1
|
Luo X, Pei X, Zhang X, Du H, Ju L, Li S, Chen L, Zhang J. Advancing hydrothermal carbonization: Assessing hydrochar's role and challenges in carbon sequestration. ENVIRONMENTAL RESEARCH 2025; 270:121023. [PMID: 39914712 DOI: 10.1016/j.envres.2025.121023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/31/2025] [Accepted: 02/01/2025] [Indexed: 02/14/2025]
Abstract
The increasing urgency to reduce atmospheric CO2 emissions has driven research into sustainable carbon sequestration technologies, with hydrochar (HC) emerging as a promising material. HC is derived from hydrothermal carbonization (HTC), a thermochemical process that converts biomass into a carbon-rich solid at moderate temperatures and self-generated pressure in an aqueous environment. Due to its unique reaction pathways, HC differs significantly from biochar (BC) derived from pyrolysis in terms of application, performance, and structural characteristics. Despite HC's potential for long-term carbon storage, critical gaps remain in understanding its sequestration mechanisms, influencing factors, and optimization strategies-hindering its effective application. This review critically evaluates HC's carbon sequestration capacity, focusing on overlooked complexities that influence its performance. Key parameters, including feedstock composition, reaction temperature, pH, and residence time, are systematically examined to elucidate their impact on HC's structural integrity and carbon stability. Special attention is given to the role of lignin in enhancing stability and thermal resilience, as well as the concept of carbon-ash recalcitrance, where mineral embedding enhances carbon stability. To assess HC's long-term sequestration effectiveness, this study analyzes key indicators such as thermal stability, chemical resilience, aromaticity, and dissolved organic carbon (DOC) leaching.Besides, this review explores innovative strategies for improving HC's sequestration performance, including HTC liquid recycling, chemical modification, and salinity control. By integrating expert-driven insights and identifying research gaps, this synthesis advances theoretical understanding while outlining future directions for optimizing HC as a sustainable carbon sink. Ultimately, this work establishes HC as a critical material in global carbon management efforts and climate change mitigation.
Collapse
Affiliation(s)
- Xin Luo
- State Key Laboratory of Geological Disaster Prevention and Geological Environment Protection, Chengdu University of Technology, 610059, China; Tianfu Yongxing Laboratory, Chengdu, 610200, China
| | - Xiangjun Pei
- State Key Laboratory of Geological Disaster Prevention and Geological Environment Protection, Chengdu University of Technology, 610059, China; Tianfu Yongxing Laboratory, Chengdu, 610200, China
| | - Xiaochao Zhang
- State Key Laboratory of Geological Disaster Prevention and Geological Environment Protection, Chengdu University of Technology, 610059, China; Tianfu Yongxing Laboratory, Chengdu, 610200, China.
| | - Haiying Du
- Key Laboratory of Coordinated Control and Joint Remediation of Water and Soil Pollution for National Environmental Protection, College of Ecological Environment, Chengdu University of Technology, Chengdu, 610059, China.
| | - Linxue Ju
- Geological Institute of China Chemical Geology and Mine Bureau, Beijing, 100101, China
| | - Shengwei Li
- Chengdu Center of China Geological Survey (Geosciences Innovation Center of Southwest China), Chengdu, 610218, China
| | - Lei Chen
- Tianjin Normal University, Tianjin, 300387, China
| | - Junji Zhang
- Chengdu Center of China Geological Survey (Geosciences Innovation Center of Southwest China), Chengdu, 610218, China
| |
Collapse
|
2
|
Ochoa-Martinez C, Barca C, Boutin O, Ferrasse JH. Influences of temperature and reaction time on nutrient conversion and metal interactions during hydrothermal treatment of pig manure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177853. [PMID: 39644639 DOI: 10.1016/j.scitotenv.2024.177853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 11/06/2024] [Accepted: 11/28/2024] [Indexed: 12/09/2024]
Abstract
Pig manure is a renewable source of nutrients, such as phosphorus and nitrogen, that can be used to produce fertilizers. Hydrothermal treatment experiments using real pig manure were conducted to investigate the effect of temperature (107-200 °C) and reaction time (25-95 min) on nutrient conversion and distribution into hydrochar and process water. Sequential extractions were also performed to determine the phosphorus speciation in raw pig manure and hydrochars. The results showed that phosphorus and nitrogen recovery in the hydrochar was consistently above 94 % and 56 %, respectively, for all the experiments. Phosphorus content in the hydrochar increased from 15.4 to 24.6 mg P/g by increasing temperature and/or reaction time. Sequential extractions showed the increase in temperature led to a decrease in non-apatite inorganic phosphorus and organic phosphorus fractions in the hydrochars, while the apatite inorganic phosphorus fraction (Ca phosphates) increased. The concentration of total dissolved nitrogen in process water increased to values higher than 6000 mg N/L, while the ammonium concentration decreased to values lower than 2000 mg N/L by increasing temperature and/or reaction time. These results appear to indicate that the increase in hydrothermal temperature from 107 to 200 °C promoted the extraction and dissolution of organic nitrogen compounds from solid matrices to process water. This study provides valuable insights into P and N transformation during hydrothermal treatment of pig manure, which represent crucial information for developing sustainable treatment processes that aim to minimize waste disposal while enhancing the closure of anthropogenic P and N cycles.
Collapse
Affiliation(s)
| | - Cristian Barca
- Aix-Marseille Univ., CNRS, Centrale Med, M2P2 UMR 7340, Marseille, France.
| | - Olivier Boutin
- Aix-Marseille Univ., CNRS, Centrale Med, M2P2 UMR 7340, Marseille, France
| | | |
Collapse
|
3
|
Xiong W, Luo Y, Shangguan W, Deng Y, Li R, Song D, Zhang M, Li Z, Xiao R. Co-hydrothermal carbonization of lignocellulosic biomass and swine manure: Optimal parameters for enhanced nutrient reclamation, carbon sequestration, and heavy metals passivation. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 190:174-185. [PMID: 39326066 DOI: 10.1016/j.wasman.2024.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/17/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024]
Abstract
Hydrochar, the primary product of hydrothermal carbonization (HTC) of wet organic waste, is recognized as a versatile, carbon-abundant material with diverse applications. However, optimizing its performance for specific uses remains challenging. Therefore, this study introduced a co-HTC process involving carbon-rich lignocellulosic materials and ash-rich livestock manure [i.e., Zanthoxylum bungeanum branch residue (ZB) and swine manure (SM), respectively]. The impacts of HTC temperature (i.e., 180 °C, 220 °C, and 240 °C) and mass ratios (i.e., 1:0, 7:3, 5:5, 3:7, and 0:1) on hydrochar properties (e.g., pH, EC, nutrient contents, heavy metal content and availability, chemical stability, etc) and the characteristics of process water were evaluated. Results reveal that co-HTC dramatically improved the quality of hydrochars compared with that derived from a single feedstock. Notably, the ZB:SM ratio had a more substantial impact on total nutrient content, carbon stability, and heavy metal accumulation and mobility. Additionally, the synergistic effects of ZB and SM were greatly dependent on the HTC temperature. By adjusting the feedstock mass ratio and HTC temperature, a highly-functionalized hydrochar can be produced. For example, hydrochars produced at 240 °C with a 7:3 ZB to SM ratio (HC240-7) is optimal for degraded soil amendment, enhancing carbon sequestration and nutrient supplementation. Results from this study could provide valuable insights for improving waste management through HTC and expanding the environmental and agricultural application of hydrochar.
Collapse
Affiliation(s)
- Weijie Xiong
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Beibei 400715, Chongqing, PR China
| | - Yuping Luo
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Beibei 400715, Chongqing, PR China
| | - Wengao Shangguan
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Beibei 400715, Chongqing, PR China
| | - Yue Deng
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Beibei 400715, Chongqing, PR China
| | - Ronghua Li
- College of Natural Resource and Environment, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Dan Song
- Chongqing Academy of Ecology and Environmental Sciences, 401147 Chongqing, PR China
| | - Muyuan Zhang
- Chongqing Academy of Ecology and Environmental Sciences, 401147 Chongqing, PR China
| | - Zengyi Li
- Auking Agricultural Science Corporation, Chengdu 610213, Sichuan, PR China
| | - Ran Xiao
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Beibei 400715, Chongqing, PR China.
| |
Collapse
|
4
|
Feng ZT, Xiong JB, Wang GF, Li L, Zhou CF, Zhou CH, Huang HJ. Treatment of swine manure by hydrothermal carbonization: The influential effect and preliminary mechanism of surfactants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174233. [PMID: 38936726 DOI: 10.1016/j.scitotenv.2024.174233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
Treatment of swine manure by hydrothermal carbonization (HTC) with the aid of different surfactants was first explored in this study. PEG 400 (polyethylene glycol 400) and Tween 80 facilitated the formation of bio-oil. SLS (sodium lignosulfonate) and SDS (sodium dodecyl sulfate) promoted the formation of water-soluble matters/gases. Span 80 enhanced the formation of hydrochar, which resulted in a 50.19 % mass yield, 92.39 % energy yield, and a caloric value of 28.68 MJ/kg. The hydrochar obtained with Span 80 presented a similar combustion performance to raw swine manure and the best pyrolysis performance. The use of Span 80 promoted the transfer of degradation products to hydrochar, especially hydrophobic ester and ketone compounds. Notedly, Span 80 suppressed the synthesis of PAHs during the HTC process, which was reduced to 0.92 mg/kg. Furthermore, the hydrochar produced with Span 80 contained lower contents of heavy metals. On the whole, Span 80 has shown great potential in enhancing the HTC of swine manure. The acting mechanisms of surfactants in the HTC of swine manure included adsorption, dispersion, and electrostatics repulsion.
Collapse
Affiliation(s)
- Zhen-Tian Feng
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Jiang-Bo Xiong
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Guo-Feng Wang
- Jiangxi Academy of Ecological and Environmental Sciences, Jiangxi Key Laboratory of Environmental Pollution Control, Nanchang 330006, PR China
| | - Lin Li
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Chun-Fei Zhou
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, PR China; School of Forestry, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Chun-Huo Zhou
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Hua-Jun Huang
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, PR China.
| |
Collapse
|
5
|
Ipiales RP, Sarrion A, Diaz E, de la Rubia MA, Diaz-Portuondo E, Coronella CJ, Mohedano AF. Swine manure management by hydrothermal carbonization: Comparative study of batch and continuous operation. ENVIRONMENTAL RESEARCH 2024; 245:118062. [PMID: 38157959 DOI: 10.1016/j.envres.2023.118062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/11/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Hydrothermal carbonization (HTC) is considered a promising technology for biomass waste management without pre-drying. This study explores the potential for swine manure management by comparing batch and continuous processes, emphasizing the benefits of the continuous mode, particularly for its potential full-scale application. The continuous process at low temperature (180 °C) resulted in a hydrochar with a lower degree of carbonization compared to the batch process, but similar characteristics were found in both hydrochars at higher operating temperatures (230-250 °C), such as C content (∼ 52 wt%), fixed carbon (∼ 24 wt%) and higher calorific value (21 MJ kg-1). Thermogravimetric and combustion analyses showed that hydrochars exhibited characteristics suitable as solid biofuels for industrial use. The process water showed a high content of organic matter as soluble chemical oxygen demand (7-22 g L-1) and total organic carbon (4-10 g L-1), although a high amount of refractory species such as N- and O-containing long aromatic compounds were detected in the process water from the batch process, while the process water from the continuous process presented more easily biodegradable compounds such as acids and alcohols, among others. The longer time required to reach operating temperature in the case of the batch system (longer heating time to reach operating temperature) resulted in lower H/C and O/C ratios compared to hydrochar from the continuous process. This indicates that the dehydration and decarboxylation reactions of the feedstock play a more important role in the batch process. This study shows the efficiency of the continuous process to obtain carbonaceous materials suitable for use as biofuel, providing a solution for swine manure management.
Collapse
Affiliation(s)
- R P Ipiales
- Chemical Engineering Department, Universidad Autónoma de Madrid, 28049, Madrid, Spain; Arquimea-Agrotech, 28400, Collado Villalba, Madrid, Spain
| | - A Sarrion
- Chemical Engineering Department, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - E Diaz
- Chemical Engineering Department, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - M A de la Rubia
- Chemical Engineering Department, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | | | - Charles J Coronella
- Department of Chemical and Materials Engineering, University of Nevada, Reno, Reno, 89557, Nevada, United States
| | - A F Mohedano
- Chemical Engineering Department, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| |
Collapse
|
6
|
Sun Z, Li J, Wang X, Xia S, Zhao J. Enhanced heavy metal stabilization and phosphorus retention during the hydrothermal carbonization of swine manure by in-situ formation of MgFe 2O 4. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 174:96-105. [PMID: 38039939 DOI: 10.1016/j.wasman.2023.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/15/2023] [Accepted: 11/22/2023] [Indexed: 12/03/2023]
Abstract
Hydrothermal carbonization is an efficient technique for the disposal of livestock manure, enabling its harmless treatment, quantity reduction, and resourceful utilization. Co-hydrothermal of modified materials facilitates the production of more valuable carbonaceous materials. However, further exploration is needed to understand their potential impact on the environmental risks associated with livestock manure disposal and the application of products derived from it. Therefore, the carbonization degree, heavy metals stabilization, and phosphorus retention during the hydrothermal treatment of swine manure were systematically investigated in this study under the influence of in-situ formed MgFe2O4. The results revealed that the in-situ formation of MgFe2O4 improved the dehydration and decarboxylation of organic components in swine manure, thereby improving its carbonization degree. Furthermore, both hydrothermal carbonization and MgFe2O4 modified hydrothermal carbonization resulted in an enhanced stabilization of heavy metals, leading to a significant reduction in their soluble/exchangeable fraction and reducible fraction. Phosphorus was predominantly retained in the hydrochars, with the highest retention rate reaching 88%, attributed to the significant decrease in soluble and exchangeable phosphorus fractions facilitated by the in-situ formation of MgFe2O4. Moreover, MgFe2O4 modified hydrochars exhibited remarkable adsorption capacity for Pb(II) and Cu(II) without any leaching of heavy metals. Overall, the findings indicated that the in-situ formation of MgFe2O4 positively influenced the hydrothermal of swine manure, improving certain economic benefits in its practical application.
Collapse
Affiliation(s)
- Zhenhua Sun
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Jing Li
- Shanghai Investigation, Design & Research Institute Co., Ltd, Shanghai 200050, PR China; YANGTZE Eco Environment Engineering Research Center, China Three Gorges Corporation, Beijing 100038, PR China
| | - Xuejiang Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China.
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Jianfu Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
7
|
Efremenko E, Stepanov N, Senko O, Lyagin I, Maslova O, Aslanli A. Artificial Humic Substances as Biomimetics of Natural Analogues: Production, Characteristics and Preferences Regarding Their Use. Biomimetics (Basel) 2023; 8:613. [PMID: 38132553 PMCID: PMC10742262 DOI: 10.3390/biomimetics8080613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
Various processes designed for the humification (HF) of animal husbandry wastes, primarily bird droppings, reduce their volumes, solve environmental problems, and make it possible to obtain products with artificially formed humic substances (HSs) as analogues of natural HSs, usually extracted from fossil sources (coal and peat). This review studies the main characteristics of various biological and physicochemical methods of the HF of animal wastes (composting, anaerobic digestion, pyrolysis, hydrothermal carbonation, acid or alkaline hydrolysis, and subcritical water extraction). A comparative analysis of the HF rates and HS yields in these processes, the characteristics of the resulting artificial HSs (humification index, polymerization index, degree of aromaticity, etc.) was carried out. The main factors (additives, process conditions, waste pretreatment, etc.) that can increase the efficiency of HF and affect the properties of HSs are highlighted. Based on the results of chemical composition analysis, the main trends and preferences with regard to the use of HF products as complex biomimetics are discussed.
Collapse
Affiliation(s)
- Elena Efremenko
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, Moscow 119991, Russia; (N.S.); (O.S.)
| | | | | | | | | | | |
Collapse
|
8
|
Li H, Li D, Xu S, Wang Z, Chen X, Ding Y, Chu Q, Sha Z. Hydrothermal carbonization of biogas slurry and cattle manure into soil conditioner mitigates ammonia volatilization from paddy soil. CHEMOSPHERE 2023; 344:140378. [PMID: 37806332 DOI: 10.1016/j.chemosphere.2023.140378] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/19/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Hydrothermal carbonization of biogas slurry and animal manure into hydrochar could enhance waste recycling waste and minimize ammonia (NH3) volatilization from paddy fields. In this study, cattle manure-derived hydrochar prepared in the presence of Milli-Q water (CMWH) and biogas slurry (CMBSH), and biogas slurry-based hydrochar embedded with zeolite (ZHC) were applied to rice-paddy soil. The results demonstrated that CMBSH and ZHC treatments could significantly mitigate the cumulative NH3 volatilization and yield-scale NH3 volatilization by 27.9-45.2% and 28.5-45.4%, respectively, compared to the control group (without hydrochar addition), and significantly correlated with pH and ammonium-nitrogen (NH4+-N) concentration in floodwater. Nitrogen (N) loss via NH3 volatilization in the control group accounted for 24.9% of the applied N fertilizer, whereas CMBSH- and ZHC-amended treatments accounted for 13.6-17.9% of N in applied fertilizer. The reduced N loss improved soil N retention and availability for rice; consequently, grain N content significantly increased by 6.5-14.9% and N-use efficiency increased by 6.4-16.0% (P < 0.05), respectively. Based on linear fitting results, NH3 volatilization mitigation resulted from lower pH and NH4+-N concentration in floodwater that resulted from the acidic property and specific surface area of hydrochar treatments. Moreover, NH3-oxidizing archaea abundance in hydrochar-treated soil decreased by 40.9-46.9% in response to CMBSH and ZHC treatments, potentially suppressing NH4+-N transformation into nitrate and improving soil NH4+-N retention capacity. To date, this study applied biogas slurry-based hydrochar into paddy soil for the first time and demonstrated that ZHC significantly mitigated NH3 and increased N content. Overall, this study proposes an environmental-friendly strategy to recycle the wastes, biogas slurry, to the paddy fields to mitigate NH3 volatilization and increase grain yield of rice.
Collapse
Affiliation(s)
- Huiting Li
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China
| | - Detian Li
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China; School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shuhan Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhenqi Wang
- Shanghai Academy of Environmental Sciences, Shanghai, 200233, China; College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Xu Chen
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines, Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Yuling Ding
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qingnan Chu
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA). Universidad Politécnica de Madrid, Campus de Montegancedo, Madrid, 28223, Spain.
| | - Zhimin Sha
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
9
|
Li Z, Jia J, Zhao W, Jiang L, Tian W. Seawater as supplemental moisture: The effect of Co-hydrothermal carbonization products obtained from chicken manure and cornstalk. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118819. [PMID: 37597367 DOI: 10.1016/j.jenvman.2023.118819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/22/2023] [Accepted: 08/12/2023] [Indexed: 08/21/2023]
Abstract
The use of seawater as a substitute for pure water as supplemental moisture raises questions about its effect on the physicochemical properties of hydrochar. Therefore, this study aimed to investigate the feasibility of using seawater as supplemental moisture by comparing the physicochemical properties of products obtained through Co-hydrothermal carbonization of chicken manure and cornstalk under seawater and deionized water conditions. By varying the HTC temperature and blending ratios of CM and CS to investigate comprehensively the effect of seawater. Results indicated that the hydrochar yield experienced a variation from 54.54% to 57.40%, while the IC value changed from 7.69% to 8.46% as the ratio of CM:CS shifted from 3:1 to 1:3 under seawater conditions. The higher heating value of the hydrochars obtained under seawater conditions was lower than those obtained under deionized water conditions. This suggests that seawater conditions promote the hydrolysis reaction of organic solid waste. Furthermore, it was observed that when no lignin hydrolysis reaction occurred, seawater conditions had no discernible effect on the fuel quality of the hydrochar. However, at an HTC temperature of 250 °C, the fuel quality of the hydrochar obtained under seawater conditions was notably inferior to that of the hydrochar obtained under deionized water. Thus, an HTC temperature lower than 250 °C is necessary for the hydrothermal carbonization of organic solid waste under seawater conditions. Moreover, the relative content of surface -C-(C, H)/CC of the hydrochar obtained under seawater conditions was lower than that obtained under deionized water conditions, indicating that the hydrochar had a low degree of aromatization. Additionally, there was a significant increase in the immobilized Mg atoms in the hydrochar under seawater conditions, which affected the hydrochar yield and higher heating value of the hydrochar. This research presents a theoretical foundation for preparing solid fuels and materials using hydrothermal carbonization of saltwater as supplemental moisture.
Collapse
Affiliation(s)
- Zhirong Li
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Jiandong Jia
- School of Energy and Power Engineering, North University of China, Taiyuan, 030051, China.
| | - Wenjie Zhao
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China.
| | - Leilei Jiang
- School of Energy and Power Engineering, North University of China, Taiyuan, 030051, China
| | - Wenfei Tian
- College of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| |
Collapse
|
10
|
Ipiales RP, Mohedano AF, Diaz-Portuondo E, Diaz E, de la Rubia MA. Co-hydrothermal carbonization of swine manure and lignocellulosic waste: A new strategy for the integral valorization of biomass wastes. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 169:267-275. [PMID: 37481937 DOI: 10.1016/j.wasman.2023.07.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023]
Abstract
Co-hydrothermal carbonization (co-HTC) is a promising strategy to improve hydrothermal carbonization (HTC) of low-quality wastes. HTC of swine manure (SM), with high N (2.9 wt%), S (0.7 wt%) and ash (22.6 wt%) contents, as well as low C (35.6 wt%) and higher heating value (HHV; 14.3 MJ kg-1), resulted in a hydrochar with unsuitable characteristics as a solid fuel. Co-HTC of SM and garden and park waste (GPW) improved hydrochar properties (C content (43 - 48 wt%) and HHV (18 - 20 MJ kg-1), and decreased N (∼2 wt%), S (<0.3 wt%) and ash (<15 wt%) content. A high GPW ratio (>50 wt%) during co-HTC resulted in a hydrochar similar to that obtained from GPW. The co-HTC increased nutrient migration to the process water, which allowed the precipitation of salt with high P (7.8 wt%) and negligible heavy metal content. Anaerobic digestion of co-HTC process water allowed high organic matter removal (up to 65%), and methane production (315 - 325 mL CH4 g-1CODadded). Gross energy recovery by HTC and anaerobic digestion was 5 - 6-fold higher than anaerobic treatment of feedstocks. Therefore, co-HTC of SM and GPW with a ratio > 50% GPW proved to be a suitable approach to valorize and manage SM and obtain value-added products (hydrochar, mineral fertilizer and methane).
Collapse
Affiliation(s)
- R P Ipiales
- Chemical Engineering Department, Universidad Autónoma de Madrid, 28049 Madrid, Spain; Arquimea-Agrotech, 28400 Collado Villalba, Madrid, Spain
| | - A F Mohedano
- Chemical Engineering Department, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | | | - E Diaz
- Chemical Engineering Department, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - M A de la Rubia
- Chemical Engineering Department, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
11
|
Cavali M, Benbelkacem H, Kim B, Bayard R, Libardi Junior N, Gonzaga Domingos D, Woiciechowski AL, Castilhos Junior ABD. Co-hydrothermal carbonization of pine residual sawdust and non-dewatered sewage sludge - effect of reaction conditions on hydrochar characteristics. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 340:117994. [PMID: 37119630 DOI: 10.1016/j.jenvman.2023.117994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/01/2023] [Accepted: 04/18/2023] [Indexed: 05/12/2023]
Abstract
Waste valorization is mandatory to develop and consolidate a circular bioeconomy. It is necessary to search for appropriate processes to add value to different wastes by utilizing them as feedstocks to provide energy, chemicals, and materials. For instance, hydrothermal carbonization (HTC) is an alternative thermochemical process that has been suggested for waste valorization aiming at hydrochar production. Thus, this study proposed the Co-HTC of pine residual sawdust (PRS) with non-dewatered sewage sludge (SS) - two wastes largely produced in sawmills and wastewater treatment plants, respectively - without adding extra water. The influence of temperature (180, 215, and 250 °C), reaction time (1, 2, and 3 h), and PRS/SS mass ratio (1/30, 1/20, and 1/10) on the yield and characteristics of the hydrochar were evaluated. The hydrochars obtained at 250 °C had the best coalification degree, showing the highest fuel ratio, high heating value (HHV), surface area, and N, P, and K retention, although presenting the lowest yields. Conversely, hydrochar functional groups were generally reduced by increasing Co-HTC temperatures. Regarding the Co-HTC effluent, it presented acidic pH (3.66-4.39) and high COD values (6.2-17.3 g·L-1). In general, this new approach could be a promising alternative to conventional HTC, in which a high amount of extra water is required. Besides, the Co-HTC process can be an option for managing lignocellulosic wastes and sewage sludges while producing hydrochar. This carbonaceous material has the potential for several applications, and its production is a step towards a circular bioeconomy.
Collapse
Affiliation(s)
- Matheus Cavali
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Florianópolis, 88040-970, Santa Catarina, Brazil.
| | | | - Boram Kim
- Univ Lyon, INSA Lyon, DEEP, EA 7429, 69621, Villeurbanne, France
| | - Rémy Bayard
- Univ Lyon, INSA Lyon, DEEP, EA 7429, 69621, Villeurbanne, France
| | - Nelson Libardi Junior
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Florianópolis, 88040-970, Santa Catarina, Brazil
| | - Dayane Gonzaga Domingos
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Florianópolis, 88040-970, Santa Catarina, Brazil
| | - Adenise Lorenci Woiciechowski
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, 81531-908, Paraná, Brazil
| | - Armando Borges de Castilhos Junior
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Florianópolis, 88040-970, Santa Catarina, Brazil
| |
Collapse
|
12
|
Zhang Q, Mu K, Zhao B, Yi L. The Role of the Mannich Reaction in Nitrogen Migration during the Co-Hydrothermal Carbonization of Bovine Serum Albumin and Lignin with Various Forms of Acid-Alcohol Assistance. Molecules 2023; 28:molecules28114408. [PMID: 37298884 DOI: 10.3390/molecules28114408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Co-hydrothermal carbonization (co-HTC) of N-rich and lignocellulosic biomass is a potential way to produce hydrochar with high yield and quality, but the nitrogen will also enrich in a solid product. In this study, a novel co-HTC with acid-alcohol assistance is proposed, and the model compounds bovine serum albumin (BSA) and lignin were used to investigate the role of the acid-alcohol-enhanced Mannich reaction in nitrogen migration. The results showed that the acid-alcohol mixture could inhibit nitrogen enrichment in solids and the order of the denitrification rate was acetic acid > oxalic acid > citric acid. Acetic acid promoted solid-N hydrolysis to NH4+ while oxalic acid preferred to convert it to oil-N. More tertiary amines and phenols were generated with oxalic acid-ethanol addition and then formed quaternary-N and N-containing aromatic compounds through the Mannich reaction. In the citric acid-ethanol-water solution, NH4+ and amino acids were captured to form diazoxide derivatives in oil and pyrroles in solids through both nucleophilic substitution and the Mannich reaction. The results are able to guide biomass hydrochar production with the targeted regulation of nitrogen content and species.
Collapse
Affiliation(s)
- Qiang Zhang
- School of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Kai Mu
- School of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Bo Zhao
- School of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Linlin Yi
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
13
|
Zhang Y, Zhao Y, Ji J, Zhang W, Wei W, Li J, Liu Y, Tao H, Zhang H. Reduction and valorization of dairy manure by organic chelating acid-assisted hydrothermal process: Dewatering performance, energy recovery, and effluent toxicity. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 163:134-143. [PMID: 37011561 DOI: 10.1016/j.wasman.2023.03.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/07/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
Livestock manure with high moisture content is a challenge for management and further disposal. In this study, the organic chelating acid(EDTA)-assisted hydrothermal (EAHT) process was used to achieve dewatering, dry mass minimization, and volume reduction of dairy manure (DM). The hydrophobic modification of DM resulted in a 55% reduction in dry mass, and the specific resistance to filtration (SRF) showed a shift in dewatering performance from unfilterable to highly filterable. An investigation of the reaction mechanisms suggests that proteins and polysaccharides were released from the damaged extracellular polymeric substances (EPS) of the DM into effluent. The surface functional groups of the hydrochar were changed from hydrophilic to hydrophobic, which promotes the transformation of bound water to free water in the DM with enhanced dewatering performance. The obtained hydrochar at 17.5 mg/g EDTA dosage exhibited the highest calorific value (HHVdaf = 29.25 MJ/kg). The HHVdry of samples have little difference and approach that of anthracite coal (19.2-21.1 MJ/kg)After EAHT, the combustion safety of the hydrochar was improved, which is highly significant for its use as biofuel. The by-product effluent showed lower biological toxicity after EAHT than after HT. The findings of this study demonstrated that EAHT can be efficient in achieving DM reduction and energy recovery, which provides widespread agricultural and environmental application prospects.
Collapse
Affiliation(s)
- Yihang Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Yuqing Zhao
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Jie Ji
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Weitao Zhang
- Hebei Animal Husbandry Station, 19 Changjiang Avenue, Shijiazhuang, Hebei Province 050035, China
| | - Wei Wei
- Hebei Animal Husbandry Station, 19 Changjiang Avenue, Shijiazhuang, Hebei Province 050035, China
| | - Jia Li
- Hebei Animal Husbandry Station, 19 Changjiang Avenue, Shijiazhuang, Hebei Province 050035, China
| | - Yue Liu
- Hebei Institute of animal husbandry and veterinary medicine, 428 Dongguan street, Baodin, Hebei Province 071000, China
| | - Hong Tao
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - He Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China.
| |
Collapse
|
14
|
Zhou Y, Remón J, Pang X, Jiang Z, Liu H, Ding W. Hydrothermal conversion of biomass to fuels, chemicals and materials: A review holistically connecting product properties and marketable applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 886:163920. [PMID: 37156381 DOI: 10.1016/j.scitotenv.2023.163920] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/12/2023] [Accepted: 04/29/2023] [Indexed: 05/10/2023]
Abstract
Biomass is a renewable and carbon-neutral resource with good features for producing biofuels, biochemicals, and biomaterials. Among the different technologies developed to date to convert biomass into such commodities, hydrothermal conversion (HC) is a very appealing and sustainable option, affording marketable gaseous (primarily containing H2, CO, CH4, and CO2), liquid (biofuels, aqueous phase carbohydrates, and inorganics), and solid products (energy-dense biofuels (up to 30 MJ/kg) with excellent functionality and strength). Given these prospects, this publication first-time puts together essential information on the HC of lignocellulosic and algal biomasses covering all the steps involved. Particularly, this work reports and comments on the most important properties (e.g., physiochemical and fuel properties) of all these products from a holistic and practical perspective. It also gathers vital information addressing selecting and using different downstream/upgrading processes to convert HC reaction products into marketable biofuels (HHV up to 46 MJ/kg), biochemicals (yield >90 %), and biomaterials (great functionality and surface area up to 3600 m2/g). As a result of this practical vision, this work not only comments on and summarizes the most important properties of these products but also analyzes and discusses present and future applications, establishing an invaluable link between product properties and market needs to push HC technologies transition from the laboratory to the industry. Such a practical and pioneering approach paves the way for the future development, commercialization and industrialization of HC technologies to develop holistic and zero-waste biorefinery processes.
Collapse
Affiliation(s)
- Yingdong Zhou
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, PR China; China Leather and Footwear Research Institute Co. Ltd., Beijing 100015, PR China
| | - Javier Remón
- Thermochemical Processes Group, Aragón Institute for Engineering Research (I3A), University of Zaragoza, C/Mariano Esquillor s/n, 50.018, Zaragoza, Spain.
| | - Xiaoyan Pang
- China Leather and Footwear Research Institute Co. Ltd., Beijing 100015, PR China
| | - Zhicheng Jiang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Haiteng Liu
- China Leather and Footwear Research Institute Co. Ltd., Beijing 100015, PR China
| | - Wei Ding
- China Leather and Footwear Research Institute Co. Ltd., Beijing 100015, PR China.
| |
Collapse
|
15
|
Zhang Z, Xuan X, Wang J, Zhao X, Yang J, Zhao Y, Qian J. Evolution of elemental nitrogen involved in the carbonization mechanism and product features from wet biowaste. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 884:163826. [PMID: 37121324 DOI: 10.1016/j.scitotenv.2023.163826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/05/2023]
Abstract
Hydrothermal carbonization (HTC) represents elegant thermochemical conversion technology suitable for energy and resource recovery from wet biowaste, while the elemental nitrogen is bound to affect the HTC process and the properties of the products. In this review, the nitrogen fate during HTC of typical N-containing-biowaste were presented. The relationship between critical factors involved in HTC like N/O, N/C, N/H, solid ratio, initial N in feedstock, hydrothermal temperature and residence time and N content in hydrochar were systematic analyzed. The distribution and conversion of N species along with hydrothermal severity in hydrochar and liquid phase was discussed. Additionally, the chemical forms of nitrogen in hydrochar were elaborated coupled with the role of N element during hydrochar formation mechanism and the morphology features. Finally, the future challenges of nitrogen in biowaste involved in HTC about the formation and regulation mechanism of hydrochar were given, and perspectives of more accurate regulation of the physicochemical characteristics of hydrochar from biowaste based on the N evolution is expected.
Collapse
Affiliation(s)
- Zhiming Zhang
- College of Forestry, Henan Agricultural University, Zhengzhou, China
| | - Xuan Xuan
- College of Forestry, Henan Agricultural University, Zhengzhou, China
| | - Junyao Wang
- College of Forestry, Henan Agricultural University, Zhengzhou, China
| | - Xuelei Zhao
- Zhengzhou University of Science and Technology, Zhengzhou, China
| | - Jiantao Yang
- College of Forestry, Henan Agricultural University, Zhengzhou, China
| | - Yong Zhao
- College of Forestry, Henan Agricultural University, Zhengzhou, China
| | - Jianqiang Qian
- College of Forestry, Henan Agricultural University, Zhengzhou, China.
| |
Collapse
|
16
|
Shan G, Li W, Bao S, Li Y, Tan W. Co-hydrothermal carbonization of agricultural waste and sewage sludge for product quality improvement: Fuel properties of hydrochar and fertilizer quality of aqueous phase. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116781. [PMID: 36395640 DOI: 10.1016/j.jenvman.2022.116781] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/26/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Hydrothermal carbonization (HTC) is a promising carbon-neutral technology for converting sewage sludge (SS) and agricultural waste into energy. However, HTC-generated aqueous phase (AP) impedes the development of the former. This study investigated the potential of SS with rice husk (RH) and wheat straw (WS) co-HTC to form hydrochar and AP as substitutes for fuel and chemical fertilizer, respectively. Compared with single SS hydrochar, the yield of co-HTC-based hydrochar and higher heating value significantly increased by 10.9%-21.6% and 4.2%-182.7%, reaching a maximum of 72.6% and 14.7 MJ/kg, respectively. Co-HTC improves the safe handling, storage and transportation, and combustion performance of hydrochar. The total nitrogen concentration in AP-SS was 2575 mg/L, accounting for 67.7% of that found in SS. Co-HTC decreased and increased the amine and phenolic components of AP, respectively. AP-SS-RH and AP-SS-WS significantly increased pakchoi dry weight by 45.5% and 49.4%, respectively, compared with AP-SS. The results of the hydroponic experiments with AP instead of chemical fertilizers revealed that AP-SS did not reduce pakchoi dry weight by replacing <20% chemical fertilizers. However, AP-SS-RH or AP-SS-WS replaced 60% chemical fertilizers. Therefore, the co-HTC of SS and agricultural waste increased the AP substitution of chemical fertilizer from 20% to 60%. These findings suggest that the co-HTC of agricultural waste with SS is a promising technology for converting SS into renewable resource products for fuels and N-rich liquid fertilizer while significantly improving fuel and fertilizer quality.
Collapse
Affiliation(s)
- Guangchun Shan
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Weiguang Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shanshan Bao
- Key Laboratory of Water Management and Water Security for Yellow River Basin, Ministry of Water Resources, Yellow River Engineering Consulting Co. Ltd., Zhengzhou 450003, China
| | - Yangyang Li
- Shenergy Environmental Technologies Co., Ltd., Hangzhou 311100, China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
17
|
Shan G, Li W, Bao S, Hu X, Liu J, Zhu L, Tan W. Energy and nutrient recovery by spent mushroom substrate-assisted hydrothermal carbonization of sewage sludge. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 155:192-198. [PMID: 36379168 DOI: 10.1016/j.wasman.2022.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/15/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
Hydrothermal carbonization (HTC) has been recognized as a promising sewage sludge (SS) treatment technology for effective pathogen elimination, bioenergy recovery, organic contaminant destruction and volume reduction. However, the solid product (hydrochar) of SS after HTC as fuel has the problems of high ash content, high nitrogen content and low calorific value. The aqueous phase (AP) produced is still considered a burden and has become a bottleneck in the development of HTC. In this study, co-HTC of SS with spent mushroom substrate (SMS) is conducted, and the fuel properties of hydrochar and the quality of the AP as a liquid fertilizer are investigated. In comparison with hydrochar of single SS, the energy yield and higher heating value of the hydrochar from co-HTC were significantly increased by 12.1-44.8 % and 33.2-137.8 %, respectively, reaching their maximum of 72.75 % and14.98 MJ/kg, respectively. Co-HTC can improve safe handling, storage and transportation, and combustion performance of hydrochar. Furthermore, the AP of co-HTC could significantly increase the biomass of pakchoi, which was 140.9 % and 90.7 % of AP from single SS and Hoagland nutrition solution (represents commercial fertilizer), respectively. The AP of co-HTC as fertilizer can recover 62.03-64.65 % nitrogen from SS and SMS. These findings suggest that co-HTC of SMS with SS is a promising technology for the conversion SS into renewable resource products for fuels and N-rich liquid fertilizer while also significantly improving fuel and fertilizer quality.
Collapse
Affiliation(s)
- Guangchun Shan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Weiguang Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shanshan Bao
- Key Laboratory of Water Management and Water Security for Yellow River Basin, Ministry of Water Resources, Yellow River Engineering Consulting Co. Ltd., Zhengzhou 450003, China
| | - Xinhao Hu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jie Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lin Zhu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
18
|
Wang YJ, Li N, Ni GR, Zhou CH, Yin X, Huang HJ. Recycling Pomelo Peel Waste in the Form of Hydrochar Obtained by Microwave-Assisted Hydrothermal Carbonization. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15249055. [PMID: 36556860 PMCID: PMC9782344 DOI: 10.3390/ma15249055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/10/2022] [Accepted: 12/15/2022] [Indexed: 06/12/2023]
Abstract
Pomelo peel (PP) is a kind of solid waste that is produced in the processing industry of honey pomelo. This study deeply explored the feasibility of recycling PP in the form of hydrochar (HC) by microwave-assisted hydrothermal carbonization (HTC) technology. Under the non-catalytic reaction conditions, the yield of hydrochar initially increased with the rise of reaction temperature (150-210 °C) until it remained relatively stable after 210 °C. Under the CaO-catalytical reaction condition, the yield of hydrochar did not change much at first (150-190 °C) but decreased significantly when the reaction temperature exceeded 190 °C. After the microwave-assisted HTC treatment, the PP-derived HC presented higher aromaticity, carbonization degree, porosity, and caloric value. Compared with raw PP, the nutrients in HC were more stable (conducive to being used as slow-release fertilizer). The application of CaO increased the pH value of HC and effectively promoted the accumulation of phosphorus in HC. The HC produced at 210 °C without any catalyst possessing a high devolatilization ability. Additionally, the HC obtained at 190 °C with CaO as the catalyst presented a high combustion property. In general, PP-derived HC showed great application potential in the field of soil remediation/improvement and solid fuels. This preliminary study would undoubtedly provide some important fundamental understanding of the microwave-assisted HTC of PP.
Collapse
|
19
|
Wang R, Peng P, Song G, Zhao Z, Yin Q. Effect of corn stover hydrochar on anaerobic digestion performance of its associated wastewater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120430. [PMID: 36279990 DOI: 10.1016/j.envpol.2022.120430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/21/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Hydrothermal carbonation (HTC) is an effective method to enhance the fuel quality of biomass in a subcritical water environment, but generates large amounts of wastewater (HTCWW), which was converted through anaerobic digestion (AD) into methane in this study. However, the toxic and refractory substances contained in HTCWW tended to cause operation instability of the AD system. The solid product in HTC of corn stover (CS), named CS hydrochar, was modified with KOH immersion and then added to the AD reactor to improve the methanogenic performance. The results showed that the optimum dosage of modified hydrochar (MCH) was 15 g/L, and the COD removal rate was increased by 19.3% and methane yield was increased by 42.3%-301 mL/g-COD, as the pore and the oxygen-containing functional groups of MCH provided colonization points for microorganisms, and also enhanced the electron transfer efficiency among methanogenic archaea. In addition, the increased alkalinity of MCH due to alkaline modification increased the pH buffering capability, and accelerated the consumption of acetic acid and butyric acid in the early AD stage (0-8 days) and propionic acid in the late AD stage (12-18 days), which then alleviated the organic acid accumulation and reduced the lag period by 2 days. The adverse effects of toxic and refractory substances of HTCWW on the AD performance were also decreased due to the adsorption of MCH at the beginning of the AD process, and latterly the adsorbed substances could be degraded by the microorganisms colonized on the MCH surface. The finding of this study showed AD is a feasible method to recover organic energy contained in HTCWW, and the associated hydrochar can be used as an effective promoter for the AD of HTCWW.
Collapse
Affiliation(s)
- Ruikun Wang
- Department of Power Engineering, North China Electric Power University, Baoding, 071003, Hebei, China; Hebei Key Laboratory of Low Carbon and High Efficiency Power Generation Technology, North China Electric Power University, Baoding, 071003, Hebei, China; Baoding Key Laboratory of Low Carbon and High Efficiency Power Generation Technology, North China Electric Power University, Baoding, 071003, Hebei, China
| | - Pingbo Peng
- Department of Power Engineering, North China Electric Power University, Baoding, 071003, Hebei, China; Hebei Key Laboratory of Low Carbon and High Efficiency Power Generation Technology, North China Electric Power University, Baoding, 071003, Hebei, China; Baoding Key Laboratory of Low Carbon and High Efficiency Power Generation Technology, North China Electric Power University, Baoding, 071003, Hebei, China
| | - Gaoke Song
- Department of Power Engineering, North China Electric Power University, Baoding, 071003, Hebei, China; Hebei Key Laboratory of Low Carbon and High Efficiency Power Generation Technology, North China Electric Power University, Baoding, 071003, Hebei, China; Baoding Key Laboratory of Low Carbon and High Efficiency Power Generation Technology, North China Electric Power University, Baoding, 071003, Hebei, China
| | - Zhenghui Zhao
- Department of Power Engineering, North China Electric Power University, Baoding, 071003, Hebei, China; Hebei Key Laboratory of Low Carbon and High Efficiency Power Generation Technology, North China Electric Power University, Baoding, 071003, Hebei, China; Baoding Key Laboratory of Low Carbon and High Efficiency Power Generation Technology, North China Electric Power University, Baoding, 071003, Hebei, China
| | - Qianqian Yin
- Department of Power Engineering, North China Electric Power University, Baoding, 071003, Hebei, China; Hebei Key Laboratory of Low Carbon and High Efficiency Power Generation Technology, North China Electric Power University, Baoding, 071003, Hebei, China; Baoding Key Laboratory of Low Carbon and High Efficiency Power Generation Technology, North China Electric Power University, Baoding, 071003, Hebei, China.
| |
Collapse
|
20
|
Wang Q, Wu S, Cui D, Zhou H, Wu D, Pan S, Xu F, Wang Z. Co-hydrothermal carbonization of organic solid wastes to hydrochar as potential fuel: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:158034. [PMID: 35970457 DOI: 10.1016/j.scitotenv.2022.158034] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/22/2022] [Accepted: 08/10/2022] [Indexed: 05/17/2023]
Abstract
The organic solid waste (OSW) is a potential resource that loses its original value in people's daily production process. It can be used for secondary energy utilization through hydrothermal technology, which is similar to artificially simulating the natural coalification process. Co-hydrothermal carbonization (co-HTC) is a promising thermochemical conversion pathway, and advanced mechanisms can eliminate the drawbacks of single-feedstock hydrothermal carbonization (HTC). The preparation and production process of hydrochar can solve the problems of energy crisis and environmental pollution. This paper comprehensively reviews the key mechanisms of co-HTC to prepare solid fuels, and reviews the development process and practical application of hydrothermal technology. To begin with, the physical and chemical properties and combustion performance of co-hydrochar depend on the production method, process parameters, and selection of raw materials. The co-hydrochar usually has a higher HHV and a low atomic ratio of H/C and O/C, which improves combustion performance. Subsequently, the transformation path of the hydrothermal process of lignocellulosic and protein OSW was comprehensively expounded, and the reaction mechanism of the co-HTC of the two OSWs was effectively proposed. The effect of the ratio of different raw materials on the synergistic effect of co-HTC was also analyzed. Furthermore, the typical advantages and disadvantages of environmental safety, technical economy, and practical application in the co-HTC process are expounded. All in all, this review provides some foundations and new directions for the co-HTC of OSWs to prepare potential fuel. In addition, several prospects for the development and integrated application of co-HTC are presented in the future.
Collapse
Affiliation(s)
- Qing Wang
- Engineering Research Centre of Oil Shale Comprehensive Utilization, Ministry of Education, Northeast Electric Power University, Jilin 132012, PR China; School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, PR China.
| | - Shuang Wu
- Engineering Research Centre of Oil Shale Comprehensive Utilization, Ministry of Education, Northeast Electric Power University, Jilin 132012, PR China; School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, PR China
| | - Da Cui
- Engineering Research Centre of Oil Shale Comprehensive Utilization, Ministry of Education, Northeast Electric Power University, Jilin 132012, PR China; School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, PR China
| | - Huaiyu Zhou
- Engineering Research Centre of Oil Shale Comprehensive Utilization, Ministry of Education, Northeast Electric Power University, Jilin 132012, PR China; School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, PR China
| | - Dongyang Wu
- Engineering Research Centre of Oil Shale Comprehensive Utilization, Ministry of Education, Northeast Electric Power University, Jilin 132012, PR China; School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, PR China
| | - Shuo Pan
- Engineering Research Centre of Oil Shale Comprehensive Utilization, Ministry of Education, Northeast Electric Power University, Jilin 132012, PR China; School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, PR China
| | - Faxing Xu
- Jilin Dongfei Solid Waste Research Institute, Jilin 132200, PR China; Jilin Feite Environmental Protection Co., Ltd, Jilin 132200, PR China
| | - Zhenye Wang
- Jilin Dongfei Solid Waste Research Institute, Jilin 132200, PR China; Jilin Feite Environmental Protection Co., Ltd, Jilin 132200, PR China
| |
Collapse
|
21
|
From manure to high-value fertilizer: The employment of microalgae as a nutrient carrier for sustainable agriculture. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Madadian E, Simakov DSA. Thermal degradation of emerging contaminants in municipal biosolids: The case of pharmaceuticals and personal care products. CHEMOSPHERE 2022; 303:135008. [PMID: 35643167 DOI: 10.1016/j.chemosphere.2022.135008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/01/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
The presence of emerging contaminants in water and wastewater resources is of ongoing concern for public health and safety. Pharmaceutical compounds are designed to be biologically active and therefore may have effects on nontarget organisms in terrestrial and aquatic environments, even at trace concentrations. The presence of pharmaceutical and personal care products (PPCPs) in wastewater treatment plants is reported in various countries worldwide, mostly in the levels of nanograms to micrograms per litre. The present study investigates the thermal degradation of municipal sewage sludge containing PPCPs at various heating rates. The examined characteristics of the samples include thermal decomposition behavior, volatile release characteristics, and pyrolytic product composition. Thermal characterization of the PPCPs was conducted using differential scanning calorimetry. The gaseous products and typical functional groups of the released volatiles detected by Fourier-transform infrared spectroscopy mainly contained CO2, CO, small-chain hydrocarbons, and oxygen- and nitrogen-containing functional groups together with other species. In addition, the potential of bioenergy production was investigated as a spin-off opportunity during thermal degradation of biosolids. Study results showed that PPCP concentrations can be lowered significantly by thermal treatment of municipal biosolids. Antifungal/antibacterial agents together with opioids, in particular triclosan and tramadol, showed less resistance to thermal degradation while antibiotics could be more recalcitrant to heat treatment. The thermodynamic results provide an important reference for future reactor design and the thermochemical treatment of biosolids as well as their conversion to value-added products.
Collapse
Affiliation(s)
- Edris Madadian
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| | - David S A Simakov
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
23
|
Chung JW, Gerner G, Ovsyannikova E, Treichler A, Baier U, Libra J, Krebs R. Hydrothermal carbonization as an alternative sanitation technology: process optimization and development of low-cost reactor. OPEN RESEARCH EUROPE 2022; 1:139. [PMID: 37645161 PMCID: PMC10446067 DOI: 10.12688/openreseurope.14306.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/31/2022] [Indexed: 04/21/2024]
Abstract
Background: The provision of safe sanitation services is essential for human well-being and environmental integrity, but it is often lacking in less developed communities with insufficient financial and technical resources. Hydrothermal carbonization (HTC) has been suggested as an alternative sanitation technology, producing value-added products from faecal waste. We evaluated the HTC technology for raw human waste treatment in terms of resource recovery. In addition, we constructed and tested a low-cost HTC reactor for its technical feasibility. Methods: Raw human faeces were hydrothermally treated in a mild severity range (≤ 200 °C and ≤ 1 hr). The total energy recovery was analysed from the energy input, higher heating value (HHV) of hydrochar and biomethane potential of process water. The nutrient contents were recovered through struvite precipitation employing process water and acid leachate from hydrochar ash. A bench-scale low-cost reactor (BLR) was developed using widely available materials and tested for human faeces treatment. Results: The hydrochar had HHVs (23.2 - 25.2 MJ/kg) comparable to bituminous coal. The calorific value of hydrochar accounted for more than 90% of the total energy recovery. Around 78% of phosphorus in feedstock was retained in hydrochar ash, while 15% was in process water. 72% of the initial phosphorus can be recovered as struvite when deficient Mg and NH 4 are supplemented. The experiments with BLR showed stable operation for faecal waste treatment with an energy efficiency comparable to a commercial reactor system. Conclusions: This research presents a proof of concept for the hydrothermal treatment of faecal waste as an alternative sanitation technology, by providing a quantitative evaluation of the resource recovery of energy and nutrients. The experiments with the BLR demonstrate the technical feasibility of the low-cost reactor and support its further development on a larger scale to reach practical implementation.
Collapse
Affiliation(s)
- Jae Wook Chung
- Institute of Natural Resource Sciences, Zurich University of Applied Sciences, Wädenswil, 8820, Switzerland
| | - Gabriel Gerner
- Institute of Natural Resource Sciences, Zurich University of Applied Sciences, Wädenswil, 8820, Switzerland
| | - Ekaterina Ovsyannikova
- Institute of Agricultural Engineering, University of Hohenheim, Stuttgart, 70599, Germany
| | - Alexander Treichler
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Wädenswil, 8820, Switzerland
| | - Urs Baier
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Wädenswil, 8820, Switzerland
| | - Judy Libra
- Postharvest Technology, Leibniz Institute for Agricultural Engineering and Bioeconomy, Potsdam-Bornim, 14469, Germany
| | - Rolf Krebs
- Institute of Natural Resource Sciences, Zurich University of Applied Sciences, Wädenswil, 8820, Switzerland
| |
Collapse
|
24
|
Chung JW, Gerner G, Ovsyannikova E, Treichler A, Baier U, Libra J, Krebs R. Hydrothermal carbonization as an alternative sanitation technology: process optimization and development of low-cost reactor. OPEN RESEARCH EUROPE 2022; 1:139. [PMID: 37645161 PMCID: PMC10446067 DOI: 10.12688/openreseurope.14306.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/31/2022] [Indexed: 08/31/2023]
Abstract
Background: The provision of safe sanitation services is essential for human well-being and environmental integrity, but it is often lacking in less developed communities with insufficient financial and technical resources. Hydrothermal carbonization (HTC) has been suggested as an alternative sanitation technology, producing value-added products from faecal waste. We evaluated the HTC technology for raw human waste treatment in terms of resource recovery. In addition, we constructed and tested a low-cost HTC reactor for its technical feasibility. Methods: Raw human faeces were hydrothermally treated in a mild severity range (≤ 200 °C and ≤ 1 hr). The total energy recovery was analysed from the energy input, higher heating value (HHV) of hydrochar and biomethane potential of process water. The nutrient contents were recovered through struvite precipitation employing process water and acid leachate from hydrochar ash. A bench-scale low-cost reactor (BLR) was developed using widely available materials and tested for human faeces treatment. Results: The hydrochar had HHVs (23.2 - 25.2 MJ/kg) comparable to bituminous coal. The calorific value of hydrochar accounted for more than 90% of the total energy recovery. Around 78% of phosphorus in feedstock was retained in hydrochar ash, while 15% was in process water. 72% of the initial phosphorus can be recovered as struvite when deficient Mg and NH 4 are supplemented. The experiments with BLR showed stable operation for faecal waste treatment with an energy efficiency comparable to a commercial reactor system. Conclusions: This research presents a proof of concept for the hydrothermal treatment of faecal waste as an alternative sanitation technology, by providing a quantitative evaluation of the resource recovery of energy and nutrients. The experiments with the BLR demonstrate the technical feasibility of the low-cost reactor and support its further development on a larger scale to reach practical implementation.
Collapse
Affiliation(s)
- Jae Wook Chung
- Institute of Natural Resource Sciences, Zurich University of Applied Sciences, Wädenswil, 8820, Switzerland
| | - Gabriel Gerner
- Institute of Natural Resource Sciences, Zurich University of Applied Sciences, Wädenswil, 8820, Switzerland
| | - Ekaterina Ovsyannikova
- Institute of Agricultural Engineering, University of Hohenheim, Stuttgart, 70599, Germany
| | - Alexander Treichler
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Wädenswil, 8820, Switzerland
| | - Urs Baier
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Wädenswil, 8820, Switzerland
| | - Judy Libra
- Postharvest Technology, Leibniz Institute for Agricultural Engineering and Bioeconomy, Potsdam-Bornim, 14469, Germany
| | - Rolf Krebs
- Institute of Natural Resource Sciences, Zurich University of Applied Sciences, Wädenswil, 8820, Switzerland
| |
Collapse
|
25
|
Pecchi M, Baratieri M, Goldfarb JL, Maag AR. Effect of solvent and feedstock selection on primary and secondary chars produced via hydrothermal carbonization of food wastes. BIORESOURCE TECHNOLOGY 2022; 348:126799. [PMID: 35122980 DOI: 10.1016/j.biortech.2022.126799] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Hydrothermal carbonization is a thermochemical process that converts wet waste biomass into hydrochar, a renewable solid fuel that comprises a coal-like primary phase and an oily secondary phase. The varying oxidation rates of these phases may result in an inefficient energy recovery when combusting the hydrochar, as secondary char is more reactive. Brewer's spent grain, dairy cheese whey and food waste were hydrothermally carbonized at 250 °C. The hydrochars were extracted using six solvents to evaluate the hydrochar partitioning between primary and secondary char phases. Feedstock nature and solvent selection impact the amount and composition of these phases detected. For lipid-rich feedstocks, ethanol extracts up to 50 wt% secondary char enriched in liquid fuel precursors from a solid primary char with enhanced coal-like characteristics. For substrates rich in carbohydrates, proteins, and lignocellulose, less secondary char is produced. Acetone and dichloromethane remove the oily secondary char and maximize primary char yield.
Collapse
Affiliation(s)
- Matteo Pecchi
- Department of Biological & Environmental Engineering, College of Agriculture and Life Sciences, Cornell University, USA; Faculty of Science and Technology, Free University of Bolzano, Italy
| | - Marco Baratieri
- Faculty of Science and Technology, Free University of Bolzano, Italy
| | - Jillian L Goldfarb
- Department of Biological & Environmental Engineering, College of Agriculture and Life Sciences, Cornell University, USA.
| | - Alex R Maag
- Department of Biological & Environmental Engineering, College of Agriculture and Life Sciences, Cornell University, USA
| |
Collapse
|
26
|
Co-Processing Lignocellulosic Biomass and Sewage Digestate by Hydrothermal Carbonisation: Influence of Blending on Product Quality. ENERGIES 2022. [DOI: 10.3390/en15041418] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Hydrothermal carbonisation (HTC) can be integrated with anaerobic digestion (AD) for the treatment of digestate, resulting in a solid hydrochar or bio-coal and a process water, which can be recirculated back into AD to produce biogas. The properties of digestate-derived hydrochars do not lend themselves to producing high quality bio-coal and blending with lignocellulosic feedstocks can improve its properties. This study investigates the co-processing of sewage sludge (SS) digestate with three lignocellulosic biomass (grass, privet hedge, and woodchip). The calorific value of the resulting bio-coal is increased following co-processing, although feedstock interactions result in non-additive behaviour. The largest increase in calorific value was observed for co-processing with woodchip. There is evidence for non-additive partitioning of metals during co-processing resulting in only moderate improvements in ash chemistry during combustion. Co-processing also effects the composition of process waters, influencing the potential for biogas production. Experimental biomethane potential (BMP) tests indicate that grass clippings are the most suitable co-feedstock for maintaining both calorific value and biogas production. However, above 200 °C, BMP yields appear to decrease, suggesting the process water may become more inhibitory. Co-processing with wood waste and privet hedge produce the higher CV bio-coal but significantly reduced BMP.
Collapse
|
27
|
Murillo HA, Pagés-Díaz J, Díaz-Robles LA, Vallejo F, Huiliñir C. Valorization of oat husk by hydrothermal carbonization: Optimization of process parameters and anaerobic digestion of spent liquors. BIORESOURCE TECHNOLOGY 2022; 343:126112. [PMID: 34648962 DOI: 10.1016/j.biortech.2021.126112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
The hydrothermal carbonization (HTC) optimization of oat husk was performed using a response surface methodology. Furthermore, anaerobic digestion (AD) of spent liquor and hydrochar addition were evaluated in the biomethane potential (BMP) test. Results found that temperature influences the most in the studied responses (i.e., mass yield (MY) and higher heating value (HHV)). Optimal hydrochar MY (53.8%) and HHV (21.5 MJ/kg) were obtained for 219.2 °C, 30 min, and 0.08 of biomass/water ratio. A successful prediction capability of the optimization approach was observed, archiving an error < 1% between predicted and validated responses. The BMP experiment showed the feasibility of spent liquor as a potential substrate to be treated by AD (144 NmLCH4/gCOD). Hydrochar boosted the methane production of spent liquor increasing up to 17% compared to digestion with no hydrochar addition. These findings provide new insights regarding oat husk valorization by integrating HTC and AD for energy production.
Collapse
Affiliation(s)
- Herman A Murillo
- Departamento de Ingeniería Química, Universidad de Santiago de Chile, Chile; Programa Centro de Valorización de Residuos y Economía Circular, Chile
| | - Jhosané Pagés-Díaz
- Departamento de Ingeniería Química, Universidad de Santiago de Chile, Chile; Laboratorio de Biotecnología Ambiental, Universidad de Santiago de Chile, Chile
| | - Luis A Díaz-Robles
- Departamento de Ingeniería Química, Universidad de Santiago de Chile, Chile; Programa Centro de Valorización de Residuos y Economía Circular, Chile.
| | - Fidel Vallejo
- Departamento de Ingeniería Química, Universidad de Santiago de Chile, Chile; Programa Centro de Valorización de Residuos y Economía Circular, Chile
| | - César Huiliñir
- Departamento de Ingeniería Química, Universidad de Santiago de Chile, Chile; Laboratorio de Biotecnología Ambiental, Universidad de Santiago de Chile, Chile
| |
Collapse
|
28
|
Malool ME, Keshavarz Moraveji M, Shayegan J. Optimized production, Pb(II) adsorption and characterization of alkali modified hydrochar from sugarcane bagasse. Sci Rep 2021; 11:22328. [PMID: 34785737 PMCID: PMC8595365 DOI: 10.1038/s41598-021-01825-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/02/2021] [Indexed: 11/08/2022] Open
Abstract
Today, sugarcane bagasse (SB) is used for bioethanol and biodiesel production, energy generation, and adsorbent synthesis. The goal of this project is to determine the optimized conditions for producing adsorbent from sugarcane bagasse using hydrothermal carbonization (HTC) and KOH activation. To optimize process parameters such as reaction temperature, residence time, ZnCl2/SB mixing ratios, and water/SB mixing ratios, response surface methodology was used. The results revealed that the optimum modified adsorption occurred at 180 °C, 11.5 h, a water to biomass ratio of (5:1), and a ZnCl2 to precursor ratio of (3.5:1). The physicochemical features of optimum activated hydrochar were investigated, as well as batch adsorption experiments. The pseudo-second-order kinetic model and the Langmuir isotherm model were found to fit the experimental results in batch adsorption studies [[Formula: see text] (mg/g)]. Thermodynamic experiments further confirmed the spontaneous and exothermic adsorption mechanism.
Collapse
Affiliation(s)
- Mohamad Ebrahim Malool
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Avenue, 1591634311, Tehran, Iran
| | - Mostafa Keshavarz Moraveji
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Avenue, 1591634311, Tehran, Iran.
| | - Jalal Shayegan
- Chemical and Petroleum Engineering Department of Sharif University of Technology, Tehran, Iran
| |
Collapse
|
29
|
Zhao X, Li M, Zhai F, Hou Y, Hu R. Phosphate modified hydrochars produced via phytic acid-assisted hydrothermal carbonization for efficient removal of U(VI), Pb(II) and Cd(II). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 298:113487. [PMID: 34411801 DOI: 10.1016/j.jenvman.2021.113487] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/01/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Phosphate species can complex with nuclides and heavy metals from aqueous solutions strongly. The introduction of phosphate groups onto the surface of biochar sorbents (mostly <1.0 at.% of P) is highly desired. In this study, phosphate modified hydrochars (HTBs) were prepared through the hydrothermal carbonization of bamboo sawdust with various duration (2, 12, 24 h) in the presence of phytic acid (0-70 wt%). The results showed that the addition of PA with a low concentration of 10 wt% carbonized at 2 h generated hydrogen protons to etch the pristine sawdust, inducing the granulation of surfaces and a 5.5-fold enhancement of surface area. While HTBs carbonized with increasing PA concentrations (30-70 wt%) and longer duration (12 and 24 h) presented more carbonaceous particles with rising sizes from <100 nm to 2.5 μm, which should be due to the cross-linkage of dehydrated phosphate-containing organic carbon components to the matrix, enabling the resultful surface modification (maximum of 2.1 wt% of P). The uptake of U(VI), Pb(II) and Cd(II) on HTBs was investigated given various geochemical conditions including contact time, pH, ionic strength, humic acid and temperature. HTBs could capture U(VI), Pb(II) and Cd(II) efficiently from the ideal and simulated wastewaters, and be reused well after six recycles. This work opened a new strategy for the potential of phosphate-hydrochars in the aqueous remediation.
Collapse
Affiliation(s)
- Xin Zhao
- Graduate Department, Civil Aviation Flight University of China, Guanghan Sichuan, 618307, China
| | - Meng Li
- Graduate Department, Civil Aviation Flight University of China, Guanghan Sichuan, 618307, China
| | - Fuqiang Zhai
- Chongqing Key Laboratory of Materials Surface & Interface Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| | - Yanling Hou
- Chongqing Gearbox CO. Ltd, Chongqing, 402263, China
| | - Rui Hu
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
| |
Collapse
|
30
|
Li Q, Lin H, Zhang S, Yuan X, Gholizadeh M, Wang Y, Xiang J, Hu S, Hu X. Co-hydrothermal carbonization of swine manure and cellulose: Influence of mutual interaction of intermediates on properties of the products. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148134. [PMID: 34118669 DOI: 10.1016/j.scitotenv.2021.148134] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/10/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
Co-hydrothermal carbonization (HTC) of livestock manure and biomass might improve the fuel properties of the hydrochar due to the high reactivity of the biomass-derived intermediates with the abundant oxygen-containing functionalities. However, the complicated compositions make it difficult to explicit the specific roles of the individual components of biomass played in the co-HTC process. In this study, cellulose was used for co-HTC with swine manure to investigate the influence on the properties of the hydrochar. The yield of hydrochar obtained from co-HTC reduced gradually with the cellulose proportion increased, and the solid yield was lower than the theoretical value. This was because the cellulose-derived intermediates favored the stability of the fragments from hydrolysis of swine manure. The increased temperature resulted in the reduction of the hydrochar yield whereas the prolonged time enhanced the formation of solid product. The interaction of the co-HTC intermediates facilitated the formation of O-containing species, thus making the solid more oxygen- and hydrogen-rich with a higher volatility. In addition, the co-HTC affected the evolution of functionalities like -OH and CO during the thermal treatment of the hydrochar and altered its morphology by stuffing the pores from swine manure-derived solid with the microspheres from HTC of cellulose. The interaction of the varied intermediates also impacted the formation of amines, ketones, carboxylic acids, esters, aromatics and the polymeric products in distinct ways.
Collapse
Affiliation(s)
- Qingyin Li
- School of Material Science and Engineering, University of Jinan, Jinan 250022, China
| | - Haisheng Lin
- School of Material Science and Engineering, University of Jinan, Jinan 250022, China
| | - Shu Zhang
- Joint International Research Laboratory of Biomass Energy and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiangzhou Yuan
- Department of Chemical & Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Mortaza Gholizadeh
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, Iran
| | - Yi Wang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jun Xiang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Song Hu
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xun Hu
- School of Material Science and Engineering, University of Jinan, Jinan 250022, China.
| |
Collapse
|
31
|
Li Q, Zhang S, Gholizadeh M, Hu X, Yuan X, Sarkar B, Vithanage M, Mašek O, Ok YS. Co-hydrothermal carbonization of swine and chicken manure: Influence of cross-interaction on hydrochar and liquid characteristics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147381. [PMID: 33975118 DOI: 10.1016/j.scitotenv.2021.147381] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/27/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
Swine and chicken manures are abundant solid wastes that can be converted into carbonaceous materials through hydrothermal carbonization (HTC). Owing to their unique biochemical compositions, co-HTC of these two types of manures may have significant implications for the generated products. We investigated the co-HTC of swine manure and chicken manure to understand the influence of the interaction between contrasting manures on the properties of the derived products. The results indicated that co-HTC treatment enhanced the formation of solid product and improved the C and N contents, heating value, and energy yield of the resulting hydrochar. Regarding the ignition temperature and comprehensive combustion index, the combustion properties of the hydrochar were enhanced owing to the mutual effect of the HTC intermediates. Additionally, the interaction of the intermediates significantly impacted the transfer of nitrogenous species and generation of organic acids and organic polymers with fused-ring structures. Therefore, co-HTC processing of animal manures could potentially provide a sustainable pathway for the conversion of animal waste into solid products with improved characteristics compared to those produced by treating the two feedstocks separately.
Collapse
Affiliation(s)
- Qingyin Li
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Shu Zhang
- College of Material Science and Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Mortaza Gholizadeh
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, Iran
| | - Xun Hu
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, Shandong, China.
| | - Xiangzhou Yuan
- Department of Chemical & Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Binoy Sarkar
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Ondřej Mašek
- UK Biochar Research Centre, School of Geosciences, University of Edinburgh, Alexander Crum Brown Road, Crew Building, EH9 3JN Edinburgh, UK
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
32
|
Su W, Li X, Zhang H, Xing Y, Liu P, Cai C. Migration and transformation of heavy metals in hyperaccumulators during the thermal treatment: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:47838-47855. [PMID: 34302242 DOI: 10.1007/s11356-021-15346-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
The pollution of heavy metals (HMs) in the soil has become one of the important factors affecting the national environment and human health. Phytoremediation, as a technology to deal with HM pollution in soil, has been extensively studied and applied due to its sustainability and environmental friendliness. However, hyperaccumulators polluted by HMs need to be properly treated to avoid secondary pollution to the environment. This paper reviews the migration and transformation of HMs during the incineration, pyrolysis, gasification, and hydrothermal treatment of hyperaccumulators; comprehensively evaluates the advantages and disadvantages of each technology in the treatment of HM-enriched hyperaccumulators; and analyzes the current development status and unsolved problems in detail for each technology. Generally speaking, thermal treatment technology can fix most of the HMs of exchangeable fraction in biochar, reducing its bioavailability and biotoxicity. In addition, the application direction and research focus of the target product are discussed, and it is clarified that in the future, it is necessary to further optimize the reaction conditions and explore the mechanism of HM immobilization to maximize the immobilization of HMs and improve the quality and output of the target product.
Collapse
Affiliation(s)
- Wei Su
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xinyan Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hongshuo Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yi Xing
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Ping Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Changqing Cai
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
33
|
Wu L, Wei W, Wang D, Ni BJ. Improving nutrients removal and energy recovery from wastes using hydrochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:146980. [PMID: 33865133 DOI: 10.1016/j.scitotenv.2021.146980] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/04/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
Hydrothermal carbonization (HTC) is an eco-friendly, flexible and efficient way to valorise wet solid wastes, producing a carbon-rich material named as hydrochar. Considerable efforts have been devoted to studying the feasibility of using hydrochar in waste management to achieve the goal of circular economy. However, a comprehensive evaluation of the impacts of hydrochar on energy recovery from anaerobic digestion (AD), nutrient reclamation, and wastewater treatment is currently lacking. To understand the influence of hydrochar type on its application, this review will firstly introduce the mechanisms and biomass treatment for hydrochar preparation. Most recent studies regarding the improvement of methane (CH4) and volatile fatty acids (VFAs) production after dosing hydrochar in anaerobic digesters are quantitatively summarized and deeply discussed. The potential of using various hydrochar as slow-fertilizer to support the growth of plants are analysed by providing quantitative data. The usage of hydrochar in remediating pollutants from wastewater as effective adsorbent is also evaluated. Based on the review, we also address the challenges and demonstrate the opportunities for the future application of hydrochar in waste management. Conclusively, this review will not only provide a systematic understanding of the up-to-date developments of improving the nutrients removal and energy recovery from wastes by using hydrochar but also several new directions for the application of hydrochar in the future.
Collapse
Affiliation(s)
- Lan Wu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Dongbo Wang
- Key Laboratory of Environmental Biology and Pollution Control, College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia.
| |
Collapse
|
34
|
Speciation of Main Nutrients (N/P/K) in Hydrochars Produced from the Hydrothermal Carbonization of Swine Manure under Different Reaction Temperatures. MATERIALS 2021; 14:ma14154114. [PMID: 34361308 PMCID: PMC8347720 DOI: 10.3390/ma14154114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 11/17/2022]
Abstract
Hydrothermal carbonization (HTC) has been proved to be a promising technology for swine manure (SM) treatment. Currently, there is a lack of systematic understanding of the transformation characteristics of nutrient speciation in the HTC of SM. In this study, the speciation of the main nutrients (N/P/K) in SM-derived hydrochar produced at different reaction temperatures (200-280 °C) was investigated. The recovery of P (61.0-67.1%) in hydrochars was significantly higher than that of N (23.0-39.8%) and K (25.5-30.0%), and the increase in reaction temperature promoted the recovery of P and reduced the recovery of N. After the HTC treatment, the percentage of soluble/available P was reduced from 61.6% in raw SM to 4.0-23.9% in hydrochars, while that of moderately labile/slow-release P was improved from 29.2% in raw SM feedstock to 65.5-82.7%. An obvious reduction was also found in the amounts of available N (from 51.3% in raw SM feedstock to 33.0-40.5% in hydrochars). The percentages of slow-release N and residual N in hydrochars produced at 240 °C reached the maximum and minimum values (46.4% and 18.9%), respectively. A total of 49.5-58.3% of K retained in hydrochars was residual (invalid) potassium. From the perspective of the mobility and availability of N, P and K only, it was suggested that the HTC of SM should be carried out at 220-240 °C. Compared with the original SM, it is safer and more effective to use the SM-derived hydrochar as an organic fertilizer.
Collapse
|
35
|
Nzediegwu C, Naeth MA, Chang SX. Carbonization temperature and feedstock type interactively affect chemical, fuel, and surface properties of hydrochars. BIORESOURCE TECHNOLOGY 2021; 330:124976. [PMID: 33743274 DOI: 10.1016/j.biortech.2021.124976] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
The hydrothermal carbonization (HTC) process that converts wet/dry biomass to hydrochars (for use as solid fuels or adsorbents) needs to be optimized. We investigated the interactive effects of feedstock type and HTC temperature on chemical, fuel, and surface properties of hydrochars produced from lignocellulosic (canola straw, sawdust and wheat straw) and non-lignocellulosic feedstocks (manure pellet) at 180, 240 and 300 °C. Increased HTC temperature decreased hydrochar yield and surface functional group abundance, but increased hydrochar thermal stability due to increased devolatilization and carbonization. Hydrochar surface area ranged from 1.76 to 30.59 m2g-1, much lower than those of commercially available activated carbon. Lignocellulosic and non-lignocellulosic feedstocks were distinctly affected by HTC temperature due to variable carbonization from ashing. Hydrochars produced from lignocellulosic biomass at 240 and 300 °C resembled high-volatile bituminous coal. Hydrochars should be designed for specific applications such as fuels by selecting specific feedstock types and carbonization conditions.
Collapse
Affiliation(s)
- Christopher Nzediegwu
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta T6G2E3, Canada
| | - M Anne Naeth
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta T6G2E3, Canada
| | - Scott X Chang
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta T6G2E3, Canada.
| |
Collapse
|
36
|
González-Arias J, Carnicero A, Sánchez ME, Martínez EJ, López R, Cara-Jiménez J. Management of off-specification compost by using co-hydrothermal carbonization with olive tree pruning. Assessing energy potential of hydrochar. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 124:224-234. [PMID: 33631447 DOI: 10.1016/j.wasman.2021.01.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/31/2020] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
In this work the management of a waste called off-specification compost (OSC) was proposed via hydrothermal carbonization (HTC). The composition of this residue makes it not suitable for agronomic purposes because of the Spanish regulation requirements. Therefore, a way of management and/or valorisation needs to be found. The energy recovery through co-HTC with olive tree pruning (OTP) was evaluated. Blending of OSC with lignocellulosic biomass allows to obtain a coal-like product with physicochemical properties similar to those of a lignite, characterised by its high carbon content. Blends of 25, 50 and 75% of OSC with OTP were analysed. The individual OSC does not present good parameters for being used as solid fuel based on its chemical composition, however, the blend of 75% of biomass with 25% of OSC does. With a higher heating value of 26.19 MJ/kg, this blend shows the best energy yield and energy densification ratio. Thermogravimetric and kinetic analysis reveal that as biomass content in the blend increases, the more the hydrochar behaves as a solid fuel, therefore OSC can be used for energy purposes while its current use of landfill disposal can be reduced.
Collapse
Affiliation(s)
- J González-Arias
- Chemical and Environmental Bioprocess Engineering Group, Natural Resources Institute (IRENA), University of León, León, Spain
| | - A Carnicero
- Chemical and Environmental Bioprocess Engineering Group, Natural Resources Institute (IRENA), University of León, León, Spain
| | - M E Sánchez
- Chemical and Environmental Bioprocess Engineering Group, Natural Resources Institute (IRENA), University of León, León, Spain
| | - E J Martínez
- Chemical and Environmental Bioprocess Engineering Group, Natural Resources Institute (IRENA), University of León, León, Spain
| | - R López
- Department Area of Physical Chemistry, Faculty of Industrial Engineering, Universidad de León, 24071 León, Spain
| | - J Cara-Jiménez
- Chemical and Environmental Bioprocess Engineering Group, Natural Resources Institute (IRENA), University of León, León, Spain.
| |
Collapse
|
37
|
Leng L, Yang L, Leng S, Zhang W, Zhou Y, Peng H, Li H, Hu Y, Jiang S, Li H. A review on nitrogen transformation in hydrochar during hydrothermal carbonization of biomass containing nitrogen. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:143679. [PMID: 33307499 DOI: 10.1016/j.scitotenv.2020.143679] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/26/2020] [Accepted: 11/02/2020] [Indexed: 06/12/2023]
Abstract
Biomass is a type of renewable and sustainable resource that can be used to produce various fuels, chemicals, and materials. Nitrogen (N) in biomass such as microalgae should be reduced if it is used to produce fuels, while the retention of N is favorable if the biomass is processed to yield chemicals or materials with N-containing functional groups. The engineering of the removal and retention of N in hydrochar during hydrothermal carbonization (HTC) of biomass rich in protein is a research hot spot in the past decade. However, the N transformation during HTC has not yet been fully understood. In order to mediate the migration and transformation of N in hydrochar, the present review overviewed i) the characteristics of hydrochar and the original feedstock, ii) the possible N transformation behavior and mechanisms, and iii) the effect of factors such as feedstock and pyrolysis parameters such as temperature on hydrochar N. The high temperature and high protein content promote the dehydration, decarboxylation, and deamination of biomass to produce hydrochar solid fuel with reduced N content, while the Millard and Mannich reactions for lignocellulosic biomass rich in carbohydrate (cellulose, hemicellulose, and lignin) at medium temperatures (e.g., 180-240 °C) significantly promote the enrichment of N in hydrochar. The prediction models can be built based on properties of biomass and the processing parameters for the estimation of the yield and the content of N in hydrochar.
Collapse
Affiliation(s)
- Lijian Leng
- School of Energy Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Lihong Yang
- School of Energy Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Songqi Leng
- School of Energy Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Weijin Zhang
- School of Energy Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Haoyi Peng
- School of Energy Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Hui Li
- State Key Laboratory of the Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, China
| | - Yingchao Hu
- School of Energy Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Shaojian Jiang
- School of Energy Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Hailong Li
- School of Energy Science and Engineering, Central South University, Changsha, Hunan 410083, China.
| |
Collapse
|
38
|
Fernández-Sanromán Á, Lama G, Pazos M, Rosales E, Sanromán MÁ. Bridging the gap to hydrochar production and its application into frameworks of bioenergy, environmental and biocatalysis areas. BIORESOURCE TECHNOLOGY 2021; 320:124399. [PMID: 33220547 DOI: 10.1016/j.biortech.2020.124399] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 06/11/2023]
Abstract
Hydrothermal carbonization (HTC) is a facile, low-cost and eco-friendly thermal conversion process that has recently gained attention with a growing number of publications (lower 50 in 2000 to over 1500 in 2020). Despite being a promising technology, problems such as operational barriers, complex reaction mechanisms and scaling have to be solved to make it a commercial technology. To bridge this current gap, this review elaborates on the chemistry of the conversion of lignocellulosic biomass. Besides, a comprehensive overview of the influence of the HTC operational conditions (pH, temperature, water:biomass ratio, residence time and water recirculation) are discussed to better understand how hydrochar with desired properties can be efficiently produced. Large-scale examples of the application of HTC are also presented. Current applications of hydrochar in the fields of energy, biocatalysis and environment are reviewed. Finally, economic cost and future prospects are analyzed.
Collapse
Affiliation(s)
- Ángel Fernández-Sanromán
- CINTECX, Universidade de Vigo, Grupo de Bioingeniería y Procesos Sostenibles, Departamento de Ingeniería Química, Campus As Lagoas-Marcosende, 36310 Vigo, Spain
| | - Gabriela Lama
- CINTECX, Universidade de Vigo, Grupo de Bioingeniería y Procesos Sostenibles, Departamento de Ingeniería Química, Campus As Lagoas-Marcosende, 36310 Vigo, Spain
| | - Marta Pazos
- CINTECX, Universidade de Vigo, Grupo de Bioingeniería y Procesos Sostenibles, Departamento de Ingeniería Química, Campus As Lagoas-Marcosende, 36310 Vigo, Spain
| | - Emilio Rosales
- CINTECX, Universidade de Vigo, Grupo de Bioingeniería y Procesos Sostenibles, Departamento de Ingeniería Química, Campus As Lagoas-Marcosende, 36310 Vigo, Spain
| | - Maria Ángeles Sanromán
- CINTECX, Universidade de Vigo, Grupo de Bioingeniería y Procesos Sostenibles, Departamento de Ingeniería Química, Campus As Lagoas-Marcosende, 36310 Vigo, Spain.
| |
Collapse
|
39
|
Venna S, Sharma HB, Reddy PHP, Chowdhury S, Dubey BK. Landfill leachate as an alternative moisture source for hydrothermal carbonization of municipal solid wastes to solid biofuels. BIORESOURCE TECHNOLOGY 2021; 320:124410. [PMID: 33221642 DOI: 10.1016/j.biortech.2020.124410] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 06/11/2023]
Abstract
Hydrothermal carbonization (HTC) of yard waste (YW) and food waste (FW) was performed in landfill leachate (LL) to overcome the unnecessary exploitation of our limited natural resources. The physicochemical properties and combustion behavior of the resulting hydrochars were compared with those obtained using distilled water (DW) as reaction medium. Although performing HTC in LL led to lower hydrochar mass yields (43% YWH and 36% FWH) than DW (47.1% YWH and 41.5% FWH), it had minimal impact on the fuel characteristics of the hydrochars. Notably, the higher heating value of the hydrochars prepared in LL (22.8 MJ kg-1 for YWH and 30.2 MJ kg-1 for FWH) is comparable to that of conventional solid fuels, and may, therefore, be considered as inexpensive alternatives to fossil fuels. Overall, the results of this study conclusively suggest that the use of LL as an alternative moisture source can significantly improve the sustainability of HTC technology.
Collapse
Affiliation(s)
- Saikrishna Venna
- Department of Civil Engineering, National Institute of Technology Warangal, Telangana 506004, India
| | - Hari Bhakta Sharma
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - P Hari Prasad Reddy
- Department of Civil Engineering, National Institute of Technology Warangal, Telangana 506004, India
| | - Shamik Chowdhury
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Brajesh Kumar Dubey
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India; School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India.
| |
Collapse
|
40
|
Wang JX, Chen SW, Lai FY, Liu SY, Xiong JB, Zhou CF, Yi-Yu, Huang HJ. Microwave-assisted hydrothermal carbonization of pig feces for the production of hydrochar. J Supercrit Fluids 2020. [DOI: 10.1016/j.supflu.2020.104858] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
41
|
Li S, Zou D, Li L, Wu L, Liu F, Zeng X, Wang H, Zhu Y, Xiao Z. Evolution of heavy metals during thermal treatment of manure: A critical review and outlooks. CHEMOSPHERE 2020; 247:125962. [PMID: 32069728 DOI: 10.1016/j.chemosphere.2020.125962] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 01/14/2020] [Accepted: 01/18/2020] [Indexed: 06/10/2023]
Abstract
Manure treatment has become a focal issue in relation to current national policies on environmental and renewable energy matters. Heavy metals can be excreted with the animal manure, contributing to pollution of soil and water. Therefore, animal manure needs proper treatment before application to agricultural soils. Here, we review the species transformation of HMs and fate during incineration, pyrolysis, gasification and hydrothermal processing of animal manures. During thermal processes, 75%-90% of thermally stable HMs such as Cr, Ni, and Mn were concentrated in the solid-phase. HMs with less thermal stability such as Cd, As, Hg, and Pb are inclined to concentrate in the aqueous phase and gas phase, accounting for less than 5% of their total concentrations. In general, thermal processes transform HMs in the exchangeable fraction with high biotoxicity to oxidizable fraction or residual fraction with less bioavailability. In addition, the operating conditions and co-processing with other materials may influence the species transformation of HMs. Finally, recommendations for future research on the proper disposal and utilization of animal manure are proposed. More large-scale experiments are required to elucidate the precise mechanism behind the immobilization of HMs. The influence of additives (catalysts and HM stabilizers) and the influence of the type of solvent on HM transformation needs further study.
Collapse
Affiliation(s)
- Shuhui Li
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, 410128, PR China; Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha, 410128, PR China
| | - Dongsheng Zou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, 410128, PR China; Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha, 410128, PR China
| | - Longcheng Li
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, 410128, PR China; Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha, 410128, PR China
| | - Ling Wu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, 410128, PR China; Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha, 410128, PR China
| | - Fen Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, 410128, PR China; Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha, 410128, PR China
| | - Xinyi Zeng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, 410128, PR China; Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha, 410128, PR China
| | - Hua Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, 410128, PR China; Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha, 410128, PR China
| | - Yufeng Zhu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, 410128, PR China; Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha, 410128, PR China
| | - Zhihua Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, 410128, PR China; Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha, 410128, PR China.
| |
Collapse
|
42
|
Zhu NM, Wang LD, Li X, Deng Y, Zhang W. Activation or sequestration of heavy metals during hydrothermal process of swine manure: Interactions among metal species and particulates. JOURNAL OF HAZARDOUS MATERIALS 2020; 385:121549. [PMID: 31706750 DOI: 10.1016/j.jhazmat.2019.121549] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/21/2019] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
Whether the heavy metals in solid biomass is activated or sequestrated during hydrothermal process (HTP) is still debated. Herein, the speciation of light and heavy metals during HTP of swine manure (SM) was investigated to reveal the interactions among these metal species and specific particulates. With increasing temperature, most of exchangeable species and that bound to carbonates were released to liquid phase via ion exchange and acid dissolution. Dissociation of Fe-Mn oxides rarely happened in spite of anoxic atmosphere formed during HTP. Substantial decomposition of lignocelluloses hardly caused significant liberation of fraction bound to organics. Instead, a part of fraction in liquid phase was re-captured by new oxygen-containing functional groups on solid product surface to form fraction bound to organics. Donpeacorite, butschliite and iwakiite were formed as primary minerals, resulting in increase of residual fraction of all metals except for K and Mg at 250 °C. In summary, Cu, Zn and Pb species evolution was affected by speciation of K, Ca, Mg, Fe and Mn significantly. Cu, Zn, Pb, Fe, Mn and Ca were sequestrated whereas K and Mg were activated with enhancing temperature during HTP in terms of their mobility factors.
Collapse
Affiliation(s)
- Neng-Min Zhu
- Biogas Institute of Ministry of Agriculture, Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture, Chengdu 610041, China.
| | - Li-Ding Wang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Xia Li
- Biogas Institute of Ministry of Agriculture, Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture, Chengdu 610041, China
| | - Yu Deng
- Biogas Institute of Ministry of Agriculture, Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture, Chengdu 610041, China
| | - Wenbo Zhang
- School of Chemical Engineering, Key Laboratory for Utility of Environmental Friendly Composite Material and Biomass in University of Gansu Province, Northwest Minzu University, Lanzhou, 730030, China.
| |
Collapse
|
43
|
Xu J, Zhang J, Huang J, He W, Li G. Conversion of phoenix tree leaves into hydro-char by microwave-assisted hydrothermal carbonization. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.biteb.2019.100353] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
44
|
Wei J, Liu Y, Li J, Zhu Y, Yu H, Peng Y. Adsorption and co-adsorption of tetracycline and doxycycline by one-step synthesized iron loaded sludge biochar. CHEMOSPHERE 2019; 236:124254. [PMID: 31306978 DOI: 10.1016/j.chemosphere.2019.06.224] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 06/11/2019] [Accepted: 06/29/2019] [Indexed: 05/03/2023]
Abstract
Application of biochar as an adsorbent for wastewater treatment has obtained a tremendous research interest owning to their low cost and surface functionality. In this research, an iron loaded sludge biochar was successfully prepared through a simple and economical one-step modification hydrothermal method. The iron loaded sludge biochar possesses large amounts of surface organic functional groups (such as hydroxy, carboxyl and aromatic ring, etc.), smaller particle size (about 10 nm) as well as relative higher surface area (82.780 m2 g-1) than of the pristine one. The selective removal of two kinds of antibiotics by the prepared products was demonstrated. Experimental data was fitted to isotherm and kinetic models, and thermodynamic parameters were also calculated. In the single antibiotic system, the maximum adsorption amount of tetracycline (TC) and doxycycline (DOX) could reach 104.86 and 128.98 mg g-1 at 293.15 K, respectively. In the binary antibiotics system, there was an antagonistic effect between TC and DOX. Furthermore, the adsorption of TC was much more inhibited than that of DOX owning to its deferent steric hindrance of molecular structure.
Collapse
Affiliation(s)
- Jia Wei
- College of Architecture Engineering, Beijing University of Technology, Beijing, 100124, China.
| | - Yitao Liu
- College of Architecture Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Jun Li
- College of Architecture Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Yuhan Zhu
- College of Architecture Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Hui Yu
- College of Civil and Environmental Engineering, Temple University, 1947, N.12th Street Philadelphia PA 19122, USA
| | - Yongzhen Peng
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
45
|
Abstract
The paper presents, for the first time, the results of fuel characteristics of biochars from torrefaction (a.k.a., roasting or low-temperature pyrolysis) of elephant dung (manure). Elephant dung could be processed and valorized by torrefaction to produce fuel with improved qualities for cooking. The work aimed to examine the possibility of using torrefaction to (1) valorize elephant waste and to (2) determine the impact of technological parameters (temperature and duration of the torrefaction process) on the waste conversion rate and fuel properties of resulting biochar (biocoal). In addition, the influence of temperature on the kinetics of the torrefaction and its energy consumption was examined. The lab-scale experiment was based on the production of biocoals at six temperatures (200–300 °C; 20 °C interval) and three process durations of the torrefaction (20, 40, 60 min). The generated biocoals were characterized in terms of moisture content, organic matter, ash, and higher heating values. In addition, thermogravimetric and differential scanning calorimetry analyses were also used for process kinetics assessment. The results show that torrefaction is a feasible method for elephant dung valorization and it could be used as fuel. The process temperature ranging from 200 to 260 °C did not affect the key fuel properties (high heating value, HHV, HHVdaf, regardless of the process duration), i.e., important practical information for proposed low-tech applications. However, the higher heating values of the biocoal decreased above 260 °C. Further research is needed regarding the torrefaction of elephant dung focused on scaling up, techno-economic analyses, and the possibility of improving access to reliable energy sources in rural areas.
Collapse
|
46
|
Wang S, Zhou Z, Li F, Ye J, Cai Y, Zhang P, Nabi M. Thermal effects. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:1097-1102. [PMID: 31408917 DOI: 10.1002/wer.1201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/04/2019] [Accepted: 08/07/2019] [Indexed: 06/10/2023]
Abstract
This review focuses on the research literature published in 2018 relating to thermal effects in wastewater and solid waste treatment. This review is divided into the following sections: treatment of wastewater and sludge, removal and recovery of nitrogen and phosphorus, reduction and recovery of heavy metals, membrane technology, and treatment and disposal of solid wastes. PRACTITIONER POINTS: Thermal effect plays an important role in the treatment of wastewater and sewage sludge. Recovery of nitrogen and phosphorus from wastewater and sewage sludge offers an excellent feedstock for soil amendment. Increase of treatment temperature facilitates removal and recovery of heavy metals from water and soil environment.
Collapse
Affiliation(s)
- Siqi Wang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Zeyan Zhou
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Fan Li
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Junpei Ye
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Yajing Cai
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Panyue Zhang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Mohammad Nabi
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| |
Collapse
|
47
|
Lee J, Hong J, Jang D, Park KY. Hydrothermal carbonization of waste from leather processing and feasibility of produced hydrochar as an alternative solid fuel. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 247:115-120. [PMID: 31234046 DOI: 10.1016/j.jenvman.2019.06.067] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/28/2019] [Accepted: 06/14/2019] [Indexed: 06/09/2023]
Abstract
This study presents hydrothermal carbonization (HTC) of leather waste (LW) to produce hydrochar and feasibility of using produced hydrochar as solid fuel. The results showed that a relatively low HTC treatment temperature (180-200 °C) improved both the hydrochar product yield (>82.9% by dry weight) and its potential use as a solid fuel with in terms of its physicochemical properties and heating value. Furthermore, the hydrochar showed a higher heating value (5807-6508 kcal kg-1) compared to that of low-ranked coals (i.e., sub-bituminous and lignite), and stable combustion characteristics at a higher temperature. This allows the hydrochar to be considered as a suitable alternative to conventional fossil fuel. In addition, the decrease of nitrogen content in the hydrochar during the HTC treatment, and the inherent low sulfur content of LW could make hydrochar a more appealing clean energy source. The findings of this study suggest that the conversion of LW through HTC can be a useful method for waste management and energy recovery from abandoned biomass.
Collapse
Affiliation(s)
- Jongkeun Lee
- Department of Civil and Environmental Engineering, College of Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Jeongseop Hong
- Department of Civil and Environmental Engineering, College of Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Deokjin Jang
- Department of Civil and Environmental Engineering, College of Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Ki Young Park
- Department of Civil and Environmental Engineering, College of Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.
| |
Collapse
|
48
|
Lee J, Sohn D, Lee K, Park KY. Solid fuel production through hydrothermal carbonization of sewage sludge and microalgae Chlorella sp. from wastewater treatment plant. CHEMOSPHERE 2019; 230:157-163. [PMID: 31103861 DOI: 10.1016/j.chemosphere.2019.05.066] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/02/2019] [Accepted: 05/09/2019] [Indexed: 05/17/2023]
Abstract
This study presents co-hydrothermal treatment of primary sludge (PS) from wastewater treatment plant (WWTP) and Chlorella sp., cultivated using WWTP effluent, and feasibility of using produced hydrochar as solid fuel. The results showed that properties of PS were improved through blending with Chlorella sp., in terms of mixture hydrochar properties (physicochemical composition, calorific value, fuel ratio, product yield, and energy recovery potential). The coalification degree (1.63 of H/C and 0.41 of O/C) and calorific value (5810 kcal kg-1) of hydrochar at 210 °C, defined as suitable hydrothermal carbonization temperature for mixture hydrochar production, were comparable to those of low-ranked coals (i.e., sub-bituminous and lignite). The low ash (<16.01% by dry weight until treatment temperature of 210 °C) and sulfur (0.64-0.78% by dry weight for all treatment temperature) contents of mixture hydrochar make it more attractive solid fuel as clean energy source. The findings suggest that the co-hydrothermal treatment of biomass (generated sludge and cultivated microalgae from WWTP) helps energy self-sufficiency in municipal WWTP.
Collapse
Affiliation(s)
- Jongkeun Lee
- Department of Civil and Environmental Engineering, College of Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Donghwan Sohn
- Department of Civil and Environmental Engineering, College of Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Kwanyong Lee
- Department of Environment and Public Health, College of Health Science, Jangan University, 1182 Samcheonbyeongma-ro, Bongdam-eup, Hwaseong-si, Gyeonggi, 18331, Republic of Korea
| | - Ki Young Park
- Department of Civil and Environmental Engineering, College of Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.
| |
Collapse
|
49
|
Abstract
There is a significant interest in valorizing swine manure that is produced in enormous quantities. Therefore, considering the high moisture content in swine manure, the objective of this research was to convert manure slurry into hydrochars via hydrothermal carbonization and analyze the yields, pH, energy contents, and thermal and oxidation kinetic parameters. Experiments were performed in triplicate in 250 mL kettle reactors lined with polypropylene at 180 °C, 200 °C, 240 °C, 220 °C, and 260 °C for 24 h. Analyses of the results indicated that the process temperature affected the hydrochar yields, with yield generally decreasing with increasing temperature, but it had little effect on the composition of the hydrochar. The hydrochars were found to have higher volatile contents and H/C and O/C ratios and about 85% of the energy compared to coal. However, the presence of high fraction (35–38%) of ash in hydrochars is a serious concern and needs to be addressed before the complete utilization of hydrochars as fuels. The surface characterization of hydrochars coupled with wet chemistry experiments indicated that hydrochars were equipped with nitrogen functional groups with points of zero charges between 6.76 and 7.85, making them suitable as adsorbents and soil remediation agents and energy storage devices.
Collapse
|
50
|
Zheng C, Ma X, Yao Z, Chen X. The properties and combustion behaviors of hydrochars derived from co-hydrothermal carbonization of sewage sludge and food waste. BIORESOURCE TECHNOLOGY 2019; 285:121347. [PMID: 31004948 DOI: 10.1016/j.biortech.2019.121347] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 06/09/2023]
Abstract
The experiments of co-hydrothermal carbonization (co-HTC) of sewage sludge and food waste in different mixing ratio (30%, 50% and 70%) and process temperature (180 °C, 230 °C and 280 °C) were conducted in this paper. And the hydrochars properties and thermal behaviors were investigated to determine the effects of the conditions. The results showed that the hydrochars derived from co-HTC possessed higher C content, higher HHV compared with the hydrochar of sewage sludge. Meanwhile, it maintained low N, S and O content relatively. It ascribed to the carbonization, dehydration and decarboxylation reactions according to the ultimate analysis and proximate analysis. And the TGA indicated that the combustion behaviors got better compared with the hydrochar of sewage sludge. Therefore, the co-HTC with food waste is an effective way to transform sewage sludge into clean solid fuel in the field of energy utilization.
Collapse
Affiliation(s)
- Chupeng Zheng
- Guangdong Province Key Laboratory of Efficient and Clean Energy Utilization, School of Electric Power, South China University of Technology, Guangzhou 510640, China
| | - Xiaoqian Ma
- Guangdong Province Key Laboratory of Efficient and Clean Energy Utilization, School of Electric Power, South China University of Technology, Guangzhou 510640, China.
| | - Zhongliang Yao
- Guangdong Province Key Laboratory of Efficient and Clean Energy Utilization, School of Electric Power, South China University of Technology, Guangzhou 510640, China
| | - Xinfei Chen
- Guangdong Province Key Laboratory of Efficient and Clean Energy Utilization, School of Electric Power, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|