1
|
Madureira L, Soares A, Duarte MS, Pereira F, Francisco D, Maciel F, Vicente AA, Vasconcelos V, Pereira MA, Geada P. Insights on microalgae-based technologies with potential impact on global methane budget - Perspectives for industrial applications. BIORESOURCE TECHNOLOGY 2025; 431:132591. [PMID: 40306333 DOI: 10.1016/j.biortech.2025.132591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/24/2025] [Accepted: 04/24/2025] [Indexed: 05/02/2025]
Abstract
The European Union's Methane Action Plan outlined policies and targets supporting the Global Methane Pledge to cut CH4 emissions by 30% by 2030, yet urgent implementation is needed to treat medium and diluted CH4 streams. Microalgae-based technologies offer a groundbreaking solution, merging CH4 mitigation with biomass valorization to drive sustainable industrial practices. This review examines three key applications: photosynthetic biogas upgrading, a viable alternative to physical/chemical methods, producing biomethane and valuable algal biomass; microalgae-methanotroph co-cultivation, a promising but underdeveloped method for diluted CH4 streams; and CH4-producing microalgae, unveiling a novel route for biomethane production. Despite their potential, significant research gaps remain, particularly in reactor design, culture conditions, and large-scale viability. By addressing these challenges, microalgae could revamp CH4 management, bridging environmental goals with bioeconomic progress. This review calls for policy updates, intensified research, and industrial engagement to unlock microalgae's full potential in CH4 mitigation and valorization.
Collapse
Affiliation(s)
- Leandro Madureira
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal.
| | - Ana Soares
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal.
| | - M Salomé Duarte
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Guimarães, Braga, Portugal.
| | - Francisco Pereira
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LNEG - National Laboratory of Energy and Geology I.P., Bioenergy and Biorefinery Unit, Estrada do Paço do Lumiar 22, 1649-038 Lisbon, Portugal.
| | - Diogo Francisco
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Filipe Maciel
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Guimarães, Braga, Portugal.
| | - António A Vicente
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Guimarães, Braga, Portugal.
| | - Vítor Vasconcelos
- CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research and Department of Biology, Faculty of Sciences, University of Porto 4169-007 Porto, Portugal.
| | - M Alcina Pereira
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Guimarães, Braga, Portugal.
| | - Pedro Geada
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Guimarães, Braga, Portugal.
| |
Collapse
|
2
|
Ren Z, Li H, Sun P, Fu R, Bai Z, Zhang G, Sun L, Wei Y. Development and challenges of emerging biological technologies for algal-bacterial symbiosis systems: A review. BIORESOURCE TECHNOLOGY 2024; 413:131459. [PMID: 39255948 DOI: 10.1016/j.biortech.2024.131459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024]
Abstract
The algal-bacterial symbiosis system (ABSS) is considered as a sustainable wastewater treatment process. This review provides a comprehensive overview of the mechanisms of ABSS for the removal of common pollutant, heavy metals, and especially for emerging pollutants. For the macroscopical level, this review not only describes in detail the reactor types, influencing factors, and the development of the algal-bacterial process, but also innovatively proposes an emerging process that combines an ABSS with other processes, which enhances the efficiency of removing difficult-to-biodegrade pollutants. Further for the microscopic level, interactions between algae and bacteria, including nutrient exchange, signaling transmission and gene transfer, have been deeply discussed the symbiotic relationship with nutrient removal and biomass production. Finally, recommendations are given for the future development of the ABSS. This review comprehensively examines ABSS principles, development, algal-bacterial interactions, and application in wastewater treatment, aiming to deepen theoretical and practical understanding and advance ABSS technology.
Collapse
Affiliation(s)
- Zhijun Ren
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Huixue Li
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Peng Sun
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Ruiyao Fu
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Zijia Bai
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Guangming Zhang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Li Sun
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China.
| | - Yanjie Wei
- Key Laboratory of Environmental Protection in Water Transport Engineering Ministry of Communications, Tianjin Research Institute of Water Transport Engineering, Tianjin 300456, China.
| |
Collapse
|
3
|
Bora A, Thondi Rajan AS, Ponnuchamy K, Muthusamy G, Alagarsamy A. Microalgae to bioenergy production: Recent advances, influencing parameters, utilization of wastewater - A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174230. [PMID: 38942321 DOI: 10.1016/j.scitotenv.2024.174230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/12/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024]
Abstract
Fossil fuel limitations and their influence on climate change through atmospheric greenhouse gas emissions have made the excessive use of fossil fuels widely recognized as unsustainable. The high lipid content, carbon-neutral nature and potential as a biofuel source have made microalgae a subject of global study. Microalgae are a promising supply of biomass for third-generation biofuels production since they are renewable. They have the potential to produce significant amounts of biofuel and are considered a sustainable alternative to non-renewable energy sources. Microalgae are currently incapable to synthesize algal biofuel on an extensive basis in a sustainable manner, despite their significance in the global production of biofuels. Wastewater contains nutrients (both organic and inorganic) which is essential for the development of microalgae. Microalgae and wastewater can be combined to remediate waste effectively. Wastewater of various kinds such as industrial, agricultural, domestic, and municipal can be used as a substrate for microalgal growth. This process helps reduce carbon dioxide emissions and makes the production of biofuels more cost-effective. This critical review provides a detailed analysis of the utilization of wastewater as a growth medium for microalgal - biofuel production. The review also highlights potential future strategies to improve the commercial production of biofuels from microalgae.
Collapse
Affiliation(s)
- Abhispa Bora
- Bioenergy and Bioremediation Laboratory, Department of Microbiology, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Angelin Swetha Thondi Rajan
- Bioenergy and Bioremediation Laboratory, Department of Microbiology, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Kumar Ponnuchamy
- Department of Animal Health and Management, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Govarthanan Muthusamy
- Department of Environmental Engineering, Kyungpook National University, 41566 Daegu, Republic of Korea
| | - Arun Alagarsamy
- Bioenergy and Bioremediation Laboratory, Department of Microbiology, Alagappa University, Karaikudi 630003, Tamil Nadu, India.
| |
Collapse
|
4
|
Xu P, Shao S, Qian J, Li J, Xu R, Liu J, Zhou W. Scale-up of microalgal systems for decarbonization and bioproducts: Challenges and opportunities. BIORESOURCE TECHNOLOGY 2024; 398:130528. [PMID: 38437968 DOI: 10.1016/j.biortech.2024.130528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
The threat of global climate change presents a significant challenge for humanity. Microalgae-based carbon capture and utilization (CCU) technology has emerged as a promising solution to this global issue. This review aims to comprehensively evaluate the current advancements in scale-up of microalgae cultivation and its applications, specifically focusing on decarbonization from flue gases, organic wastewater remediation, and biogas upgrading. The study identifies critical challenges that need to be addressed during the scale-up process and evaluates the economic viability of microalgal CCU within the carbon market. Additionally, it analyzes the commercial status of microalgae-derived products and highlights those with high market demand. This review serves as a crucial resource for researchers, industry professionals, and policymakers to develop and implement innovative approaches to enhance the efficiency of microalgae-based CO2 utilization while addressing the challenges associated with the scale-up of microalgae technologies.
Collapse
Affiliation(s)
- Peilun Xu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources & Environment, Nanchang University, Nanchang 330031, China.
| | - Shengxi Shao
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources & Environment, Nanchang University, Nanchang 330031, China.
| | - Jun Qian
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources & Environment, Nanchang University, Nanchang 330031, China.
| | - Jingjing Li
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources & Environment, Nanchang University, Nanchang 330031, China.
| | - Rui Xu
- Jiangxi Ganneng Co., Ltd, Nanchang 330096, China.
| | - Jin Liu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources & Environment, Nanchang University, Nanchang 330031, China.
| | - Wenguang Zhou
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources & Environment, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
5
|
Hoyos EG, Kuri R, Toda T, Muñoz R. Innovative design and operational strategies to improve CO 2 mass transfer during photosynthetic biogas upgrading. BIORESOURCE TECHNOLOGY 2024; 391:129955. [PMID: 37918489 DOI: 10.1016/j.biortech.2023.129955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/29/2023] [Accepted: 10/29/2023] [Indexed: 11/04/2023]
Abstract
Several innovative strategies of design and operation, such as biogas recirculation, centrate pH manipulation and liquid nanoparticle addition, were tested to assess their potential to improve CO2 mass transfer during photosynthetic purification of biogas in a microalgae-bacteria pond connected to a biogas scrubbing column. Biogas recirculation in the column was not effective since the biogas and cultivation broth had reached chemical equilibrium under the operational conditions and configuration without biogas recirculation. Feeding the centrate at pH 10 (with and without ammonium desorption) directly to the absorption column substantially improved CO2 removal efficiency (from 58 to 91 %) achieving a biomethane complying with European standards. The supplementation of liquid nanoparticles considerably increased biomass concentration in the pond (from 1.2 to 3.5 g/L), revealing an enhanced photosynthetic activity. However, this promising approach requires additional research to elucidate the best conditions to boost CO2 absorption and guarantee a biomethane fulfilling most international standards.
Collapse
Affiliation(s)
- Edwin G Hoyos
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Department of Chemical and Environmental Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
| | - Rentaro Kuri
- Laboratory of Restoration Ecology, Graduate School of Science and Engineering, Soka University, 1-236, Tangi, Hachioji, Tokyo 192-8577, Japan
| | - Tatsuki Toda
- Laboratory of Restoration Ecology, Graduate School of Science and Engineering, Soka University, 1-236, Tangi, Hachioji, Tokyo 192-8577, Japan
| | - Raúl Muñoz
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Department of Chemical and Environmental Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain.
| |
Collapse
|
6
|
Vargas-Estrada L, Hoyos EG, Sebastian P, Muñoz R. Elucidating the role of nanoparticles on photosynthetic biogas upgrading: Influence of biogas type, nanoparticle concentration and light source. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Yang W, Li S, Qv M, Dai D, Liu D, Wang W, Tang C, Zhu L. Microalgal cultivation for the upgraded biogas by removing CO 2, coupled with the treatment of slurry from anaerobic digestion: A review. BIORESOURCE TECHNOLOGY 2022; 364:128118. [PMID: 36252758 DOI: 10.1016/j.biortech.2022.128118] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/07/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Biogas is the gaseous by product generated from anaerobic digestion (AD), which is mainly composed of methane and CO2. Numerous independent studies have suggested that microalgae cultivation could achieve high efficiency for nutrient uptake or CO2 capture from AD, respectively. However, there is no comprehensive review on the purifying slurry from AD and simultaneously upgrading biogas via microalgal cultivation technology. This paper aims to fill this gap by presenting and discussing an information integration system based on microalgal technology. Furthermore, the review elaborates the mechanisms, configurations, and influencing factors of integrated system and analyzes the possible challenges for practical engineering applications and provides some feasibility suggestions eventually. There is hope that this review will offer a worthwhile and practical guideline to researchers, authorities and potential stakeholders, to promote this industry for sustainable development.
Collapse
Affiliation(s)
- Wenfeng Yang
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Shuangxi Li
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Mingxiang Qv
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Dian Dai
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Dongyang Liu
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Wei Wang
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Chunming Tang
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Liandong Zhu
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China.
| |
Collapse
|
8
|
Effect of photoperiods and CO2 concentrations on the cultivation of carbohydrate-rich P. kessleri microalgae for the sustainable production of bioethanol. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.101934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
9
|
P S, F C I, M B, C C. C. vulgaris growth batch tests using winery waste digestate as promising raw material for biodiesel and stearin production. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 136:266-272. [PMID: 34717214 DOI: 10.1016/j.wasman.2021.10.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
The recovery of high added value compound from waste stream is fundamental to keep biotechnological processes sustainable. In this study, anaerobic digestion of two highly produced organic waste was integrated with microalgae-based processes both to treat liquid digestate and recover high value compounds. Chlorella vulgaris growth was assessed for lipids accumulation and subsequent recovery, using two types of digestate: organic waste and sewage sludge digestate (DIG-OFMSW) and wine lees digestate (DIG-WL). Growth tests were carried out in batch mode and results showed a slightly higher final biomass concentration from DIG-WL (1.36 ± 0.09 g l-1) compared to DIG-OFMSW (1.05 ± 0.13 g l-1) and a clearly different lipids accumulation yield (28.86 ± 0.05% in DIG-WL compared to 6.1 ± 0.2% of DIG-OFMSW, on total solids). Lipid characterization showed a high oleic acid accumulation (69.52 ± 0.50%w/w in DIG-WL) that positively influence biodiesel properties and a low linolenic acids content (below 0.30%w/w) that comply with European law EN14214 for biodiesel (linolenic acid content lower than 12%w/w). In addition, due to the high concentration of palmitic and stearic acids detected at the end of test, this oil can be used as new substrate to produce stearin, normally produced from palm oil.
Collapse
Affiliation(s)
- Scarponi P
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, via Torino 155, 30172 Venice, Italy
| | - Izzo F C
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, via Torino 155, 30172 Venice, Italy
| | - Bravi M
- Department of Chemical Engineering Materials Environment, Sapienza University of Rome, via Eudossiana 18, 00184 Rome, Italy
| | - Cavinato C
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, via Torino 155, 30172 Venice, Italy.
| |
Collapse
|
10
|
Torres-Franco A, Figueredo C, Barros L, Gücker B, Boëchat I, Muñoz R, Mota C. Assessment of a deep, LED-enhanced high-rate algal pond for the treatment of digestate. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102444] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Leong YK, Huang CY, Chang JS. Pollution prevention and waste phycoremediation by algal-based wastewater treatment technologies: The applications of high-rate algal ponds (HRAPs) and algal turf scrubber (ATS). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 296:113193. [PMID: 34237671 DOI: 10.1016/j.jenvman.2021.113193] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/19/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Following the escalating human population growth and rapid urbanization, the tremendous amount of urban and industrial waste released leads to a series of critical issues such as health issues, climate change, water crisis, and pollution problems. With the advantages of a favorable carbon life cycle, high photosynthetic efficiencies, and being adaptive to harsh environments, algae have attracted attention as an excellent agent for pollution prevention and waste phycoremediation. Following the concept of circular economy and biorefinery for sustainable production and waste minimization, this review discusses the role of four different algal-based wastewater treatment technologies, including high-rate algal ponds (HRAPs), HRAP-absorption column (HRAP-AC), hybrid algal biofilm-enhanced raceway pond (HABERP) and algal turf scrubber (ATS) in waste management and resource recovery. In addition to the nutrient removal mechanisms and operation parameters, recent advances and developments have been discussed for each technology, including (1) Innovative operation strategies and treatment of emerging contaminants (ECs) employing HRAPs, (2) Biogas upgrading utilizing HRAP-AC system and approaches of O2 minimization in biomethane, (3) Operation of different HABERP systems, (4) Life-cycle and cost analysis of HRAPs-based wastewater treatment system, and (5) Value-upgrading for harvested algal biomass and life-cycle cost analysis of ATS system.
Collapse
Affiliation(s)
- Yoong Kit Leong
- Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan
| | - Chi-Yu Huang
- Department of Environmental Science and Engineering, Tunghai University, Taichung, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
12
|
Ángeles R, Vega-Quiel MJ, Batista A, Fernández-Ramos O, Lebrero R, Muñoz R. Influence of biogas supply regime on photosynthetic biogas upgrading performance in an enclosed algal-bacterial photobioreactor. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102350] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Torres-Franco AF, Zuluaga M, Hernández-Roldán D, Leroy-Freitas D, Sepúlveda-Muñoz CA, Blanco S, Mota CR, Muñoz R. Assessment of the performance of an anoxic-aerobic microalgal-bacterial system treating digestate. CHEMOSPHERE 2021; 270:129437. [PMID: 33429236 DOI: 10.1016/j.chemosphere.2020.129437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
The performance of an anoxic-aerobic microalgal-bacterial system treating synthetic food waste digestate at 10 days of hydraulic retention time via nitrification-denitrification under increasing digestate concentrations of 25%, 50%, and 100% (v/v) was assessed during Stages I, II and III, respectively. The system supported adequate treatment without external CO2 supplementation since sufficient inorganic carbon in the digestate was available for autotrophic growth. High steady-state Total Organic Carbon (TOC) and Total Nitrogen (TN) removal efficiencies of 85-96% and 73-84% were achieved in Stages I and II. Similarly, PO43--P removals of 81 ± 15% and 58 ± 4% were recorded during these stages. During Stage III, the average influent concentrations of 815 ± 35 mg TOC·L-1, 610 ± 23 mg TN·L-1, and 46 ± 11 mg PO43--P·L-1 induced O2 limiting conditions, resulting in TOC, TN and PO43--P removals of 85 ± 3%, 73 ± 3%, and 28 ± 16%, respectively. Digestate concentrations of 25% and 50% favored nitrification-denitrification mechanisms, whereas the treatment of undiluted digestate resulted in higher ammonia volatilization and hampered nitrification-denitrification. In Stages I and II, the microalgal community was dominated by Chlorella vulgaris and Cryptomonas sp., whereas Pseudoanabaena sp. was more abundant during Stage III. Illumina sequencing revealed the presence of carbon and nitrogen transforming bacteria, with dominances of the genera Gemmata, Azospirillum, and Psychrobacter during Stage I, II, and III, respectively. Finally, the high settleability of the biomass (98% of suspended solids removal in the settler) and average C (42%), N (7%), P (0.2%), and S (0.4%) contents recovered in the biomass confirmed its potential for agricultural applications, contributing to a closed-cycle management of food waste.
Collapse
Affiliation(s)
- Andrés F Torres-Franco
- Department of Chemical Engineering and Environmental Technology, Valladolid University, Dr. Mergelina, s/n., 47011, Valladolid, Spain; Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011, Valladolid, Spain; Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte, 31270-010, Brazil
| | - Maribel Zuluaga
- Department of Chemical Engineering and Environmental Technology, Valladolid University, Dr. Mergelina, s/n., 47011, Valladolid, Spain; Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011, Valladolid, Spain; Faculty of Environmental Engineering UPAEP University, Puebla, 21 Sur 1103, Barrio de Santiago, 72410, Puebla, Mexico
| | - Diana Hernández-Roldán
- Department of Chemical Engineering and Environmental Technology, Valladolid University, Dr. Mergelina, s/n., 47011, Valladolid, Spain; Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011, Valladolid, Spain; Faculty of Environmental Engineering UPAEP University, Puebla, 21 Sur 1103, Barrio de Santiago, 72410, Puebla, Mexico
| | - Deborah Leroy-Freitas
- Department of Chemical Engineering and Environmental Technology, Valladolid University, Dr. Mergelina, s/n., 47011, Valladolid, Spain; Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011, Valladolid, Spain; Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte, 31270-010, Brazil
| | - Cristian A Sepúlveda-Muñoz
- Department of Chemical Engineering and Environmental Technology, Valladolid University, Dr. Mergelina, s/n., 47011, Valladolid, Spain; Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011, Valladolid, Spain
| | - Saúl Blanco
- University of León, Campus de Vegazana, 24071, León, Spain; Laboratory of Diatomology, Institute of Environment, Natural Resources and Biodiversity, La Serna 58, 24007, León, Spain
| | - César R Mota
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte, 31270-010, Brazil
| | - Raúl Muñoz
- Department of Chemical Engineering and Environmental Technology, Valladolid University, Dr. Mergelina, s/n., 47011, Valladolid, Spain; Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011, Valladolid, Spain.
| |
Collapse
|
14
|
Integrated Approach for Wastewater Treatment and Biofuel Production in Microalgae Biorefineries. ENERGIES 2021. [DOI: 10.3390/en14082282] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The increasing world population generates huge amounts of wastewater as well as large energy demand. Additionally, fossil fuel’s combustion for energy production causes the emission of greenhouse gases (GHG) and other pollutants. Therefore, there is a strong need to find alternative green approaches for wastewater treatment and energy production. Microalgae biorefineries could represent an effective strategy to mitigate the above problems. Microalgae biorefineries are a sustainable alternative to conventional wastewater treatment processes, as they potentially allow wastewater to be treated at lower costs and with lower energy consumption. Furthermore, they provide an effective means to recover valuable compounds for biofuel production or other applications. This review focuses on the current scenario and future prospects of microalgae biorefineries aimed at combining wastewater treatment with biofuel production. First, the different microalgal cultivation systems are examined, and their main characteristics and limitations are discussed. Then, the technologies available for converting the biomass produced during wastewater treatment into biofuel are critically analyzed. Finally, current challenges and research directions for biofuel production and wastewater treatment through this approach are outlined.
Collapse
|
15
|
Bose A, O'Shea R, Lin R, Murphy JD. Design, Commissioning, and Performance Assessment of a Lab-Scale Bubble Column Reactor for Photosynthetic Biogas Upgrading with Spirulina platensis. Ind Eng Chem Res 2021; 60:5688-5704. [PMID: 34276129 PMCID: PMC8277169 DOI: 10.1021/acs.iecr.0c05974] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 11/28/2022]
Abstract
![]()
The two-step bubble column-photobioreactor
photosynthetic biogas
upgrading system can enable simultaneous production of biomethane
and value-added products from microalgae. However, due to the influence
of a large number of variables, including downstream processes and
the presence of microalgae, no unanimity has been reached regarding
the performance of bubble column reactors in photosynthetic biogas
upgrading. To investigate this further, the present work documents
in detail, the design and commissioning of a lab-scale bubble column
reactor capable of treating up to 16.3 L/h of biogas while being scalable.
The performance of the bubble column was assessed at a pH of 9.35
with different algal densities of Spirulina platensis at 20 °C in the presence of light (3–5 klux or 40.5–67.5
μmol m–2 s–1). A liquid/gas
flow (L/G) ratio of 0.5 allowed consistent CO2 removal
of over 98% irrespective of the algal density or its photosynthetic
activity. For lower concentrations of algae, the volumetric O2 concentration in the upgraded biomethane varied between 0.05
and 0.52%, thus providing grid quality biomethane. However, for higher
algal concentrations, increased oxygen content in the upgraded biomethane
due to both enhanced O2 stripping and the photosynthetic
activity of the microalgae as well as clogging and foaming posed severe
operational challenges.
Collapse
Affiliation(s)
- Archishman Bose
- Environmental Research Institute, MaREI Centre, University College Cork, Cork T23 XE10, Ireland.,School of Engineering, University College Cork, Cork T23 XE10, Ireland
| | - Richard O'Shea
- Environmental Research Institute, MaREI Centre, University College Cork, Cork T23 XE10, Ireland.,School of Engineering, University College Cork, Cork T23 XE10, Ireland
| | - Richen Lin
- Environmental Research Institute, MaREI Centre, University College Cork, Cork T23 XE10, Ireland.,School of Engineering, University College Cork, Cork T23 XE10, Ireland
| | - Jerry D Murphy
- Environmental Research Institute, MaREI Centre, University College Cork, Cork T23 XE10, Ireland.,School of Engineering, University College Cork, Cork T23 XE10, Ireland
| |
Collapse
|
16
|
Marín D, Carmona-Martínez AA, Blanco S, Lebrero R, Muñoz R. Innovative operational strategies in photosynthetic biogas upgrading in an outdoors pilot scale algal-bacterial photobioreactor. CHEMOSPHERE 2021; 264:128470. [PMID: 33022506 DOI: 10.1016/j.chemosphere.2020.128470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 09/16/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
Three innovative operational strategies were successfully evaluated to improve the quality of biomethane in an outdoors pilot scale photobioreactor interconnected to an external absorption unit: i) the use of a greenhouse during winter conditions, ii) a direct CO2 stripping in the photobioreactor via air stripping during winter conditions and iii) the use of digestate as make-up water during summer conditions. CO2 concentrations in the biomethane ranged from 0.4% to 6.1% using the greenhouse, from 0.3% to 2.6% when air was injected in the photobioreactor and from 0.4% to 0.9% using digestate as make up water. H2S was completely removed under all strategies tested. On the other hand, CH4 concentrations in biomethane ranged from 89.5% to 98.2%, from 93.0% to 98.2% and from 96.3% to 97.9%, when implementing strategies i), ii) and iii), respectively. The greenhouse was capable of maintaining microalgae productivities of 7.5 g m-2 d-1 during continental weather conditions, while mechanical CO2 stripping increased the pH in order to support an effective CO2 and H2S removal. Finally, the high evaporation rates during summer conditions allowed maintaining high inorganic carbon concentrations in the cultivation broth using centrate, which provided a cost-effective biogas upgrading.
Collapse
Affiliation(s)
- David Marín
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, Valladolid University, Dr. Mergelina, S/n, 47011, Valladolid, Spain; Institute of Sustainable Processes, Dr. Mergelina, S/n, 47011, Valladolid, Spain; Universidad Pedagógica Nacional Francisco Morazán, Boulevard Centroamérica, Tegucigalpa, Honduras
| | - Alessandro A Carmona-Martínez
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, Valladolid University, Dr. Mergelina, S/n, 47011, Valladolid, Spain; Institute of Sustainable Processes, Dr. Mergelina, S/n, 47011, Valladolid, Spain
| | - Saúl Blanco
- Department of Biodiversity and Environmental Management, University of León, 24071, León, Spain
| | - Raquel Lebrero
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, Valladolid University, Dr. Mergelina, S/n, 47011, Valladolid, Spain; Institute of Sustainable Processes, Dr. Mergelina, S/n, 47011, Valladolid, Spain
| | - Raúl Muñoz
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, Valladolid University, Dr. Mergelina, S/n, 47011, Valladolid, Spain; Institute of Sustainable Processes, Dr. Mergelina, S/n, 47011, Valladolid, Spain.
| |
Collapse
|
17
|
Franco-Morgado M, Tabaco-Angoa T, Ramírez-García MA, González-Sánchez A. Strategies for decreasing the O 2 content in the upgraded biogas purified via microalgae-based technology. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 279:111813. [PMID: 33338770 DOI: 10.1016/j.jenvman.2020.111813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 11/23/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
Microalgae-bacteria consortium based technology using a High Rate Algal Pond (HRAP) interconnected to an Absorption Bubble Column (ABC) has emerged as an environmentally friendly promising option to upgrade biogas. However, the oxygenic photosynthesis of microalgae induces oxygen contamination in upgraded biogas, which could limit its further applications. Several strategies were proposed to favor the oxygen desorption and oxygen uptake in parts and accessories of the upgrading system. The effect of the volumetric ratio liquid recirculation rate/biogas rate (L/G = 5.0, 1.0 y 0.5) was evaluated in conjunction with the application of a novel accessory called Open Trickling Column (OTC). The O2 content in upgraded biogas was around 2.1%v, attaining CO2 removal efficiencies around 90%, at L/G ratio of 1.0 during diurnal and nocturnal periods. The inclusion of an OTC at the previous L/G, enhanced 54% the removal of O2 by stripping and uptake compared with the basal condition. Mass balances of H2S and methane showed that L/G > 1.0 favored the complete oxidation of H2S but promoted the loss of methane in dissolved form. Additionally the effect of increasing linear velocity of liquid broth in the lab-scale HRAP (from 15 cm s-1 to 20 cm s-1) showed to improve the O2 stripping with a consequential increase of biomass concentration under steady-state (from 0.7 to 1.4 g L-1) besides achieving O2 content in the upgraded biogas around 1.5%v.
Collapse
Affiliation(s)
- Mariana Franco-Morgado
- Instituto de Ingeniería, Universidad Nacional Autónoma de México, Circuito Escolar, Ciudad Universitaria, C.P. 04510, Mexico City, Mexico; Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. 64849, Mexico
| | - Tania Tabaco-Angoa
- Instituto de Ingeniería, Universidad Nacional Autónoma de México, Circuito Escolar, Ciudad Universitaria, C.P. 04510, Mexico City, Mexico
| | - Miguel Angel Ramírez-García
- Instituto de Ingeniería, Universidad Nacional Autónoma de México, Circuito Escolar, Ciudad Universitaria, C.P. 04510, Mexico City, Mexico
| | - Armando González-Sánchez
- Instituto de Ingeniería, Universidad Nacional Autónoma de México, Circuito Escolar, Ciudad Universitaria, C.P. 04510, Mexico City, Mexico.
| |
Collapse
|
18
|
Zhang W, Zhao C, Cao W, Sun S, Hu C, Liu J, Zhao Y. Removal of pollutants from biogas slurry and CO 2 capture in biogas by microalgae-based technology: a systematic review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:28749-28767. [PMID: 32468373 DOI: 10.1007/s11356-020-09282-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
Recent research interest has focused on microalgae cultivation for biogas slurry purification and biogas upgrading due to the requirement of high efficiency for nutrient uptake and CO2 capture, with economic feasibility and environmental benefits. Numerous studies have suggested that biogas slurry purification and biogas upgrading can occur simultaneously via microalgae-based technology. However, there is no comprehensive review on this technology with respect to the nutrient removal from biogas slurry and biogas upgrading. This article summarizes microalgal cultivation with biogas slurry and biogas from anaerobic digestion. The parameters, techniques, and modes of microalgae cultivation have been discussed in detail to achieve high efficiency in biogas slurry purification and biogas upgrading. In addition, the evaluation of energy efficiency and safety has also been explored. Compared with mono-cultivation of microalgae and co-cultivation of microalgae and bacteria, microalgae-fungi symbiosis has demonstrated greater development prospect and higher energy efficiency and the energy consumption for pollutants and CO2 removal were 14.2-39.0% · USD-1 and 19.9-23.3% · USD-1, respectively. Further, a sustainable recycling scheme is proposed for the purification of biogas slurry from anaerobic digestion process and biogas upgrading via microalgae-based technology.
Collapse
Affiliation(s)
- Wenguang Zhang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130012, People's Republic of China
| | - Chunzhi Zhao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 200235, People's Republic of China
| | - Weixing Cao
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China
| | - Shiqing Sun
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China
| | - Changwei Hu
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China
| | - Juan Liu
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China.
| | - Yongjun Zhao
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China.
| |
Collapse
|
19
|
Sekoai PT, Engelbrecht N, du Preez SP, Bessarabov D. Thermophilic Biogas Upgrading via ex Situ Addition of H 2 and CO 2 Using Codigested Feedstocks of Cow Manure and the Organic Fraction of Solid Municipal Waste. ACS OMEGA 2020; 5:17367-17376. [PMID: 32715221 PMCID: PMC7377068 DOI: 10.1021/acsomega.0c01725] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
Bioconversion of renewable H2 and waste CO2 using methanogenic archaea is a promising technology for obtaining high-purity CH4, which can serve as an alternative for natural gas. This process is known as ex situ biogas upgrading. This work highlights the pathway toward the bioconversion of renewable H2 and CO2 into high-purity biomethane by exploiting highly accessible agro-municipal residues: cow manure (CM) and the organic fraction of solid municipal waste (OFSMW), which used to be called "waste materials". More specifically, an ex situ thermophilic (55 °C) biogas upgrading process was conducted by CM and OFSMW codigestion at different mass proportions: 100:0, 80:20, 70:30, 60:40, and 50:50. Maximum CH4 concentrations of 92-97 vol % and biogas volumetric production rates of 4954-6605 NmL/L.d were obtained from a batch reactor of 3 L working volume. Feedstock characterization, pH monitoring, and the carbon-to-nitrogen ratio were critical parameters to evaluate during biogas upgrading experiments. In this work, the usefulness of agro-municipal substrates is highlighted by producing high-purity biomethane-an energetic chemical to facilitate renewable energy conversion, which supports various end-use applications. This process therefore provides a solution to renewable energy storage challenges and future sustainable and green energy supply.
Collapse
|
20
|
Rodero MDR, Carvajal A, Arbib Z, Lara E, de Prada C, Lebrero R, Muñoz R. Performance evaluation of a control strategy for photosynthetic biogas upgrading in a semi-industrial scale photobioreactor. BIORESOURCE TECHNOLOGY 2020; 307:123207. [PMID: 32229410 DOI: 10.1016/j.biortech.2020.123207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/12/2020] [Accepted: 03/14/2020] [Indexed: 06/10/2023]
Abstract
The validation of a control strategy for biogas upgrading via light-driven CO2 consumption by microalgae and H2S oxidation by oxidizing bacteria using the oxygen photosynthetically generated was performed in a semi-industrial scale (9.6 m3) photobioreactor. The control system was able to support CO2 concentrations lower than 2% with O2 contents ≤ 1% regardless of the pH in the cultivation broth (ranging from 9.05 to 9.50). Moreover, the control system was efficient to cope with variations in biogas flowrate from 143 to 420 L h-1, resulting in a biomethane composition of CO2 < 2.4%, CH4 > 95.5%, O2 < 1% and no H2S. Despite the poor robustness of this technology against failures in biogas and liquid supply (CH4 concentration of 67.5 and 70.9% after 2 h of biogas or liquid stoppage, respectively), the control system was capable of restoring biomethane quality in less than 2 h when biogas or liquid supply was resumed.
Collapse
Affiliation(s)
- María Del Rosario Rodero
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain; Institute of Sustainable Processes, University of Valladolid, 47011 Valladolid, Spain
| | - Andrea Carvajal
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain; Departamento de Ingeniería Química y Ambiental, Universidad Técnica Federico Santa María, Av. España, 1680 Valparaíso, Chile
| | - Zouhayr Arbib
- FCC Servicios Ciudadanos, Av. del Camino de Santiago, 40, edificio 3, 4ª planta, 28050 Madrid, Spain
| | - Enrique Lara
- FCC Servicios Ciudadanos, Av. del Camino de Santiago, 40, edificio 3, 4ª planta, 28050 Madrid, Spain
| | - César de Prada
- Institute of Sustainable Processes, University of Valladolid, 47011 Valladolid, Spain
| | - Raquel Lebrero
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain; Institute of Sustainable Processes, University of Valladolid, 47011 Valladolid, Spain
| | - Raúl Muñoz
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain; Institute of Sustainable Processes, University of Valladolid, 47011 Valladolid, Spain.
| |
Collapse
|
21
|
Production of Microalgal Slow-Release Fertilizer by Valorizing Liquid Agricultural Digestate: Growth Experiments with Tomatoes. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10113890] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Anaerobic Digestion (AD) is a process that is well-known and fast-developing in Europe. AD generates large amounts of digestate, especially in livestock-intensive areas. Digestate has potential environmental issues due to nutrients (such as nitrogen) lixiviation or volatilization. Using liquid digestate as a nutrient source for microalgae growth is considered beneficial because digestate could be valorized and upgraded by the production of an added value product. In this work, microalgal biomass produced using liquid digestate from an agricultural biogas plant was investigated as a slow-release fertilizer in tomatoes. Monoraphidium sp. was first cultivated at different dilutions (1:20, 1:30, 1:50), in indoor laboratory-scale trials. The optimum dilution factor was determined to be 1:50, with a specific growth rate of 0.13 d−1 and a complete nitrogen removal capacity in 25 days of culture. Then, outdoor experiments were conducted in a 110 dm3 vertical, closed photobioreactors (PBRs) in batch and semi-continuous mode with 1:50 diluted liquid digestate. During the batch mode, the microalgae were able to remove almost all NH4+ and 65 (±13) % of PO43−, while the microalgal growth rate reached 0.25 d−1. After the batch mode, the cultures were switched to operate under semi-continuously conditions. The cell densities were maintained at 1.3 × 107 cells mL−1 and a biomass productivity around 38.3 mg TSS L−1 d−1 during three weeks was achieved, where after that it started to decline due to unfavorable weather conditions. Microalgae biomass was further tested as a fertilizer for tomatoes growth, enhancing by 32% plant growth in terms of dry biomass compared with the control trials (without fertilization). Similar performances were achieved in tomato growth using synthetic fertilizer or digestate. Finally, the leaching effect in soils columns without plant was tested and after 25 days, only 7% of N was leached when microalgae were used, against 50% in the case of synthetic fertilizer.
Collapse
|
22
|
Rodero MDR, Muñoz R, Lebrero R, Verfaillie A, Blockx J, Thielemans W, Muylaert K, Praveenkumar R. Harvesting microalgal-bacterial biomass from biogas upgrading process and evaluating the impact of flocculants on their growth during repeated recycling of the spent medium. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
23
|
Bose A, O'Shea R, Lin R, Murphy JD. A perspective on novel cascading algal biomethane biorefinery systems. BIORESOURCE TECHNOLOGY 2020; 304:123027. [PMID: 32113833 DOI: 10.1016/j.biortech.2020.123027] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
Synergistic opportunities to combine biomethane production via anaerobic digestion whilst cultivating microalgae have been previously suggested in literature. While biomethane is a promising and flexible renewable energy vector, microalgae are increasingly gaining importance as an alternate source of food and/or feed, chemicals and energy for advanced biofuels. However, simultaneously achieving, grid quality biomethane, effective microalgal digestate treatment, high microalgae growth rate, and the most sustainable use of the algal biomass is a major challenge. In this regard, the present paper proposes multiple configurations of an innovative Cascading Algal Biomethane-Biorefinery System (CABBS) using a novel two-step bubble column-photobioreactor photosynthetic biogas upgrading technology. To overcome the limitations in choice of microalgae for optimal system operation, a microalgae composition based biorefinery decision tree has also been conceptualised to maximise profitability. Techno-economic, environmental and practical aspects have been discussed to provide a comprehensive perspective of the proposed systems.
Collapse
Affiliation(s)
- Archishman Bose
- Environmental Research Institute, MaREI Centre, University College Cork, Cork, Ireland; School of Engineering, University College Cork, Cork, Ireland
| | - Richard O'Shea
- Environmental Research Institute, MaREI Centre, University College Cork, Cork, Ireland; School of Engineering, University College Cork, Cork, Ireland.
| | - Richen Lin
- Environmental Research Institute, MaREI Centre, University College Cork, Cork, Ireland; School of Engineering, University College Cork, Cork, Ireland
| | - Jerry D Murphy
- Environmental Research Institute, MaREI Centre, University College Cork, Cork, Ireland; School of Engineering, University College Cork, Cork, Ireland
| |
Collapse
|
24
|
Production of polymers by cyanobacteria grown in wastewater: Current status, challenges and future perspectives. N Biotechnol 2020; 55:46-57. [DOI: 10.1016/j.nbt.2019.09.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 09/07/2019] [Accepted: 09/13/2019] [Indexed: 11/20/2022]
|
25
|
Bose A, Lin R, Rajendran K, O'Shea R, Xia A, Murphy JD. How to optimise photosynthetic biogas upgrading: a perspective on system design and microalgae selection. Biotechnol Adv 2019; 37:107444. [DOI: 10.1016/j.biotechadv.2019.107444] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 12/19/2022]
|
26
|
Saavedra R, Muñoz R, Taboada ME, Bolado S. Influence of organic matter and CO 2 supply on bioremediation of heavy metals by Chlorella vulgaris and Scenedesmus almeriensis in a multimetallic matrix. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109393. [PMID: 31299473 DOI: 10.1016/j.ecoenv.2019.109393] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 06/14/2019] [Accepted: 06/26/2019] [Indexed: 06/10/2023]
Abstract
This research evaluated the influence of organic matter (OM) and CO2 addition on the bioremediation potential of two microalgae typically used for wastewater treatment: Chlorella vulgaris (CV) and Scenedesmus almeriensis (SA). The heavy metal (HM) removal efficiencies and biosorption capacities of both microalgae were determined in multimetallic solutions (As, B, Cu, Mn, and Zn) mimicking the highest pollutant conditions found in the Loa river (Northern Chile). The presence of OM decreased the total biosorption capacity, specially in As (from 2.2 to 0.0 mg/g for CV and from 2.3 to 1.7 mg/g for SA) and Cu (from 3.2 to 2.3 mg/g for CV and from 2.1 to 1.6 mg/g for SA), but its influence declined over time. CO2 addition decreased the total HM biosorption capacity for both microalgae species and inhibited CV growth. Finally, metal recovery using different eluents (HCl, NaOH, and CaCl2) was evaluated at two different concentrations. HCl 0.1 M provided the highest recovery efficiencies, which supported values over 85% of As, 92% of Cu, and ≈100% of Mn and Zn from SA. The presence of OM during the loaded stage resulted in a complete recovery of As, Cu, Mn, and Zn when using HCl 0.1 M as eluent.
Collapse
Affiliation(s)
- Ricardo Saavedra
- Institute of Sustainable Processes, University of Valladolid, Calle Dr. Mergelina, s/n, 47011, Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, University of Valladolid, Calle Dr. Mergelina, s/n, 47011, Valladolid, Spain
| | - Raúl Muñoz
- Institute of Sustainable Processes, University of Valladolid, Calle Dr. Mergelina, s/n, 47011, Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, University of Valladolid, Calle Dr. Mergelina, s/n, 47011, Valladolid, Spain
| | - María Elisa Taboada
- Department of Chemical Engineering, Universidad de Antofagasta, Avenue 02800, CP, 1240000, Antofagasta, Chile
| | - Silvia Bolado
- Institute of Sustainable Processes, University of Valladolid, Calle Dr. Mergelina, s/n, 47011, Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, University of Valladolid, Calle Dr. Mergelina, s/n, 47011, Valladolid, Spain.
| |
Collapse
|
27
|
Nagarajan D, Lee DJ, Chang JS. Integration of anaerobic digestion and microalgal cultivation for digestate bioremediation and biogas upgrading. BIORESOURCE TECHNOLOGY 2019; 290:121804. [PMID: 31327690 DOI: 10.1016/j.biortech.2019.121804] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
Biogas is the gaseous byproduct obtained during anaerobic digestion which is rich in methane, along with a significant amount of other gases like CO2. The removal of CO2 is essential to upgrade the biogas to biomethane (>95% methane content). High CO2 tolerant microalgae can be employed as a biological CO2 scrubbing agent for biogas upgrading. Many microalgal strains tolerant to the levels of CO2 and CH4 seen in biogas have been reported. A CO2 removal efficiency of 50-99% can be attained based on the microalgae used and the cultivation conditions applied. Nutrient-rich liquid digestate obtained from anaerobic digestion can also be used as the cultivation medium for microalgae, performing biogas upgrading and digestate bioremediation simultaneously. Mixotrophic cultivation enables microalgae to utilize the organic carbon present in the liquid digestate along with nitrogen and phosphorus. Microalgae appears to be a potential biological CO2 scrubbing agent for efficient biogas upgrading.
Collapse
Affiliation(s)
- Dillirani Nagarajan
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Circular Economy, National Cheng Kung University, Tainan 701, Taiwan; Department of Chemical Engineering and Materials Science, College of Engineering, Tunghai University, Taichung, Taiwan.
| |
Collapse
|
28
|
Marín D, Posadas E, García D, Puyol D, Lebrero R, Muñoz R. Assessing the potential of purple phototrophic bacteria for the simultaneous treatment of piggery wastewater and upgrading of biogas. BIORESOURCE TECHNOLOGY 2019; 281:10-17. [PMID: 30784997 DOI: 10.1016/j.biortech.2019.02.073] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 06/09/2023]
Abstract
The potential of purple phototrophic bacteria (PPB) for the simultaneous treatment of piggery wastewater (PWW) and biogas upgrading was evaluated batchwise in gas-tight photobioreactors. PWW dilution was identified as a key parameter determining the efficiency of wastewater treatment and biomethane quality in PPB photobioreactors. Four times diluted PWW supported the most efficient total organic carbon (TOC) and total nitrogen removals (78% and 13%, respectively), with CH4 concentrations of 90.8%. The influence of phosphorous concentration (supplementation of 50 mg L-1 of P-PO43-) on PPB-based PWW treatment coupled to biogas upgrading was investigated. TOC removals of ≈60% and CH4 concentrations of ≈90.0% were obtained regardless of phosphorus supplementation. Finally, the use of PPB and algal-bacterial consortia supported CH4 concentrations in the upgraded biogas of 93.3% and 73.6%, respectively, which confirmed the potential PPB for biogas upgrading coupled to PWW treatment.
Collapse
Affiliation(s)
- David Marín
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, Valladolid University, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Universidad Pedagógica Nacional Francisco Morazán, Boulevard Centroamérica, Tegucigalpa, Honduras
| | - Esther Posadas
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, Valladolid University, Dr. Mergelina, s/n, 47011 Valladolid, Spain
| | - Dimas García
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, Valladolid University, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Centro para la Investigación en Recursos Acuáticos de Nicaragua, CIRA/UNAN-Managua, Apdo. Postal 4598, Nicaragua
| | - Daniel Puyol
- Group of Chemical and Environmental Engineering (GIQA), University Rey Juan Carlos, Madrid, Spain
| | - Raquel Lebrero
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, Valladolid University, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
| | - Raúl Muñoz
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, Valladolid University, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain.
| |
Collapse
|
29
|
Marín D, Ortíz A, Díez-Montero R, Uggetti E, García J, Lebrero R, Muñoz R. Influence of liquid-to-biogas ratio and alkalinity on the biogas upgrading performance in a demo scale algal-bacterial photobioreactor. BIORESOURCE TECHNOLOGY 2019; 280:112-117. [PMID: 30763863 DOI: 10.1016/j.biortech.2019.02.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/04/2019] [Accepted: 02/05/2019] [Indexed: 06/09/2023]
Abstract
The influence of the liquid-to-biogas ratio (L/G) and alkalinity on methane quality was evaluated in a 11.7 m3 outdoors horizontal semi-closed tubular photobioreactor interconnected to a 45-L absorption column (AC). CO2 concentrations in the upgraded methane ranged from <0.1 to 9.6% at L/G of 2.0 and 0.5, respectively, with maximum CH4 concentrations of 89.7% at a L/G of 1.0. Moreover, an enhanced CO2 removal (mediating a decrease in CO2 concentration from 9.6 to 1.2%) and therefore higher CH4 contents (increasing from 88.0 to 93.2%) were observed when increasing the alkalinity of the AC cultivation broth from 42 ± 1 mg L-1 to 996 ± 42 mg L-1. H2S was completely removed regardless of the L/G or the alkalinity in AC. The continuous operation of the photobioreactor with optimized operating parameters resulted in contents of CO2 (<0.1%-1.4%), H2S (<0.7 mg m-3) and CH4 (94.1%-98.8%) complying with international regulations for methane injection into natural gas grids.
Collapse
Affiliation(s)
- David Marín
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Universidad Pedagógica Nacional Francisco Morazán, Boulevard Centroamérica, Tegucigalpa, Honduras
| | - Antonio Ortíz
- GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya - BarcelonaTech, c/ Jordi Girona 1-3, Barcelona E-08034, Spain
| | - Rubén Díez-Montero
- GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya - BarcelonaTech, c/ Jordi Girona 1-3, Barcelona E-08034, Spain
| | - Enrica Uggetti
- GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya - BarcelonaTech, c/ Jordi Girona 1-3, Barcelona E-08034, Spain
| | - Joan García
- GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya - BarcelonaTech, c/ Jordi Girona 1-3, Barcelona E-08034, Spain
| | - Raquel Lebrero
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
| | - Raúl Muñoz
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain.
| |
Collapse
|
30
|
Colzi Lopes A, Valente A, Iribarren D, González-Fernández C. Energy balance and life cycle assessment of a microalgae-based wastewater treatment plant: A focus on alternative biogas uses. BIORESOURCE TECHNOLOGY 2018; 270:138-146. [PMID: 30216923 DOI: 10.1016/j.biortech.2018.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/28/2018] [Accepted: 09/01/2018] [Indexed: 06/08/2023]
Abstract
The techno-environmental performance of a medium-scale wastewater treatment system using high-rate algal ponds was evaluated through mass and energy balances and life cycle assessment. The system involves wastewater primary treatment, microalgae-based secondary treatment, thermal hydrolysis with steam explosion of microalgae, anaerobic co-digestion of pre-treated microalgal biomass and primary sludge, and biogas cogeneration. Furthermore, two scenarios based on alternative biogas uses were considered: (i) biogas for heat and electricity, and (ii) biogas for heat, electricity, and biomethane. Pumping wastewater to the primary settler arose as the main source of electricity consumption. When compared to conventional activated sludge plants, a large decrease in the energy consumption was observed for the secondary treatment. Moreover, a favourable life-cycle performance was generally found for the microalgae-based systems when displacing conventional energy products. Finally, the preference for a specific scenario on biogas use was found to be highly conditioned by the techno-environmental aspects prioritised by decision-makers.
Collapse
|