1
|
Liu H, Wu D, Wang W. A review of enhancement of chlorophenol bioremediation using synergistic effects between zero-valent iron and microorganisms. Biodegradation 2025; 36:47. [PMID: 40388055 DOI: 10.1007/s10532-025-10133-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 04/17/2025] [Indexed: 05/20/2025]
Abstract
Chlorophenols (CPs) are a class of synthetic organic chemicals that are widely distributed in soil and groundwater, posing significant risks to human health and the environment due to persistence, acute toxicity, and potential carcinogenicity. Zero-valent iron (ZVI) has emerged as a promising remediation technique for CPs, but its efficacy is often hindered by surface passivation, non-target competition, and limited mobility in the subsurface. While CPs are inherently biodegradable, their high toxicity and the lack of functional enzymes in indigenous microbial systems restrict the effectiveness of bioremediation. Recently, a hybrid system integrating ZVI with microbial degradation draws increasingly research interests, paving out a new path for sustainable degradation of CPs. These systems leverage the synergistic interactions between ZVI and microorganisms to enhance CP biodegradation. This review provides a comprehensive analysis of the advancement. Key topics include the enhancement of electron transfer, alterations to microbial communities, mitigation of toxicity, and the interplay between other processes. Operation modes, ZVI dosage, and interactions with naturally occurring iron minerals, are also discussed in the context of applications in soil and groundwater remediation. Despite research efforts and successful implementations, critical knowledge gaps remain, particularly in regard to the characterization of microbial processes in natural systems, highlighting the need for future research.
Collapse
Affiliation(s)
- Hao Liu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China
- Shanghai Jianke Environmental Technology Co., Ltd, Shanghai, 200032, China
| | - Deli Wu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China.
| | - Weishi Wang
- Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois St., Golden, CO, 80401, USA
| |
Collapse
|
2
|
Song M, Yin D, Zhao J, Li R, Yu J, Chen X. Proteomics reveals toxin tolerance and polysaccharide accumulation in Chlorococcum humicola under high CO 2 concentration. ENVIRONMENTAL RESEARCH 2024; 243:117738. [PMID: 37993048 DOI: 10.1016/j.envres.2023.117738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/24/2023]
Abstract
Algae have great application prospects in excess sludge reclamation and recovery of high-value biomass. Chlorococcum humicola was cultivated in this research, using sludge extract (mixed with SE medium) with additions of 10%, 20%, and 30% CO2 (v/v). Results showed that under 20% CO2, the dry weight and polysaccharide yield reached 1.389 ± 0.070 g/L and 313.49 ± 10.77 mg/L, respectively. 10% and 20% CO2 promoted the production of cellular antioxidant molecules to resist the toxic stress and the toxicity of 20% CO2 group decreased from 62.16 ± 3.11% to 33.02 ± 3.76%. 10% and 20% CO2 accelerated the electron transfer, enhanced carbon assimilation, and promoted the photosynthetic efficiency, while 30% CO2 led to photosystem damage and disorder of antioxidant system. Proteomic analysis showed that 20% CO2 mainly affected energy metabolism and the oxidative stress level on the early stage (10 d), while affected photosynthesis and organic substance metabolism on the stable stage (30 d). The up-regulation of PSII photosynthetic protein subunit 8 (PsbA, PsbO), A0A383W1S5 and A0A383VRI4 promoted the efficiency of PSII and chlorophyll synthesis, and the up-regulation of A0A383WH74 and A0A2Z4THB7 led to the accumulation of polysaccharides. The up-regulation of A0A383VDH1, A0A383VX37 and A0A383VA86 promoted respiration. Collectively, this work discloses the regulatory mechanism of high-concentration CO2 on Chlorococcum humicola to overcome toxicity and accumulate polysaccharides.
Collapse
Affiliation(s)
- Meijing Song
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China
| | - Danning Yin
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China
| | - Jiamin Zhao
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China
| | - Renjie Li
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China
| | - Jiayu Yu
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China
| | - Xiurong Chen
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China.
| |
Collapse
|
3
|
Zhai Y, Guo W, Li D, Chen B, Xu X, Cao X, Zhao L. Size-dependent influences of nanoplastics on microbial consortium differentially inhibiting 2, 4-dichlorophenol biodegradation. WATER RESEARCH 2024; 249:121004. [PMID: 38101052 DOI: 10.1016/j.watres.2023.121004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/22/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Nanoplastics (NPs), as a type of newly emerging pollutant, are ubiquitous in various environmental systems, one of which is coexistence with organic pollutants in wastewater, potentially influencing the pollutants' biodegradation. A knowledge gap exists regarding the influence of microbial consortium and NPs interactions on biodegradation efficiency. In this work, a 2,4-dichlorophenol (DCP) biodegradation experiment with presence of polystyrene nanoplastics (PS-NPs) with particle sizes of 100 nm (PS100) or 20 nm (PS20) was conducted to verify that PS-NPs had noticeable inhibitory effect on DCP biodegradation in a size-dependent manner. PS100 at 10 mg/L and 100 mg/L both prolonged the microbial stagnation compared to the control without PS-NPs; PS20 exacerbated greater, with PS20 at 100 mg/L causing a noticeable 6-day lag before the start-up of rapid DCP reduction. The ROS level increased to 1.4-fold and 1.8-fold under PS100 and PS20 exposure, respectively, while the elevated LDH under PS20 exposure indicated the mechanical damage to cell membrane by smaller NPs. PS-NPs exposure also resulted in a decrease in microbial diversity and altered the niches of microbial species, e.g., they decreased the abundance of some functional bacteria such as Brevundimonas and Comamonas, while facilitated some minor members to obtain more proliferation. A microbial network with higher complexity and less competition was induced to mediate PS-NPs stress. Functional metabolism responded differentially to PS100 and PS20 exposure. Specifically, PS100 downregulated amino acid metabolism, while PS20 stimulated certain pathways in response to more severe oxidative stress. Our findings give insights into PS-NPs environmental effects concerning microflora and biological degradation.
Collapse
Affiliation(s)
- Ying Zhai
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenbo Guo
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Deping Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bo Chen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyun Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, China
| | - Ling Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, China.
| |
Collapse
|
4
|
Wang X, Zou Y, Wang Y, Niu J, Li H. Metabolic insights into the interaction between nitrogen removal and 4-chlorophenol reduction of anammox consortia. ENVIRONMENTAL RESEARCH 2023; 231:116192. [PMID: 37201701 DOI: 10.1016/j.envres.2023.116192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/01/2023] [Accepted: 05/16/2023] [Indexed: 05/20/2023]
Abstract
The response characteristic and performance stabilization of anammox process under the stress of the potential organic pollutants support the application of ammonia-nitrogen wastewater treatment. In the present study, nitrogen removal performance was significantly suppressed with the addition of 4-chlorophenol. The activity of anammox process was inhibited by 14.23% (0.1 mg/L), 20.54% (1 mg/L) and 78.15% (10 mg/L), respectively. Metagenomic analysis revealed a significant decrease in the abundance of KEGG pathways associated with carbohydrate and amino acid metabolism with increasing 4-chlorophenol concentration. Metabolic pathway profiles suggest that putrescine is down-regulated at high 4-chlorophenol stress due to inhibition of nitrogen metabolism processes, while it is up-regulated to reduce oxidative damage. In addition, the presence of 4-chlorophenol induced an enhancement of EPS and bacterial debris decomposition, and a partial conversion of 4-chlorophenol to p-nitrophenol. This study unravels the mechanism of effect on anammox consortia in response to 4-CP, which could provide supplementary to facilitate its full-scale application.
Collapse
Affiliation(s)
- Xiaojing Wang
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Yu Zou
- Shansuyouke (Shenzhen) New Materials Co., Ltd., Shenzhen, 518081, China
| | - Yameng Wang
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Junfeng Niu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
| | - Haibo Li
- Shansuyouke (Shenzhen) New Materials Co., Ltd., Shenzhen, 518081, China
| |
Collapse
|
5
|
Li Y, Jiang J, Chen Y, Qie W, Zhu W, Xu N, Zhao J. Effects of salinity on the performance, microbial community, and functional genes among 4-chlorophenol wastewater treatment. BIORESOURCE TECHNOLOGY 2023:129282. [PMID: 37277007 DOI: 10.1016/j.biortech.2023.129282] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/07/2023]
Abstract
Chlorophenols frequently occur alongside salinity in industrial wastewater; thus, the effects of low concentrations of salinity (NaCl, 100 mg/L) on sludge performance, microbial community, and functional genes were deeply analyzed among 4-chlorophenol (4-CP, 2.4-4.0 mg/L) wastewater treatment. The influent 4-CP was effectively degraded, but the efficiencies for PO43--P, NH4+-N, and organics reduction were slightly inhibited by NaCl stress. Long-term NaCl and 4-CP stress significantly stimulated the secretion of extracellular polymeric substances (EPS). The abundances of predominant microbes at different taxonomic levels were affected by NaCl, and the increased relative abundances of functional genes encoding proteins contributed to resist NaCl and 4-CP stress. The functional genes associated with phosphorus metabolism and nitrogen metabolism in nitrification were unaffected, but the functional genes in denitrification increased in diversity under NaCl stress in 4-CP wastewater treatment. This finding acquires useful insight into the wastewater treatment with low chlorophenols and low salinity.
Collapse
Affiliation(s)
- Yahe Li
- School of Marine Sciences, Ningbo University, Ningbo 315211, China; Xiangshan Xuwen Seaweed Development Co., Ltd., Ningbo, China
| | - Jianan Jiang
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Yili Chen
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Wandi Qie
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Wenrong Zhu
- Xiangshan Xuwen Seaweed Development Co., Ltd., Ningbo, China
| | - Nianjun Xu
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jianguo Zhao
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China.
| |
Collapse
|
6
|
Jeon J, Park Y, Hwang Y. Catalytic Hydrodechlorination of 4-Chlorophenol by Palladium-Based Catalyst Supported on Alumina and Graphene Materials. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091564. [PMID: 37177109 PMCID: PMC10181078 DOI: 10.3390/nano13091564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023]
Abstract
Hydrodechlorination (HDC) is a reaction that involves the use of hydrogen to cleave the C-Cl bond in chlorinated organic compounds such as chlorophenols and chlorobenzenes, thus reducing their toxicity. In this study, a palladium (Pd) catalyst, which is widely used for HDC due to its advantageous physical and chemical properties, was immobilized on alumina (Pd/Al) and graphene-based materials (graphene oxide and reduced graphene oxide; Pd/GO and Pd/rGO, respectively) to induce the HDC of 4-chlorophenol (4-CP). The effects of the catalyst dosage, initial 4-CP concentration, and pH on 4-CP removal were evaluated. We observed that 4-CP was removed very rapidly when the HDC reaction was induced by Pd/GO and Pd/rGO. The granulation of Pd/rGO using sand was also investigated as a way to facilitate the separation of the catalyst from the treated aqueous solution after use, which is to improve practicality and effectiveness of the use of Pd catalysts with graphene-based support materials in an HDC system. The granulated catalyst (Pd/rGOSC) was employed in a column to induce HDC in a continuous flow reaction, leading to the successful removal of most 4-CP after 48 h. The reaction mechanisms were also determined based on the oxidation state of Pd, which was observed using X-ray photoelectron spectroscopy. Based on the results as a whole, the proposed granulated catalyst has the potential to greatly enhance the practical applicability of HDC for water purification.
Collapse
Affiliation(s)
- Jintae Jeon
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Yuri Park
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Yuhoon Hwang
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| |
Collapse
|
7
|
Phenol Degradation Performance in Batch and Continuous Reactors with Immobilized Cells of Pseudomonas putida. Processes (Basel) 2023. [DOI: 10.3390/pr11030739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Phenol is a highly persistent environmental pollutant and is toxic to living organisms. The main objective of this study is to observe the phenol degradation performance by free and immobilized Pseudomonas putida (P. putida) in batch and continuous reactors, respectively. Batch experiments were evaluated to determine the maximum specific growth rate, saturation constant, inhibition constant, and cell yield. These kinetic parameters were used as the input values for the continuous-flow immobilized cells model. The immobilized cells model was validated by experimental results obtained from an immobilized cells continuous reactor. The model-predicted and experimental results showed good agreement for phenol effluent concentration in the continuous mode. In the steady-state condition, high phenol removal was achieved under various hydraulic retention times. The corresponding removal of phenol ranged from 93.3 to 95.9%, while the hydraulic retention times were maintained at 3.1–10.5 h. Furthermore, polyvinyl alcohol-immobilized cells with nanoscale particles were also prepared. The polyvinyl alcohol-immobilized P. putida cells with nanoscale Fe3O4 enhanced the ability of phenol degradation. The experimental results revealed that immobilized cells with nano-Fe3O4 had the highest phenol degradation performance at a low salinity of 1%. However, the advantage of the addition of nano-Fe3O4 was insignificant for phenol degradation at a higher salinity of 5%. The approaches of the batch and continuous column tests were practical in the treatment of actual phenol-containing wastewater.
Collapse
|
8
|
Li Z, Mao Y, Yan X, Song Z, Liu C, Liu Z, Kang H, Yan X, Gu D, Zhang X, Huang Z. Design a flower-like magnetic graphite carbon microsphere for enhanced adsorption of 2,4-dichlorophenol. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:83138-83154. [PMID: 35763142 DOI: 10.1007/s11356-022-21364-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
2,4-Dichlorophenol (2,4-DCP) is a hazardous chlorinated organic chemical, so its removal is an important task to protect the whole ecosystem and human health. During the material preparation, the magnetic graphitic carbon adsorbent (HFMCM) with a sparse sheet-like stacking structure was formed by interlayer assembly of nickel hydroxide nanosheets and hydrothermal glucose carbon. The conditions for optimal performance of the adsorbent are 45 °C and pH 5. The maximum adsorption capacity of HFMCM-180 for 2,4-DCP is 147.06 mg·g-1. Adsorption behavior in accordance with Langmuir isothermal model and pseudo-second-order kinetic models. The adsorbent remains selective for 2,4-DCP in metal ion solutions. More than 75% of the adsorption capacity is maintained after five cycles of adsorption. Electrostatic interaction, hydrogen bonding, and π-π bonding play a major role in the adsorption of 2,4-DCP by HFMCM. The adsorbent was glucose as the carbon source, nickel sulfate as the magnetic source, and hexamethylenetetramine as the precipitant. Its carbonization after pretreatment with different hydrothermal temperatures resulted in the synthesis of flower-like graphitic carbon spheres with magnetic properties. The interconnected pore channels on the adsorbent surface conferred large specific surface area to the material. 2,4-DCP was efficiently adsorbed by π-π stacking, hydrogen bonding, and electrostatic attraction within the pore channels with low spatial potential resistance.
Collapse
Affiliation(s)
- Zhaoyang Li
- Henan University of Urban Construction, Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Pingdingshan, 467000, China
- School of Civil and Surveying Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Yanli Mao
- Henan University of Urban Construction, Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Pingdingshan, 467000, China.
- School of Civil and Surveying Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China.
| | - Xiaole Yan
- Henan University of Urban Construction, Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Pingdingshan, 467000, China
| | - Zhongxian Song
- Henan University of Urban Construction, Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Pingdingshan, 467000, China
| | - Chaopeng Liu
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, China
| | - Zuwen Liu
- School of Civil and Surveying Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Haiyan Kang
- Henan University of Urban Construction, Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Pingdingshan, 467000, China
| | - Xu Yan
- Henan University of Urban Construction, Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Pingdingshan, 467000, China
| | - Deming Gu
- Henan University of Urban Construction, Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Pingdingshan, 467000, China
| | - Xia Zhang
- Henan University of Urban Construction, Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Pingdingshan, 467000, China
| | - Zhenzhen Huang
- Henan University of Urban Construction, Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Pingdingshan, 467000, China
- School of Water Conservancy and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
9
|
Xia G, Zheng Y, Sun Z, Xia S, Ni Z, Yao J. Fabrication of ZnAl-LDH mixed metal-oxide composites for photocatalytic degradation of 4-chlorophenol. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:39441-39450. [PMID: 35103946 DOI: 10.1007/s11356-022-18989-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
In this work, two different types of ZnAl-layered double hydroxide (LDH) mixed metal-oxide composites (CeO2 and SnO2) were synthesized and applied for the photodegradation of 4-chlorophenol (4-CP) in wastewater. The fabricated CeO2/ZnAl-LDH and SnO2/ZnAl-LDH were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, UV-visible diffuse reflectance spectroscopy (UV-vis DRS), and theoretical density functional theory (DFT) calculations, suggesting that the band gaps of the synthesized hybrid composites were much lower than those of traditional ZnAl-LDH. In addition, the photocatalytic activity for 4-CP degradation and reaction kinetics were investigated to evaluate the catalytic behavior of the prepared composites. The results indicated that the photocatalytic process in this case followed a pseudo-first-order kinetic model, and SnO2/ZnAl-LDH illustrated the optimum performance for 4-CP degradation with an efficiency of 95.2% due to its stability and recyclability. Additionally, the reaction mechanism of 4-CP photodegradation was studied over SnO2/ZnAl-LDH; it presented that 4-CP could be oxidized by hydroxyl radicals, holes, and superoxide radicals, where hydroxyl radicals were identified as the dominant active species during the degradation process. Finally, decomposition intermediates were measured to deduce the reaction pathway of 4-CP, and three tentative pathways were proposed and discussed.
Collapse
Affiliation(s)
- Guanghua Xia
- College of Life Science, Taizhou University, Taizhou, 318000, China
| | - Yumei Zheng
- Huangyan Branch of Taizhou Ecology and Environment Bureau, Taizhou, 318020, China
| | - Zhiyin Sun
- College of Life Science, Taizhou University, Taizhou, 318000, China
| | - Shengjie Xia
- College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Zheming Ni
- College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Jiachao Yao
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China.
| |
Collapse
|
10
|
Li KT, Yang Y, Zhang SW, Cheng X. Dynamics of the Bacterial Community's Soil During the In-Situ Degradation Process of Waste Chicken Feathers. Indian J Microbiol 2022; 62:225-233. [DOI: 10.1007/s12088-021-00996-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 12/09/2021] [Indexed: 11/05/2022] Open
|
11
|
Chen X, Hu X, Lu Q, Yang Y, Linghu S, Zhang X. Study on the differences in sludge toxicity and microbial community structure caused by catechol, resorcinol and hydroquinone with metagenomic analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 302:114027. [PMID: 34872176 DOI: 10.1016/j.jenvman.2021.114027] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
The aerobic biodegradation rate, organic toxicity and microbial community structure of activated sludge acclimated by catechol, resorcinol and hydroquinone were investigated, to study the relationship between microbial structure and sludge organic toxicity caused by phenolic compounds. At the stable operation stage, the degradation rates of the dihydroxy benzenes in a single sequencing batch reactor (SBR) cycle were followed the order: resorcinol (89.71%) > hydroquinone (85.64%) > catechol (59.62%). Sludge toxicity bioassay indicated that the toxicity of sludge was catechol (45.63%) > hydroquinone (40.28%) > resorcinol (38.15%). The accumulation of secondary metabolites such as 5-10 kDa tryptophan and tyrosine protein substances caused the differential sludge toxicity. Microbial metagenomic analysis showed that the toxicity of sludge was significantly related to the microbial community structure. Thauera, Azoarcus, Pseudomonas and other Proteobacteria formed in the sludge during acclimation. Catechol group had the least dominant bacteria and loop ring opening enzyme genes (catA, dmpB, dxnF, hapD) numbers. Therefore, the degradation of catechol was the most difficult than resorcinol and hydroquinone, resulting the highest sludge toxicity.
Collapse
Affiliation(s)
- Xiurong Chen
- National Engineering Laboratory for Industrial Wastewater Treatment, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Xueyang Hu
- National Engineering Laboratory for Industrial Wastewater Treatment, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Quanling Lu
- National Engineering Laboratory for Industrial Wastewater Treatment, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Yingying Yang
- National Engineering Laboratory for Industrial Wastewater Treatment, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Shanshan Linghu
- National Engineering Laboratory for Industrial Wastewater Treatment, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Xinyu Zhang
- National Engineering Laboratory for Industrial Wastewater Treatment, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
12
|
Yang K, Zhao Y, Ji M, Li Z, Zhai S, Zhou X, Wang Q, Wang C, Liang B. Challenges and opportunities for the biodegradation of chlorophenols: Aerobic, anaerobic and bioelectrochemical processes. WATER RESEARCH 2021; 193:116862. [PMID: 33550168 DOI: 10.1016/j.watres.2021.116862] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 01/17/2021] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Chlorophenols (CPs) are highly toxic and refractory contaminants which widely exist in various environments and cause serious harm to human and environment health and safety. This review provides comprehensive information on typical CPs biodegradation technologies, the most green and benign ones for CPs removal. The known aerobic and anaerobic degradative bacteria, functional enzymes, and metabolic pathways of CPs as well as several improving methods and critical parameters affecting the overall degradation efficiency are systematically summarized and clarified. The challenges for CPs mineralization are also discussed, mainly including the dechlorination of polychlorophenols (poly-CPs) under aerobic condition and the ring-cleavage of monochlorophenols (MCPs) under anaerobic condition. The coupling of functional materials and degraders as well as the operation of sequential anaerobic-aerobic bioreactors and bioelectrochemical system (BES) are promising strategies to overcome some current limitations. Future perspective and research gaps in this field are also proposed, including the further understanding of microbial information and the specific role of materials in CPs biodegradation, the potential application of innovative biotechnologies and new operating modes to optimize and maximize the function of the system, and the scale-up of bioreactors towards the efficient biodegradation of CPs.
Collapse
Affiliation(s)
- Kaichao Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Min Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Zhiling Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Siyuan Zhai
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xu Zhou
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Qian Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Can Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Bin Liang
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
13
|
Li Y, Li Y, Jin B, Zhang K, Wang L, Zhao J. Effects of 2,4,6-trichlorophenol and its intermediates on acute toxicity of sludge from wastewater treatment and functional gene expression. BIORESOURCE TECHNOLOGY 2021; 323:124627. [PMID: 33412498 DOI: 10.1016/j.biortech.2020.124627] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/23/2020] [Accepted: 12/25/2020] [Indexed: 06/12/2023]
Abstract
Considering the extensive usage of chlorophenols as well as their refractory and toxic characteristics, 2,4,6-trichlorophenol (2,4,6-TCP) and its metabolic intermediates that cause the acute toxicity of sludge were comprehensively evaluated using a bioassay including Photobacterium phosphoreum in a sequencing batch bioreactor (SBR), and the effects of 2,4,6-TCP wastewater treatment on mRNA expression were explored. The results showed that acute toxicity of sludge and effluent chemical oxygen demand greatly exceeded that of the other SBR without 2,4,6-TCP acclimation when 2,4,6-TCP wastewater treatment in the range of 10-50 mg/L was used. The identified intermediates and 2,4,6-TCP largely contributed to the acute toxicity of sludge, which favorably fitted the Fit Exponential Decay (R2 > 0.93). During the stable stages for treating 50 mg/L 2,4,6-TCP in the influent, the mRNA expression for encoding functional proteins based on the genus Pseudomonas was markedly inhibited after the completion of the SBR operation.
Collapse
Affiliation(s)
- Yu Li
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Yanfei Li
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Baodan Jin
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Ke Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Lan Wang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Jianguo Zhao
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China.
| |
Collapse
|
14
|
Kayan I, Oz NA, Kantar C. Comparison of treatability of four different chlorophenol-containing wastewater by pyrite-Fenton process combined with aerobic biodegradation: Role of sludge acclimation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 279:111781. [PMID: 33307317 DOI: 10.1016/j.jenvman.2020.111781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/12/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
Aerobic biodegradation combined with pyrite-Fenton process was used for the treatment of wastewater containing different chlorophenols (4-CP, 2,3-DCP, 2,4-DCP, 2,4,6-TCP). Fenton degradation using pyrite as the low cost iron catalyst was used as a pre-treatment step to lower the toxicity of CPs prior to aerobic biodegradation. Synthetic wastewater spiked directly with either 100 mg/L CPs or pyrite-Fenton pre-treated CPs was fed to the batch bioreactors inoculated with unacclimated or acclimated activated sludge using glucose as the C-source. The results show that the CP biodegradation under aerobic conditions was highly dependent on the type of CP treated. Except for 2,4-DCP, all other CPs investigated caused severe sludge toxicity, and thus significantly hindered glucose degradation by unacclimated sludge. The CP toxicity decreased in the order of: 2,4,6-TCP > 2,3-DCP > 4-CP > 2,4-DCP. The toxic effect was explained through an interaction of CPs with the lipid fraction of cell membrane. While the pyrite-Fenton pre-treatment improved the COD removal efficiency using unacclimated sludge, the sCOD removal efficiency was still less than the control reactor operated with no CP addition. With sludge acclimation, however, the sCOD removal efficiencies increased, and approached 74% for 2,4-DCP, 61% for 4-CP, 56% for 2,4,6-TCP and 46% for 2,3-DCP, suggesting an enhanced biomass tolerance to CP toxicity. On the other hand, the sludge acclimation combined with pyrite Fenton pre-treatment provided the best bioreactor performance for all CPs with the sCOD removal efficiencies reaching 81% for 2,4,6-TCP, 78% for 2,4-DCP, 73% for 4-CP and 62% for 2,3-DCP. This suggests that the dechlorination of CPs with Fenton process, in conjunction with sludge acclimation, not only reduced the sludge toxicity, but also enhanced the bioavailability of CP-containing wastewater for microorganisms, especially for highly chlorinated toxic CPs such as 2,4,6-TCP. Overall, the findings highlight the need for sludge acclimation for effective treatment of chlorophenol-containing wastewater by a combined pyrite-Fenton and aerobic biodegradation system.
Collapse
Affiliation(s)
- Iremsu Kayan
- Canakkale Onsekiz Mart University, Department of Environmental Engineering, 17100, Canakkale, Turkey
| | - Nilgun Ayman Oz
- Canakkale Onsekiz Mart University, Department of Environmental Engineering, 17100, Canakkale, Turkey
| | - Cetin Kantar
- Canakkale Onsekiz Mart University, Department of Environmental Engineering, 17100, Canakkale, Turkey.
| |
Collapse
|
15
|
Li H, Cai Y, Gu Z, Yang YL, Zhang S, Yang XL, Song HL. Accumulation of sulfonamide resistance genes and bacterial community function prediction in microbial fuel cell-constructed wetland treating pharmaceutical wastewater. CHEMOSPHERE 2020; 248:126014. [PMID: 31995737 DOI: 10.1016/j.chemosphere.2020.126014] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 05/12/2023]
Abstract
Microbial fuel cell constructed wetlands (CW-MFCs) with different circuit operation conditions and hydraulic retention time (HRT) were constructed to evaluate their ability to remove and accumulate pharmaceutical and personal care products (PPCPs) (sulfadiazine (SDZ), carbamazepine (CBZ), naproxen (NPX) and ibuprofen (IBP)) during four months running process. The abundance level of corresponding sulfonamide antibiotic resistance genes (ARGs) was also investigated. The results showed that closed circuit operation of CW-MFC contributed to the decrease in mass loading of COD, NH4+-N, PPCPs, and wastewater toxicity in the effluent. Additionally, closed circuit operation with low HRT contributed to enhancing selected PPCP mass accumulation on electrodes by electro-adsorption, and thus the higher sulfonamide ARG abundance was detected in the electrodes and effluent. Moreover, the composition of bacteria was greatly influenced by the mass accumulation of PPCPs revealed by redundancy analysis results. Procrustes analysis results further demonstrated that bacterial community contributed greatly to the ARGs profiles. Therefore, ARGs with their host bacteria revealed by network analysis were partially deposited on electrode substrates, and thus ARGs were effectively accumulated on electrodes. Function analysis of the bacterial community from PICRUSt predicted metagenomes revealed that closed circuit mode enhanced the abundances of the function genes of metabolic and the multiple ARGs, suggesting that closed circuit operation exhibited positive effects on metabolic process and ARG accumulation in CW-MFC system.
Collapse
Affiliation(s)
- Hua Li
- School of Energy and Environment, Southeast University, Nanjing, 210096, PR China.
| | - Yun Cai
- School of Environment, Nanjing Normal University, Jiangsu Centre for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing, 210023, PR China.
| | - Zuli Gu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Yu-Li Yang
- School of Environment, Nanjing Normal University, Jiangsu Centre for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing, 210023, PR China.
| | - Shuai Zhang
- School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, PR China.
| | - Xiao-Li Yang
- School of Civil Engineering, Southeast University, Nanjing, 210096, PR China.
| | - Hai-Liang Song
- School of Environment, Nanjing Normal University, Jiangsu Centre for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing, 210023, PR China.
| |
Collapse
|
16
|
Moreno-Andrade I, Valdez-Vazquez I, López-Rodríguez A. Effect of transient pH variation on microbial activity and physical characteristics of aerobic granules treating 4-chlorophenol. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2020; 55:878-885. [PMID: 32275179 DOI: 10.1080/10934529.2020.1751505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
Chlorophenols are inhibitory compounds that can be biodegraded by aerobic granules in discontinuous processes. Many industrial wastewaters are characterized by transient pH variation over time. These pH changes could affect the overall granule structure and microbial activity during the chlorophenol biodegradation. The objective of this research was to evaluate the effects of transient pH variation on the specific degradation rate (q), granule integrity coefficient (IC), and size in sequencing batch reactors treating 4-chlorophenol (4-CP). First, aerobic granules were acclimated for efficient 4-CP degradation (>99%). The acclimated granules consisted of 55.7% of the phyla Proteobacteria and 40.6% of Bacteroidetes. The main bacteria belong to the order Sphingobacteriales (24%), as well as Amaricoccus, Acidovorax, Shinella, Rhizobium, and Flavobacterium, some of which are new genera reported in acclimated granules degrading 4-CP. Then, pH changes were applied to the acclimated aerobic granules, observing that acid pHs decreased to a greater extent the specific degradation rate (67% to 99%) than basic pHs (34% to 80%). These pH changes caused the granule disaggregation but with lower effects on the IC. The effects of pH change were mainly on the microbial activity more than the physical characteristics of aerobic granules degrading 4-CP.
Collapse
Affiliation(s)
- Iván Moreno-Andrade
- Laboratory for Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Idania Valdez-Vazquez
- Laboratory for Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Antonio López-Rodríguez
- Laboratory for Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Querétaro, Mexico
| |
Collapse
|
17
|
Tian X, Shen Z, Han Z, Zhou Y. The effect of extracellular polymeric substances on exogenous highly toxic compounds in biological wastewater treatment: An overview. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2018.11.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Zhao J, Li Y, Li Y, Yang H, Hu D, Zhang H. Effects of 4-chlorophenol toxicity on sludge performance and microbial community in sequencing batch reactors. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2019; 54:498-505. [PMID: 30676877 DOI: 10.1080/10934529.2019.1567159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/23/2018] [Accepted: 12/28/2018] [Indexed: 06/09/2023]
Abstract
In this study, the effects of 4-chlorophenol (4-CP) influent concentrations ranging from 10 to 100 mg L-1 on sludge toxicity, enzymatic activity and microbial community, along with their correlations, were investigated in a sequencing batch bioreactor (SBR), which was defined as the acclimated SBR. Another SBR was set as a control group that did not receive the influent 4-CP. The results showed that the sludge toxicity increased as the influent 4-CP increased, exhibiting a positive correlation with 4-CP loads. The enzymatic activity was stimulated after long-term acclimation with 4-CP and was positively related to the 4-CP loads and sludge toxicity. During the stable operational stages of the acclimated SBR, the microbial diversity first increased and then decreased as the 4-CP loads increased, while the similarity of the microbial community between the acclimated and control SBRs decreased with increasing 4-CP loads. The aim of this study is to provide theoretical support for reducing sludge toxicity in industrial wastewater treatment.
Collapse
Affiliation(s)
- Jianguo Zhao
- a Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering , Zhengzhou University of Light Industry , Zhengzhou , People's Republic of China
| | - Yahe Li
- b Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Key Laboratory of Marine Biotechnology of Zhejiang , Ningbo University , Ningbo , People's Republic of China
| | - Yu Li
- a Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering , Zhengzhou University of Light Industry , Zhengzhou , People's Republic of China
| | - Haojie Yang
- a Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering , Zhengzhou University of Light Industry , Zhengzhou , People's Republic of China
| | - Dehuan Hu
- a Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering , Zhengzhou University of Light Industry , Zhengzhou , People's Republic of China
| | - Hongzhong Zhang
- a Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering , Zhengzhou University of Light Industry , Zhengzhou , People's Republic of China
| |
Collapse
|