tidal strategies. BIORESOURCE TECHNOLOGY 2020; 302:122803. [PMID: 31981807 DOI: 10.1016/j.biortech.2020.122803] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/03/2020] [Accepted: 01/10/2020] [Indexed: 06/10/2023]
Abstract
This study investigated the influence of C/N ratios and tidal strategies on nitrogen removal and bacterial communities in two pilot-scale tidal flow constructed wetlands (TFCWs) with simultaneous nitrification-denitrification process. Heterotrophic nitrification aerobic denitrification (HNAD) was the main nitrogen transformation pathway in both TFCWs. High C/N ratios and effluent circulation at low temperature promoted HNAD in TFCWs with high nitrogen removal efficiencies (72.6%-95.5% for NH4+-N and 70.9%~91.8% for TN). Effluent circulation had more influence on bacterial community structure and diversity than C/N ratios. Among 16 detected genera related to nitrogen removal, HNAD bacteria (HNADB) were abundant. Especially, some dominant HNADB (e.g. Aeromonas, Hydrogenophage and Gemmobacter) were core genera, showing positive interactions with other genera related to nitrogen removal. Tidal strategies had more contribution to the shifts in these genera than C/N ratios. This study highlights the importance of HNADB in pilot-scale TFCWs and their responses to C/N ratios and tidal strategies.
Collapse
Affiliation(s)
- Xu Tan
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yan-Ling Yang
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China
| | - Xing Li
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China
| | - Zhi-Wei Zhou
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China
| | - Chang-Jian Liu
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yong-Wang Liu
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China; China Architecture Design and Research Group, Beijing 100044, China
| | - Wen-Chao Yin
- China Architecture Design and Research Group, Beijing 100044, China
| | - Xiao-Yan Fan
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
47
|
Xia Z, Wang Q, She Z, Gao M, Zhao Y, Guo L, Jin C. Nitrogen removal pathway and dynamics of microbial community with the increase of salinity in simultaneous nitrification and denitrification process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 697:134047. [PMID: 31491641 DOI: 10.1016/j.scitotenv.2019.134047] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/16/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
In this study, simultaneous nitrification and denitrification (SND) process was successfully established in a hybrid sequencing batch biofilm reactor (HSBBR). High removal efficiency of NH4+-N (98.0±2.4% to 99.8±0.4%) and COD (86.6±4.0% to 91.6±1.8%) was observed in the salinity range of 0.0 to 2.4%. SND via nitrite, replacing SND via nitrate, became the main nitrogen removal pathway at 1.6% and 2.4% salinity. Suspended sludge and biofilm shared similar microbial composition. Dominant genera were substituted by salt-adaptable microbes as salinity increasing. Abundance of autotrophic ammonia-oxidizing bacteria (Nitrosomonas) increased with elevated salinity, while autotrophic nitrite-oxidizing bacteria (Nitrospira) exhibited extreme sensitivity to salinity. The presence of Gemmata demonstrated that heterotrophic nitrification co-existed with autotrophic nitrification in the SND process. Aerobic denitrifiers (Denitratisoma and Thauera) were also identified. Thiothrix, Sedimenticola, Sulfuritalea, Arcobacter (sulfide-based autotrophic denitrifier) and Hydrogenophaga (hydrogen-based autotrophic denitrifier) were detected in both S-sludge and biofilm. The occurrence of ANAMMOX bacteria Pirellula and Planctomyces indicated that ANAMMOX process was another pathway for nitrogen removal. Nitrogen removal in the HSBBR was accomplished via diverse pathways, including traditional autotrophic nitrification/heterotrophic denitrification, heterotrophic nitrification, aerobic and autotrophic denitrification, and ANAMMOX.
Collapse
Affiliation(s)
- Zhengang Xia
- College of Environmental Science and Engineering, Ocean University of China, 266100 Qingdao, China
| | - Qun Wang
- College of Environmental Science and Engineering, Ocean University of China, 266100 Qingdao, China
| | - Zonglian She
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China; College of Environmental Science and Engineering, Ocean University of China, 266100 Qingdao, China.
| | - Mengchun Gao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China; College of Environmental Science and Engineering, Ocean University of China, 266100 Qingdao, China
| | - Yangguo Zhao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China; College of Environmental Science and Engineering, Ocean University of China, 266100 Qingdao, China
| | - Liang Guo
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China; College of Environmental Science and Engineering, Ocean University of China, 266100 Qingdao, China
| | - Chunji Jin
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China; College of Environmental Science and Engineering, Ocean University of China, 266100 Qingdao, China
| |
Collapse
|
48
|
Wang Q, Cao Z, Liu Q, Zhang J, Hu Y, Zhang J, Xu W, Kong Q, Yuan X, Chen Q. Enhancement of COD removal in constructed wetlands treating saline wastewater: Intertidal wetland sediment as a novel inoculation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 249:109398. [PMID: 31437707 DOI: 10.1016/j.jenvman.2019.109398] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 06/10/2023]
Abstract
This study investigated intertidal wetland sediment (IWS) as a novel inoculation source for saline wastewater treatment in constructed wetlands (CWs). Samples of IWS (5-20 cm subsurface sediment), which are highly productive and rich in halophilic and anaerobic bacteria, were collected from a high-salinity natural wetland and added to CW matrix. IWS-supplemented CW microcosms that are planted and unplanted Phragmites australis were investigated under salty (150 mM NaCl: PA+(S) and CT+(S)) and non-salty (0 mM NaCl: PA+ and CT+) conditions. The chemical oxygen demand (COD) removal potential of IWS-supplemented CWs was compared with that of conventional CWs without IWS (PA(S) and CT(S), PA, and CT). Results showed that the COD removal rate was higher in PA+(S) (51.80% ± 3.03%) and CT+(S) (29.20% ± 1.26%) than in PA(S) (27.40% ± 3.09%) and CT(S) (27.20% ± 3.06%) at 150 mM NaCl. The plants' chlorophyll content and antioxidant enzyme activity indicated that the addition of IWS enhanced the resistance of plants to salt. Microbial community analysis showed that the dominant microorganisms in PA+(S) and CT+(S), namely, Anaerolineae, Desulfobacterales, and Desulfuromonadales, enhanced the organic removal rates via anaerobic degradation. IWS-induced Dehalococcoides, which is a key participant in ethylene formation, improved the plants' stress tolerance. Several halophilic/tolerant microorganisms were also detected in the CW system with IWS. Thus, IWS is a promising inoculation source for CWs that treat saline wastewater.
Collapse
Affiliation(s)
- Qian Wang
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in Universities of Shandong, Shandong Normal University, Jinan, 250358, PR China
| | - Zhenfeng Cao
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in Universities of Shandong, Shandong Normal University, Jinan, 250358, PR China
| | - Qian Liu
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in Universities of Shandong, Shandong Normal University, Jinan, 250358, PR China
| | - Jinyong Zhang
- Enviromental Engineering Co., Ltd of Shandong Academy of Environmental Sciences, 50 Lishan Road, Jinan, 250014, Shandong, PR China
| | - Yanbiao Hu
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in Universities of Shandong, Shandong Normal University, Jinan, 250358, PR China
| | - Ji Zhang
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in Universities of Shandong, Shandong Normal University, Jinan, 250358, PR China
| | - Wei Xu
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in Universities of Shandong, Shandong Normal University, Jinan, 250358, PR China
| | - Qiang Kong
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in Universities of Shandong, Shandong Normal University, Jinan, 250358, PR China; Department of Civil and Environmental Engineering, National University of Singapore, Singapore, 117576, Singapore.
| | - Xunchao Yuan
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in Universities of Shandong, Shandong Normal University, Jinan, 250358, PR China
| | - QingFeng Chen
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in Universities of Shandong, Shandong Normal University, Jinan, 250358, PR China.
| |
Collapse
|
49
|
Rajta A, Bhatia R, Setia H, Pathania P. Role of heterotrophic aerobic denitrifying bacteria in nitrate removal from wastewater. J Appl Microbiol 2019; 128:1261-1278. [PMID: 31587489 DOI: 10.1111/jam.14476] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 11/27/2022]
Abstract
With the increase in industrial and agricultural activities, a large amount of nitrogenous compounds are released into the environment, leading to nitrate pollution. The perilous effects of nitrate present in the environment pose a major threat to human and animal health. Bioremediation provides a cost-effective and environmental friendly method to deal with this problem. The process of aerobic denitrification can reduce nitrate compounds to harmless dinitrogen gas. This review provides a brief view of the exhaustive role played by aerobic denitrifiers for tackling nitrate pollution under different ecological niches and their dependency on various environmental parameters. It also provides an understanding of the enzymes involved in aerobic denitrification. The role of aerobic denitrification to solve the issues faced by the conventional method (aerobic nitrification-anaerobic denitrification) in treating nitrogen-polluted wastewaters is elaborated.
Collapse
Affiliation(s)
- A Rajta
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - R Bhatia
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - H Setia
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - P Pathania
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| |
Collapse
|
50
|
Fu G, Zhao L, Huangshen L, Wu J. Isolation and identification of a salt-tolerant aerobic denitrifying bacterial strain and its application to saline wastewater treatment in constructed wetlands. BIORESOURCE TECHNOLOGY 2019; 290:121725. [PMID: 31301568 DOI: 10.1016/j.biortech.2019.121725] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 06/10/2023]
Abstract
A salt-tolerant aerobic denitrifying bacterium, Zobellella denitrificans strain A63, was isolated, and its effects on the efficiency of denitrification of saline wastewater and the denitrifying microbial community structure in the matrix were studied in vertical-flow constructed wetlands (VFCWs). In a VFCW system with strain A63, the removal efficiencies of NH4+-N, NO3--N, and total nitrogen reached 79.2%, 95.7%, and 89.9%, respectively. Quantitative PCR analysis indicated that the amoA gene from ammonia-oxidizing archaea (AOA) was highly abundant, whereas amoA from ammonia-oxidizing bacteria and nxrA from nitrite-oxidizing bacteria were lowly abundant because of the influent salinity, irrespective of whether strain A63 was added. However, the addition of strain A63 significantly increased the abundance of nirK in the top layer of the VFCW. Therefore, AOA-driven partial nitrification and aerobic denitrification by strain A63 occurred in VFCWs. Our findings suggest that adding salt-tolerant denitrifying strains to constructed wetlands can enhance denitrification for saline wastewater treatment.
Collapse
Affiliation(s)
- Guiping Fu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| | - Lin Zhao
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Linkun Huangshen
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Jinfa Wu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|