1
|
Qian C, He S, Li X, Wu S, Wang D, Yang C. Effects of salinity on anaerobic digestion: Performance, microbial physiology, and community dynamics. BIORESOURCE TECHNOLOGY 2025; 431:132619. [PMID: 40328355 DOI: 10.1016/j.biortech.2025.132619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/30/2025] [Accepted: 05/02/2025] [Indexed: 05/08/2025]
Abstract
Anaerobic digestion (AD) is widely applied to treatment and energy recovery from organic wastewater/wastes, while the efficiency of AD can be limited by salinity stress. This paper reviews the effects of salinity on AD. First of all, the effects of salinity on AD performance were compared, revealing that methane production is more susceptible to salinity stress. Secondly, the influence of salinity on microbial physiology and intracellular molecules was examined, demonstrating that salinity stress reduces the activity of key enzymes and increases the concentration of extracellular polymeric substances during AD. Thirdly, variations in microbial community structure under salinity stress were discussed, with archaeal communities showing more significant restructuring, including reduced dominance of acetoclastic methanogens. At last, strategies to mitigate salinity inhibition were presented, along with prospects for future research directions. This review provides theoretical guidance for engineering applications and strategies for enhancing AD in treating saline substrates.
Collapse
Affiliation(s)
- Chongxin Qian
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Shanying He
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310012, China
| | - Xiang Li
- Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Shaohua Wu
- Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Dexin Wang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou, Hainan 570228, China
| | - Chunping Yang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China; Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China; Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou, Hainan 570228, China.
| |
Collapse
|
2
|
Zhang Z, Wan J, Ye G, Wang Y, Bai Y, Yan Z. Effects of salinity and betaine addition on anaerobic granular sludge properties and microbial community succession patterns in organic saline wastewater. J Environ Sci (China) 2025; 147:310-321. [PMID: 39003049 DOI: 10.1016/j.jes.2023.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 07/15/2024]
Abstract
In this study, the effects of different salinity gradients and addition of compatible solutes on anaerobic treated effluent water qualities, sludge characteristics and microbial communities were investigated. The increase in salinity resulted in a decrease in particle size of the granular sludge, which was concentrated in the range of 0.5-1.0 mm. The content of EPS (extracellular polymeric substances) in the granular sludge gradually increased with increasing salinity and the addition of betaine (a typical compatible solute). Meanwhile, the microbial community structure was significantly affected by salinity, with high salinity reducing the diversity of bacteria. At higher salinity, Patescibacteria and Proteobacteria gradually became the dominant phylum, with relative abundance increasing to 13.53% and 12.16% at 20 g/L salinity. Desulfobacterota and its subordinate Desulfovibrio, which secrete EPS in large quantities, dominated significantly after betaine addition.Their relative abundance reached 13.65% and 7.86% at phylum level and genus level. The effect of these changes on the treated effluent was shown as the average chemical oxygen demand (COD) removal rate decreased from 82.10% to 79.71%, 78.01%, 68.51% and 64.55% when the salinity gradually increased from 2 g/L to 6, 10, 16 and 20 g/L. At the salinity of 20 g/L, average COD removal increased to 71.65% by the addition of 2 mmol/L betaine. The gradient elevated salinity and the exogenous addition of betaine played an important role in achieving stability of the anaerobic system in a highly saline environment, which provided a feasible strategy for anaerobic treatment of organic saline wastewater.
Collapse
Affiliation(s)
- Zhifei Zhang
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jinquan Wan
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| | - Gang Ye
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yan Wang
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yuwei Bai
- Shijiazhuang High Tech Industrial Development Zone Water Supply and Drainage Company, Shijiazhuang 050000, China
| | - Zhicheng Yan
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
3
|
Fan X, Peng C, Yang J, Zhang Y, Lin S, Lin C, Wang Y, Zhou J. The collaboration and competition between indigenous microorganisms and exogenous anaerobic digester sludge in anaerobic treatment of pickled mustard wastewater at different salinities. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123188. [PMID: 39492134 DOI: 10.1016/j.jenvman.2024.123188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/04/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
The highly concentrated pickled mustard wastewater presents significant potential for energy recovery, but the stress effect of high osmotic pressure on cell integrity and activity seriously impedes the methane production by anaerobic microorganisms. The survival ability of indigenous microorganisms (IM) in pickled mustard wastewater supports the establishment of anaerobic treatment. Moreover, inoculation of anaerobic digester sludge is a common start-up strategy. However, the effects of exogenous anaerobic sludge on IM are unclear, especially in hypersaline environment. This research aimed to investigate the influence of exogenous anaerobic sludge on the construction, performance, and microbiota at 3% and 5% salinity. And the research focused on the collaboration and competition between exogenous anaerobic sludge and IM. The neutral community model (which explains the formation and evolution of biological communities) indicated that the interaction between exogenous digester sludge microorganisms and IM dominated community assembly. At 3%, the digester sludge collaborated with IM to increase daily COD reduction and biogas production compared with IM group. However, at 5%, the competitive relationship reduced daily COD reduction and biogas production compared with IM group. This study provides a new perspective for the selection of inoculation strategies for exogenous anaerobic digester sludge under different salinity, in order to realize energy conversion from salinity organic wastewater.
Collapse
Affiliation(s)
- Xing Fan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Ce Peng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Jingyi Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Ying Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Shuxuan Lin
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Chengbao Lin
- China Railway Eryuan Engineering Group Co., Ltd, Chengdu, Sichuan, 610031, PR China
| | - Yingmu Wang
- College of Civil Engineering, Fuzhou University, Fuzhou, Fujian, 350116, PR China
| | - Jian Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China.
| |
Collapse
|
4
|
Elahinik A, de Clercq F, Pabst M, Xevgenos D, van Loosdrecht MCM, Pronk M. Effects of salinity on glycerol conversion and biological phosphorus removal by aerobic granular sludge. WATER RESEARCH 2024; 257:121737. [PMID: 38723353 DOI: 10.1016/j.watres.2024.121737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024]
Abstract
Industrial wastewater often has high levels of salt, either due to seawater or e.g. sodium chloride (NaCl) usage in the processing. Previous work indicated that aerobic granular sludge (AGS) is differently affected by seawater or saline water at similar osmotic strength. Here we investigate in more detail the impact of NaCl concentrations and seawater on the granulation and conversion processes for AGS wastewater treatment. Glycerol was used as the carbon source since it is regularly present in industrial wastewaters, and to allow the evaluation of microbial interactions that better reflect real conditions. Long-term experiments were performed to evaluate and compare the effect of salinity on granulation, anaerobic conversions, phosphate removal, and the microbial community. Smooth and stable granules as well as enhanced biological phosphorus removal (EBPR) were achieved up to 20 g/L NaCl or when using seawater. However, at NaCl levels comparable to seawater strength (30 g/L) incomplete anaerobic glycerol uptake and aerobic phosphate uptake were observed, the effluent turbidity increased, and filamentous granules began to appear. The latter is likely due to the direct aerobic growth on the leftover substrate after the anaerobic feeding period. In all reactor conditions, except the reactor with 30 g/L NaCl, Ca. Accumulibacter was the dominant microorganism. In the reactor with 30 g/L NaCl, the relative abundance of Ca. Accumulibacter decreased to ≤1 % and an increase in the genus Zoogloea was observed. Throughout all reactor conditions, Tessaracoccus and Micropruina, both actinobacteria, were present which were likely responsible for the anaerobic conversion of glycerol into volatile fatty acids. None of the glycerol metabolizing proteins were detected in Ca. Accumulibacter which supports previous findings that glycerol can not be directly utilized by Ca. Accumulibacter. The proteome profile of the dominant taxa was analysed and the results are further discussed. The exposure of salt-adapted biomass to hypo-osmotic conditions led to significant trehalose and PO43--P release which can be related to the osmoregulation of the cells. Overall, this study provides insights into the effect of salt on the operation and stability of the EBPR and AGS processes. The findings suggest that maintaining a balanced cation ratio is likely to be more important for the operational stability of EBPR and AGS systems than absolute salt concentrations.
Collapse
Affiliation(s)
- Ali Elahinik
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9 2629HZ, Delft, The Netherlands.
| | - Fleur de Clercq
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9 2629HZ, Delft, The Netherlands
| | - Martin Pabst
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9 2629HZ, Delft, The Netherlands
| | - Dimitrios Xevgenos
- Department of Technology, Policy, and Management, Delft University of Technology, van der Jaffalaan 5 2628 BX, Delft, The Netherlands
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9 2629HZ, Delft, The Netherlands
| | - Mario Pronk
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9 2629HZ, Delft, The Netherlands; Royal HaskoningDHV, Laan 1914 no 35 3800AL, Amersfoort, The Netherlands
| |
Collapse
|
5
|
Li J, Huang C. Anaerobic co-digestion of corn straw, sewage sludge and fresh leachate: Focusing on synergistic/antagonistic effects and microbial mechanisms. BIORESOURCE TECHNOLOGY 2024; 395:130414. [PMID: 38310978 DOI: 10.1016/j.biortech.2024.130414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/04/2024] [Accepted: 01/30/2024] [Indexed: 02/06/2024]
Abstract
Effects of sewage sludge (SS) and fresh leachate (FL) addition on corn straw (CS) digestion and underlying mechanisms were investigated. Co-digestion of CS, SS and FL significantly increased cumulative methane production by 7.2-61.1%. Further analysis revealed that co-digestion acted mainly on slowly degradable substrates and exerted dual effects on methane production potential, which was closely related to the volatile solids (VS) content. Antagonistic effects of co-digestion resulted from the dominance of norank_c_Bathyarchaeia, a mixotrophic methanogen that may generate methane inefficiently and consume existing methane. The synergistic enhancement of methane production (0.7-12.7%) was achieved in co-digestion with 33.5-45.5% of total VS added as SS and FL. Co-digestion with more balanced nutrients and higher buffering capacity enriched Actinobacteriota, Firmicutes, and Synergistota, thereby facilitating the substrate degradation. Furthermore, the predominant acetoclastic methanogens, increased hydrogenotrophic methanogens, and decreased methylotrophic methanogens in the digester combined to prompt the synergy.
Collapse
Affiliation(s)
- Jiaxiang Li
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; College of Environment and Ecology, Chongqing University, Chongqing 400044, China.
| | - Chuan Huang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; College of Environment and Ecology, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
6
|
Geng H, Xu Y, Dai X, Yang D. Abiotic and biotic roles of metals in the anaerobic digestion of sewage sludge: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169313. [PMID: 38123094 DOI: 10.1016/j.scitotenv.2023.169313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/09/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
Anaerobic digestion (AD) is a promising technique for sludge treatment and resource recovery. Metals are very important components of sludge and can have substantial effects on its complex nature and microbial activity. However, systematic reviews have not addressed how metals in sludge affect AD and how they can be regulated to improve AD. This paper comprehensively reviews the effects of metals on the AD of sludge from both abiotic and biotic perspectives. First, we introduce the contents and basic characteristics (e.g., chemical forms) of intrinsic metals in sewage sludge. Then, we summarise the main mechanism by which metals influence sludge properties and the methods for removing metals and thus improving AD. Next, we analyze the effects of both intrinsic and exogenous metals on the enzymes and microbial communities involved in anaerobic bioconversion, focusing on the types, critical concentrations and valence states of the metals. Finally, we propose ideas for future research on the roles of metals in the AD of sludge. In summary, this review systematically clarifies the roles of metals in the AD of sludge and provides a reference for improving AD by regulating these metals.
Collapse
Affiliation(s)
- Hui Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Ying Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Dianhai Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
7
|
Chen L, Wu D, Chen G. Elucidating the function and potential inhibitory impact of monovalent cations on assessing the biodegradability of organic substrates in biochemical sulfide potential (BSP) assay. BIORESOURCE TECHNOLOGY 2024; 393:129939. [PMID: 37951553 DOI: 10.1016/j.biortech.2023.129939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/14/2023]
Abstract
The sulfate reagent plays a crucial role as an electron acceptor in the sulfidogenic biodegradation process of the BSP assay for assessing the anaerobic biodegradability of organic substrates. However, the specific role and influence of the monovalent cations (sodium or potassium) in the sulfate reagent remain unknown. To address this gap, a series of batch assays were conducted to investigate the mechanistic effects of Na+ and K+. The results demonstrated that sodium has inhibitory effects on BSP assay when the dosage exceeds 8500 mg/L, whereas no adverse effects were observed in the potassium tests (ranging from 1800 to 14400 mg/L). In fact, the presence of K+ even enhanced the anaerobic biodegradability of organic substrates, and the underlying mechanisms were explored. These findings confirm the influence of cations in the BSP assay for biodegradability assessment and also provide guidance on sulfate dosage strategies for BSP assay application in anaerobic biotechnologies.
Collapse
Affiliation(s)
- Lin Chen
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch), Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Di Wu
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch), Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China; Center for Environmental and Energy Research, Ghent University Global Campus, Incheon, Republic of Korea; Department of Green Chemistry and Technology, Centre for Advance Process Technology for Urban REsource Recovery, Ghent University, Ghent, Belgium
| | - Guanghao Chen
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch), Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China; Wastewater Technology Laboratory, FYT Graduate School, The Hong Kong University of Science and Technology, Nansha, Guangzhou, China.
| |
Collapse
|
8
|
Song Q, Chen X, Hua Y, Chen S, Ren L, Dai X. Biological treatment processes for saline organic wastewater and related inhibition mechanisms and facilitation techniques: A comprehensive review. ENVIRONMENTAL RESEARCH 2023; 239:117404. [PMID: 37838207 DOI: 10.1016/j.envres.2023.117404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/28/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
Owing to its profound pollution-inducing properties and resistance to biodegradation, saline organic wastewater (SOW) has unavoidably emerged as a predominant focal point within the wastewater treatment domain. Substantial quantities of SOW are discharged by diverse industries encompassing food processing, pharmaceuticals, leather manufacturing, petrochemicals, and textiles. Within this review, the inhibitory repercussions of elevated salinity upon biological water treatment systems are subject to methodical scrutiny spanning from sludge characteristics, microbial consortia to the physiological functionality of microorganisms have been investigated. This exposition elucidates the application of both anaerobic and aerobic biological technologies for SOW treatment, which noting that conventional bioreactors can effectually treat SOW through microbial adaptation, and elaborating that cultivation of salt-tolerant bacteria and the design of advanced bioreactors represents a promising avenue for SOW treatment. Furthermore, the mechanisms underpinning microbial acclimatization to hypersaline milieus and the methodologies aimed at amplifying the efficacy of biological SOW treatment are delved into, which point out that microorganism exhibit salt tolerance via extracellular polymeric substance accumulation or by facilitating the influx of osmolarity-regulating agents into the bacterial matrix. Finally, the projections for future inquiry are proffered, encompassing the proliferation and deployment of high salt-tolerant strains, as well as the development of techniques enhancing the salt tolerance of microflora engaged in wastewater treatment.
Collapse
Affiliation(s)
- Qi Song
- National Engineering Research Center for Urban Pollution Control and State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Xiaoguang Chen
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China
| | - Yu Hua
- National Engineering Research Center for Urban Pollution Control and State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Shuxian Chen
- National Engineering Research Center for Urban Pollution Control and State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Luotong Ren
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China
| | - Xiaohu Dai
- National Engineering Research Center for Urban Pollution Control and State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
9
|
Priyadarsini M, Kushwaha J, Pandey KP, Rani J, Dhoble AS. Application of flow cytometry for rapid, high-throughput, multiparametric analysis of environmental microbiomes. J Microbiol Methods 2023; 214:106841. [PMID: 37832922 DOI: 10.1016/j.mimet.2023.106841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/06/2023] [Accepted: 10/08/2023] [Indexed: 10/15/2023]
Abstract
Quantification of the abundance and understanding of the dynamics of the microbial communities is essential to establish a basis for microbiome characterization. The conventional techniques used for the quantification of microbes are complicated and time-consuming. With scientific advancement, many techniques evolved and came into account. Among them, flow cytometry is a robust, high-throughput technique through which microbial dynamics, morphology, microbial distribution, physiological characteristics, and many more attributes can be studied in a high-throughput manner with comparatively less time and resources. Flow cytometry, when combined with other omics-based methods, offers a rapid and efficient platform to analyze and understand the composition of microbiome at the cellular level. The microbial diversity observed through flow cytometry will not be equivalent to that obtained by sequencing methods, but this integrated approach holds great potential for high throughput characterization of microbiomes. Flow cytometry is regarded as an established characterization tool in haematology, oncology, immunology, and medical microbiology research; however, its application in environmental microbiology is yet to be explored. This comprehensive review aims to delve into the diverse environmental applications of flow cytometry across various domains, including but not limited to bioremediation, landfills, anaerobic digestion, industrial bioprocesses, water quality regulation, and soil quality regulation. By conducting an in-depth analysis, this article seeks to shed light on the potential benefits and challenges associated with the utilization of flow cytometry in addressing environmental concerns.
Collapse
Affiliation(s)
- Madhumita Priyadarsini
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Jeetesh Kushwaha
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Kailash Pati Pandey
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Jyoti Rani
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Abhishek S Dhoble
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India.
| |
Collapse
|
10
|
Wang K, Zhang H, Shen Y, Li J, Zhou W, Song H, Liu M, Wang H. Impact of salinity on anaerobic ceramic membrane bioreactor for textile wastewater treatment: Process performance, membrane fouling and machine learning models. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118717. [PMID: 37536141 DOI: 10.1016/j.jenvman.2023.118717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/25/2023] [Accepted: 07/26/2023] [Indexed: 08/05/2023]
Abstract
Anaerobic membrane bioreactor (AnMBR) shows great potential for textile wastewater treatment, but high salinity in the influent may undermine its performance. This study evaluated the impact of salinity on the treatment performance of an upflow anaerobic sludge blanket (UASB) configured AnMBR using a flat sheet ceramic membrane. The salinity was stepwise increased (0, 5, 10 and 20 g/L) in four phases of the AnMBR operation. Results indicated that increased salinity jeopardized the COD removal efficiency of AnMBR from 92% to 73%, but had a marginal effect on dye removal efficacy (90-96%). Low salinity (5 g/L) boosted the biogas production whilst high salinity (>10 g/L) had a negative impact. Additionally, the increase of salinity resulted in the soluble microbial production (SMP) concentration soar and membrane fouling rate increase, peaking at a salinity of 10 g/L (Phase III) and recovering back to a lower level at a salinity of 20 g/L (Phase IV). This indicated a transition occurrence at a salinity of 10 g/L (Phase III). The microbial diversity analyses further suggested a transition from salinity-sensitive microbes (Aminiphilus, Caldatribacterium, Mesotoga, Methanobrevibacter, Methanobacterium, Methanosaeta) to salinity-tolerant microbes (Longilinea, Ignavibacterium, Rhodovarius, Bosea and Flexilinea). This transition can be associated with the increase SMP concentration and more severe membrane fouling in Phase III, which were mitigated after a new equilibrium was reached when the microbial consortium acclimatized to the high salinity. Finally, a machine learning model of the Adaboost algorithm was established to predict COD removal under different salinities. Importantly, this study revealed that AnMBR process performance and membrane operation can be maintained for high salinity textile wastewater treatment with a halophilic microbial community growth under high-salinity selection pressure.
Collapse
Affiliation(s)
- Kanming Wang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China; College of Architecture and Environment, Sichuan University, Chengdu, 610000, China; Shaoxing Research Institute, Zhejiang University of Technology, Shaoxing, 312000, Zhejiang, China
| | - Haoliang Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yuxiang Shen
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jiale Li
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Wu Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hualong Song
- Shaoxing Water Treatment Development Co., Ltd, Shaoxing, 312074, Zhejiang, China
| | - Min Liu
- College of Architecture and Environment, Sichuan University, Chengdu, 610000, China
| | - Hongyu Wang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
11
|
Qu Y, Guan Q, Du Y, Shi W, Zhao M, Huang Z, Ruan W. Insight into the effect of rice-straw ash on enhancing the anaerobic digestion performance of high salinity organic wastewater. CHEMOSPHERE 2023; 340:139920. [PMID: 37611754 DOI: 10.1016/j.chemosphere.2023.139920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/02/2023] [Accepted: 08/20/2023] [Indexed: 08/25/2023]
Abstract
Anaerobic digestion is an economic method for treating high salinity organic wastewater (HSOW), but performance enhancement is needed because of the inhibitory effect of high salinity. In this study, rice-straw ash (RSA) was applied to alleviate the inhibitory effect during HSOW anaerobic digestion. The results showed that, when the NaCl content increased from 0% to 3.0%, the methane production decreased by 87.35%, and the TOC removal rate decreased to 34.12%. As a K+ and alkalinity source, RSA addition enhanced the anaerobic digestion performance, and the optimal dosage was 0.88 g/L. Under this dosage, the methane production increased by 221.60%, and TOC removal rate reached 66.42% at 3.0% salinity. The addition of RSA increased the proportion of living cells in the high salinity environment, and enhanced the activity of key enzymes and electron transfer efficiency in the anaerobic digestion process. The addition of RSA with a dosage of 0.88 g/L promoted the accumulation of acetoclastic methanogen Methanothrix. The abundance of substrate transporters, ion transporters and electron transfer related functional genes were enriched, which might be key for promoting HSOW anaerobic digestion performance. The results also showed that RSA addition played an important role in maintaining the stability of the anaerobic digestion system, and it could be a potential strategy for enhancing the anaerobic digestion performance under high salinity conditions.
Collapse
Affiliation(s)
- Yunhe Qu
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, 214122, China
| | - Qiuyue Guan
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, 214122, China
| | - Yang Du
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, 214122, China
| | - Wansheng Shi
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, 214122, China.
| | - Mingxing Zhao
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, 214122, China
| | - Zhenxing Huang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology & Material, Suzhou, 215009, China
| | - Wenquan Ruan
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology & Material, Suzhou, 215009, China
| |
Collapse
|
12
|
Wang Y, Li J, Liu M, Gu L, Xu L, Li J, Ao L. Enhancement of anaerobic digestion of high salinity food waste by magnetite and potassium ions: Digestor performance, microbial and metabolomic analyses. BIORESOURCE TECHNOLOGY 2023; 388:129769. [PMID: 37722541 DOI: 10.1016/j.biortech.2023.129769] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/29/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
The study investigated the effectiveness of magnetite and potassium ions (K+) in enhancing anaerobic digestion of high salinity food waste. Results indicated that both magnetite and K+ improved anaerobic digestion in high-salt environments, and their combination yielded even better results. The combination of magnetite and K+ promoted microorganism activity, and resulted in increased abundance of DMER64, Halobacteria and Methanosaeta. Metabolomic analysis revealed that magnetite mainly influenced quorum sensing, while K+ mainly stimulated the synthesis of compatible solutes, aiding in maintaining osmotic balance. The combined additives regulated pathways such as ATP binding cassette transport, methane metabolism, and inhibitory substance metabolism, enabling cells to resist environmental stress and maintain normal metabolic activity. Overall, this study demonstrated the potential of magnetite and K+ to enhance food waste anaerobic digestion in high salt conditions and provided valuable insights into the molecular mechanism.
Collapse
Affiliation(s)
- Yi Wang
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, 400045, PR China
| | - Jianhao Li
- Yangtze River Delta (jiaxing) Ecological Development Co.,LTD, 32 Qinyi Road, 314050, Zhejiang, PR China
| | - Miao Liu
- Gastrointestinal Cancer Center, Chongqing University Cancer Hospital, 174 Shapingba Road, 400045, PR China
| | - Li Gu
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, 400045, PR China.
| | - Linji Xu
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, 400045, PR China
| | - Jinze Li
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, 400045, PR China
| | - Lianggen Ao
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, 400045, PR China
| |
Collapse
|
13
|
Xu Z, Li R, Zhang X, Liu J, Xu X, Wang S, Lan T, Zhang K, Gao F, He Q, Pan J, Quan F, Zhang Z. Mechanisms and effects of novel ammonifying microorganisms on nitrogen ammonification in cow manure waste composting. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 169:167-178. [PMID: 37442037 DOI: 10.1016/j.wasman.2023.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/01/2023] [Accepted: 07/07/2023] [Indexed: 07/15/2023]
Abstract
It is essential to reduce nitrogen losses and to improve nitrogen conversion during organic waste composting because of environmental protection and sustainable development. To reveal newly domesticated ammonifying microorganisms (AM) cultures on the ammonification and nitrogen conversion during the composting, the screened microbial agents were inoculated at 5 % concentration (in weight basis) into cow manure compost under five different treatments: sterilized distilled water (Control), Amm-1 (mesophilic fungus-F1), Amm-2 (mesophilic bacterium-Z1), Amm-3 (thermotolerant bacterium-Z2), and Amm-4 (consortium: F1, Z1, and Z2), and composted for 42 days. Compared to control, AM inoculation prolonged the thermophilic phases to 9-19 days, increased the content of NH4+-N to 1.60-1.96 g/kg in the thermophilic phase, reduced N2O and NH3 emissions by 22.85-61.13 % and 8.45-23.29 %, increased total Kjeldahl nitrogen, and improved cell count and viability by 12.09-71.33 % and 66.71-72.91 %. AM was significantly associated with different nitrogen and microbial compositions. The structural equation model (SEM) reveals NH4+-N is the preferable nitrogen for the majority of bacterial and fungal growth and that AM is closely associated with the conversion between NH3 and NH4+-N. Among the treatments, inoculation with Amm-4 was more effective, as it significantly enhanced the driving effect of the critical microbial composition on nitrogen conversion and accelerated nitrogen ammonification and sequestration. This study provided new concepts for the dynamics of microbial in the ammonification process of new AM bacterial agents in cow manure compost, and an understanding of the ecological mechanism underlying the ammonification process and its contribution to nitrogen (N) cycling from the perspective of microbial communities.
Collapse
Affiliation(s)
- Zhiming Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiu Zhang
- North Minzu University Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, Yinchuan 750021, China
| | - Jun Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Xuerui Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Shaowen Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Tianyang Lan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Kang Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Feng Gao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Qifu He
- North Minzu University Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, Yinchuan 750021, China
| | - Junting Pan
- Key Laboratory of Non-point Source Pollution of Ministry of Agricultural and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fusheng Quan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
14
|
Li J, Xu X, Chen C, Xu L, Du Z, Gu L, Xiang P, Shi D, Huangfu X, Liu F. Conductive materials enhance microbial salt-tolerance in anaerobic digestion of food waste: Microbial response and metagenomics analysis. ENVIRONMENTAL RESEARCH 2023; 227:115779. [PMID: 36967003 DOI: 10.1016/j.envres.2023.115779] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 05/08/2023]
Abstract
Previous studies have shown that high salinity environments can inhibit anaerobic digestion (AD) of food waste (FW). Finding ways to alleviate salt inhibition is important for the disposal of the growing amount of FW. We selected three common conductive materials (powdered activated carbon, magnetite, and graphite) to understand their performance and individual mechanisms that relieve salinity inhibition. Digester performances and related enzyme parameters were compared. Our data revealed that under normal and low salinity stress conditions, the anaerobic digester ran steady without significant inhibitions. Further, the presence of conductive materials promoted conversion rate of methanogenesis. This promotion effect was highest from magnetite > powdered activated carbon (PAC) > graphite. At 1.5% salinity, PAC and magnetite are beneficial in maintaining high methane production efficiency while control and the graphite added digester acidified and failed rapidly. Additionally, metagenomics and binning were used to analyze the metabolic capacity of the microorganisms. Some species enriched by PAC and magnetite possessed higher cation transport capacities and were to accumulate compatible solutes. PAC and magnetite promoted direct interspecies electron transference (DIET) and syntrophic oxidation of butyrate and propionate. Also, the microorganisms had more energy available to cope with salt inhibition in the PAC and magnetite added digesters. Our data imply that the promotion of Na+/H+ antiporter, K+ uptake, and osmoprotectant synthesis or transport by conductive materials may be crucial for their proliferation in highly stressful environments. These findings will help to understand the mechanisms of alleviate salt inhibition by conductive materials and help to recover methane from high-salinity FW.
Collapse
Affiliation(s)
- Jianhao Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, 400045, PR China
| | - Xiaofeng Xu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, 400045, PR China
| | - Cong Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, 400045, PR China
| | - Linji Xu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, 400045, PR China
| | - Zexuan Du
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, 400045, PR China
| | - Li Gu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, 400045, PR China.
| | - Ping Xiang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, 400045, PR China.
| | - Dezhi Shi
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, 400045, PR China
| | - Xiaoliu Huangfu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, 400045, PR China
| | - Feng Liu
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, PR China
| |
Collapse
|
15
|
Zhang Y, Xiang Y, Xu R, Huang J, Deng J, Zhang X, Wu Z, Huang Z, Yang Z, Xu J, Xiong W, Li H. Magnetic biochar promotes the risk of mobile genetic elements propagation in sludge anaerobic digestion. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 335:117492. [PMID: 36863149 DOI: 10.1016/j.jenvman.2023.117492] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/05/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Mobile genetic elements (MGEs) mediated horizontal gene transfer is the primary reason for the propagation of antibiotic resistance genes in environment. The behavior of MGEs under magnetic biochar pressure in sludge anaerobic digestion (AD) is still unknown. This study evaluated the effects of different dosage magnetic biochar on the MGEs in AD reactors. The results showed that the biogas yield was highest (106.68 ± 1.16 mL g-1 VSadded) with adding optimal dosage of magnetic biochar (25 mg g-1 TSadded), due to it increased the microorganism's abundance involved in hydrolysis and methanogenesis. While, the total absolute abundance of MGEs in the reactors with magnetic biochar addition increased by 11.58%-77.37% compared with the blank reactor. When the dosage of magnetic biochar was 12.5 mg g-1 TSadded, the relative abundance of most MGEs was the highest. The enrichment effect on ISCR1 was the most significant, and the enrichment rate reached 158.90-214.16%. Only the intI1 abundance was reduced and the removal rates yield 14.38-40.00%, which was inversely proportional to the dosage of magnetic biochar. Co-occurrence network explored that Proteobacteria (35.64%), Firmicutes (19.80%) and Actinobacteriota (15.84%) were the main potential host of MGEs. Magnetic biochar changed MGEs abundance by affecting the potential MGEs-host community structure and abundance. Redundancy analysis and variation partitioning analysis showed that the combined effect of polysaccharides, protein and sCOD exhibited the greatest contribution (accounted for 34.08%) on MGEs variation. These findings demonstrated that magnetic biochar increases the risk of MGEs proliferation in AD system.
Collapse
Affiliation(s)
- Yanru Zhang
- Hunan Academy of Forestry and State Key Laboratory of Utilization of Woody Oil Resource, Changsha, 410004, China; School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China; College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
| | - Yinping Xiang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
| | - Rui Xu
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Jing Huang
- Hunan Academy of Forestry and State Key Laboratory of Utilization of Woody Oil Resource, Changsha, 410004, China
| | - Jiaqin Deng
- Hunan Academy of Forestry and State Key Laboratory of Utilization of Woody Oil Resource, Changsha, 410004, China
| | - Xuan Zhang
- Hunan Academy of Forestry and State Key Laboratory of Utilization of Woody Oil Resource, Changsha, 410004, China
| | - Zijian Wu
- Hunan Academy of Forestry and State Key Laboratory of Utilization of Woody Oil Resource, Changsha, 410004, China
| | - Zhongliang Huang
- Hunan Academy of Forestry and State Key Laboratory of Utilization of Woody Oil Resource, Changsha, 410004, China
| | - Zhaohui Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
| | - Jingliang Xu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Wenlong Xiong
- Hunan Academy of Forestry and State Key Laboratory of Utilization of Woody Oil Resource, Changsha, 410004, China; School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China.
| | - Hui Li
- Hunan Academy of Forestry and State Key Laboratory of Utilization of Woody Oil Resource, Changsha, 410004, China.
| |
Collapse
|
16
|
Guo H, Ji M, Du T, Xu W, Liu J, Bai R, Teng Z, Li T. Salt stress altered anaerobic microbial community and carbon metabolism characteristics: The trade-off between methanogenesis and chain elongation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 341:118111. [PMID: 37156025 DOI: 10.1016/j.jenvman.2023.118111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/10/2023]
Abstract
Discharge of saline organic wastewater is increasing worldwide, yet how salt stress disrupts the microbial community's structure and metabolism in bioreactors has not been systematically investigated. The non-adapted anaerobic granular sludge was inoculated into wastewater with varying salt concentration (ranging from 0% to 5%) to examine the effects of salt stress on the structure and function of the anaerobic microbial community. Result indicated that salt stress had a significant impact on the metabolic function and community structure of the anaerobic granular sludge. Specifically, we observed a notable reduction in methane production in response to all salt stress treatments (r = -0.97, p < 0.01), while an unexpected increase in butyrate production (r = 0.91, p < 0.01) under moderate salt stress (1-3%) with ethanol and acetate as carbon sources. In addition, analysis of microbiome structures and networks demonstrated that as the degree of salt stress increased, the networks exhibited lower connectance and increased compartmentalization. The abundance of interaction partners (methanogenic archaea and syntrophic bacteria) decreased under salt stress. In contrast, the abundance of chain elongation bacteria, specifically Clostridium kluyveri, increased under moderate salt stress (1-3%). As a consequence, the microbial carbon metabolism patterns shifted from cooperative mode (methanogenesis) to independent mode (carbon chain elongation) under moderate salt stress. This study provides evidence that salt stress altered the anaerobic microbial community and carbon metabolism characteristics, and suggests potential guidance for steering the microbiota to promote resource conversion in saline organic wastewater treatment.
Collapse
Affiliation(s)
- Huiyuan Guo
- CAS Key Laboratory of Green Process and Engineering, Innovation Academy for Green Manufacture, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Beijing Engineering Research Centre of Process Pollution Control, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meina Ji
- CAS Key Laboratory of Green Process and Engineering, Innovation Academy for Green Manufacture, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Beijing Engineering Research Centre of Process Pollution Control, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China; Wuhan Institute of Technology, Wuhan, 430205, China
| | - Tianxiao Du
- CAS Key Laboratory of Green Process and Engineering, Innovation Academy for Green Manufacture, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Beijing Engineering Research Centre of Process Pollution Control, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weichao Xu
- CAS Key Laboratory of Green Process and Engineering, Innovation Academy for Green Manufacture, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Beijing Engineering Research Centre of Process Pollution Control, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianwei Liu
- Beijing Research Center of Sustainable Urban Drainage System and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Renbi Bai
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, 215009, China
| | - Zedong Teng
- CAS Key Laboratory of Green Process and Engineering, Innovation Academy for Green Manufacture, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Beijing Engineering Research Centre of Process Pollution Control, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Tinggang Li
- CAS Key Laboratory of Green Process and Engineering, Innovation Academy for Green Manufacture, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Beijing Engineering Research Centre of Process Pollution Control, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Ganjiang Innovation Academy, Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Chinese Academy of Sciences, Ganzhou, 341000, China.
| |
Collapse
|
17
|
Xu Q, Long S, Liu X, Duan A, Du M, Lu Q, Leng L, Leu SY, Wang D. Insights into the Occurrence, Fate, Impacts, and Control of Food Additives in Food Waste Anaerobic Digestion: A Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6761-6775. [PMID: 37070716 DOI: 10.1021/acs.est.2c06345] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The recovery of biomass energy from food waste through anaerobic digestion as an alternative to fossil energy is of great significance for the development of environmental sustainability and the circular economy. However, a substantial number of food additives (e.g., salt, allicin, capsaicin, allyl isothiocyanate, monosodium glutamate, and nonnutritive sweeteners) are present in food waste, and their interactions with anaerobic digestion might affect energy recovery, which is typically overlooked. This work describes the current understanding of the occurrence and fate of food additives in anaerobic digestion of food waste. The biotransformation pathways of food additives during anaerobic digestion are well discussed. In addition, important discoveries in the effects and underlying mechanisms of food additives on anaerobic digestion are reviewed. The results showed that most of the food additives had negative effects on anaerobic digestion by deactivating functional enzymes, thus inhibiting methane production. By reviewing the response of microbial communities to food additives, we can further improve our understanding of the impact of food additives on anaerobic digestion. Intriguingly, the possibility that food additives may promote the spread of antibiotic resistance genes, and thus threaten ecology and public health, is highlighted. Furthermore, strategies for mitigating the effects of food additives on anaerobic digestion are outlined in terms of optimal operation conditions, effectiveness, and reaction mechanisms, among which chemical methods have been widely used and are effective in promoting the degradation of food additives and increasing methane production. This review aims to advance our understanding of the fate and impact of food additives in anaerobic digestion and to spark novel research ideas for optimizing anaerobic digestion of organic solid waste.
Collapse
Affiliation(s)
- Qing Xu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P. R. China
| | - Sha Long
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P. R. China
| | - Xuran Liu
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong SAR, P. R. China
| | - Abing Duan
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P. R. China
| | - Mingting Du
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P. R. China
| | - Qi Lu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P. R. China
| | - Ling Leng
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong SAR, P. R. China
| | - Shao-Yuan Leu
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong SAR, P. R. China
| | - Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
18
|
Ma XC, Wang K, Gao XL, Li XK, Liu GG, Chen HY, Piao CY, You SJ. Deciphering the fate of osmotic stress priming on enhanced microorganism acclimation for purified terephthalic acid wastewater treatment with high salinity and organic load. BIORESOURCE TECHNOLOGY 2023; 374:128656. [PMID: 36690216 DOI: 10.1016/j.biortech.2023.128656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
Osmotic stress priming (OSP) was an effective management strategy for improving microbial acclimation to salt stress. In this study, the interaction between pollutants and microbiota, and microbial osmoregulation were investigated triggered by OSP (alternately increasing salinity and organic loading). Results showed that OSP significantly improved COD removal from 31.53 % to 67.99 % and mitigated the terephthalate inhibition produced by toluate, decreasing from 1908.08 mg/L to 837.16 mg/L compared with direct priming. Due to an increase in salinity, Pelotomaculum and Mesotoga were enriched to facilitate terephthalate degradation and syntrophic acetate oxidation (SAO). And organic load promoted acetate formation through syntrophic metabolism of Syntrophorhabdus/Pelotomaculum and SAO-dependent hydrogenotrophic methanogenesis. K+ absorbing, proline and trehalose synthesis participated in osmoregulation at 0.5 % salinity, while only ectoine alleviated intracellular osmolarity under 1.0 % salinity with OLR of 0.44 kg COD /m3. This study provided in-depth insight for microbial acclimation process of anaerobic priming of saline wastewater.
Collapse
Affiliation(s)
- Xiao-Chen Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ke Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; National Engineering Research Center for Safe Sludge Disposal and Resource Recovery, Harbin Institute of Technology, Harbin 150090, China; Harbin Institute of Technology National Engineering Research Center of Water Resources Co., Ltd, Guangdong Yuehai Water Investment Co., Ltd, Harbin 150090, China
| | - Xin-Lei Gao
- Harbin Institute of Technology National Engineering Research Center of Water Resources Co., Ltd, Guangdong Yuehai Water Investment Co., Ltd, Harbin 150090, China
| | - Xiang-Kun Li
- School of Civil and Transportation, Hebei University of Technology, Tianjin 300401, China.
| | - Gai-Ge Liu
- School of Civil and Transportation, Hebei University of Technology, Tianjin 300401, China
| | - Hong-Ying Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Chen-Yu Piao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shi-Jie You
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
19
|
Guan Q, Qu Y, Zhai Y, Shi W, Zhao M, Huang Z, Ruan W. Enhancement of methane production in anaerobic digestion of high salinity organic wastewater: The synergistic effect of nano-magnetite and potassium ions. CHEMOSPHERE 2023; 318:137974. [PMID: 36708783 DOI: 10.1016/j.chemosphere.2023.137974] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/12/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
During high salinity organic wastewater (HSOW) anaerobic digestion treatment, the process of methanogenesis can be severely inhibited in the high salinity environment, and the accumulation of volatile organic acids (VFAs) leads to failure of the anaerobic reaction. In this study, nano-magnetite and KCl were adopted to alleviate the inhibitory effect of high salinity and enhance the HSOW anaerobic digestion performance. The result showed that, under the optimal dosage of 200 mg/L, nano-magnetite addition promoted the anaerobic digestion performance, and the methane production increased by 11.06%. When KCl was added with a dosage of 0.174%, the methane production increased by 98.37%. The simultaneous addition of nano-magnetite (200 mg/L) and KCl showed a synergistic effect on enhancing HSOW anaerobic digestion performance, and the methane production increased by 124.85%. The addition of nano-magnetite and KCl promoted the conversion of VFAs, especially accelerated the degradation of propionic acid and butyric acid, also it promoted the activity of acetate kinase, dehydrogenase and F420, and thereby enhanced the methanogenesis process. This study could provide a new method for enhancing the anaerobic digestion of HSOW.
Collapse
Affiliation(s)
- Qiuyue Guan
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yunhe Qu
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yujia Zhai
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Wansheng Shi
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China.
| | - Mingxing Zhao
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Zhenxing Huang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Wenquan Ruan
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
20
|
Zhang Y, Shi K, Cui H, Han J, Wang H, Ma X, Li Z, Zhang L, Nie S, Ma C, Wang A, Liang B. Efficient biodegradation of acetoacetanilide in hypersaline wastewater with a synthetic halotolerant bacterial consortium. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129926. [PMID: 36099740 DOI: 10.1016/j.jhazmat.2022.129926] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/27/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
The high concentrations of salt and refractory toxic organics in industrial wastewater seriously restrict biological treatment efficiency and functional stability. However, how to construct a salt-tolerant biocatalytic community and realize the decarbonization coupled with detoxification toward green bio-enhanced treatment, has yet to be well elucidated. Here, acetoacetanilide (AAA), an important intermediate for many dyes and medicine synthesis, was used as the model amide pollutant to elucidate the directional enrichment of halotolerant degradative communities and the corresponding bacterial interaction mechanism. Combining microbial community composition and molecular ecological network analyses as well as the biodegradation efficiencies of AAA and its hydrolysis product aniline (AN) of pure strains, the core degradative bacteria were identified during the hypersaline AAA degradation process. A synthetic bacterial consortium composed of Paenarthrobacter, Rhizobium, Rhodococcus, Delftia and Nitratireductor was constructed based on the top-down strategy to treat AAA wastewater with different water quality characteristics. The synthetic halotolerant consortium showed promising treatment ability toward the simulated AAA wastewater (AAA 100-500 mg/L, 1-5% salinity) and actual AAA mother liquor. Additionally, the comprehensive toxicity of AAA mother liquor significantly reduced after biological treatment. This study provides a green biological approach for the treatment of hypersaline and high concentration of organics wastewater.
Collapse
Affiliation(s)
- Yanqing Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ke Shi
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Hanlin Cui
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jinglong Han
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Hao Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xiaodan Ma
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Zhiling Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ling Zhang
- School of Science, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Shichen Nie
- Shandong Hynar Water Environmental Protection Co., Ltd., Caoxian, China
| | - Changshui Ma
- Tai'an Hospital of Chinese Medicine, Tai'an 271000, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China.
| |
Collapse
|
21
|
Wang Y, Huang Z, Zhao M, Miao H, Shi W, Ruan W. Enhanced chloride-free snow-melting agent generation from organic wastewater by integrating bioconversion and synthesis. BIORESOURCE TECHNOLOGY 2022; 366:128200. [PMID: 36309178 DOI: 10.1016/j.biortech.2022.128200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
In this study, a new process for producing chloride-free snow-melting agents (CSAs) was proposed. Organic wastewater was converted to total volatile fatty acids (TVFA) by anaerobic acidogenic fermentation. The experiments for acid generation showed that the maximum TVFA concentration of 45.9 g/L was obtained at an organic loading rate of 5 g chemical oxygen demand /(L·d), and the proportion of acetic acid reached 78.8 %. Forward osmosis was used for concentrating the TVFA solution. The obtained CSAs, after evaporation and crystallization, had a better ice-melting capacity and less corrosion on metal and concrete than NaCl and CaCl2. Additionally, the damage caused by CSAs to the germination of plant seeds was significantly lesser than that caused by chloride salts. This study proposed a feasible method for the high-value conversion of organic wastewater, providing a new direction for the reuse of organic wastewater.
Collapse
Affiliation(s)
- Yijie Wang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Zhenxing Huang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Mingxing Zhao
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China.
| | - Hengfeng Miao
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology & Material, Suzhou 215009, China
| | - Wansheng Shi
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology & Material, Suzhou 215009, China
| | - Wenquan Ruan
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology & Material, Suzhou 215009, China
| |
Collapse
|
22
|
Chen AL, Su X, Xing ZL, Xu FQ, Chen SJ, Xiang JX, Li J, Liu H, Zhao TT. Effect mechanism of individual and combined salinity on the nitrogen removal yield of heterotrophic nitrification-aerobic denitrification bacteria. ENVIRONMENTAL RESEARCH 2022; 214:113834. [PMID: 35810810 DOI: 10.1016/j.envres.2022.113834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/24/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
One of the biggest challenges of applying heterotrophic nitrification-aerobic denitrification (HN-AD) bacteria to treat high salt organic wastewater lies in the inhibitory effect exerted by salinity. To study the inhibition effect and underlying mechanism induced by different ion types and ion composition, the individual and combined effects of NaCl, KCl and Na2SO4 on HN-AD bacteria Acinetobacter sp. TAC-1 were systematically investigated by batch experiments. Results indicated that the ammonia nitrogen removal yield and TAC-1 activity decreased with increased salt concentration. NaCl, KCl and Na2SO4 exerted different degrees of inhibition on TAC-1, with half concentration inhibition constant values of 0.205, 0.238 and 0.110 M, respectively. A synergistic effect on TAC-1 was found with the combinations of NaCl + KCl, NaCl + Na2SO4 and NaCl + KCl + Na2SO4. The whole RNA resequencing suggested that transcripts of denitrification genes (nirB and nasA) were significantly downregulated with increased Na2SO4 concentration. Simultaneously, Na2SO4 stress disrupted cell respiration, DNA replication, transcription, translation, and induced oxidative stress. Finally, we proposed a conceptual model to summarize the inhibition mechanisms and possible response strategies of TAC-1 bacteria under Na2SO4 stress.
Collapse
Affiliation(s)
- Ai-Ling Chen
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Xia Su
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Zhi-Lin Xing
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China.
| | - Fu-Qing Xu
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Shang-Jie Chen
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Jin-Xin Xiang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Juan Li
- Chongqing Academy of Chinese Materia Medica, Chongqing, 400060, China
| | - Hao Liu
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Tian-Tao Zhao
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China.
| |
Collapse
|
23
|
Elimination of pesticide from high salinity wastewater by electrochlorination process: Active chlorine species and scale-up performance. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
24
|
Yin Y, Zhang Z, Yang K, Gu P, Liu S, Jia Y, Zhang Z, Wang T, Yin J, Miao H. Deeper insight into the effect of salinity on the relationship of enzymatic activity, microbial community and key metabolic pathway during the anaerobic digestion of high strength organic wastewater. BIORESOURCE TECHNOLOGY 2022; 363:127978. [PMID: 36126846 DOI: 10.1016/j.biortech.2022.127978] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
The threshold salt concentration to inhibit the anaerobic digestion (AD) has been intensively investigated, but its insight mechanism is not fully revealed. Therefore, this study systematically investigated the effect of salinity on acidogenesis and methanogenesis and its mechanism. Results showed that low salinity level (i.e. 0.6%) had stimulatory effect on volatile fatty acids (VFA) and methane production, while significant inhibition was observed with further increased salinity. Moreover, high salinity limited the butyric acid degradation at acidogenesis process. The decreases of enzymes (AK and PTA) activity and functional genes (ackA, pta and ACOX) expression that related to β-oxidation explained the butyric acid accumulation at high salinity levels. Microbial community analysis revealed high salinity levels significantly inhibited the proliferation of Syntrophomonas sp., which are known to be associated with butyric acid degradation. Similarly, the relative abundance of acetoclastic methanogen (Methanothrix sp.) and methylotrophic methanogen (Methanolinea sp.) significantly decreased at salinity condition.
Collapse
Affiliation(s)
- Yijang Yin
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Zengshuai Zhang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Engineering Laboratory of Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, PR China
| | - Kunlun Yang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Engineering Laboratory of Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, PR China
| | - Peng Gu
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Engineering Laboratory of Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, PR China
| | - Shiguang Liu
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Yifan Jia
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Zhaochang Zhang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Tao Wang
- School of Environment Engineering, Wuxi University, Wuxi 214105, PR China
| | - Jianqi Yin
- Department of Earth and Environmental Engineering, Columbia University, New York, NY 10027, USA
| | - Hengfeng Miao
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Engineering Laboratory of Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, PR China; Water Treatment Technology and Material Innovation Center, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| |
Collapse
|
25
|
Ji X, Zhu K, Zhang Y, Ullah F, Li A, Zhang L. Mixed culture chain elongation for consumption of acetate and ethanol in anaerobic fermentation: The impact of salt type, dosage and acclimation. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 152:48-58. [PMID: 35973327 DOI: 10.1016/j.wasman.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/18/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Microbial chain elongation is a newly developed carboxylate platform-based bioprocess, which often encounters high salinity stress due to saline feedstock and pH adjustment. In this study, we systematically investigated the effects of salt types (Na+, K+, and NH4+), dosage, and salinity acclimation on microbial chain elongation, and identified the microbial community by high throughput 16S rRNA gene sequencing. The results showed that a high level of Na+ and NH4+ (12.5 g/L of cations) exerted seriously inhibitory effects without chain elongating activity, while K+ had the slightest inhibition only with a little longer lag phase and lower products yield. The chain elongating products yields and the selectivity of caproate decreased with the increasing Na+ concentration, and 8.6 g/L of Na+ was found to be the threshold value for un-acclimated inoculum used for chain elongation. The acclimation to high saline conditions greatly promoted the consumption of acetate and ethanol with a shorter lag phase, and recovered a robust elongating activity for butyrate production. Furthermore, the high throughput 16S rRNA gene sequencing analysis results indicated that six genera, such as Clostridium IV and Clostridium sensu stricto, closely relating chain elongation process were depressed by high salinity, and the salinity acclimation helped to enrich the functional microbes. These findings could provide useful information for engineering microbial chain elongation process under saline conditions.
Collapse
Affiliation(s)
- Xinran Ji
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China
| | - Kongyun Zhu
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China
| | - Yulin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China
| | - Fahim Ullah
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China
| | - Aimin Li
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China
| | - Lei Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China.
| |
Collapse
|
26
|
Li P, Chen Q, Dong H, Lu J, Sun D, Wei Y, He H, Tang R, Li Y, Dang Y. Effect of applying potentials on anaerobic digestion of high salinity organic wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153416. [PMID: 35090928 DOI: 10.1016/j.scitotenv.2022.153416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/06/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
High salinity organic wastewater (HSOW) contains both organic pollutants and high concentration of inorganic salts. If it is discharged into the environment without proper treatment, it will cause adverse consequences such as dehydration and death of aquatic organisms, and soil salinization. Bioelectrochemical systems (BESs) have been applied in various wastewater treatment processes. To assess the feasibility of using BESs to treat HSOW, the effect of applying potential on anaerobic digestion of HSOW was explored in an up-flow anaerobic sludge blanket (UASB) reactor poised at -0.6 V (vs. Ag/AgCl). When organic loading rate (OLR) was 2.16-2.88 kg chemical oxygen demand/(m3d) (kg COD/(m3d)), the applied potential had no significant effect on the UASB performance. After OLR was increased to 4.32 kg COD/(m3d), the applied potential decreased COD removal efficiency and methane production and resulted in VFAs accumulation. Mesotoga was enriched on the electrode when potential was applied, causing decrease in relative abundances of acetoclastic methanogens. The abundance of Methanothrix on the electrode in the reactor with applied potential was much lower than in the control reactor (10% vs 28.9%), which might lead to decrease in performance of the reactor due to the depressed direct interspecies electron transfer (DIET) and less formation of granular sludge. These results suggest that applying external potentials has negative effect on the anaerobic treatment of HSOW, and should be taken into consideration in real HSOW treatment projects.
Collapse
Affiliation(s)
- Pengsong Li
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Qian Chen
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; China Construction Third Engineering Bureau Co., Ltd., Wuhan, Hubei 430064, China
| | - He Dong
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Jialin Lu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Dezhi Sun
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yue Wei
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Hao He
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Ruting Tang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yumeng Li
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yan Dang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
27
|
Donkor KO, Gottumukkala LD, Lin R, Murphy JD. A perspective on the combination of alkali pre-treatment with bioaugmentation to improve biogas production from lignocellulose biomass. BIORESOURCE TECHNOLOGY 2022; 351:126950. [PMID: 35257881 DOI: 10.1016/j.biortech.2022.126950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Anaerobic digestion (AD) is a bioprocess technology that integrates into circular economy systems, which produce renewable energy and biofertilizer whilst reducing greenhouse gas emissions. However, improvements in biogas production efficiency are needed in dealing with lignocellulosic biomass. The state-of-the-art of AD technology is discussed, with emphasis on feedstock digestibility and operational difficulty. Solutions to these challenges including for pre-treatment and bioaugmentation are reviewed. This article proposes an innovative integrated system combining alkali pre-treatment, temperature-phased AD and bioaugmentation techniques. The integrated system as modelled has a targeted potential to achieve a biodegradability index of 90% while increasing methane production by 47% compared to conventional AD. The methane productivity may also be improved by a target reduction in retention time from 30 to 20 days. This, if realized has the potential to lower energy production cost and the levelized cost of abatement to facilitate an increased resource of sustainable commercially viable biomethane.
Collapse
Affiliation(s)
- Kwame O Donkor
- MaREI Centre, Environmental Research Institute, University College Cork, Cork, Ireland; Civil, Structural and Environmental Engineering, School of Engineering and Architecture, University College Cork, Cork, Ireland; Celignis Limited, Mill Court, Upper William Street, Limerick V94 N6D2, Ireland
| | | | - Richen Lin
- MaREI Centre, Environmental Research Institute, University College Cork, Cork, Ireland; Civil, Structural and Environmental Engineering, School of Engineering and Architecture, University College Cork, Cork, Ireland; Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 211189, PR China.
| | - Jerry D Murphy
- MaREI Centre, Environmental Research Institute, University College Cork, Cork, Ireland; Civil, Structural and Environmental Engineering, School of Engineering and Architecture, University College Cork, Cork, Ireland
| |
Collapse
|
28
|
Zhang A, Gao C, Chen T, Xie Y, Wang X. Treatment of fracturing wastewater by anaerobic granular sludge: The short-term effect of salinity and its mechanism. BIORESOURCE TECHNOLOGY 2022; 345:126538. [PMID: 34902487 DOI: 10.1016/j.biortech.2021.126538] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
The effects of salinity shock on the anaerobic treatment of fracturing wastewater regarding chemical oxygen demand (COD) removal performance, sludge characteristics and microbial community were investigated. Results showed COD removal efficiency decreased from 76.0% to 69.1%, 65.6%, 33.7% and 21.9% with the increase of salinity from 2.5 g/L to 10, 15, 25 and 45 g/L, respectively. The cumulative biogas production decreased by 13.8%-81.1% when salinity increased to 15-85 g/L. The increase of salinity led to the decline in particle size of granular sludge, and the activity of granular sludge, including SMA, coenzyme F420 and dehydrogenase, was inhibited significantly. Flow cytometry indicated the percentage of damaged cells in granular sludge gradually increased with the increase of salinity. Sequence analysis illustrated that microbial community structure in anaerobic digestion reactor was influenced by the salinity, high salinity reduced the diversity of archaea and decreased the abundance of methanogens, especially Methanosaeta.
Collapse
Affiliation(s)
- Anlong Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi Province 710021, PR China; China Light Industry Water Pollution Control Engineering Center, Xi'an, Shaanxi Province 710021, PR China
| | - Chuyue Gao
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi Province 710021, PR China
| | - Tiantian Chen
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi Province 710021, PR China
| | - Yili Xie
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi Province 710021, PR China
| | - Xianbao Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi Province 710021, PR China; China Light Industry Water Pollution Control Engineering Center, Xi'an, Shaanxi Province 710021, PR China.
| |
Collapse
|
29
|
Hou T, Zhao J, Lei Z, Shimizu K, Zhang Z. Supplementation of KOH to improve salt tolerance of methanogenesis in the two-stage anaerobic digestion of food waste using pre-acclimated anaerobically digested sludge by air-nanobubble water. BIORESOURCE TECHNOLOGY 2022; 346:126360. [PMID: 34801723 DOI: 10.1016/j.biortech.2021.126360] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/12/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
Air-nanobubble water (NBW) was applied to pre-acclimate anaerobically digested sludge that was then used as the inoculum in the two-stage anaerobic digestion (AD) of high saline (20 g NaCl/L) food waste (FW) to optimize NBW application in the AD of high saline FW. K+ was simultaneously supplemented during the methanogenic stage to resist the inhibition of salt on methanogens. Results showed that after the second pre-acclimation cycle, the inoculum activity was increased 27% in the Air-NBW supplemented reactor in comparison to the deionized water (DW) supplemented one. In the first-stage AD, H2 yield was enhanced by 46% in the Air-NBW pre-acclimated sludge reactor compared with the DW pre-acclimated sludge reactor. Besides, supplementation of KOH in the methanogenic stage could enhance methane production by 17-25% in the DW reactors at initial pH 7.5, 8.0, and 9.0 when compared to the control reactor (using NaOH adjusted initial pH to 7.5), respectively.
Collapse
Affiliation(s)
- Tingting Hou
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Jiamin Zhao
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhongfang Lei
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Kazuya Shimizu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhenya Zhang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
30
|
Industrial Symbiosis for Optimal Bio-Waste Management and Production of a Higher Value-Added Product. Processes (Basel) 2021. [DOI: 10.3390/pr9122228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A considerable amount of food waste ends up in centralized treatment plants due to the lack of preventive measures, resulting in significant environmental impacts. Hospitality food waste management is even more resource-intensive because of animal by-products regulation. According to this regulation, companies must store and then consign waste to specific waste managers. The extensive need for transportation of high-moisture-content materials is the leading cause of the impact. Moreover, the management of category III animal by-products is costly for companies. A previous study has shown the economic benefits of decentralized animal by-product treatment by intensive composting in catering companies. Although the produced compost was characterized by exceptional quality parameters, it was phytotoxic. The investigation of hospitality waste management is scarcely discussed among scholars, and waste management on a regional scale is nearly absent. This study examines the regional management of hospitality food waste by exploiting the municipal waste management infrastructure and intensive composting at the source. The co-maturation experiment with animal by-products and municipal green waste primary composts showed that the phytotoxicity parameters of the cured compost were in the optimal range or below the thresholds (conductivity (1.1 mS cm−1), dissolved organic carbon (82 mg kg−1), and NH4+/NO3− ratio (0.0027)). Additionally, the amounts of total nitrogen, water-soluble nitrogen, and water-soluble phosphorus in the compost were rated as very high. Finally, inventory and environmental impact analysis of the current and planned management approaches showed a reduction in 12 of 18 impact categories.
Collapse
|
31
|
Deng Y, Xia J, Zhao R, Liu X, Xu J. Modified biochar promotes the direct interspecies electron transfer between iron-reducing bacteria and methanogens in high organic loading co-digestion. BIORESOURCE TECHNOLOGY 2021; 342:126030. [PMID: 34592455 DOI: 10.1016/j.biortech.2021.126030] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
High organic loading (HOL) could reduce substrate degradation and methane production. The objective of this study was to investigate the promotion mechanism of iron-modified biochar in HOL co-digestion. The results showed that the specific surface area of iron-modified biochar prepared at 500 ⁰C (500Fe@BC) was 131.7 m2/g. In 12% (w/w) of HOL co-digestion, 500Fe@BC addition enhanced methanogenesis by both aceticlastic and hydrogenotrophic pathways and showed the best methane yield performance. Compared with the non-biochar addition group, an increase of 56.6% and 11% in average methane content and cumulative methane yield was observed in the presence of 500Fe@BC during 25 days of hydraulic retention time. Furthermore, the buffer capacity of HOL co-digestion has been intensified, which attributed to the 500Fe@BC accelerated the hydrolysis of substrates and promoted the consumption of the volatile fatty acids. Moreover, 500Fe@BC promoted the enrichment of iron-reducing bacteria (Clostridium_sensu_stricto_1, Romboutsia) and methanogens (Methanosarcina, Methanobacterium).
Collapse
Affiliation(s)
- Yuanfang Deng
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huai'an 223300, China
| | - Jun Xia
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huai'an 223300, China
| | - Rui Zhao
- School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 223300, China
| | - Xiaoyan Liu
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huai'an 223300, China
| | - Jiaxing Xu
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huai'an 223300, China.
| |
Collapse
|
32
|
Song Q, Chen X, Zhou W, Xie X. Application of a Spiral Symmetric Stream Anaerobic Bioreactor for treating saline heparin sodium pharmaceutical wastewater: Reactor operating characteristics, organics degradation pathway and salt tolerance mechanism. WATER RESEARCH 2021; 205:117671. [PMID: 34555740 DOI: 10.1016/j.watres.2021.117671] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/24/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
In this study, a Spiral Symmetry Stream Anaerobic Bioreactor (SSSAB) was adopted for treating actual saline heparin sodium pharmaceutical wastewater (HSPW). After adaptation, under the influent COD of 8731 mg/L, OLR of 6.98 kg COD/(m³•d) and salinity of 3.57 wt%, the COD removal reached up to 82%. This value is much higher than the reported for the other reactors at similar salinity. Benzenes are the major organic compounds in HSPW. The main rate-limiting steps are the degradations of phenol and p-cresol. In addition, the degradation pathways of typical benzenes in HSPW were analyzed. After adaptation, the soluble salt content in the granular sludge increased, and the bacterial extracellular polymers (EPS), especially tightly-bound EPS also significantly increased. 16S rRNA analysis revealed that the microbial community in the anaerobic granular sludge (AGS) had become adapted to the HSPW treatment since Mesotoga (12.4%), Anaerophaga (9.0%), Oceanotoga (6.1%) and Aminobacterium (4.1%) increased from previously below 1.0% values. The relative abundance of Methanosarcina in the upper layer of the reactor (68.7%) is significantly higher than that at the bottom (3.8%). This proves the superiority of the SSSAB structure. Finally, a model for salt-tolerant microorganisms is given, which proposes a mechanism for this study and provides reference for other anaerobic biological treatments of high-salt containing wastewater.
Collapse
Affiliation(s)
- Qi Song
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China
| | - Xiaoguang Chen
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China.
| | - Weizhu Zhou
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China
| | - Xuehui Xie
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China
| |
Collapse
|
33
|
Pan Y, She D, Chen X, Xia Y, Timm LC. Elevation of biochar application as regulator on denitrification/NH 3 volatilization in saline soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:41712-41725. [PMID: 33786768 DOI: 10.1007/s11356-021-13562-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Denitrification and NH3 volatilization are the main removal processes of nitrogen in coastal saline soils. In this incubation study, the effects of wheat straw biochar application at rates of 0, 2, 5, 10 and 15% by weight to saline soil with two salt gradients of 0 and 1‰ on denitrification and NH3 volatilization were investigated. The results showed that the denitrification rates with 2, 5 and 10% biochar amendments decreased by 25.26, 33.07 and 17.50%, respectively, under salt-free conditions, and the denitrification rates with 2 and 5% biochar amendments under 1‰ salt conditions decreased by 17.74 and 17.39%, respectively. However, the NH3 volatilization rates increased by 8.05-61.73% after biochar application. The path analysis revealed the interactions of overlying water-sediment system environmental factors in biochar-amended saline soils and their roles in denitrification and NH3 volatilization. Environmental factors in sediment exerted much greater control over denitrification than those in overlying water. In addition, environmental factors exhibited an indirect negative influence on denitrification by negatively influencing the abundance of the nosZ gene. The comprehensive effects of the environmental factors in overlying water on NH3 volatilization were greater than those in sediment. The NH4+-N content, pH of overlying water and sediment salinity were the main controlling factors for NH3 volatilization in saline soils. Biochar application effectively regulated the denitrification rate by changing the environmental factors and denitrifying functional gene abundance, but its application posed a risk of increased NH3 volatilization mainly by increasing NH4+-N, EC and pH in overlying water.
Collapse
Affiliation(s)
- Yongchun Pan
- College of Agricultural Sciences and Engineering, Hohai University, Nanjing, 210098, China
| | - Dongli She
- College of Agricultural Sciences and Engineering, Hohai University, Nanjing, 210098, China.
| | - Xinyi Chen
- College of Agricultural Sciences and Engineering, Hohai University, Nanjing, 210098, China
| | - Yongqiu Xia
- Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Luís Carlos Timm
- Department of Rural Engineering, Faculty of Agronomy, Federal University of Pelotas, Campus Universitário s/n, CEP, Capão do Leão, Rio Grande do Sul, 96010-900, Brazil
| |
Collapse
|
34
|
Lin L, Pratt S, Crick O, Xia J, Duan H, Ye L. Salinity effect on freshwater Anammox bacteria: Ionic stress and ion composition. WATER RESEARCH 2021; 188:116432. [PMID: 33068907 DOI: 10.1016/j.watres.2020.116432] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/04/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
The biggest challenge to apply Anammox to treat wastewater with elevated salt content is the inhibitory effect of salinity on freshwater Anammox bacteria (FAB). Most of the research into salinity inhibition has focused on the osmotic pressure effect, while the inhibitory effect and its mechanisms induced by ion composition are poorly understood. In this study, the individual and combined effect of NaCl, KCl and Na2SO4 on FAB (>99% belonging to Ca. Brocadia genera) were systematically investigated by batch tests. The corresponding responses of mRNA abundance of three functional genes (including nitrite reductase gene (nirS), hydrazine synthase gene (hzsB) and hydrazine dehydrogenase gene (hdh)) under different salt conditions were analyzed. The results indicated that NaCl, KCl and Na2SO4 have different inhibition effects, with the 50% inhibition at 0.106, 0.096 and 0.063 M, respectively. The combined inhibition of NaCl+KCl and NaCl+Na2SO4 on FAB were both synergistic; while the combined inhibition of NaCl+KCl+Na2SO4 was additive. The responses of mRNA (of genes: nirS, hzsB and hdh) suggested NaCl inhibited the transport of ammonium; Na2SO4 inhibited both nitrite and ammonium transport; high salinity inhibited functional enzyme activity. These results suggest both ionic stress and ion composition contributed to the observed inhibition.
Collapse
Affiliation(s)
- Limin Lin
- School of Chemical Engineering, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Steven Pratt
- School of Chemical Engineering, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Oliver Crick
- School of Chemical Engineering, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Jun Xia
- Advanced Water Management Centre (AWMC), The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Haoran Duan
- School of Chemical Engineering, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Liu Ye
- School of Chemical Engineering, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia.
| |
Collapse
|
35
|
Chen Q, Liu C, Liu X, Sun D, Li P, Qiu B, Dang Y, Karpinski NA, Smith JA, Holmes DE. Magnetite enhances anaerobic digestion of high salinity organic wastewater. ENVIRONMENTAL RESEARCH 2020; 189:109884. [PMID: 32678736 DOI: 10.1016/j.envres.2020.109884] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/27/2020] [Accepted: 06/28/2020] [Indexed: 06/11/2023]
Abstract
Biological treatment of high salinity organic wastewater is a significant challenge because many microorganisms involved in the anaerobic digestion process cannot survive high osmotic pressures. In order to alleviate some of the stresses associated with the treatment of high salinity wastewater, two lab-scale up-flow anaerobic sludge bed reactors with or without magnetite (100 g/L) were used to treat high salinity organic wastewater. This study showed that the bioreactor amended with magnetite had higher chemical oxygen demand removal efficiencies (90.2% ± 0.54% vs 73.1% ± 1.9%) and methane production rates (4082 ± 334 ml (standard temperature and atmospheric pressure, STP)/d vs 2640 ± 120 ml (STP)/d) than the non-amended control reactor. In addition, the consumption of volatile fatty acids (20.9 ± 3.4 mM vs 61.7 ± 2.0 mM) was accelerated. Microbial community analysis revealed that the addition of magnetite caused the enrichment of many bacterial genera known to form robust biofilms (i.e. Pseudomonas) that are also capable of extracellular electron transfer and methanogens from the genus Methanosarcina which have been shown to participate in direct interspecies electron transfer. These results show that magnetite addition could enhance the performance of anaerobic digesters treating high salinity wastewater.
Collapse
Affiliation(s)
- Qian Chen
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Chuanqi Liu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Xinying Liu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Dezhi Sun
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Pengsong Li
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Bin Qiu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yan Dang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Nicole A Karpinski
- Department of Biomolecular Sciences, Central Connecticut State University, 1615 Stanley Street, New Britain, CT, 06050, United States
| | - Jessica A Smith
- Department of Biomolecular Sciences, Central Connecticut State University, 1615 Stanley Street, New Britain, CT, 06050, United States
| | - Dawn E Holmes
- Department of Physical and Biological Sciences, Western New England University, 1215 Wilbraham Rd, Springfield, MA, 01119, United States
| |
Collapse
|
36
|
Bai L, Deng Y, Li J, Ji M, Ruan W. Role of the proportion of cattle manure and biogas residue on the degradation of lignocellulose and humification during composting. BIORESOURCE TECHNOLOGY 2020; 307:122941. [PMID: 32272325 DOI: 10.1016/j.biortech.2020.122941] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 06/11/2023]
Abstract
The effects of different proportions of cattle manure (CM) and biogas residue (BR) on the degradation of lignocellulose and humification during composting were investigated. The results showed that increasing the CM content prolonged the thermophilic period duration, thus promoting organic matter degradation and enhancing the humification degree during composting. Compared with the initial compost, the cellulose content decreased 3.90%-22.81%. The addition of CM increased humic acid content by 17.21%-26.02% compared with the control. The excitation-emission matrix (EEM) fluorescence spectroscopy analysis indicated that a higher CM content was conducive to the formation of protein-like substances, but a disadvantage for humic substances. The cell viability decreased as CM content increased. The redundancy analysis (RDA) demonstrated that proportions of CM and BR were positively correlated with cellulose content and negatively correlated with cell viability and the content of lignin. The results suggest that adding 6.7% CM was optimal for BR composting.
Collapse
Affiliation(s)
- Ling Bai
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yun Deng
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jing Li
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Mengmeng Ji
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Wenquan Ruan
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
37
|
Zhang L, Zhang M, Guo J, Zheng J, Chen Z, Zhang H. Effects of K + salinity on the sludge activity and the microbial community structure of an A 2O process. CHEMOSPHERE 2019; 235:805-813. [PMID: 31280049 DOI: 10.1016/j.chemosphere.2019.06.137] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 05/30/2019] [Accepted: 06/18/2019] [Indexed: 06/09/2023]
Abstract
Salt ions are ubiquitous in wastewater and have significant impacts on the microbial activity and nitrogen and phosphorus removal in biological wastewater treatment processes. The effects of KCl salinity on the removal of COD, TN and PO43--P were investigated in a lab-scale A2O process. Meanwhile, the effects of K+ concentration on the composition of extracellular polymeric substances (EPS) and the microbial community structure were demonstrated. The results showed that the pollutant removal efficiencies and the bioactivity of the activated sludge decreased and the EPS content enhanced under high concentration of K+, which resulted in the deterioration of sludge compactness and settleability. The microbial diversity reduced after K+ addition and the microbial community structure was distinct between the system with (10 g L-1 and 40 g L-1) and without K+ addition. The relative abundance of Candidatus-Competibacter, Acinetobacter and Azoarcus decreased in the anoxic zone with the increase of K+ concentration, which might led to the decrease in denitrifying phosphorus removal capacity. However, the relative abundance of some genera of Firmicutes (such as Fusibacter, Acetoanaerobium, Planococcus and Exiguobacterium) increased, which was coincident with the enhanced microbial salt-tolerance capacity. Proteobacteria, Bacteroides, Chloroflexi and Firmicutes were the dominant phyla irrespective of the salinity changed, which guaranteed the removal of organic compounds, nitrogen and phosphorus in salty environment.
Collapse
Affiliation(s)
- Lanhe Zhang
- School of Chemical Engineering, Northeast Electric Power University, Jilin, 132012, China; Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, China.
| | - Mingshuang Zhang
- School of Chemical Engineering, Northeast Electric Power University, Jilin, 132012, China
| | - Jingbo Guo
- School of Civil and Architecture Engineering, Northeast Electric Power University, Jilin, 132012, China.
| | - Jing Zheng
- School of Chemical Engineering, Northeast Electric Power University, Jilin, 132012, China
| | - Zicheng Chen
- School of Chemical Engineering, Northeast Electric Power University, Jilin, 132012, China
| | - Haifeng Zhang
- School of Chemical Engineering, Northeast Electric Power University, Jilin, 132012, China
| |
Collapse
|
38
|
Macêdo WV, Sakamoto IK, Azevedo EB, Damianovic MHRZ. The effect of cations (Na +, Mg 2+, and Ca 2+) on the activity and structure of nitrifying and denitrifying bacterial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 679:279-287. [PMID: 31082601 DOI: 10.1016/j.scitotenv.2019.04.397] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 04/26/2019] [Accepted: 04/26/2019] [Indexed: 06/09/2023]
Abstract
Wastewaters generated in regions with water scarcity usually have high alkalinity, hardness, and elevated osmotic pressure (OP). Those characteristics should be considered when using biological systems for wastewater treatment along with the salinity heterogeneity. The interaction of different salts in mixed electrolyte solutions may cause inhibition, antagonism, synergism, and stimulation effects on microbial communities. Little is known about those effects on microbial activity and community structure of nitrifying and denitrifying bacteria. In this work, factorial design was used to evaluate the effects of NaCl, MgCl2 and CaCl2 on nitrifying and denitrifying communities. Antagonistic relationships between all salts were observed and they had greater magnitude on the nitrifying community. Stimulus and synernism were more evident on the nitrifying and denitrifying experiments, respectively. For this reason, the highest nitrification and denitrification specific rates were 1.1 × 10-1 mgN-NH4+ gSSV-1 min-1 for condition 01 and 6.5 × 10-2 mgN-NO3- gSSV-1 min-1 for control condition, respectively. The toxicity of the salts followed the order of NaCl > MgCl2 > CaCl2 and the antagonism between MgCl2 and NaCl was the most significant. PCR/DGGE analyses showed that Mg2+ may be the element that expresses the least influence in the differentiation of microbial structure even though it significantly affects the activity of the autotrophic microorganisms. The same behavior was observed for Ca2+ on denitrifying microorganism. In addition, microbial diversity and richness was not negatively affected by different salinities. Genetic sequencing suggested that the genus Aeromonas, Alishewanella, Azospirillum, Pseudoalteromonas, and Thioalkalivibrio were outstanding on ammonium and nitrate removal under saline conditions. The specific toxicity of each salt and the interactions among them are the major effects on microbial activity in biological wastewater treatments rather than the osmotic pressure caused by the final salinity.
Collapse
Affiliation(s)
- Williane Vieira Macêdo
- Biological Processes Laboratory (LPB), University of São Paulo (USP), 1100 João Dagnone Avenue, 13563-120 São Carlos, SP, Brazil.
| | - Isabel K Sakamoto
- Biological Processes Laboratory (LPB), University of São Paulo (USP), 1100 João Dagnone Avenue, 13563-120 São Carlos, SP, Brazil
| | - Eduardo Bessa Azevedo
- Environmental Technology Development Laboratory (LTDAmb), University of São Paulo (USP), 400 Trab. São Carlense Avenue, 13563-120 São Carlos, SP, Brazil
| | - Marcia Helena R Z Damianovic
- Biological Processes Laboratory (LPB), University of São Paulo (USP), 1100 João Dagnone Avenue, 13563-120 São Carlos, SP, Brazil
| |
Collapse
|
39
|
A critical review: emerging bioeconomy and waste-to-energy technologies for sustainable municipal solid waste management. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s42768-019-00013-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
40
|
Pan J, Ma J, Liu X, Zhai L, Ouyang X, Liu H. Effects of different types of biochar on the anaerobic digestion of chicken manure. BIORESOURCE TECHNOLOGY 2019; 275:258-265. [PMID: 30594835 DOI: 10.1016/j.biortech.2018.12.068] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/16/2018] [Accepted: 12/20/2018] [Indexed: 05/22/2023]
Abstract
This study investigated the impact of different types of biochar on the anaerobic digestion (AD) of chicken manure. Wheat straw, discarded fruitwood, and air-dried chicken manure were pyrolysed at 350, 450, and 550 °C to generate biochar. A lab-scale batch anaerobic digestion experiment was conducted at 35 ± 1 °C. Substantial improvements in methane production were observed for all nine types of biochar. With the production of 294 mL CH4/g VSadded, fruitwood char pyrolysed at 550 °C increased the methane yield by 69% from the control. Characteristic analysis indicated that fruitwood char pyrolysed at 550 °C exhibited the largest specific surface area and highest total ammonia nitrogen reduction capacity. The buffering capacity of the AD system was improved by the biochar through accelerating the transformation of macromolecular substances to dissolved substrates and reducing the contents of soluble salts, total ammonia nitrogen, and free ammonia.
Collapse
Affiliation(s)
- Junting Pan
- Key Laboratory of Non-point Source Pollution of Ministry of Agricultural and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 100081 Beijing, PR China
| | - Junyi Ma
- Key Laboratory of Non-point Source Pollution of Ministry of Agricultural and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 100081 Beijing, PR China
| | - Xiaoxia Liu
- Environmental Factors Risk Assessment Laboratory of Agricultural Products Quality and Safety of Ministry of Agriculture and Rural Affairs, Beijing Station of Agro-Environmental Monitoring, 100029 Beijing, PR China
| | - Limei Zhai
- Key Laboratory of Non-point Source Pollution of Ministry of Agricultural and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 100081 Beijing, PR China
| | - Xihui Ouyang
- Environmental Factors Risk Assessment Laboratory of Agricultural Products Quality and Safety of Ministry of Agriculture and Rural Affairs, Beijing Station of Agro-Environmental Monitoring, 100029 Beijing, PR China
| | - Hongbin Liu
- Key Laboratory of Non-point Source Pollution of Ministry of Agricultural and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 100081 Beijing, PR China.
| |
Collapse
|