1
|
Bohutskyi P, Pomraning KR, Jenkins JP, Kim YM, Poirier BC, Betenbaugh MJ, Magnuson JK. Mixed and membrane-separated culturing of synthetic cyanobacteria-yeast consortia reveals metabolic cross-talk mimicking natural cyanolichens. Sci Rep 2024; 14:25303. [PMID: 39455633 PMCID: PMC11511929 DOI: 10.1038/s41598-024-74743-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
Metabolite exchange mediates crucial interactions in microbial communities, significantly impacting global carbon and nitrogen cycling. Understanding these chemically-mediated interactions is essential for elucidating natural community functions and developing engineered synthetic communities. This study investigated membrane-separated bioreactors (mBRs) as a novel tool to identify transient metabolites and their producers/consumers in mixed microbial communities. We compared three co-culture methods (direct mixed, 2-chamber mBR, and 3-chamber mBR) to grow a synthetic binary community of the cyanobacterium Synechococcus elongatus PCC 7942 and the fungus Rhodotorula toruloides NBRC 0880, as well as axenic S. elongatus. Despite not being natural lichen constituents, these organisms exhibited interactions resembling those in cyanolichens. S. elongatus fixed CO2 into sugars as the primary shared metabolite, while R. toruloides secreted various biochemicals, predominantly sugar alcohols, mirroring the metabolite exchange observed in natural lichens. The mBR systems successfully captured metabolite gradients and revealed rapidly consumed compounds, including TCA cycle intermediates and amino acids. Our approach demonstrated that the 2-chamber mBR optimally balanced metabolite exchange and growth dynamics. This study provides insights into cross-species metabolic interactions and presents a valuable tool for investigating and engineering synthetic microbial communities with potential applications in biotechnology and environmental science.
Collapse
Affiliation(s)
- Pavlo Bohutskyi
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA.
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, 99164, USA.
| | - Kyle R Pomraning
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Jackson P Jenkins
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Young-Mo Kim
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Brenton C Poirier
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Jon K Magnuson
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| |
Collapse
|
2
|
Nishida Y, Berg PC, Shakersain B, Hecht K, Takikawa A, Tao R, Kakuta Y, Uragami C, Hashimoto H, Misawa N, Maoka T. Astaxanthin: Past, Present, and Future. Mar Drugs 2023; 21:514. [PMID: 37888449 PMCID: PMC10608541 DOI: 10.3390/md21100514] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023] Open
Abstract
Astaxanthin (AX), a lipid-soluble pigment belonging to the xanthophyll carotenoids family, has recently garnered significant attention due to its unique physical properties, biochemical attributes, and physiological effects. Originally recognized primarily for its role in imparting the characteristic red-pink color to various organisms, AX is currently experiencing a surge in interest and research. The growing body of literature in this field predominantly focuses on AXs distinctive bioactivities and properties. However, the potential of algae-derived AX as a solution to various global environmental and societal challenges that threaten life on our planet has not received extensive attention. Furthermore, the historical context and the role of AX in nature, as well as its significance in diverse cultures and traditional health practices, have not been comprehensively explored in previous works. This review article embarks on a comprehensive journey through the history leading up to the present, offering insights into the discovery of AX, its chemical and physical attributes, distribution in organisms, and biosynthesis. Additionally, it delves into the intricate realm of health benefits, biofunctional characteristics, and the current market status of AX. By encompassing these multifaceted aspects, this review aims to provide readers with a more profound understanding and a robust foundation for future scientific endeavors directed at addressing societal needs for sustainable nutritional and medicinal solutions. An updated summary of AXs health benefits, its present market status, and potential future applications are also included for a well-rounded perspective.
Collapse
Affiliation(s)
- Yasuhiro Nishida
- Fuji Chemical Industries, Co., Ltd., 55 Yokohoonji, Kamiich-machi, Nakaniikawa-gun, Toyama 930-0405, Japan
| | | | - Behnaz Shakersain
- AstaReal AB, Signum, Forumvägen 14, Level 16, 131 53 Nacka, Sweden; (P.C.B.); (B.S.)
| | - Karen Hecht
- AstaReal, Inc., 3 Terri Lane, Unit 12, Burlington, NJ 08016, USA;
| | - Akiko Takikawa
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan;
| | - Ruohan Tao
- Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda 669-1330, Japan; (R.T.); (Y.K.); (C.U.); (H.H.)
| | - Yumeka Kakuta
- Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda 669-1330, Japan; (R.T.); (Y.K.); (C.U.); (H.H.)
| | - Chiasa Uragami
- Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda 669-1330, Japan; (R.T.); (Y.K.); (C.U.); (H.H.)
| | - Hideki Hashimoto
- Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda 669-1330, Japan; (R.T.); (Y.K.); (C.U.); (H.H.)
| | - Norihiko Misawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Suematsu, Nonoichi-shi 921-8836, Japan;
| | - Takashi Maoka
- Research Institute for Production Development, 15 Shimogamo-morimoto-cho, Sakyo-ku, Kyoto 606-0805, Japan
| |
Collapse
|
3
|
Tong CY, Honda K, Derek CJC. A review on microalgal-bacterial co-culture: The multifaceted role of beneficial bacteria towards enhancement of microalgal metabolite production. ENVIRONMENTAL RESEARCH 2023; 228:115872. [PMID: 37054838 DOI: 10.1016/j.envres.2023.115872] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 05/16/2023]
Abstract
Mass microalgal-bacterial co-cultures have come to the fore of applied physiological research, in particularly for the optimization of high-value metabolite from microalgae. These co-cultures rely on the existence of a phycosphere which harbors unique cross-kingdom associations that are a prerequisite for the cooperative interactions. However, detailed mechanisms underpinning the beneficial bacterial effects onto microalgal growth and metabolic production are rather limited at the moment. Hence, the main purpose of this review is to shed light on how bacteria fuels microalgal metabolism or vice versa during mutualistic interactions, building upon the phycosphere which is a hotspot for chemical exchange. Nutrients exchange and signal transduction between two not only increase the algal productivity, but also facilitate in the degradation of bio-products and elevate the host defense ability. Main chemical mediators such as photosynthetic oxygen, N-acyl-homoserine lactone, siderophore and vitamin B12 were identified to elucidate beneficial cascading effects from the bacteria towards microalgal metabolites. In terms of applications, the enhancement of soluble microalgal metabolites is often associated with bacteria-mediated cell autolysis while bacterial bio-flocculants can aid in microalgal biomass harvesting. In addition, this review goes in depth into the discussion on enzyme-based communication via metabolic engineering such as gene modification, cellular metabolic pathway fine-tuning, over expression of target enzymes, and diversion of flux toward key metabolites. Furthermore, possible challenges and recommendations aimed at stimulating microalgal metabolite production are outlined. As more evidence emerges regarding the multifaceted role of beneficial bacteria, it will be crucial to incorporate these findings into the development of algal biotechnology.
Collapse
Affiliation(s)
- C Y Tong
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia
| | - Kohsuke Honda
- International Center for Biotechnology, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan.
| | - C J C Derek
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia.
| |
Collapse
|
4
|
Schmitt I, Meyer F, Krahn I, Henke NA, Peters-Wendisch P, Wendisch VF. From Aquaculture to Aquaculture: Production of the Fish Feed Additive Astaxanthin by Corynebacterium glutamicum Using Aquaculture Sidestream. Molecules 2023; 28:molecules28041996. [PMID: 36838984 PMCID: PMC9958746 DOI: 10.3390/molecules28041996] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/31/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Circular economy holds great potential to minimize the use of finite resources, and reduce waste formation by the creation of closed-loop systems. This also pertains to the utilization of sidestreams in large-scale biotechnological processes. A flexible feedstock concept has been established for the industrially relevant Corynebacterium glutamicum, which naturally synthesizes the yellow C50 carotenoid decaprenoxanthin. In this study, we aimed to use a preprocessed aquaculture sidestream for production of carotenoids, including the fish feed ingredient astaxanthin by C. glutamicum. The addition of a preprocessed aquaculture sidestream to the culture medium did not inhibit growth, obviated the need for addition of several components of the mineral salt's medium, and notably enhanced production of astaxanthin by an engineered C. glutamicum producer strain. Improved astaxanthin production was scaled to 2 L bioreactor fermentations. This strategy to improve astaxanthin production was shown to be transferable to production of several native and non-native carotenoids. Thus, this study provides a proof-of-principle for improving carotenoid production by C. glutamicum upon supplementation of a preprocessed aquaculture sidestream. Moreover, in the case of astaxanthin production it may be a potential component of a circular economy in aquaculture.
Collapse
|
5
|
Liu C, Hu B, Cheng Y, Guo Y, Yao W, Qian H. Carotenoids from fungi and microalgae: A review on their recent production, extraction, and developments. BIORESOURCE TECHNOLOGY 2021; 337:125398. [PMID: 34139560 DOI: 10.1016/j.biortech.2021.125398] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 06/12/2023]
Abstract
The demand for carotenoids from natural sources obtained by biological extraction methods is increasing with the development of biotechnology and the continued awareness of food safety. Natural plant-derived carotenoids have a relatively high production cost and are affected by the season, while microbial-derived carotenoids are favored due to their natural, high-efficiency, low production cost, and ease of industrialization. This article reviewed the following aspects of natural carotenoids derived from microorganisms: (1) the structures and properties of main carotenoids; (2) fungal and microalgal sources of the main carotenoids; (3) influencing factors and modes of improvement for carotenoids production; (4) efficient extraction methods for carotenoids; and (5) the commercial value of carotenoids. This review provided a reference and guidance for the development of natural carotenoids derived from microorganisms.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - Bin Hu
- School of Biotechnology, Jiangnan University, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - He Qian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China.
| |
Collapse
|
6
|
Liu X, Wang K, Zhang J, Wang J, Wu J, Peng F. Ammonium removal potential and its conversion pathways by free and immobilized Scenedesmus obliquus from wastewater. BIORESOURCE TECHNOLOGY 2019; 283:184-190. [PMID: 30904698 DOI: 10.1016/j.biortech.2019.03.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 05/28/2023]
Abstract
In this study, the immobilization with sodium alginate (SA) for cultivating microalgae in entrapped matrix gel beads was conducted for separating it from water. Batch experiments with a period of 5 days were carried out for free and immobilized Scenedesmus obliquus simultaneously under two trophic modes, to compare the removal performances of different initial ammonium (NH4+-N) concentrations. In both free and immobilized form, the positive C-dependent effect in mixotrophy and the negative N-dependent effect in heterotrophy were observed. And the performances of immobilized form were all superior to that of free form, which showed greater tolerance to high concentration, maximally representing 96.6 ± 0.1% removal in 50 mg/L of NH4+-N in mixotrophy. Assimilation of NH4+-N was the main removal pathway resulting the protein synthesis with the dominant component including glutamic acid (Glu), cystine (Cys), arginine (Arg) and proline (Pro). The results demonstrated a systematic understanding for NH4+-N removal in microalgae-based system.
Collapse
Affiliation(s)
- Xiang Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 10084, PR China
| | - Kaijun Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 10084, PR China.
| | - Jin Zhang
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Jingyao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 10084, PR China
| | - Juanjuan Wu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 10084, PR China
| | - Fei Peng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 10084, PR China
| |
Collapse
|
7
|
Bohutskyi P, Phan D, Spierling RE, Kopachevsky AM, Bouwer EJ, Lundquist TJ, Betenbaugh MJ. Production of lipid-containing algal-bacterial polyculture in wastewater and biomethanation of lipid extracted residues: Enhancing methane yield through hydrothermal pretreatment and relieving solvent toxicity through co-digestion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 653:1377-1394. [PMID: 30759577 DOI: 10.1016/j.scitotenv.2018.11.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/11/2018] [Accepted: 11/02/2018] [Indexed: 06/09/2023]
Abstract
The feasibility of generating a lipid-containing algal-bacterial polyculture biomass in municipal primary wastewater and enhancing biomethanation of lipid-extracted algal residues (LEA) through hydrothermal pretreatment and co-digestion with sewage sludge (SS) was investigated. In high-rate algal ponds, the polyculture of native algal and bacteria species demonstrated a monthly average net and gross biomass productivity of 30 ± 3 and 36 ± 3 gAFDW m-2 day-1 (summer season). The algal community was dominated by Micractinium sp. followed by Scenedesmus sp., Chlorella sp., pennate diatoms and Chlamydomonas sp. The polyculture metabolic activities resulted in average reductions of wastewater volatile suspended solids (VSS), carbonaceous soluble biochemical oxygen demand (csBOD5) and total nitrogen (Ntotal) of 63 ± 18%, 98 ± 1% and 76 ± 21%, respectively. Harvested biomass contained nearly 23% lipid content and an extracted blend of fatty acid methyl esters satisfied the ASTM D6751 standard for biodiesel. Anaerobic digestion of lipid extracted algal residues (LEA) demonstrated long lag-phase in methane production of 17 days and ultimate methane yield of 296 ± 2 mL/gVS (or ~50% of theoretical), likely because to its limited biodegradability and toxicity due to presence of the residual solvent (hexane). Hydrothermal pretreatment increased the ultimate methane yield and production rate by 15-30% but did not mitigate solvent toxicity effects completely leading to less substantial improvement in energy output of 5-20% and diminished Net Energy Ratio (NER < 1). In contrast, co-digestion of LEA with sewage sludge (10% to 90% ratio) was found to minimize solvent toxicity and improve methane yield enhancing the energy output ~4-fold, compared to using LEA as a single substrate, and advancing NER to 4.2.
Collapse
Affiliation(s)
- Pavlo Bohutskyi
- Biological Sciences Division, Pacific Northwest National Laboratory, 3300 Stevens Dr., Richland, WA 99354, USA.
| | - Duc Phan
- Department of Environmental Health and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218-2686, USA; Department of Civil and Environmental Engineering, The University of Texas at San Antonio, 1 UTSA Cir San Antonio, TX 78249, USA
| | - Ruth E Spierling
- Civil and Environmental Engineering Department, California Polytechnic State University, 1 Grand Ave., San Luis Obispo, CA 93407, USA; MicroBio Engineering Inc, PO Box 15821, San Luis Obispo, CA 93406, USA
| | - Anatoliy M Kopachevsky
- Department of Water Supply and Sanitary Engineering, Academy of Construction and Architecture of V.I. Vernadsky Crimean Federal University, 4 Prospekt Vernadskogo, Simferopol 295007, Republic of Crimea; Water Technologies Research and Production Company, 7 Petropavlovskaya street, Simferopol 295000, Republic of Crimea; Water of the Crimea State Unitary Enterprise of the Republic of Crimea, 1а Kievskaya street, Simferopol 295053, Republic of Crimea
| | - Edward J Bouwer
- Department of Environmental Health and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218-2686, USA
| | - Trygve J Lundquist
- Civil and Environmental Engineering Department, California Polytechnic State University, 1 Grand Ave., San Luis Obispo, CA 93407, USA; MicroBio Engineering Inc, PO Box 15821, San Luis Obispo, CA 93406, USA
| | - Michael J Betenbaugh
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218-2686, USA
| |
Collapse
|
8
|
Roell GW, Zha J, Carr RR, Koffas MA, Fong SS, Tang YJ. Engineering microbial consortia by division of labor. Microb Cell Fact 2019; 18:35. [PMID: 30736778 PMCID: PMC6368712 DOI: 10.1186/s12934-019-1083-3] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 01/31/2019] [Indexed: 12/22/2022] Open
Abstract
During microbial applications, metabolic burdens can lead to a significant drop in cell performance. Novel synthetic biology tools or multi-step bioprocessing (e.g., fermentation followed by chemical conversions) are therefore needed to avoid compromised biochemical productivity from over-burdened cells. A possible solution to address metabolic burden is Division of Labor (DoL) via natural and synthetic microbial consortia. In particular, consolidated bioprocesses and metabolic cooperation for detoxification or cross feeding (e.g., vitamin C fermentation) have shown numerous successes in industrial level applications. However, distributing a metabolic pathway among proper hosts remains an engineering conundrum due to several challenges: complex subpopulation dynamics/interactions with a short time-window for stable production, suboptimal cultivation of microbial communities, proliferation of cheaters or low-producers, intermediate metabolite dilution, transport barriers between species, and breaks in metabolite channeling through biosynthesis pathways. To develop stable consortia, optimization of strain inoculations, nutritional divergence and crossing feeding, evolution of mutualistic growth, cell immobilization, and biosensors may potentially be used to control cell populations. Another opportunity is direct integration of non-bioprocesses (e.g., microbial electrosynthesis) to power cell metabolism and improve carbon efficiency. Additionally, metabolic modeling and 13C-metabolic flux analysis of mixed culture metabolism and cross-feeding offers a computational approach to complement experimental research for improved consortia performance.
Collapse
Affiliation(s)
- Garrett W Roell
- Department of Energy, Environmental and Chemical Engineering, Washington University, Saint Louis, MO, 63130, USA
| | - Jian Zha
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY, 12180, USA
| | - Rhiannon R Carr
- Department of Energy, Environmental and Chemical Engineering, Washington University, Saint Louis, MO, 63130, USA
| | - Mattheos A Koffas
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY, 12180, USA
| | - Stephen S Fong
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Yinjie J Tang
- Department of Energy, Environmental and Chemical Engineering, Washington University, Saint Louis, MO, 63130, USA.
| |
Collapse
|
9
|
Zuccaro G, Steyer JP, van Lis R. The algal trophic mode affects the interaction and oil production of a synergistic microalga-yeast consortium. BIORESOURCE TECHNOLOGY 2019; 273:608-617. [PMID: 30481660 DOI: 10.1016/j.biortech.2018.11.063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/16/2018] [Accepted: 11/17/2018] [Indexed: 05/27/2023]
Abstract
The use of non-food feedstocks to produce renewable microbial resources can limit our dependence on fossil fuels and lower CO2 emissions. Since microalgae display a virtuous CO2 and O2 exchange with heterotrophs, the microalga Chlamydomonas reinhardtii was combined with the oleaginous yeast Lipomyces starkeyi, known for their production of oil, base material for biodiesel. The coupled growth was shown to be synergistic for biomass and lipid production. The species were truly symbiotic since synergistic growth occurred even when the alga cannot use the organic carbon in the feedstock and in absence of air, thus depending entirely on CO2-O2 exchange. Since addition of acetate as the algal carbon source lowered the performance of the consortium, the microbial system design should take into account algal mixotrophy. The mixed biomass was found be suitable for biodiesel production, and whereas lipid production increased in the consortium, yields should be improved in future studies.
Collapse
Affiliation(s)
- G Zuccaro
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, 80125 Napoli, Italy; LBE, INRA, Univ Montpellier, 102 avenue des Etangs, F-11100 Narbonne, France
| | - J-P Steyer
- LBE, INRA, Univ Montpellier, 102 avenue des Etangs, F-11100 Narbonne, France
| | - R van Lis
- LBE, INRA, Univ Montpellier, 102 avenue des Etangs, F-11100 Narbonne, France.
| |
Collapse
|
10
|
Bohutskyi P, Phan D, Kopachevsky AM, Chow S, Bouwer EJ, Betenbaugh MJ. Synergistic co-digestion of wastewater grown algae-bacteria polyculture biomass and cellulose to optimize carbon-to-nitrogen ratio and application of kinetic models to predict anaerobic digestion energy balance. BIORESOURCE TECHNOLOGY 2018; 269:210-220. [PMID: 30173067 DOI: 10.1016/j.biortech.2018.08.085] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/17/2018] [Accepted: 08/19/2018] [Indexed: 06/08/2023]
Abstract
This study investigated enhancing methane production from algal-bacteria biomass by adjusting the C/N ratio through co-digestion with a nitrogen-poor co-substrate - cellulose. A biomethane potential test was used to determine cumulative biogas and methane production for pure and co-digested substrates. Four kinetic models were evaluated for their accuracy describing experimental data. These models were used to estimate the total energy output and net energy ratio (NER) for a scaled AD system. Increasing the algal C/N ratio from 5.7 to 20-30 (optimal algae:cellulose feedstock ratios of 35%:65% and 20%:80%) improved the ultimate methane yield by >10% and the first ten days production by >100%. The modified Gompertz kinetic model demonstrated highest accuracy, predicting that co-digestion improved methane production by reducing the time-lag by ∼50% and increasing rate by ∼35%. The synergistic effects increase the AD system energy efficiency and NER by 30-45%, suggesting potential for substantial enhancements from co-digestion at scale.
Collapse
Affiliation(s)
- Pavlo Bohutskyi
- Biological Sciences Division, Pacific Northwest National Laboratory, 3300 Stevens Dr., Richland, WA 99354, United States.
| | - Duc Phan
- Department of Environmental Health and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218-2686, United States; Department of Civil and Environmental Engineering, The University of Texas at San Antonio, 1 UTSA Cir, San Antonio, TX 78249, United States
| | - Anatoliy M Kopachevsky
- Department of Water Supply and Sanitary Engineering, Academy of Construction and Architecture of V.I. Vernadsky Crimean Federal University, 4 Prospekt Vernadskogo, Simferopol 295007, Republic of Crimea; Water Technologies Research and Production Company, 7 Petropavlovskaya Street, Simferopol, 295000, Republic of Crimea; Water of the Crimea State Unitary Enterprise, 1а Kievskaya Street. Simferopol, 295053, Republic of Crimea
| | - Steven Chow
- Department of Environmental Health and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218-2686, United States
| | - Edward J Bouwer
- Department of Environmental Health and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218-2686, United States
| | - Michael J Betenbaugh
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218-2686, United States
| |
Collapse
|