1
|
Sun Y, Liu T, Nie J, Yan J, Tang J, Jin K, Li C, Li H, Liu Y, Bai Z. Continuous catalytic production of 1,3-dihydroxyacetone: Sustainable approach combining perfusion cultures and immobilized cells. BIORESOURCE TECHNOLOGY 2024; 401:130734. [PMID: 38670288 DOI: 10.1016/j.biortech.2024.130734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/27/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Currently, the predominant method for the industrial production of 1,3-dihydroxyacetone (DHA) from glycerol involves fed-batch fermentation. However, previous research has revealed that in the biocatalytic synthesis of DHA from glycerol, when the DHA concentration exceeded 50 g·L-1, it significantly inhibited microbial growth and metabolism, posing a challenge in maintaining prolonged and efficient catalytic production of DHA. In this study, a new integrated continuous production and synchronous separation (ICSS) system was constructed using hollow fiber columns and perfusion culture technology. Additionally, a cell reactivation technique was implemented to extend the biocatalytic ability of cells. Compared with fed-batch fermentation, the ICSS system operated for 360 h, yielding a total DHA of 1237.8 ± 15.8 g. The glycerol conversion rate reached 97.7 %, with a productivity of 3.44 g·L-1·h-1, representing 485.0 % increase in DHA production. ICSS system exhibited strong operational characteristics and excellent performance, indicating significant potential for applications in industrial bioprocesses.
Collapse
Affiliation(s)
- Yang Sun
- School of Life Sciences, Henan University, Kaifeng 475004, China; Henan Key Laboratory of Synthetic Biology and Biomanufacturing, Kaifeng 475004, China; Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng 475004, China.
| | - Tang Liu
- School of Life Sciences, Henan University, Kaifeng 475004, China; Henan Key Laboratory of Synthetic Biology and Biomanufacturing, Kaifeng 475004, China; Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng 475004, China.
| | - Jianqi Nie
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| | - Jie Yan
- School of Life Sciences, Henan University, Kaifeng 475004, China.
| | - Jiacheng Tang
- School of Life Sciences, Henan University, Kaifeng 475004, China; Henan Key Laboratory of Synthetic Biology and Biomanufacturing, Kaifeng 475004, China; Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng 475004, China.
| | - Kuiqi Jin
- Chengdu Yingde Biological Pharmaceutical Equipment Co., Ltd.,Chengdu 610000,China.
| | - Chunyang Li
- Chengdu Yingde Biological Pharmaceutical Equipment Co., Ltd.,Chengdu 610000,China.
| | - Hua Li
- School of Life Sciences, Henan University, Kaifeng 475004, China; Henan Key Laboratory of Synthetic Biology and Biomanufacturing, Kaifeng 475004, China; Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng 475004, China.
| | - Yupeng Liu
- School of Life Sciences, Henan University, Kaifeng 475004, China; Henan Key Laboratory of Synthetic Biology and Biomanufacturing, Kaifeng 475004, China; Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng 475004, China.
| | - Zhonghu Bai
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Książek EE, Janczar-Smuga M, Pietkiewicz JJ, Walaszczyk E. Optimization of Medium Constituents for the Production of Citric Acid from Waste Glycerol Using the Central Composite Rotatable Design of Experiments. Molecules 2023; 28:molecules28073268. [PMID: 37050031 PMCID: PMC10096785 DOI: 10.3390/molecules28073268] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023] Open
Abstract
Citric acid is currently produced by submerged fermentation of sucrose with the aid of Aspergillus niger mold. Its strains are characterized by a high yield of citric acid biosynthesis and no toxic by-products. Currently, new substrates are sought for production of citric acid by submerged fermentation. Waste materials such as glycerol or pomace could be used as carbon sources in the biosynthesis of citric acid. Due to the complexity of the metabolic state in fungus, there is an obvious need to optimize the important medium constituents to enhance the accumulation of desired product. Potential optimization approach is a statistical method, such as the central composite rotatable design (CCRD). The aim of this study was to increase the yield of citric acid biosynthesis by Aspergillus niger PD-66 in media with waste glycerol as the carbon source. A mathematical method was used to optimize the culture medium composition for the biosynthesis of citric acid. In order to maximize the efficiency of the biosynthesis of citric acid the central composite, rotatable design was used. Waste glycerol and ammonium nitrate were identified as significant variables which highly influenced the final concentration of citric acid (Y1), volumetric rate of citric acid biosynthesis (Y2), and yield of citric acid biosynthesis (Y3). These variables were subsequently optimized using a central composite rotatable design. Optimal values of input variables were determined using the method of the utility function. The highest utility value of 0.88 was obtained by the following optimal set of conditions: waste glycerol—114.14 g∙L−1and NH4NO3—2.85 g∙L−1.
Collapse
Affiliation(s)
- Ewelina Ewa Książek
- Department of Agroengineering and Quality Analysis, Faculty of Production Engineering, Wroclaw University of Economics and Business, Komandorska 118–120, 53-345 Wrocław, Poland
| | - Małgorzata Janczar-Smuga
- Department of Food Technology and Nutrition, Faculty of Production Engineering, Wroclaw University of Economics and Business, Komandorska 118–120, 53-345 Wrocław, Poland
| | - Jerzy Jan Pietkiewicz
- Department of Human Nutrition, Faculty of Health and Physical Culture Sciences, Witelon Collegium State University, Sejmowa 5A, 59-220 Legnica, Poland
| | - Ewa Walaszczyk
- Department of Process Management, Faculty of Production Engineering, Wroclaw University of Economics and Business, Komandorska 118–120, 53-345 Wrocław, Poland
| |
Collapse
|
3
|
New perspectives into Gluconobacter-catalysed biotransformations. Biotechnol Adv 2023; 65:108127. [PMID: 36924811 DOI: 10.1016/j.biotechadv.2023.108127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 03/17/2023]
Abstract
Different from other aerobic microorganisms that oxidise carbon sources to water and carbon dioxide, Gluconobacter catalyses the incomplete oxidation of various substrates with regio- and stereoselectivity. This ability, as well as its capacity to release the resulting products into the reaction media, place Gluconobacter as a privileged member of a non-model microorganism class that may boost industrial biotechnology. Knowledge of new technologies applied to Gluconobacter has been piling up in recent years. Advancements in its genetic modification, application of immobilisation tools and careful designs of the transformations, have improved productivities and stabilities of Gluconobacter strains or enabled new bioconversions for the production of valuable marketable chemicals. In this work, the latest advancements applied to Gluconobacter-catalysed biotransformations are summarised with a special focus on recent available tools to improve them. From genetic and metabolic engineering to bioreactor design, the most recent works on the topic are analysed in depth to provide a comprehensive resource not only for scientists and technologists working on/with Gluconobacter, but for the general biotechnologist.
Collapse
|
4
|
Chen T, Wang H, Su W, Mu Y, Tian Y. Analysis of the formation mechanism of volatile and non-volatile flavor substances in corn wine fermentation based on high-throughput sequencing and metabolomics. Food Res Int 2023; 165:112350. [PMID: 36869445 DOI: 10.1016/j.foodres.2022.112350] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/26/2022]
Abstract
The purpose of this study was to reveal the relationship between core microorganisms and flavor substances in the fermentation process of corn wine. Microbial diversity, volatile and non-volatile flavor substances were detected by high-throughput sequencing (HTS), headspace solid phase micro-extraction gas chromatography-mass spectrometry (HS-SPME/GC-MS) and gas chromatography time of flight mass spectrometry (GC-TOF-MS). High performance liquid chromatography (HPLC) was used to detect organic acids in corn wine fermentation, and its physiochemical properties were tracked. The results showed that physiochemical factors changed obviously with fermentation time. Bacillus, Prevotella_9, Acinetobacter and Gluconobacter were the predominant bacterial. Rhizopus and Saccharomyces were the dominant fungi. Acetic acid and succinic acid were important organic acids in corn wine. According to variable importance of projection (VIP) > 1 and P < 0.05, 24 volatile flavor substances with significant difference were screened out from 52 volatile flavor substances. Similarly, 25 non-volatile flavor substances with significant differences were screened out from the 97 reliable metabolites identified by 223 chromatographic peaks. Eight key metabolic pathways were enriched from 25 non-volatile flavor substances according to path influence values > 0.1 and P < 0.05. Based on Two-way Orthogonal Partial Least Squares (O2PLS) model and Pearson correlation coefficient, Saccharomyces, Rhizopus, uncultured_bacterium, Aneurinibacillus, Wickerhamomyces and Gluconobacter may be the potential volatile flavor-contributing microorganism genus in corn wine. The Pearson correlation coefficient showed that Saccharomyces was significantly positively correlated with malic acid, oxalic acid, valine and isoleucine, and Rhizopus was positively correlated with glucose-1-phosphate and alanine. These findings enhanced our understanding of the formation mechanism of flavor substances in corn wine and provided the theoretical basis for stabilizing flavor quality of corn wine.
Collapse
Affiliation(s)
- Tianyan Chen
- College of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Hanyu Wang
- College of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Wei Su
- College of Liquor and Food Engineering, Guizhou University, Guiyang, China; Guizhou Key Laboratory for Storage and Processing of Agricultural and Animal Products, Guizhou University, Guiyang, China.
| | - Yingchun Mu
- College of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Yexin Tian
- College of Liquor and Food Engineering, Guizhou University, Guiyang, China
| |
Collapse
|
5
|
Zeng W, Shan X, Liu L, Zhou J. Efficient 1,3-dihydroxyacetone biosynthesis in Gluconobacter oxydans using metabolic engineering and a fed-batch strategy. BIORESOUR BIOPROCESS 2022; 9:121. [PMID: 38647819 PMCID: PMC10992570 DOI: 10.1186/s40643-022-00610-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/13/2022] [Indexed: 11/28/2022] Open
Abstract
1,3-Dihydroxyacetone (DHA) is a commercially important chemical and widely used in cosmetics, pharmaceuticals, and food industries as it prevents excessive water evaporation, and provides anti-ultraviolet radiation protection and antioxidant activity. Currently, the industrial production of DHA is based on a biotechnological synthetic route using Gluconobacter oxydans. However, achieving higher production requires more improvements in the synthetic process. In this study, we compared DHA synthesis levels in five industrial wild-type Gluconobacter strains, after which the G. oxydans WSH-003 strain was selected. Then, 16 dehydrogenase genes, unrelated to DHA synthesis, were individually knocked out, with one strain significantly enhancing DHA production, reaching 89.49 g L-1 and 42.27% higher than the wild-type strain. By optimizing the culture media, including seed culture and fermentation media, DHA production was further enhanced. Finally, using an established fed-batch fermentation system, DHA production reached 198.81 g L-1 in a 5 L bioreactor, with a glycerol conversion rate of 82.84%.
Collapse
Affiliation(s)
- Weizhu Zeng
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Engineering Research Center of Ministry of Education On Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Provisional Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Xiaoyu Shan
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Engineering Research Center of Ministry of Education On Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Li Liu
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Provisional Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
- Engineering Research Center of Ministry of Education On Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
- Jiangsu Provisional Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
6
|
Glycerol Waste to Bio-Ethanol: Optimization of Fermentation Parameters by the Taguchi Method. J CHEM-NY 2022. [DOI: 10.1155/2022/4892992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Global attention caused by pollutants and greenhouse gas emissions leads to alternative fuels that decrease the dependence on fossil fuels and reduce the carbon footprint that preceded the development of biodiesel production. Glycerol residue is generated more significantly from the biodiesel industry as a byproduct and is left as waste. In this study, we utilized glycerol residue from the biodiesel industry as an excellent opportunity to convert ethanol by bioconversion. The waste glycerol was used as a good and cheap carbon source as a substrate to synthesize ethanol by immobilizing E. coli cells. The screening of parameters such as mass substrate, temperature, inoculum size, and fermentation time was carried out using the one-factor-at-a-time (OFAT) technique. The Taguchi model employed optimization of fermentation parameters. The process parameters showed the mass substrate glycerol of 20 g with an inoculum size of 20%, and 12 hours yielded the ethanol concentration of 10.0 g/L.
Collapse
|
7
|
da Silva GAR, Oliveira SSDS, Lima SF, do Nascimento RP, Baptista ARDS, Fiaux SB. The industrial versatility of Gluconobacter oxydans: current applications and future perspectives. World J Microbiol Biotechnol 2022; 38:134. [PMID: 35688964 PMCID: PMC9187504 DOI: 10.1007/s11274-022-03310-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 05/13/2022] [Indexed: 11/26/2022]
Abstract
Gluconobacter oxydans is a well-known acetic acid bacterium that has long been applied in the biotechnological industry. Its extraordinary capacity to oxidize a variety of sugars, polyols, and alcohols into acids, aldehydes, and ketones is advantageous for the production of valuable compounds. Relevant G. oxydans industrial applications are in the manufacture of L-ascorbic acid (vitamin C), miglitol, gluconic acid and its derivatives, and dihydroxyacetone. Increasing efforts on improving these processes have been made in the last few years, especially by applying metabolic engineering. Thereby, a series of genes have been targeted to construct powerful recombinant strains to be used in optimized fermentation. Furthermore, low-cost feedstocks, mostly agro-industrial wastes or byproducts, have been investigated, to reduce processing costs and improve the sustainability of G. oxydans bioprocess. Nonetheless, further research is required mainly to make these raw materials feasible at the industrial scale. The current shortage of suitable genetic tools for metabolic engineering modifications in G. oxydans is another challenge to be overcome. This paper aims to give an overview of the most relevant industrial G. oxydans processes and the current strategies developed for their improvement.
Collapse
Affiliation(s)
- Gabrielle Alves Ribeiro da Silva
- Graduate Program in Science and Biotechnology, Biology Institute, Fluminense Federal University (UFF), Niterói-RJ, 24020-141, Brazil.
- Microbial Technology Laboratory, Pharmaceutical Technology Department, Faculty of Pharmacy, Fluminense Federal University (UFF), Niterói-RJ, 24241-000, Brazil.
- Ecology of Microbial Process Laboratory, Biochemical Engineering Department, Chemical School, Technology Center, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro-RJ, 21941-909, Brazil.
| | - Simone Santos de Sousa Oliveira
- Graduate Program in Science and Biotechnology, Biology Institute, Fluminense Federal University (UFF), Niterói-RJ, 24020-141, Brazil
- Microbial Technology Laboratory, Pharmaceutical Technology Department, Faculty of Pharmacy, Fluminense Federal University (UFF), Niterói-RJ, 24241-000, Brazil
| | - Sara Fernandes Lima
- Microbial Technology Laboratory, Pharmaceutical Technology Department, Faculty of Pharmacy, Fluminense Federal University (UFF), Niterói-RJ, 24241-000, Brazil
| | - Rodrigo Pires do Nascimento
- Ecology of Microbial Process Laboratory, Biochemical Engineering Department, Chemical School, Technology Center, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro-RJ, 21941-909, Brazil
| | - Andrea Regina de Souza Baptista
- Center for Microorganisms Investigation, Microbiology and Parasitology Department, Biomedical Institute, Fluminense Federal University (UFF), Niterói-RJ, 24020-141, Brazil
| | - Sorele Batista Fiaux
- Microbial Technology Laboratory, Pharmaceutical Technology Department, Faculty of Pharmacy, Fluminense Federal University (UFF), Niterói-RJ, 24241-000, Brazil
| |
Collapse
|
8
|
Chen J, Zhai W, Li Y, Guo Y, Zhu Y, Lei G, Li J. Enhancing the biomass and riboflavin production of Ashbya gossypii by using low-intensity ultrasound stimulation: A mechanistic investigation. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
Qin Z, Yu S, Chen J, Zhou J. Dehydrogenases of acetic acid bacteria. Biotechnol Adv 2021; 54:107863. [PMID: 34793881 DOI: 10.1016/j.biotechadv.2021.107863] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022]
Abstract
Acetic acid bacteria (AAB) are a group of bacteria that can oxidize many substrates such as alcohols and sugar alcohols and play important roles in industrial biotechnology. A majority of industrial processes that involve AAB are related to their dehydrogenases, including PQQ/FAD-dependent membrane-bound dehydrogenases and NAD(P)+-dependent cytoplasmic dehydrogenases. These cofactor-dependent dehydrogenases must effectively regenerate their cofactors in order to function continuously. For PQQ, FAD and NAD(P)+ alike, regeneration is directly or indirectly related to the electron transport chain (ETC) of AAB, which plays an important role in energy generation for aerobic cell growth. Furthermore, in changeable natural habitats, ETC components of AAB can be regulated so that the bacteria survive in different environments. Herein, the progressive cascade in an application of AAB, including key dehydrogenases involved in the application, regeneration of dehydrogenase cofactors, ETC coupling with cofactor regeneration and ETC regulation, is systematically reviewed and discussed. As they have great application value, a deep understanding of the mechanisms through which AAB function will not only promote their utilization and development but also provide a reference for engineering of other industrial strains.
Collapse
Affiliation(s)
- Zhijie Qin
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shiqin Yu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jian Chen
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
10
|
Ripoll M, Jackson E, Trelles JA, Betancor L. Dihydroxyacetone production via heterogeneous biotransformations of crude glycerol. J Biotechnol 2021; 340:102-109. [PMID: 34454960 DOI: 10.1016/j.jbiotec.2021.08.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 10/20/2022]
Abstract
In this work, several immobilization strategies for Gluconobacter oxydans NBRC 14819 (Gox) were tested in the bioconversion of crude glycerol to dihydroxyacetone (DHA). Agar, agarose and polyacrylamide were evaluated as immobilization matrixes. Glutaraldehyde crosslinked versions of the agar and agarose preparations were also tested. Agar immobilized Gox proved to be the best heterogeneous biocatalyst in the bioconversion of crude glycerol reaching a quantitative production of 50 g/L glycerol into DHA solely in water. Immobilization allowed reutilization for at least eight cycles, reaching four times more DHA than the amount obtained by a single batch of free cells which cannot be reutilized. An increase in scale of 34 times had no impact on DHA productivity. The results obtained herein constitute a contribution to the microbiological production of DHA as they not only attain unprecedented productivities for the reaction with immobilized biocatalysts but also proved that it is feasible to do it in a clean background of solely water that alleviates the cost of downstream processing.
Collapse
Affiliation(s)
- Magdalena Ripoll
- Laboratorio de Biotecnología, Universidad ORT Uruguay, Mercedes 1237, 11100 Montevideo, Uruguay; Graduate Program in Chemistry, Facultad de Química, Universidad de la República, Uruguay
| | - Erienne Jackson
- Laboratorio de Biotecnología, Universidad ORT Uruguay, Mercedes 1237, 11100 Montevideo, Uruguay
| | - Jorge A Trelles
- Laboratory of Sustainable Biotechnology (LIBioS), National University of Quilmes, Roque Sáenz Peña 352, B1876BXD Bernal, Argentina; National Scientific and Technical Research Council (CONICET), Godoy Cruz 2290, C1425FQB CABA, Argentina
| | - Lorena Betancor
- Laboratorio de Biotecnología, Universidad ORT Uruguay, Mercedes 1237, 11100 Montevideo, Uruguay.
| |
Collapse
|
11
|
Li XL, Zhou Q, Pan SX, He Y, Chang F. A Review of Catalytic Upgrading of Biodiesel Waste Glycerol to Valuable Products. CURRENT GREEN CHEMISTRY 2020. [DOI: 10.2174/2213346107666200108114217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Glycerol is an organic polyol compound, and is an important raw material with extensive
applications in daily/petrochemical and pharmaceutical industry. Glycerol is typically obtained by
propylene chlorination, while the method used is complicated process and requires high energy consumption.
Interestingly, glycerol is recognized as a major by-product of biodiesel production. Approximately
100 kg of glycerol is yielded for 1 tonne of biodiesel production. With the rapid development
of the biodiesel industry, glycerol production capacity has been a serious surplus. This review introduces
the selective conversion of glycerol into a variety of value-added chemicals such as propylene
glycol, propanol, glyceraldehyde, and dihydroxyacetone via selective hydrogenation and oxidation, as
well as hydrocarbons and ethers via pyrolysis, gasification and etherification, respectively. The efficiency
of different types of catalysts and the influence of reaction parameters on the valorisation of
glycerol have been elucidated. Emphasis is also laid on the study of catalytic mechanisms and pathways
for some specific reactions.
Collapse
Affiliation(s)
- Xue-Lian Li
- Institute of Comprehensive Utilization of Plant Resources, Kaili University, Kaili 556011, China
| | - Quan Zhou
- Pharmaceutical and Bioengineering College, Hunan Chemical Vocational Technology College, Zhuzhou, Hunan 412000, China
| | - Shen-Xi Pan
- Institute of Comprehensive Utilization of Plant Resources, Kaili University, Kaili 556011, China
| | - Yu He
- Institute of Comprehensive Utilization of Plant Resources, Kaili University, Kaili 556011, China
| | - Fei Chang
- Institute of Comprehensive Utilization of Plant Resources, Kaili University, Kaili 556011, China
| |
Collapse
|
12
|
|
13
|
Cao X, Che Z, Zhou B, Guan B, Chen G, Zeng W, Liang Z. Investigations in ultrasound-assisted anticoagulant production by marine Bacillus subtilis ZHX. ULTRASONICS SONOCHEMISTRY 2020; 64:104994. [PMID: 32044681 DOI: 10.1016/j.ultsonch.2020.104994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 01/29/2020] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
Anticoagulants are the main drugs for the prevention and treatment of thromboembolism. However, most of the present anticoagulants have shortcomings and novel anticoagulants are in great demand. Marine microorganisms are an important source of new drugs. Therefore, in this study, ultrasound was applied to enhance anticoagulant accumulation by marine Bacillus subtilis ZHX. Ultrasound parameters were optimized by single-factor experiments exploring the effects of ultrasound power, duration, duty cycle and the cell growth phases. The optimum conditions were exponential prophase (5 h) with 25 kHz frequency, 140 W power, and a 40% duty cycle for 5 min. The maximum anticoagulant activity (55.36 U/mL) was 1.73 times that of the control group, and the fermentation time was shortened by 3 h. Under optimal conditions, ultrasound increased the carbon utilization by Bacillus subtilis ZHX without significant changes in morphology, favoring cell growth and anticoagulant production. However, excessive ultrasound caused intracellular damage, which inhibited biomass accumulation, decreasing anticoagulant activity and even leading to cell rupture. This is the first report on the use of ultrasound to enhance anticoagulant production by Bacillus, and it provides useful information for scaling-up the process.
Collapse
Affiliation(s)
- Xiaoyan Cao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Microorganism and Enzyme Research Center of Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Zhiqun Che
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Microorganism and Enzyme Research Center of Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Bo Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Microorganism and Enzyme Research Center of Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Baohu Guan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Microorganism and Enzyme Research Center of Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Guiguang Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Microorganism and Enzyme Research Center of Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Wei Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Microorganism and Enzyme Research Center of Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Zhiqun Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Microorganism and Enzyme Research Center of Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China.
| |
Collapse
|
14
|
Engineering of glycerol utilization in Pseudomonas chlororaphis GP72 for enhancing phenazine-1-carboxylic acid production. World J Microbiol Biotechnol 2020; 36:49. [PMID: 32157439 DOI: 10.1007/s11274-020-02824-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/29/2020] [Indexed: 12/25/2022]
Abstract
Glycerol is a by-product of biodiesel, and it has a great application prospect to be transformed to synthesize high value-added compounds. Pseudomonas chlororaphis GP72 isolated from the green pepper rhizosphere is a plant growth promoting rhizobacteria that can utilize amount of glycerol to synthesize phenazine-1-carboxylic acid (PCA). PCA has been commercially registered as "Shenqinmycin" in China due to its characteristics of preventing pepper blight and rice sheath blight. The aim of this study was to engineer glycerol utilization pathway in P. chlororaphis GP72. First, the two genes glpF and glpK from the glycerol metabolism pathway were overexpressed in GP72ANO separately. Then, the two genes were co-expressed in GP72ANO, improving PCA production from 729.4 mg/L to 993.4 mg/L at 36 h. Moreover, the shunt pathway was blocked to enhance glycerol utilization, resulting in 1493.3 mg/L PCA production. Additionally, we confirmed the inhibition of glpR on glycerol metabolism pathway in P. chlororaphis GP72. This study provides a good example for improving the utilization of glycerol to synthesize high value-added compounds in Pseudomonas.
Collapse
|
15
|
Biodiesel’s trash is a biorefineries’ treasure: the use of “dirty” glycerol as an industrial fermentation substrate. World J Microbiol Biotechnol 2019; 36:2. [DOI: 10.1007/s11274-019-2776-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/22/2019] [Indexed: 10/25/2022]
|
16
|
Jackson E, Ripoll M, Betancor L. Efficient glycerol transformation by resting Gluconobacter cells. Microbiologyopen 2019; 8:e926. [PMID: 31532065 PMCID: PMC6925173 DOI: 10.1002/mbo3.926] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/29/2019] [Accepted: 08/06/2019] [Indexed: 12/12/2022] Open
Abstract
In the present work, glycerol biotransformation using Gluconobacter strains was studied with a process intensification perspective that facilitated the development of a cleaner and more efficient technology from those previously reported. Starting from the industrial by-product, crude glycerol, resting cells of Gluconobacter frateurii and Gluconobacter oxydans were able to convert glycerol under batch reactor conditions in water with no other additive but for the substrate. The study of strains, biomass:solution ratio, pH, growth stage, and simplification of media composition in crude glycerol bioconversions facilitated productivities of glyceric acid of 0.03 g/L.h and 2.07 g/L.h (71.5 g/g % pure by NMR) of dihydroxyacetone (DHA). Productivities surmounted recent reported fermentative bioconversions of crude glycerol and were unprecedented for the use of cell suspended solely in water. This work proposes a novel approach that allows higher productivities, cleaner production, and reduction in water and energy consumption, and demonstrates the applicability of the proposed approach.
Collapse
Affiliation(s)
- Erienne Jackson
- Department of BiotechnologyUniversidad ORT UruguayMontevideoUruguay
| | - Magdalena Ripoll
- Department of BiotechnologyUniversidad ORT UruguayMontevideoUruguay
| | - Lorena Betancor
- Department of BiotechnologyUniversidad ORT UruguayMontevideoUruguay
| |
Collapse
|
17
|
Singh N, Roy K, Goyal A, Moholkar VS. Investigations in ultrasonic enhancement of β-carotene production by isolated microalgal strain Tetradesmus obliquus SGM19. ULTRASONICS SONOCHEMISTRY 2019; 58:104697. [PMID: 31450379 DOI: 10.1016/j.ultsonch.2019.104697] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/11/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
Microalgae constitute relatively novel source of lipids for biodiesel production. The economy of this process can be enhanced by the recovery of β-carotenes present in the microalgal cells. The present study has addressed matter of enhancement of lipids and β-carotene production by microalgal species of Tetradesmus obliquus SGM19 with the application of sonication. As first step, the growth cycle of Tetradesmus obliquus SGM19 was optimized using statistical experimental design. Optimum parameters influencing microalgal growth were: Sodium nitrate = 1.5 g/L, ethylene diamine tetraacetic acid = 0.001 g/L, temperature = 28.5 °C, pH = 7.5, light intensity = 5120 lux, β-carotene yield = 0.67 mg/g DCW. Application of 33 kHz and 1.4 bar ultrasound at 10% duty cycle was revealed to enhance the lipid and β-carotene yields by 34.5% and 31.5%, respectively. Kinetic analysis of substrate and product profiles in control and test experiments revealed both lipid and β-carotene to be growth-associated products. The intracellular NAD(H) content during late log phase was monitored in control and test experiments as a measure of relative kinetics of intracellular metabolism. Consistently higher NAD(H) concentrations were observed for test experiments; indicating faster metabolism. Finally, the viability of ultrasound-exposed microalgal cells (assessed with flow cytometry) was >80%.
Collapse
Affiliation(s)
- Neha Singh
- Centre for Energy, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam, India
| | - Kuldeep Roy
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam, India
| | - Arun Goyal
- Centre for Energy, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam, India; Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam, India
| | - Vijayanand S Moholkar
- Centre for Energy, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam, India; Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam, India.
| |
Collapse
|
18
|
Wang Z, Chen X, Liu S, Zhang Y, Wu Z, Xu W, Sun Q, Yang L, Zhang H. Efficient biosynthesis of anticancer polysaccharide by a mutant Chaetomium globosum ALE20 via non-sterilized fermentation. Int J Biol Macromol 2019; 136:1106-1111. [PMID: 31252005 DOI: 10.1016/j.ijbiomac.2019.06.186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 06/13/2019] [Accepted: 06/24/2019] [Indexed: 12/21/2022]
Abstract
The sterilization process, due to its immense energy consumption, high facilities investment, and loss of raw materials by caramelization, during industrial production has drawn much attention. In this study, a methanol-resistant mutant strain, Chaetomium globosum ALE20, was obtained following 20 cycles of adaptive laboratory evolution process. The titer of anticancer polysaccharide (GCP-M) from C. globosum ALE20 reached 9.2 g/L with glycerol as sole carbon source using non-sterilized and fed-batch fermentation strategy. This titer represents a 200% increase compared with the 3.3 g/L attained with batch fermentation. The GCP-M monosaccharide was comprised of galactose, glucose, mannose and glucuronic acid, in a molar ratio of 3.83:66.37:3.26:1.95, respectively, and its weight-average molecular weight and polydispersity were 3.796 × 104 Da and 1.060, respectively. This work presents an ideal alternative and safer fermentation process without sterilization, and a useful approach for enhancing industrial production.
Collapse
Affiliation(s)
- Zichao Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xuyang Chen
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Siyu Liu
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yingying Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Zhangtao Wu
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Wenwen Xu
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Qi Sun
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China.
| | - Libo Yang
- College of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056021, China
| | - Huiru Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| |
Collapse
|
19
|
Zhou X, Han J, Xu Y. Electrodialytic bioproduction of xylonic acid in a bioreactor of supplied-oxygen intensification by using immobilized whole-cell Gluconobacter oxydans as biocatalyst. BIORESOURCE TECHNOLOGY 2019; 282:378-383. [PMID: 30884457 DOI: 10.1016/j.biortech.2019.03.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
Immobilized whole-cell fermentation has been proven to be an effective method to improve the performance and cost-effectiveness of Gluconobacter oxydans ATCC 621. In the bio-oxidation of xylose to xylonic acid, the oxygen supply through the immobilized beads is a well-known factor that limits the biocatalytic performance of Gluconobacter oxydans as obligate aerobic bacteria. The activity of immobilized cells could be efficiently improved by execution of pressurized pure oxygen supply strategy. Subsequently, in order to further enhance the production efficiency of xylonic acid and reduce end-product inhibition, online-electrodialysis was employed. Finally, a design of pressurized oxygen supply bioreactor combining with online-electrodialysis was put forward for implementing successive production of xylonic acid. The central features of this a highly integrated design are feasible and thus might enable cost-competitive bacterial xylonic acid production.
Collapse
Affiliation(s)
- Xin Zhou
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China
| | - Jian Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Yong Xu
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China.
| |
Collapse
|
20
|
Iyyappan J, Bharathiraja B, Baskar G, Kamalanaban E. Process optimization and kinetic analysis of malic acid production from crude glycerol using Aspergillus niger. BIORESOURCE TECHNOLOGY 2019; 281:18-25. [PMID: 30784998 DOI: 10.1016/j.biortech.2019.02.067] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 06/09/2023]
Abstract
In the present work, optimization of crude glycerol fermentation to produce malic acid by using Aspergillus niger was investigated using response surface methodology and artificial neural network. Kinetic investigation of bioconversion of crude glycerol into malic acid using Aspergillus niger was studied using Monod, Mosser, and Haldane-Andrew models. Crude glycerol concentration, initial pH and yeast extract concentration were found to be significant compounds affecting malic acid production by Aspergillus niger. Both dry cell weight and malic acid titre were found decreased with increase in crude glycerol concentration. Haldane-Andrew model gave the best fit for the production of malic acid from crude glycerol with µmax of 0.1542 h-1. The maximum malic acid production obtained under optimum conditions was 92.64 + 1.54 g/L after 192 h from crude glycerol using Aspergillus niger.
Collapse
Affiliation(s)
- J Iyyappan
- Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Chennai 600062, India
| | - B Bharathiraja
- Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Chennai 600062, India.
| | - G Baskar
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai 600119, India
| | - E Kamalanaban
- Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Chennai 600062, India
| |
Collapse
|
21
|
Wang Z, Ning T, Gao K, He X, Zhang H. Utilization of glycerol and crude glycerol for polysaccharide production by an endophytic fungus Chaetomium globosum CGMCC 6882. Prep Biochem Biotechnol 2019; 49:807-812. [DOI: 10.1080/10826068.2019.1621895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Zichao Wang
- The Province Key Laboratory of Cereal Resource Transformation and Utilization, Henan University of Technology, Zhengzhou, China
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Tao Ning
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Kun Gao
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Xiaojia He
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Huiru Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
22
|
Anticancer Activity of Polysaccharides Produced from Glycerol and Crude Glycerol by an Endophytic Fungus Chaetomium globosum CGMCC 6882 on Human Lung Cancer A549 Cells. Biomolecules 2018; 8:biom8040171. [PMID: 30544990 PMCID: PMC6315677 DOI: 10.3390/biom8040171] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/04/2018] [Accepted: 12/06/2018] [Indexed: 12/23/2022] Open
Abstract
Two polysaccharides were produced by Chaetomium globosum CGMCC 6882 from glycerol (GCP-1) and crude glycerol (GCP-2). Chemical characteristics results showed GCP-1 and GCP-2 were similar polysaccharides, but the molecular weights of GCP-1 and GCP-2 were 5.340 × 104 Da and 3.105 × 104 Da, respectively. Viabilities of A549 cells after treatment with GCP-1 and GCP-2 were 49% and 39% compared to the control group. Meanwhile, flow cytometry results indicated that GCP-1 and GCP-2 could induce 17.79% and 24.28% of A549 cells to apoptosis with 200 μg/mL concentration treated for 24 h. RT-PCR results suggested that GCP-1 and GCP-2 could be used as potential and effective apoptosis inducers on A549 cells by increasing BAX, CASPASE-3, CASPASE-9, TIMP-1, TIMP-2 expression and decreasing BCL-2 expression. This research provided an innovative approach to using a byproduct of biodiesel production (crude glycerol) to produce polysaccharides of potential medicinal benefit.
Collapse
|
23
|
Valorization of Waste Glycerol to Dihydroxyacetone with Biocatalysts Obtained from Gluconobacter oxydans. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8122517] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Waste glycerol is the main by-product generated during biodiesel production, in an amount reaching up to 10% of the produced biofuel. Is there any method which allows changing this waste into industrial valuable compounds? This manuscript describes a method for valorization of crude glycerol via microbial bioconversion. It has been shown that the use of free and immobilized biocatalysts obtained from Gluconobacter oxydans can enable beneficial valorization of crude glycerol to industrially valuable dihydroxyacetone. The highest concentration of this compound, reaching over 20 g·L−1, was obtained after 72 h of biotransformation with free G. oxydans cells, in a medium containing 30 or 50 g·L−1 of waste glycerol. Using a free cell extract resulted in higher concentrations of dihydroxyacetone and a higher valorization efficiency (up to 98%) compared to the reaction with an immobilized cell extract. Increasing waste glycerol concentration to 50 g·L−1 causes neither a faster nor higher increase in product yield and reaction efficiency compared to its initial concentration of 30 g·L−1. The proposed method could be an alternative for utilization of a petrochemical waste into industry applicated chemicals.
Collapse
|
24
|
Iyyappan J, Baskar G, Bharathiraja B, Saravanathamizhan R. Malic acid production from biodiesel derived crude glycerol using morphologically controlled Aspergillus niger in batch fermentation. BIORESOURCE TECHNOLOGY 2018; 269:393-399. [PMID: 30205264 DOI: 10.1016/j.biortech.2018.09.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/30/2018] [Accepted: 09/01/2018] [Indexed: 06/08/2023]
Abstract
In the present investigation, the effects of crude glycerol concentration, spore inoculum concentration, yeast extract concentration and shaking frequency on seed morphology of Aspergillus niger PJR1 on malic acid production were investigated and dispersed fungal mycelium with higher biomass (20.25 ± 0.91 g/L) was obtained when A. niger PJR1 grow on crude glycerol. Dry cell weight under dispersed fermentation was 21.28% higher than usual pellet fermentation. The optimal crude glycerol, nitrogen source and nitrogen source concentration were found to be 160 g/L, yeast extract and 1.5 g/L, respectively. Batch fermentation in a shake flask culture containing 160 g/L crude glycerol resulted in the yield of malic acid 83.23 ± 1.86 g/L, after 192 h at 25 °C. Results revealed that morphological control of A. niger is an efficient method for increased malic acid production when crude glycerol derived from biodiesel production is used as feedstock.
Collapse
Affiliation(s)
- J Iyyappan
- Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Chennai 600062, India
| | - G Baskar
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai 600119, India.
| | - B Bharathiraja
- Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Chennai 600062, India
| | - R Saravanathamizhan
- Department of Chemical Engineering, A. C. Tech Campus, Anna University, Chennai 600025, India
| |
Collapse
|
25
|
Tizazu BZ, Roy K, Moholkar VS. Mechanistic investigations in ultrasound-assisted xylitol fermentation. ULTRASONICS SONOCHEMISTRY 2018; 48:321-328. [PMID: 30080557 DOI: 10.1016/j.ultsonch.2018.06.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/15/2018] [Accepted: 06/17/2018] [Indexed: 06/08/2023]
Abstract
This study has investigated ultrasound-assisted xylitol production through fermentation of dilute acid (pentose-rich) hydrolysate of sugarcane bagasse using free cells of Candida tropicalis. Sonication of fermentation mixture at optimum conditions was carried out in ultrasound bath (37 kHz and 10% duty cycle). Time profiles of substrate and product in control (mechanical shaking) and test (mechanical shaking + sonication) fermentations were fitted to kinetic model using Genetic Algorithm (GA) optimization. Max. xylitol yield of 0.56 g/g and 0.61 g/g of xylose was achieved in control and test fermentations, respectively. The biomass yield also increased marginally (∼17%) with sonication. However, kinetics of fermentation increased drastically (2.5×) with sonication with 2× rise in xylose uptake and utilization by the cells. With comparative analysis of kinetic parameters in control and test experiments, this result was attributed to enhanced permeability of cell membrane that allowed faster diffusion of nutrients, substrates and products across cell membrane, higher enzyme-substrate affinity, dilution of toxic components and reduced inhibition of intracellular enzymes by substrate.
Collapse
Affiliation(s)
- Belachew Zegale Tizazu
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam, India
| | - Kuldeep Roy
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam, India
| | - Vijayanand S Moholkar
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam, India.
| |
Collapse
|
26
|
Tizazu BZ, Roy K, Moholkar VS. Ultrasonic enhancement of xylitol production from sugarcane bagasse using immobilized Candida tropicalis MTCC 184. BIORESOURCE TECHNOLOGY 2018; 268:247-258. [PMID: 30081284 DOI: 10.1016/j.biortech.2018.07.141] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 06/08/2023]
Abstract
This study investigates ultrasonic enhancement of xylitol production from sugarcane bagasse using C. tropicalis MTCC 184 immobilized on PU foam. Initial xylitol yield of 0.53 g/g xylose improved to 0.65 g/g of xylose (in 36 h fermentation) after optimization of medium and fermentation parameters. Optimum values of experimental parameters for maximum xylitol were: yeast extract = 5.78 g/L, (NH4)2SO4 = 3.22 g/L, KH2PO4 = 0.58 g/L, MgSO4·7H2O = 0.57 g/L and temperature = 29.3 °C, initial pH = 6.2, agitation rate = 151 rpm and initial xylose concentration = 20.9 g/L. Application of 37 kHz sonication @10% duty cycle during fermentation at optimum conditions resulted in marked intensification of fermentation kinetics. Xylitol yield of 0.66 g/g of xylose has been obtained in ultrasound-assisted fermentation in just 15 h. Fitting of time profiles of substrates and products to kinetic model has highlighted actual physical mechanisms underlying 2-fold faster kinetics induced by sonication.
Collapse
Affiliation(s)
- Belachew Zegale Tizazu
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam, India
| | - Kuldeep Roy
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam, India
| | - Vijayanand S Moholkar
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam, India.
| |
Collapse
|
27
|
Yan J, Xu J, Cao M, Li Z, Xu C, Wang X, Yang C, Xu P, Gao C, Ma C. Engineering of glycerol utilization in Gluconobacter oxydans 621H for biocatalyst preparation in a low-cost way. Microb Cell Fact 2018; 17:158. [PMID: 30296949 PMCID: PMC6174558 DOI: 10.1186/s12934-018-1001-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 09/24/2018] [Indexed: 12/12/2022] Open
Abstract
Background Whole cells of Gluconobacter oxydans are widely used in various biocatalytic processes. Sorbitol at high concentrations is commonly used in complex media to prepare biocatalysts. Exploiting an alternative process for preparation of biocatalysts with low cost substrates is of importance for industrial applications. Results G. oxydans 621H was confirmed to have the ability to grow in mineral salts medium with glycerol, an inevitable waste generated from industry of biofuels, as the sole carbon source. Based on the glycerol utilization mechanism elucidated in this study, the major polyol dehydrogenase (GOX0854) and the membrane-bound alcohol dehydrogenase (GOX1068) can competitively utilize glycerol but play no obvious roles in the biocatalyst preparation. Thus, the genes related to these two enzymes were deleted. Whole cells of G. oxydans ∆GOX1068∆GOX0854 can be prepared from glycerol with a 2.4-fold higher biomass yield than that of G. oxydans 621H. Using whole cells of G. oxydans ∆GOX1068∆GOX0854 as the biocatalyst, 61.6 g L−1 xylonate was produced from 58.4 g L−1 xylose at a yield of 1.05 g g−1. Conclusion This process is an example of efficient preparation of whole cells of G. oxydans with reduced cost. Besides xylonate production from xylose, other biocatalytic processes might also be developed using whole cells of metabolic engineered G. oxydans prepared from glycerol. Electronic supplementary material The online version of this article (10.1186/s12934-018-1001-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jinxin Yan
- State Key Laboratory of Microbial Technology & Shenzhen Research Institute, Shandong University, 27 Shanda South Road, Jinan, 250100, People's Republic of China
| | - Jing Xu
- State Key Laboratory of Microbial Technology & Shenzhen Research Institute, Shandong University, 27 Shanda South Road, Jinan, 250100, People's Republic of China.,Dong Ying Oceanic and Fishery Bureau, 206 Yellow River Road, Dongying, 257091, People's Republic of China
| | - Menghao Cao
- State Key Laboratory of Microbial Technology & Shenzhen Research Institute, Shandong University, 27 Shanda South Road, Jinan, 250100, People's Republic of China
| | - Zhong Li
- State Key Laboratory of Microbial Technology & Shenzhen Research Institute, Shandong University, 27 Shanda South Road, Jinan, 250100, People's Republic of China
| | - Chengpeng Xu
- State Key Laboratory of Microbial Technology & Shenzhen Research Institute, Shandong University, 27 Shanda South Road, Jinan, 250100, People's Republic of China
| | - Xinyu Wang
- State Key Laboratory of Microbial Technology & Shenzhen Research Institute, Shandong University, 27 Shanda South Road, Jinan, 250100, People's Republic of China
| | - Chunyu Yang
- State Key Laboratory of Microbial Technology & Shenzhen Research Institute, Shandong University, 27 Shanda South Road, Jinan, 250100, People's Republic of China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Chao Gao
- State Key Laboratory of Microbial Technology & Shenzhen Research Institute, Shandong University, 27 Shanda South Road, Jinan, 250100, People's Republic of China
| | - Cuiqing Ma
- State Key Laboratory of Microbial Technology & Shenzhen Research Institute, Shandong University, 27 Shanda South Road, Jinan, 250100, People's Republic of China.
| |
Collapse
|