1
|
Zeng R, Yang LH, Zhai SY, Liu CY, Lin N, Ou-Yang QH, Xu YH, Wang AJ, Cheng HY. Phenol-driven ammonium recovery from coal chemical wastewater in a bioelectrochemical system (BES). JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137791. [PMID: 40024125 DOI: 10.1016/j.jhazmat.2025.137791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/28/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
Bioelectrochemical systems (BES) have gained considerable attention in the past decade as a potentially sustainable and cost-effective method for coal chemical wastewater (CCW) treatment. However, a scarcity of studies focusing on the recovery NH4+-N in the recycling treatment of CCW via BES technology. In this study, a BES-ammonium recovery system (BES-ARS) was proposed to remove phenol and NH4+-N simultaneously, while NH4+-N was further recovered in a downstream recovery unit. Through systematic evaluation, we identified optimal condition for both phenol and NH4+-N removal. Specifically, an influent phenol-to-ammonium ratio of 2.0 was found to be ideal for maximizing simultaneous removal efficiency. Additionally, an evaluation of the nitrogen distribution showed that 97.9 % of NH4+-N migrated to the cathode chamber, with 82.5 % of NH4+-N being recovered in the absorbent under optimal condition. Furthermore, the solution not only reduces operational costs by up to 68 % compared to conventional treatments, but also conserves energy. This study presents an efficient and environmentally friendly treatment method for treating CCW, while recovering NH4+-N as a valuable resource.
Collapse
Affiliation(s)
- Ran Zeng
- College of Civil Engineering, Nanjing Tech University, Nanjing 211800, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Li-Hui Yang
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Si-Yuan Zhai
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Cheng-Yan Liu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Na Lin
- Shenshui Hynar Water Group Co., Ltd., Shenzhen 518055, China
| | | | - Yan-Hua Xu
- College of Civil Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Hao-Yi Cheng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| |
Collapse
|
2
|
Haraguchi Y, Shimizu T. Crop cultivation without nitrogen fertiliser using nitrogen-fixing cyanobacterial extracts for low environmental impact. Sci Rep 2025; 15:18365. [PMID: 40419553 DOI: 10.1038/s41598-025-01741-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 05/08/2025] [Indexed: 05/28/2025] Open
Abstract
In this study, we attempted to develop a biological fertiliser using the nitrogen-fixing cyanobacterium, Trichormus sp. PCC7120, with the aim of constructing a sustainable farming method for growing crops without chemical fertilisers. We attempted to hydroponically culture two types of rice (Oryza sativa L. 'Sasanishiki' and 'Koshihikari'), broccoli (Brassica oleracea var. italica), and melon (Cucumis melo L.) using intracellular extracts from Trichormus sp. PCC7120, which was prepared using heat treatment or acid hydrolysis. Early crop growth, including length and weight, was compared among three groups: (i) pure water, (ii) chemical fertiliser, and (iii) Trichormus extract groups. Sasanishiki grew most efficiently in the 80% heat-treated and 2.5% acid-hydrolysed extracts than in pure water, whereas Koshihikari grew most efficiently in the 40% heat-treated extract than in pure water. Sasanishiki and Koshihikari consumed ammonium, potassium, and various proteinogenic amino acids in the Trichormus extract. Broccoli exhibited more length and weight when cultivated with 10-20% acid-hydrolysed extracts than in pure water and consumed glucose, along with phosphorus and glycine, in the extract. Melon exhibited more length and weight when cultivated with 10% acid-hydrolysed extracts than in pure water and actively consumed glucose, serine, glycine, and alanine in the extract. Crop growth with Trichormus extracts was comparable with that of the chemical fertiliser group. This report shows that ammonium, phosphorus, potassium, glucose, and amino acids in nitrogen-fixing cyanobacterial extracts contribute to crop growth, and these extracts may thus be valuable as biological fertilisers in crop cultivation.
Collapse
Affiliation(s)
- Yuji Haraguchi
- Institute of Advanced Biomedical Engineering and Science, TWIns, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science, TWIns, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
| |
Collapse
|
3
|
Cechanaviciute IA, Schuhmann W. Electrocatalytic Ammonia Oxidation Reaction: Selective Formation of Nitrite and Nitrate as Value-Added Products. CHEMSUSCHEM 2025; 18:e202402516. [PMID: 40099745 DOI: 10.1002/cssc.202402516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/06/2025] [Accepted: 02/10/2025] [Indexed: 03/20/2025]
Abstract
Ammonia (NH3) plays a pivotal role as a hydrogen carrier, offering a carbon-free energy alternative for sustainable energy systems. The ammonia electrooxidation reaction (AmOR) emerges as a promising avenue to leverage NH₃ in energy conversion and environmental applications. This review explores the multifaceted importance of NH3 oxidation through three primary strategies: its integration into fuel cell technology for clean energy generation, its use in wastewater treatment for ammonia removal, and its application in electrolyzer setups for producing value-added products. Special emphasis is placed on oxidizing NH3 to nitrite (NO2 -) and nitrate (NO3 -) in electrolyzers as a potential alternative to the energy-intensive Ostwald process. The review highlights recent advances in catalyst development for efficient NO2 -/NO3 - synthesis, the influence of the pH on reaction selectivity, and various reported experimental AmOR solutions. By addressing these critical aspects, this work aims to underscore the potential of NH3 oxidation in electrolyzers for sustainable energy solutions. Potential future research directions and challenges are also discussed.
Collapse
Affiliation(s)
- Ieva A Cechanaviciute
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| |
Collapse
|
4
|
Yeruva DK, Angelidaki I. Ammonia recovery from waste streams: Energy efficiency and performance of microbial electrochemical system and electrochemical system. Bioelectrochemistry 2025; 165:109007. [PMID: 40408809 DOI: 10.1016/j.bioelechem.2025.109007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 05/15/2025] [Accepted: 05/17/2025] [Indexed: 05/25/2025]
Abstract
Nutrient recovery from waste streams, particularly digestate from anaerobic digestion, represents a promising strategy for sustainable waste management and circular economy practices. This study evaluated the performance of electrochemical (ES) and Microbial electrochemical systems (MES) for ammonia recovery from digestate under varying voltages. Energy consumption, and natural pH increase in catholyte were investigated for increased recovery efficiency. The results demonstrate that MES and ES exhibited similar recovery rates, with ammonia recovery reaching approx. 49 % at 1.2 V, while at lower energy efficiency MES outperformed ES. At '0' voltage, MES achieved a baseline recovery of 31.85 %, significantly higher than ES (13.25 %), highlighting the contribution of microbial electrochemical activity in driving nutrient recovery with minimal energy input. MES exhibited remarkably lower energy consumption, requiring nine-fold less energy than ES at low applied voltages, owing to the synergistic effects of microbial activity and bioelectricity generation. Moreover, MES minimized ammonium transport losses and showed better stability in cathodic pH variations, favouring long-term operational viability. The findings in MES as a more sustainable alternative for ammonia recovery, emphasizing its potential to global carbon neutrality and operational costs in nutrient recycling processes.
Collapse
Affiliation(s)
- Dileep Kumar Yeruva
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Irini Angelidaki
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark.
| |
Collapse
|
5
|
Chen Q, Yang D, Chen X, Wang X, Dong B, Dai X. Vacuum ammonia stripping from liquid digestate: Effects of pH, alkalinity, temperature, negative pressure and process optimization. J Environ Sci (China) 2025; 149:638-650. [PMID: 39181674 DOI: 10.1016/j.jes.2024.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 08/27/2024]
Abstract
High ammonia-nitrogen digestate has become a key bottleneck limiting the anaerobic digestion of organic solid waste. Vacuum ammonia stripping can simultaneously remove and recover ammonia nitrogen, which has attracted a lot of attention in recent years. To investigate the parameter effects on the efficiency and mass transfer, five combination conditions (53 °C 15 kPa, 60 °C 20 kPa, 65 °C 25 kPa, 72 °C 35 kPa, and 81 °C 50 kPa) were conducted for ammonia stripping of sludge digestate. The results showed that 80% of ammonia nitrogen was stripped in 45 min for all experimental groups, but the ammonia transfer coefficient varied under different conditions, which increased with the rising of boiling point temperature, and reached the maximum value (39.0 mm/hr) at 81 °C 50 kPa. The ammonia nitrogen removal efficiency was more than 80% for 30 min vacuum stripping after adjusting the initial pH to above 9.5, and adjustment of the initial alkalinity also affects the pH value of liquid digestate. It was found that pH and alkalinity are the key factors influencing the ammonia nitrogen dissociation and removal efficiency, while temperature and vacuum mainly affect the ammonia nitrogen mass transfer and removal velocity. In terms of the mechanism of vacuum ammonia stripping, it underwent alkalinity destruction, pH enhancement, ammonia nitrogen dissociation, and free ammonia removal. In this study, two-stage experiments of alkalinity destruction and ammonia removal were also carried out, which showed that the two-stage configuration was beneficial for ammonia removal. It provides a theoretical basis and practical technology for the vacuum ammonia stripping from liquid digestate of organic solid waste.
Collapse
Affiliation(s)
- Qiuhong Chen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Donghai Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiang Chen
- YANGTZE Eco-Environment Engineering Research Center, National Engineering Research Center of Eco-environment Protection for Yangtze River Economic Belt, China Three Gorges Corporation, Wuhan 430010, China
| | - Xiankai Wang
- YANGTZE Eco-Environment Engineering Research Center, National Engineering Research Center of Eco-environment Protection for Yangtze River Economic Belt, China Three Gorges Corporation, Wuhan 430010, China
| | - Bin Dong
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
6
|
Kang JK, Lee YJ, Son CY, Park SJ, Lee CG. Alternative assessment of machine learning to polynomial regression in response surface methodology for predicting decolorization efficiency in textile wastewater treatment. CHEMOSPHERE 2025; 370:143996. [PMID: 39706488 DOI: 10.1016/j.chemosphere.2024.143996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/15/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
This study investigated the potential of machine learning (ML) as a substitute for polynomial regression in conventional response surface methodology (RSM) for decolorizing textile wastewater via a UV/H2O2 process. While polynomial regression offers limited adaptability, ML models provide superior flexibility in capturing nonlinear responses but are prone to overfitting, particularly with constrained RSM datasets. In this study, we evaluated decision tree (DT), random forest (RF), multilayer perceptron (MLP), and extreme gradient boosting (XGBoost) models with respect to a quadratic regression model. Our observations indicated that the ML models achieved higher R2 values, demonstrating better adaptability. However, when provided with additional data, the polynomial regression displayed a moderate predictability, whereas MLP and XGBoost exhibited indications of overfitting, while DT and RF remained robust. Both ANalysis Of VAriance (ANOVA) and SHapley Additive exPlanations (SHAP) analyses consistently emphasized the significance of operational factors (H2O2 concentration, reaction time, UV light intensity) in decolorization. The findings underscore the need for cautious validation when substituting ML models in RSM and highlight the complementary value of ML (particularly SHAP analysis) alongside conventional ANOVA for analyzing factor significance. This study offered significant insights into replacing polynomial regression with ML models in RSM.
Collapse
Affiliation(s)
- Jin-Kyu Kang
- Department of Marine Environmental Engineering, Gyeongsang National University, Gyeongsangnam-do, 53064, Republic of Korea
| | - Youn-Jun Lee
- Department of Energy Systems Research, Ajou University, Suwon, 16499, Republic of Korea
| | - Chae-Young Son
- Department of Environmental and Safety Engineering, Ajou University, Suwon, 16499, Republic of Korea
| | - Seong-Jik Park
- Department of Bioresources and Rural System Engineering, Hankyong National University, Anseong, 17579, Republic of Korea.
| | - Chang-Gu Lee
- Department of Energy Systems Research, Ajou University, Suwon, 16499, Republic of Korea; Department of Environmental and Safety Engineering, Ajou University, Suwon, 16499, Republic of Korea.
| |
Collapse
|
7
|
Bulacio Fischer PT, Di Trapani D, Laudicina VA, Mineo A, Muscarella SM, Mannina G. Adsorption and desorption of ammonium from treated wastewater by zeolite filled columns: An experimental study at the water resource recovery facility of Palermo University - Italy. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124241. [PMID: 39904239 DOI: 10.1016/j.jenvman.2025.124241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 12/28/2024] [Accepted: 01/18/2025] [Indexed: 02/06/2025]
Abstract
Water scarcity and mineral fertilizer depletion are becoming recognised environmental challenges worldwide. Treated wastewater (TWW) could be a potential resource for reusing water and nutrients, such as nitrogen (N), for fertilizers. This study explores the possibility of adopting columns filled with zeolite to recover ammonium (NH4+) from real TWW. Specifically, this study aimed to evaluate zeolite's adsorption capacity with different particle sizes arranged in columns and various flow rates to determine the most efficient way of NH4+ adsorption from a real wastewater treatment plant's effluent. The same zeolite with two different size diameters (0.5-1.0 mm and 2.0-5.0 mm) was tested using three different flow rates (1.2, 1.6 and 2.4 L h-1) to evaluate their NH4+ adsorption capacity. After the adsorption test, a desorption trial assessed the zeolite's desorption ability. The results showed that the highest flow rate increased the adsorption capacity of both zeolites by about 29% more than the lowest flow rate. Moreover, the 0.5-1.0 mm zeolite adsorbed approximately 60 mg more NH4+ than the 2.0-5.0 mm zeolite, highlighting the influence of particle size on adsorption capacity. Furthermore, the zeolite was characterised by a rapid NH4+ release since 44-78% of the adsorbed NH4+ was released in the first 30 min. The desorption test with the lowest flow rate achieved the highest amount of desorbed NH4+, up to 123-148% more than the higher flow rates. Results have shown that due to its adsorption capacity, zeolite can be used to recover NH4+ from treated wastewater (TWW) and potentially recycle resources in the agriculture field, contributing to the circular economy.
Collapse
Affiliation(s)
- Pedro Tomas Bulacio Fischer
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze ed. 4, 90128, Palermo, Italy.
| | - Daniele Di Trapani
- Engineering Department, University of Palermo, Viale delle Scienze ed. 8, 90128, Palermo, Italy
| | - Vito Armando Laudicina
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze ed. 4, 90128, Palermo, Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| | - Antonio Mineo
- Engineering Department, University of Palermo, Viale delle Scienze ed. 8, 90128, Palermo, Italy
| | - Sofia Maria Muscarella
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze ed. 4, 90128, Palermo, Italy
| | - Giorgio Mannina
- Engineering Department, University of Palermo, Viale delle Scienze ed. 8, 90128, Palermo, Italy
| |
Collapse
|
8
|
Mustafa Abdelrahman A, Khadir A, Santoro D, Jang E, Al-Omari A, Muller C, Bell KY, Walton J, Batstone D, Nakhla G. Vacuum evaporation coupled with anaerobic digestion for process intensification and ammonia recovery: Model development, validation and scenario analysis. BIORESOURCE TECHNOLOGY 2025; 416:131753. [PMID: 39510353 DOI: 10.1016/j.biortech.2024.131753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
A mathematical model for vacuum evaporation process was developed, which was experimentally validated at different initial pHs and temperatures for ammonia removal from anaerobically digested sludge. Six scenarios were evaluated by combining vacuum evaporation process with anaerobic digestion using anaerobic digestion model 1. These scenarios included a control, a pretreatment by vacuum evaporation, a post-treatment by vacuum evaporation at pH 9, a post-treatment by conventional evaporation (100 °C), an intensification with vacuum-concentrated recycled digestate back to the digester, and a second intensification at pH 9. Results indicated that using the evaporator as post-treatment at pH 9 or for intensification at pH 9 were the most favorable options, recovering more than 76 % of the nitrogen present in influent sludge with no negative effect on methane production. An economic analysis showed that the intensification at pH 9 was cost-neutral, significantly higher than the net present value of the control scenario (-22 M$).
Collapse
Affiliation(s)
| | - Ali Khadir
- Chemical and Biochemical Engineering, University of Western Ontario, Canada
| | - Domenico Santoro
- Chemical and Biochemical Engineering, University of Western Ontario, Canada; USP Technologies, Canada
| | | | | | | | | | | | - Damien Batstone
- Australian Centre for Water and Environmental Biotechnology, University of Queensland, Australia
| | - George Nakhla
- Chemical and Biochemical Engineering, University of Western Ontario, Canada.
| |
Collapse
|
9
|
Li Q, Lu H, Tian T, Zhang H, Cheng F, Li X, Sun H, Wang X, Zhou J. Bifunctional sludge-derived redox carbon dots with photoelectron storage and delivery properties for ammonia production by photosensitized Shewanella oneidensis MR-1. BIORESOURCE TECHNOLOGY 2024; 413:131539. [PMID: 39332696 DOI: 10.1016/j.biortech.2024.131539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 09/29/2024]
Abstract
Combining the light-harvesting capabilities of photosensitizers with microbial catalysis shows great potential in solar-driven biomanufacturing. However, little information is available about the effects of photosensitizers on the photoelectron transport during the dissimilatory nitrate reduction to ammonium (DNRA) process. Herein, redox carbon dots (CDs-500) were prepared from sludge via the pyrolysis-Fenton reaction and then used to construct a photosynthetic system with Shewanella oneidensis MR-1. The MR-1/CDs-500 photosynthetic system showed a 5.9-fold increase in ammonia production (4.9 mmol(NH3)·g-1(protein)·h-1) with a high selectivity of 94.0 %. The photoelectrons were found to be stored in CDs-500 and transferred into the cells. During the inward electron transport, the intracellular CDs-500 could be used as the direct photoelectron transfer stations between outer membrane cytochrome c and DNRA-related enzymes without the involvement of CymA and MtrA. This work provides a new method for converting waste into functional catalysts and increases solar-driven NH3 production to a greater extent.
Collapse
Affiliation(s)
- Qiansheng Li
- Key Laboratory of Industrial Ecology and Environmental Engineering School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hong Lu
- Key Laboratory of Industrial Ecology and Environmental Engineering School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Tian Tian
- Key Laboratory of Industrial Ecology and Environmental Engineering School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Haikun Zhang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Fanghao Cheng
- Key Laboratory of Industrial Ecology and Environmental Engineering School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xiaoman Li
- Key Laboratory of Industrial Ecology and Environmental Engineering School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Haocheng Sun
- SINOPEC (Dalian) Research Institute of Petroleum and Petrochemicals Co. Ltd, Dalian 116045, China.
| | - Xuehai Wang
- SINOPEC (Dalian) Research Institute of Petroleum and Petrochemicals Co. Ltd, Dalian 116045, China
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
10
|
Maggetti C, Pinelli D, Girometti E, Papa E, Medri V, Landi E, Avolio F, Frascari D. Development of an ion exchange process for ammonium removal and recovery from municipal wastewater using a metakaolin K-based geopolymer. CHEMOSPHERE 2024; 367:143559. [PMID: 39442583 DOI: 10.1016/j.chemosphere.2024.143559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
Ion exchange represents a promising process for ammonium removal from municipal wastewater (MWW), in order to recover it for fertilizer production. Previous studies on ammonium ion exchange neglected the assessment of process robustness and the optimization the desorption/recovery step. This study aimed at developing a continuous-flow process of ammonium removal/recovery based on a metakaolin K-based geopolymer, named G13. Process robustness was assessed by operating 7 adsorption/desorption cycles with two types of MWW. These tests resulted in satisfactory and constant performances: operating capacity at 40 mgN L-1 in the inlet = 12 mgN gdry sorbent-1, bed volumes of treated MWW at the selected breakpoint = 199-226, ammonium adsorption yield = 88-91%. Empty bed contact time (EBCT) was decreased from 10 to 5 min without any reduction in performances. The NH4+ adsorption process was effectively simulated by the Thomas model, allowing a model-based assessment of the effect of EBCT reductions on process performances. An innovative desorption procedure led to high ammonium recovery yields (86-100%) and to a desorbed product composed primarily of KNO3 (54%w) and NH4NO3 (39%w), two salts largely used in commercial fertilizers. The energy consumption of ammonium removal/recovery with G13 resulted 0.027 kWh m-3treated WW, with a relevant reduction in comparison to traditional nitrification/denitrification, whereas the operational cost resulted equal to 60-110% of the cost of the benchmark process. These results show that G13 is a promising material to recover ammonium in a circular economy approach.
Collapse
Affiliation(s)
- C Maggetti
- Department of Civil, Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum - University of Bologna, via Terracini 28, 40131, Bologna, Italy
| | - D Pinelli
- Department of Civil, Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum - University of Bologna, via Terracini 28, 40131, Bologna, Italy
| | - E Girometti
- Department of Civil, Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum - University of Bologna, via Terracini 28, 40131, Bologna, Italy
| | - E Papa
- National Research Council of Italy, Institute of Science, Technology and Sustainability for Ceramics (CNR-ISSMC former CNR-ISTEC), Via Granarolo 64, 48018, Faenza, RA, Italy
| | - V Medri
- National Research Council of Italy, Institute of Science, Technology and Sustainability for Ceramics (CNR-ISSMC former CNR-ISTEC), Via Granarolo 64, 48018, Faenza, RA, Italy
| | - E Landi
- National Research Council of Italy, Institute of Science, Technology and Sustainability for Ceramics (CNR-ISSMC former CNR-ISTEC), Via Granarolo 64, 48018, Faenza, RA, Italy
| | - F Avolio
- HERA SpA, Direzione Acqua, Viale Carlo Berti Pichat, 2/4, 40127, Bologna, Italy
| | - D Frascari
- Department of Civil, Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum - University of Bologna, via Terracini 28, 40131, Bologna, Italy.
| |
Collapse
|
11
|
Liu C, Gao S, Han X, Tian Y, Ma J, Wang W, Chen XW, Chen ML, Zhang Y. A violet light-emitting diode-based gas-phase molecular absorption device for measurement of nitrate and nitrite in environmental water. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 317:124423. [PMID: 38759395 DOI: 10.1016/j.saa.2024.124423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/24/2024] [Accepted: 05/06/2024] [Indexed: 05/19/2024]
Abstract
A simple and sensitive device for the detection of nitrite and nitrate in environmental waters was developed based on visible light gas-phase molecular absorption spectrometry. By integrating a detection cell (DC), semiconductor refrigeration temperature-controlling system (SRTCY), and nitrite reactor into a sequential injection analysis system, trace levels of nitrite and nitrate in complex matrices were successfully measured. A low energy-consuming light-emitting diode (violet, 400-405 nm) was coupled with a visible light-to-voltage converter (TSL257) to measure the gas-phase molecular absorption. To reduce the interference of water vapor, an SRTCY was used to condense the water vapor on-line before the gas-phase analyte entered the DC. The DC was radiatively heated by the SRTCY to avoid water vapor condensation in the light path. As a result, the obtained baseline noise reduced 3.75 times than that of without SRTCY. Under the optimized conditions, the device achieved limits of detection (3σ/k) of 0.055 and 0.36 mmol/L (0.77 and 5.04 mg N/L) for nitrite and nitrate, respectively, and the linear calibration ranges were 0.1-15 mmol/L (R2 = 0.9946) and 1-10 mmol/L (R2 = 0.9995), respectively. Precisions of 5.2 % and 9.0 % were achieved for ten successive determinations of 0.3 mmol/L nitrite and 1.0 mmol/L nitrate, and the analytical times for nitrite and nitrate determination were 5 and 13 min, respectively. This method was validated against standard methods and recovery tests, and it was applied to the measurement of nitrite and nitrate in environmental waters. Moreover, a device was designed to enable the field measurement of nitrite and nitrate in complex matrices.
Collapse
Affiliation(s)
- Chuanyu Liu
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Shuo Gao
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Xiaoxuan Han
- Research Center for Analytical Sciences, and Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Yong Tian
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China.
| | - Jiping Ma
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Weiliang Wang
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Xu-Wei Chen
- Research Center for Analytical Sciences, and Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Ming-Li Chen
- Research Center for Analytical Sciences, and Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Yanfeng Zhang
- Intelligent Policing Key Laboratory of Sichuan Province, Luzhou 646000, China.
| |
Collapse
|
12
|
Mollo L, Petrucciani A, Norici A. Monocultures vs. polyculture of microalgae: unveiling physiological changes to facilitate growth in ammonium rich-medium. PHYSIOLOGIA PLANTARUM 2024; 176:e14574. [PMID: 39400338 DOI: 10.1111/ppl.14574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024]
Abstract
Due to the increasing production of wastewater from human activities, the use of algal consortia for phytoremediation has become well-established over the past decade. Understanding how interspecific interactions and cultivation modes (monocultures vs. polyculture) influence algal growth and behaviour is a cutting-edge topic in both fundamental and applied science. Ammonium-rich growth media were used to challenge the monocultures of Auxenochlorella protothecoides, Chlamydomonas reinhardtii and Tetradesmus obliquus, as well as their polyculture; NO3 - was also used as the sole nitrogen chemical form in control cultures. The study primarily compared the growth, carbon and nitrogen metabolisms, and protein content of the green microalgae monocultures to those of their consortium. Overall, the cultivation mode significantly affected all the measured parameters. Notably, at 50 mM NH4 +, the assimilation rates of carbon and nitrogen were at least twice as high as those in the monoculture counterparts, and the protein content was three times more abundant.Additionally, the consortium's response to NH4 + toxicity was investigated by observing a linear relationship between the indicator of tolerance to NH4 + nutrition and the N isotopic signature. The study highlighted a high degree of acclimation through metabolic flexibility and diversity, as well as species abundance plasticity in the consortium, resulting in a functional resilience that would otherwise have been unattainable by the respective monocultures.
Collapse
Affiliation(s)
- Lorenzo Mollo
- Laboratory of Algal and Plant Physiology, Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Alessandra Petrucciani
- Laboratory of Algal and Plant Physiology, Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Alessandra Norici
- Laboratory of Algal and Plant Physiology, Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
- CIRCC, Consorzio Interuniversitario Reattività Chimica e Catalisi, Italy
| |
Collapse
|
13
|
Śniatała B, Al-Hazmi HE, Sobotka D, Zhai J, Mąkinia J. Advancing sustainable wastewater management: A comprehensive review of nutrient recovery products and their applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 937:173446. [PMID: 38788940 DOI: 10.1016/j.scitotenv.2024.173446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/25/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
Wastewater serves as a vital resource for sustainable fertilizer production, particularly in the recovery of nitrogen (N) and phosphorus (P). This comprehensive study explores the recovery chain, from technology to final product reuse. Biomass growth is the most cost-effective method, valorizing up to 95 % of nutrients, although facing safety concerns. Various techniques enable the recovery of 100 % P and up to 99 % N, but challenges arise during the final product crystallization due to the high solubility of ammonium salts. Among these techniques, chemical precipitation and ammonia stripping/ absorption have achieved full commercialization, with estimated recovery costs of 6.0-10.0 EUR kgP-1 and 4.4-4.8 £ kgN-1, respectively. Multiple technologies integrating biomass thermo-chemical processing and P and/or N have also reached technology readiness level TRL = 9. However, due to maturing regulatory of waste-derived products, not all of their products are commercially available. The non-homogenous nature of wastewater introduces impurities into nutrient recovery products. While calcium and iron impurities may impact product bioavailability, some full-scale P recovery technologies deliver products containing this admixture. Recovered mineral nutrient forms have shown up to 60 % higher yield biomass growth compared to synthetic fertilizers. Life cycle assessment studies confirm the positive environmental outcomes of nutrient recycling from wastewater to agricultural applications. Integration of novel technologies may increase wastewater treatment costs by a few percent, but this can be offset through renewable energy utilization and the sale of recovered products. Moreover, simultaneous nutrient recovery and energy production via bio-electrochemical processes contributes to carbon neutrality achieving. Interdisciplinary cooperation is essential to offset both energy and chemicals inputs, increase their cos-efficiency and optimize technologies and understand the nutrient release patterns of wastewater-derived products on various crops. Addressing non-technological factors, such as legal and financial support, infrastructure redesign, and market-readiness, is crucial for successfully implementation and securing the global food production.
Collapse
Affiliation(s)
- Bogna Śniatała
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza 11/12, Gdańsk, Poland.
| | - Hussein E Al-Hazmi
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza 11/12, Gdańsk, Poland
| | - Dominika Sobotka
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza 11/12, Gdańsk, Poland
| | - Jun Zhai
- Institute for Smart City of Chongqing University in Liyang, Chongqing University, Jiangsu 213300, China
| | - Jacek Mąkinia
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza 11/12, Gdańsk, Poland.
| |
Collapse
|
14
|
Sui J, Cui Y, Zhang J, Li S, Zhao Y, Bai M, Feng G, Wu H. Enhanced biomass production and harvesting efficiency of Chlamydomonas reinhardtii under high-ammonium conditions by powdered oyster shell. BIORESOURCE TECHNOLOGY 2024; 403:130904. [PMID: 38801957 DOI: 10.1016/j.biortech.2024.130904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Chlamydomonas reinhardtii prefers ammonium (NH4+) as a nitrogen source, but its late-stage growth under high-NH4+ concentrations (0.5 ∼ 1 g/L) is retarded due to medium acidification. In this study, oyster shell powders were shown to increase the tolerance of C. reinhardtii to NH4+ supplementation at 0.7 g/L in TAP medium in 1-L bubble-column bioreactors, resulting in a 22.9 % increase in biomass production, 62.1 % rise in unsaturated fatty acid accumulation, and 19.2 % improvement in harvesting efficiency. Powdered oyster shell mitigated medium acidification (pH 7.2-7.8) and provided dissolved inorganic carbon up to 8.02 × 103 μmol/L, facilitating a 76.3 % NH4+ consumption, release of up to 189 mg/L of Ca2+, a 42.1 % reduction in ζ-potential and 27.7 % increase in flocculation activity of microalgae cells. This study highlights a promising approach to utilize powdered oyster shell as a liming agent, supplement carbon source, and bio-flocculant for enhancing biomass production and microalgae harvesting in NH4+-rich environments.
Collapse
Affiliation(s)
- Jikang Sui
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China
| | - Yuxuan Cui
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China
| | - Jinku Zhang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China
| | - Shiyang Li
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China
| | - Yue Zhao
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China
| | - Mingkai Bai
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China
| | - Guangxin Feng
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China.
| | - Haohao Wu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China.
| |
Collapse
|
15
|
Niu Q, Lei S, Zhang G, Wu G, Tian Z, Chen K, Zhang L. Inhibition of Verticillium Wilt in Cotton through the Application of Pseudomonas aeruginosa ZL6 Derived from Fermentation Residue of Kitchen Waste. J Microbiol Biotechnol 2024; 34:1040-1050. [PMID: 38604803 PMCID: PMC11180921 DOI: 10.4014/jmb.2401.01022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024]
Abstract
To isolate and analyze bacteria with Verticillium wilt-resistant properties from the fermentation residue of kitchen wastes, as well as explore their potential for new applications of the residue. A total of six bacterial strains exhibiting Verticillium wilt-resistant capabilities were isolated from the biogas residue of kitchen waste fermentation. Using a polyphasic approach, strain ZL6, which displayed the highest antagonistic activity against cotton Verticillium wilt, was identified as belonging to the Pseudomonas aeruginosa. Bioassay results demonstrated that this strain possessed robust antagonistic abilities, effectively inhibiting V. dahliae spore germination and mycelial growth. Furthermore, P. aeruginosa ZL6 exhibited high temperature resistance (42°C), nitrogen fixation, and phosphorus removal activities. Pot experiments revealed that P. aeruginosa ZL6 fermentation broth treatment achieved a 47.72% biological control effect compared to the control group. Through activity tracking and protein mass spectrometry identification, a neutral metalloproteinase (Nml) was hypothesized as the main virulence factor. The mutant strain ZL6ΔNml exhibited a significant reduction in its ability to inhibit cotton Verticillium wilt compared to the strain P. aeruginosa ZL6. While the inhibitory activities could be partially restored by a complementation of nml gene in the mutant strain ZL6CMΔNml. This research provides a theoretical foundation for the future development and application of biogas residue as biocontrol agents against Verticillium wilt and as biological preservatives for agricultural products. Additionally, this study presents a novel approach for mitigating the substantial amount of biogas residue generated from kitchen waste fermentation.
Collapse
Affiliation(s)
- Qiuhong Niu
- College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan 473061, P.R.China
| | - Shengwei Lei
- College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan 473061, P.R.China
| | - Guo Zhang
- College of Agriculture and Engineering, Nanyang Vocational College of Agriculture, Nanyang, Henan 473000, P.R. China
| | - Guohan Wu
- College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan 473061, P.R.China
| | - Zhuo Tian
- College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan 473061, P.R.China
| | - Keyan Chen
- College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan 473061, P.R.China
| | - Lin Zhang
- College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan 473061, P.R.China
| |
Collapse
|
16
|
Shiraishi Y, Akiyama S, Hiramatsu W, Adachi K, Ichikawa S, Hirai T. Sunlight-Driven Nitrate-to-Ammonia Reduction with Water by Iron Oxyhydroxide Photocatalysts. JACS AU 2024; 4:1863-1874. [PMID: 38818053 PMCID: PMC11134386 DOI: 10.1021/jacsau.4c00054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 06/01/2024]
Abstract
The photocatalytic reduction of harmful nitrates (NO3-) in strongly acidic wastewater to ammonia (NH3) under sunlight is crucial for the recycling of limited nitrogen resources. This study reports that a naturally occurring Cl--containing iron oxyhydroxide (akaganeite) powder with surface oxygen vacancies (β-FeOOH(Cl)-OVs) facilitates this transformation. Ultraviolet light irradiation of the catalyst suspended in a Cl--containing solution promoted quantitative NO3--to-NH3 reduction with water under ambient conditions. The photogenerated conduction band electrons promoted the reduction of NO3--to-NH3 over the OVs. The valence band holes promoted self-oxidation of Cl- as the direct electron donor and eliminated Cl- was compensated from the solution. Photodecomposition of the generated hypochlorous acid (HClO) produced O2, facilitating catalytic reduction of NO3--to-NH3 with water as the electron donor in the entire system. Simulated sunlight irradiation of the catalyst in a strongly acidic nitric acid (HNO3) solution (pH ∼ 1) containing Cl- stably generated NH3 with a solar-to-chemical conversion efficiency of ∼0.025%. This strategy paves the way for sustainable NH3 production from wastewater.
Collapse
Affiliation(s)
- Yasuhiro Shiraishi
- Research Center
for Solar Energy Chemistry and Division of Chemical Engineering, Graduate
School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan
- Innovative Catalysis Science
Division, Institute for Open and Transdisciplinary Research Initiatives
(ICS-OTRI), Osaka University, Suita 565-0871, Japan
| | - Shotaro Akiyama
- Research Center
for Solar Energy Chemistry and Division of Chemical Engineering, Graduate
School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan
| | - Wataru Hiramatsu
- Research Center
for Solar Energy Chemistry and Division of Chemical Engineering, Graduate
School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan
| | - Kazutoshi Adachi
- Research Center
for Solar Energy Chemistry and Division of Chemical Engineering, Graduate
School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan
| | - Satoshi Ichikawa
- Research Center for Ultra-High
Voltage Electron Microscopy, Osaka University, Ibaraki 567-0047, Japan
| | - Takayuki Hirai
- Research Center
for Solar Energy Chemistry and Division of Chemical Engineering, Graduate
School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan
| |
Collapse
|
17
|
Reyes Alva R, Mohr M, Zibek S. Transmembrane Chemical Absorption Process for Recovering Ammonia as an Organic Fertilizer Using Citric Acid as the Trapping Solution. MEMBRANES 2024; 14:102. [PMID: 38786937 PMCID: PMC11123178 DOI: 10.3390/membranes14050102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
Membrane contactors are among the available technologies that allow a reduction in the amount of ammoniacal nitrogen released into the environment through a process called transmembrane chemical absorption (TMCA). This process can be operated with different substances acting as trapping solutions; however, strong inorganic acids have been studied the most. The purpose of this study was to demonstrate, at laboratory scale, the performance of citric acid as a capturing solution in TMCA processes for recovering ammonia as an organic fertilizer from anaerobic digestor reject water using membrane contactors in a liquid-liquid configuration and to compare it with the most studied solution, sulfuric acid. The experiments were carried out at 22 °C and 40 °C and with a feed water pH of 10 and 10.5. When the system was operated at pH 10, the rates of recovered ammonia from the feed solution obtained with citric acid were 10.7-16.5 percentage points (pp) lower compared to sulfuric acid, and at pH 10.5, the difference decreased to 5-10 pp. Under all tested conditions, the water vapor transport in the system was lower when using citric acid as the trapping solution, and at pH 10 and 40 °C, it was 5.7 times lower. When estimating the operational costs for scaling up the system, citric acid appears to be a better option than sulfuric acid as a trapping solution, but in both cases, the process was not profitable under the studied conditions.
Collapse
Affiliation(s)
- Ricardo Reyes Alva
- Institute of Interfacial Process Engineering and Plasma Technology (IGVP), University of Stuttgart, Pfaffenwaldring 31, 70569 Stuttgart, Germany;
| | - Marius Mohr
- Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Nobelstr. 12, 70569 Stuttgart, Germany
| | - Susanne Zibek
- Institute of Interfacial Process Engineering and Plasma Technology (IGVP), University of Stuttgart, Pfaffenwaldring 31, 70569 Stuttgart, Germany;
- Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Nobelstr. 12, 70569 Stuttgart, Germany
| |
Collapse
|
18
|
Le Q, Price GW. A review of the influence of heat drying, alkaline treatment, and composting on biosolids characteristics and their impacts on nitrogen dynamics in biosolids-amended soils. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 176:85-104. [PMID: 38266478 DOI: 10.1016/j.wasman.2024.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/02/2024] [Accepted: 01/12/2024] [Indexed: 01/26/2024]
Abstract
Application of biosolids to agricultural land has gained increasing attention due to their rich nutrient content. There are a variety of treatment processes for converting sewage sludge to biosolids. Different treatment processes can change the physicochemical properties of the raw sewage sludge and affect the dynamics of nutrient release in biosolids-amended soils. This paper reviews heat drying, alkaline treatment, and composting as biosolids treatment processes and discusses the effects of these treatments on biosolid nitrogen (N) content and availability. Most N in the biosolids remain in organic forms, regardless of biosolids treatment type but considerable variation exists in the mean values of total N and mineralizable N across different types of biosolids. The highest mean total N content was recorded in heat-dried biosolids (HDB) (4.92%), followed by composted biosolids (CB) (2.25%) and alkaline-treated biosolids (ATB) (2.14%). The mean mineralizable N value was similar between HDB and ATB, with a broader range of mineralizable N in ATB. The lowest N availability was observed in CB. Although many models have been extensively studied for predicting potential N mineralization in soils amended with organic amendments, limited research has attempted to model soil N mineralization following biosolids application. With biosolids being a popular, economical, and eco-friendly alternative to chemical N-fertilizers, understanding biosolids treatment effects on biosolids properties is important for developing a sound biosolids management system. Moreover, modeling N mineralization in biosolids-amended soils is essential for the adoption of sustainable farming practices that maximize the agronomic value of all types of biosolids.
Collapse
Affiliation(s)
- Qianhan Le
- Department of Engineering, Faculty of Agriculture, Dalhousie University, PO Box 550, Truro, NS B2N 5E3, Canada
| | - G W Price
- Department of Engineering, Faculty of Agriculture, Dalhousie University, PO Box 550, Truro, NS B2N 5E3, Canada.
| |
Collapse
|
19
|
Sheikh M, Harami HR, Rezakazemi M, Cortina JL, Aminabhavi TM, Valderrama C. Towards a sustainable transformation of municipal wastewater treatment plants into biofactories using advanced NH 3-N recovery technologies: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166077. [PMID: 37544447 DOI: 10.1016/j.scitotenv.2023.166077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/17/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Ammonia (NH3), as a prevalent pollutant in municipal wastewater discharges, can impair aquatic life and have a negatively impact on the environment. Proper wastewater treatment and management practices are essential to protect ecosystems and keep human populations healthy. Therefore, using highly effective NH3-N recovery technologies at wastewater treatment plants (WWTPs) is widely acknowledged as a necessity. In order to improve the overall efficiency of NH3 removal/recovery processes, innovative technologies have been generally applied to reduce its concentration when discharged into natural water bodies. This study reviews the current status of the main issues affecting NH3 recovery from municipal/domestic wastewater discharges. The current study investigated the ability to recover valuable resources, e.g., nutrients, regenerated water, and energy in the form of biogas through advanced and innovative methods in tertiary treatment to achieve higher efficiency towards sustainable wastewater and resource recovery facilities (W&RRFs). In addition, the concept of paradigm shifts from WWTP to a large/full scale W&RRF has been studied with several examples of conversion to innovative bio-factories producing materials. On the other hand, the carbon footprint and the high-energy consumption of the WWTPs were also considered to assess the sustainability of these facilities.
Collapse
Affiliation(s)
- Mahdi Sheikh
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/ Eduard Maristany 10-14, Campus Diagonal-Besòs, 08930 Barcelona, Spain; Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain
| | - Hossein Riasat Harami
- Department of Chemical and Biological Engineering, The University of Alabama, AL, USA
| | - Mashallah Rezakazemi
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Iran
| | - Jose Luis Cortina
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/ Eduard Maristany 10-14, Campus Diagonal-Besòs, 08930 Barcelona, Spain; Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain; Water Technology Center (CETaqua), Carretera d'Esplugues, 75, 08940 Cornellà de Llobregat, Spain
| | - Tejraj M Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka 580 031, India; School of Engineering, UPES, Bidholi, Dehradun, Uttarakhand 248 007, India
| | - Cesar Valderrama
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/ Eduard Maristany 10-14, Campus Diagonal-Besòs, 08930 Barcelona, Spain; Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain.
| |
Collapse
|
20
|
Luo J, Luo Y, Cheng X, Liu X, Wang F, Fang F, Cao J, Liu W, Xu R. Prediction of biological nutrients removal in full-scale wastewater treatment plants using H 2O automated machine learning and back propagation artificial neural network model: Optimization and comparison. BIORESOURCE TECHNOLOGY 2023; 390:129842. [PMID: 37820968 DOI: 10.1016/j.biortech.2023.129842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/13/2023]
Abstract
The effective control of total nitrogen (ETN) and total phosphorus (ETP) in effluent is challenging for wastewater treatment plants (WWTPs). In this work, automated machine learning (AutoML) (mean square error = 0.4200 ∼ 3.8245, R2 = 0.5699 ∼ 0.6219) and back propagation artificial neural network (BPANN) model (mean square error = 0.0012 ∼ 6.9067, R2 = 0.4326 ∼ 0.8908) were used to predict and analyze biological nutrients removal in full-scale WWTPs. Interestingly, BPANN model presented high prediction performance and general applicability for WWTPs with different biological treatment units. However, the AutoML candidate models were more interpretable, and the results showed that electricity carbon emission dominated the prediction. Meanwhile, increasing data volume and types of WWTP hardly affected the interpretable results, demonstrating its wide applicability. This study demonstrated the validity and the specific advantages of predicting ETN and ETP using H2O AutoML and BPANN model, which provided guidance on the prediction and improvement of biological nutrients removal in WWTPs.
Collapse
Affiliation(s)
- Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Yuting Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Xiaoshi Cheng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Xinyi Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Feng Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Fang Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Weijing Liu
- Jiangsu Provincial Key Laboratory of Environment Engineering, Jiangsu Provincial Academy of Environmental Science, Nanjing 210036, China
| | - Runze Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China.
| |
Collapse
|
21
|
Ghosh J, Haraguchi Y, Asahi T, Nakao Y, Shimizu T. Muscle cell proliferation using water-soluble extract from nitrogen-fixing cyanobacteria Anabaena sp. PCC 7120 for sustainable cultured meat production. Biochem Biophys Res Commun 2023; 682:316-324. [PMID: 37837752 DOI: 10.1016/j.bbrc.2023.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/16/2023] [Accepted: 10/04/2023] [Indexed: 10/16/2023]
Abstract
Muscle cell cultivation, specifically the culture of artificial meat from livestock-derived cells in serum-free media is an emerging technology and has attracted much attention. However, till now, the high cost of production and environmental load have been significant deterrents. This study aims to provide an alternate growth-promoting substance that is free from animal derivatives and lowers nitrogen pollution. We have extracted water-soluble compounds from the filamentous nitrogen-fixing cyanobacteria Anabaena sp. PCC 7120 by the ultrasonication method. The heat-inactivated and molecular weight separation experiments were conducted to identify the bioactive compound present in the extract. Finally, the compounds soluble in water (CW) containing the water-soluble pigment protein, phycocyanin as a bioactive compound, was added as a growth supplement to cultivate muscle cells such as C2C12 muscle cells and quail muscle clone 7 (QM7) cells to analyze the effectiveness of the extract. The results indicated that CW had a positive role in muscle cell proliferation. A three-dimensional (3-D) cell-dense structure was fabricated by culturing QM7 cells using the extract. Furthermore, the nitrogen-fixing cyanobacterial extract has vast potential for cultured meat production without animal sera in the near future.
Collapse
Affiliation(s)
- Jayeesha Ghosh
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan; Institute of Advanced Biomedical Engineering and Science, TWIns, Tokyo Women's Medical University, Tokyo, Japan
| | - Yuji Haraguchi
- Institute of Advanced Biomedical Engineering and Science, TWIns, Tokyo Women's Medical University, Tokyo, Japan
| | - Toru Asahi
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Yoichi Nakao
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science, TWIns, Tokyo Women's Medical University, Tokyo, Japan.
| |
Collapse
|
22
|
Gonzales RR, Nakagawa K, Kumagai K, Hasegawa S, Matsuoka A, Li Z, Mai Z, Yoshioka T, Hori T, Matsuyama H. Hybrid osmotically assisted reverse osmosis and reverse osmosis (OARO-RO) process for minimal liquid discharge of high strength nitrogenous wastewater and enrichment of ammoniacal nitrogen. WATER RESEARCH 2023; 246:120716. [PMID: 37837900 DOI: 10.1016/j.watres.2023.120716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/04/2023] [Accepted: 10/08/2023] [Indexed: 10/16/2023]
Abstract
Ammoniacal nitrogen (NH4N) is a ubiquitous nitrogen pollutant found in wastewater, which could cause eutrophication and severe environmental stress. It is therefore necessary to manage NH4N by enrichment and recovery for potential reuse, as well as to regulate the amount of environmental discharge. Hybridization of membrane-based processes is an attractive option for further enhancing water and nutrient reclamation from waste streams; thus, in this present work, a hybrid osmotically assisted reverse osmosis (OARO) and reverse osmosis (RO) process was demonstrated for subsequent ammoniacal nitrogen enrichment and wastewater discharge management. Using a commercially-available cellulose triacetate membrane module, model and real wastewater containing approximately 4,000ppm NH4N were effectively dewatered and enriched to a final NH4N content of 40,300ppm. This corresponds to enrichment of around 10 times and approximately 90% pure water recovery. The effective combination of both processes resulted in high efficiency, as well as economical and energy-saving benefits, as shown by the process performance and our preliminary techno-economic analysis. The specific energy consumption of the hybrid process projected to operate at a capacity of 2,000 m3h-1 was determined to be 8.8kWh m-3, or 0.56kWh kg-1 NH4Cl removed/recovered for an initial feed solution containing around 15,300ppm NH4Cl. Hybrid OARO and RO operation was able to achieve satisfactory enrichment by the OARO process and obtaining clean water by the RO process. The hybrid OARO-RO process has shown great potential as a suitable end-stage membrane-based process for wastewater dewatering and NH4N enrichment and recovery toward a circular economy and environmental management, as well as clean water recovery.
Collapse
Affiliation(s)
| | - Keizo Nakagawa
- Research Center for Membrane and Film Technology, Kobe University, Kobe, Japan; Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan.
| | - Kazuo Kumagai
- Research Center for Membrane and Film Technology, Kobe University, Kobe, Japan; Department of Chemical Science and Engineering, Kobe University, Kobe, Japan
| | - Susumu Hasegawa
- Research Center for Membrane and Film Technology, Kobe University, Kobe, Japan
| | - Atsushi Matsuoka
- Research Center for Membrane and Film Technology, Kobe University, Kobe, Japan; Department of Chemical Science and Engineering, Kobe University, Kobe, Japan
| | - Zhan Li
- Research Center for Membrane and Film Technology, Kobe University, Kobe, Japan
| | - Zhaohuan Mai
- Research Center for Membrane and Film Technology, Kobe University, Kobe, Japan
| | - Tomohisa Yoshioka
- Research Center for Membrane and Film Technology, Kobe University, Kobe, Japan; Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Tomoyuki Hori
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology, Kobe University, Kobe, Japan; Department of Chemical Science and Engineering, Kobe University, Kobe, Japan.
| |
Collapse
|
23
|
Feng L, Qiu T, Liu C. Study on adsorption of ammonia nitrogen by sodium-modified kaolin at calcination temperature. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:97063-97077. [PMID: 37584805 DOI: 10.1007/s11356-023-28874-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/15/2023] [Indexed: 08/17/2023]
Abstract
Natural kaolin (NK) is not used as a material for removal of ammonia nitrogen in wastewater because of its low ammonia adsorption capacity. In this study, sodium-modified kaolin adsorbent (NaCK) with high ammonia nitrogen adsorption capacity was prepared by NaOH modification of calcined NK, which was developed to address this problem. The adsorption properties were evaluated by batch static adsorption test. The results showed that when the initial concentration of ammonia nitrogen was 10 mg/L, pH = 8, and dosage of adsorbent was 1 g/L, the adsorption capacity of NaCK-600 for ammonia nitrogen was the best, reaching 6.23 mg/g, which was 34.6 times higher than that of NK (0.18 mg/g). Batch static adsorption test combined with adsorption kinetics, adsorption isothermal, and characteristic data showed that NaCK prepared at different temperatures had different adsorption mechanisms. Batch static adsorption test data of NaCK-600 was in good agreement with the pseudo-second-order model and Langmuir model, and the main mechanism of its adsorption of ammonia nitrogen was the ion exchange of NH4+ and Na+ in NaCK. After the third cycle, the removal rate of NaCK-600 was still up to 76.44%, which indicates that NaCK-600 has considerable potential for removal of ammonia nitrogen in wastewater and provides a new way for the application of kaolin in removal of ammonia nitrogen.
Collapse
Affiliation(s)
- Liya Feng
- Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Tingsheng Qiu
- Jiangxi University of Science and Technology, Ganzhou, 341000, China.
- Jiangxi Province Key Laboratory of Mining and Metallurgy Environmental Pollution Control, Jiangxi University of Science and Technology, Ganzhou, 341000, China.
| | - Chen Liu
- Jiangxi University of Science and Technology, Ganzhou, 341000, China
| |
Collapse
|
24
|
Bhattacharya A, Garg S, Chatterjee P. Examining current trends and future outlook of bio-electrochemical systems (BES) for nutrient conversion and recovery: an overview. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:86699-86740. [PMID: 37438499 DOI: 10.1007/s11356-023-28500-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/25/2023] [Indexed: 07/14/2023]
Abstract
Nutrient-rich waste streams from domestic and industrial sources and the increasing application of synthetic fertilizers have resulted in a huge-scale influx of reactive nitrogen and phosphorus in the environment. The higher concentrations of these pollutants induce eutrophication and foster degradation of aquatic biodiversity. Besides, phosphorus being non-renewable resource is under the risk of rapid depletion. Hence, recovery and reuse of the phosphorus and nitrogen are necessary. Over the years, nutrient recovery, low-carbon energy, and sustainable bioremediation of wastewater have received significant interest. The conventional wastewater treatment technologies have higher energy demand and nutrient removal entails a major cost in the treatment process. For these issues, bio-electrochemical system (BES) has been considered as sustainable and environment friendly wastewater treatment technologies that utilize the energy contained in the wastewater so as to recovery nutrients and purify wastewater. Therefore, this article comprehensively focuses and critically analyzes the potential sources of nutrients, working mechanism of BES, and different nutrient recovery strategies to unlock the upscaling opportunities. Also, economic analysis was done to understand the technical feasibility and potential market value of recovered nutrients. Hence, this review article will be useful in establishing waste management policies and framework along with development of advanced configurations with major emphasis on nutrient recovery rather than removal from the waste stream.
Collapse
Affiliation(s)
- Ayushman Bhattacharya
- Department of Civil Engineering, Indian Institute of Technology Hyderabad, Hyderabad, India, 502285
| | - Shashank Garg
- Department of Civil Engineering, Indian Institute of Technology Hyderabad, Hyderabad, India, 502285
| | - Pritha Chatterjee
- Department of Civil Engineering, Indian Institute of Technology Hyderabad, Hyderabad, India, 502285.
| |
Collapse
|
25
|
Dai Z, Chen C, Li Y, Zhang H, Yao J, Rodrigues M, Kuntke P, Han L. Hybrid Donnan dialysis-electrodialysis for efficient ammonia recovery from anaerobic digester effluent. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2023; 15:100255. [PMID: 36915297 PMCID: PMC10006519 DOI: 10.1016/j.ese.2023.100255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Ammonia recovery from wastewater is crucial, yet technology of low carbon emission and high ammonia perm-selectivity against complex stream compositions is urgently needed. Herein, a membrane-based hybrid process of the Donnan dialysis-electrodialysis process (DD-ED) was proposed for sustainable and efficient ammonia recovery. In principle, DD removes the majority of ammonia in wastewater by exploring the concentration gradient of NH4 + and driven cation (Na+) across the cation exchange membrane, given industrial sodium salt as a driving chemical. An additional ED stage driven by solar energy realizes a further removal of ammonia, recovery of driven cation, and replenishment of OH- toward ammonia stripping. Our results demonstrated that the hybrid DD-ED process achieved ammonia removal efficiency >95%, driving cation (Na+) recovery efficiency >87.1% for synthetic streams, and reduced the OH- loss by up to 78% compared to a standalone DD case. Ammonia fluxes of 98.2 gN m-2 d-1 with the real anaerobic digestion effluent were observed using only solar energy input at 3.8 kWh kgN -1. With verified mass transfer modeling, reasonably controlled operation, and beneficial recovery performance, the hybrid process can be a promising candidate for future nutrient recovery from wastewater in a rural, remote area.
Collapse
Affiliation(s)
- Zhinan Dai
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - Cong Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - Yifan Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - Haoquan Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - Jingmei Yao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - Mariana Rodrigues
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9 8911MA Leeuwarden P.O. Box 1113, 8900 CC, Leeuwarden, the Netherlands
- Environmental Technology, Wageningen University, Bornse Weilanden 9 6708 WG Wageningen P.O. Box 17, 6700 AA, Wageningen, the Netherlands
| | - Philipp Kuntke
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9 8911MA Leeuwarden P.O. Box 1113, 8900 CC, Leeuwarden, the Netherlands
- Environmental Technology, Wageningen University, Bornse Weilanden 9 6708 WG Wageningen P.O. Box 17, 6700 AA, Wageningen, the Netherlands
| | - Le Han
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| |
Collapse
|
26
|
Haraguchi Y, Kato Y, Inabe K, Kondo A, Hasunuma T, Shimizu T. Circular cell culture for sustainable food production using recombinant lactate-assimilating cyanobacteria that supplies pyruvate and amino acids. Arch Microbiol 2023; 205:266. [PMID: 37328623 DOI: 10.1007/s00203-023-03607-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 06/18/2023]
Abstract
Recently, we reported a circular cell culture (CCC) system using microalgae and animal muscle cells for sustainable culture food production. However, lactate accumulation excreted by animal cells in the system characterized by medium reuse was a huge problem. To solve the problem, as an advanced CCC, we used a lactate-assimilating cyanobacterium Synechococcus sp. PCC 7002, using gene-recombination technology that synthesises pyruvate from lactate. We found that the cyanobacteria and animal cells mutually exchanged substances via their waste media: (i) cyanobacteria used lactate and ammonia excreted by animal muscle cells, and (ii) the animal cells used pyruvate and some amino acids excreted by the cyanobacteria. Because of this, animal muscle C2C12 cells were amplified efficiently without animal serum in cyanobacterial culture waste medium in two cycles (first cycle: 3.6-fold; second cycle: 3.9-fold/three days-cultivation) using the same reuse medium. We believe that this advanced CCC system will solve the problem of lactate accumulation in cell culture and lead to efficient cultured food production.
Collapse
Affiliation(s)
- Yuji Haraguchi
- Institute of Advanced Biomedical Engineering and Science, TWIns, Tokyo Women's Medical University, 8-1 Kawada-Cho, Shinjuku-Ku, Tokyo, 162-8666, Japan.
| | - Yuichi Kato
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Kosuke Inabe
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Akihiko Kondo
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Tomohisa Hasunuma
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science, TWIns, Tokyo Women's Medical University, 8-1 Kawada-Cho, Shinjuku-Ku, Tokyo, 162-8666, Japan.
| |
Collapse
|
27
|
Zhou Y, Wang J. Detection and removal technologies for ammonium and antibiotics in agricultural wastewater: Recent advances and prospective. CHEMOSPHERE 2023; 334:139027. [PMID: 37236277 DOI: 10.1016/j.chemosphere.2023.139027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
With the extensive development of industrial livestock and poultry production, a considerable part of agricultural wastewater containing tremendous ammonium and antibiotics have been indiscriminately released into the aquatic systems, causing serious harms to ecosystem and human health. In this review, ammonium detection technologies, including spectroscopy and fluorescence methods, and sensors were systematically summarized. Antibiotics analysis methodologies were critically reviewed, including chromatographic methods coupled with mass spectrometry, electrochemical sensors, fluorescence sensors, and biosensors. Current progress in remediation methods for ammonium removal were discussed and analyzed, including chemical precipitation, breakpoint chlorination, air stripping, reverse osmosis, adsorption, advanced oxidation processes (AOPs), and biological methods. Antibiotics removal approaches were comprehensively reviewed, including physical, AOPs, and biological processes. Furthermore, the simultaneous removal strategies for ammonium and antibiotics were reviewed and discussed, including physical adsorption processes, AOPs, biological processes. Finally, research gaps and the future perspectives were discussed. Through conducting comprehensive review, future research priorities include: (1) to improve the stabilities and adaptabilities of detection and analysis techniques for ammonium and antibiotics, (2) to develop innovative, efficient, and low cost approaches for simultaneous removal of ammonium and antibiotics, and (3) to explore the underlying mechanisms that governs the simultaneous removal of ammonium and antibiotics. This review could facilitate the evolution of innovative and efficient technologies for ammonium and antibiotics treatment in agricultural wastewater.
Collapse
Affiliation(s)
- Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China; Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
28
|
Adeniyi A, Bello I, Mukaila T, Sarker NC, Hammed A. Trends in Biological Ammonia Production. BIOTECH 2023; 12:41. [PMID: 37218758 PMCID: PMC10204498 DOI: 10.3390/biotech12020041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/01/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023] Open
Abstract
Food production heavily depends on ammonia-containing fertilizers to improve crop yield and profitability. However, ammonia production is challenged by huge energy demands and the release of ~2% of global CO2. To mitigate this challenge, many research efforts have been made to develop bioprocessing technologies to make biological ammonia. This review presents three different biological approaches that drive the biochemical mechanisms to convert nitrogen gas, bioresources, or waste to bio-ammonia. The use of advanced technologies-enzyme immobilization and microbial bioengineering-enhanced bio-ammonia production. This review also highlighted some challenges and research gaps that require researchers' attention for bio-ammonia to be industrially pragmatic.
Collapse
Affiliation(s)
- Adewale Adeniyi
- Environmental and Conservation Sciences, North Dakota State University, Fargo, ND 58102, USA
| | - Ibrahim Bello
- Agricultural and Biosystems Engineering, North Dakota State University, Fargo, ND 58102, USA
| | - Taofeek Mukaila
- Environmental and Conservation Sciences, North Dakota State University, Fargo, ND 58102, USA
| | - Niloy Chandra Sarker
- Agricultural and Biosystems Engineering, North Dakota State University, Fargo, ND 58102, USA
| | - Ademola Hammed
- Agricultural and Biosystems Engineering, North Dakota State University, Fargo, ND 58102, USA
| |
Collapse
|
29
|
Adeniyi A, Bello I, Mukaila T, Monono E, Hammed A. Developing rumen mimicry process for biological ammonia synthesis. Bioprocess Biosyst Eng 2023:10.1007/s00449-023-02880-7. [PMID: 37166514 DOI: 10.1007/s00449-023-02880-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/03/2023] [Indexed: 05/12/2023]
Abstract
The ruminant rumen houses hyper-ammonia-producing bacteria (HAB) that produce ammonia with minimal energy use. Here we developed a mimicry process to produce bio-ammonia, a solution of ammonia and ammonium. The rumen microbes were used to ferment soybean (SYB), soybean protein isolate (SPI), and pepsin-hydrolysate (HP) for bio-ammonia production. The maximum bio-ammonia produced from SYB, SPI, and HP were 0.65, 1.2, and 1.1 g/L, respectively. The presence of non-protein in SYB hindered bio-ammonia production and the processing of SYB to SPI and HP significantly (p < 0.05) increased bio-ammonia production. HP was converted to bio-ammonia quicker than SPI suggesting that enzymatic hydrolysis increases bioprocessing efficiency. Metagenomic analysis of a sample culture revealed that the HAB population is predominantly Klebsiella quasivariicola (73%), Escherichia coli (6%), and Enterobacter cloacae (6%). The bioprocessing steps developed would enable industrial ammonia production to achieve a low CO2 footprint.
Collapse
Affiliation(s)
- Adewale Adeniyi
- Environmental and Conservation Sciences, North Dakota State University, Fargo, USA
| | - Ibrahim Bello
- Agricultural and Biosystems Engineering, North Dakota State University, Fargo, USA
| | - Taofeek Mukaila
- Environmental and Conservation Sciences, North Dakota State University, Fargo, USA
| | - Ewumbua Monono
- Agricultural and Biosystems Engineering, North Dakota State University, Fargo, USA
| | - Ademola Hammed
- Agricultural and Biosystems Engineering, North Dakota State University, Fargo, USA.
| |
Collapse
|
30
|
Devos P, Filali A, Grau P, Gillot S. Sidestream characteristics in water resource recovery facilities: A critical review. WATER RESEARCH 2023; 232:119620. [PMID: 36780748 DOI: 10.1016/j.watres.2023.119620] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/12/2022] [Accepted: 01/15/2023] [Indexed: 06/18/2023]
Abstract
This review compiles information on sidestream characteristics that result from anaerobic digestion dewatering (conventional and preceded by a thermal hydrolysis process), biological and primary sludge thickening. The objective is to define a range of concentrations for the different characteristics found in literature and to confront them with the optimal operating conditions of sidestream processes for nutrient treatment or recovery. Each characteristic of sidestream (TSS, VSS, COD, N, P, Al3+, Ca2+, Cl-, Fe2+/3+, Mg2+, K+, Na+, SO42-, heavy metals, micro-pollutants and pathogens) is discussed according to the water resource recovery facility configuration, wastewater characteristics and implications for the recovery of nitrogen and phosphorus based on current published knowledge on the processes implemented at full-scale. The thorough analysis of sidestream characteristics shows that anaerobic digestion sidestreams have the highest ammonium content compared to biological and primary sludge sidestreams. Phosphate content in anaerobic digestion sidestreams depends on the type of applied phosphorus treatment but is also highly dependent on precipitation reactions within the digester. Thermal Hydrolysis Process (THP) mainly impacts COD, N and alkalinity content in anaerobic digestion sidestreams. Surprisingly, the concentration of phosphate is not higher compared to conventional anaerobic digestion, thus offering more attractive recovery possibilities upstream of the digester rather than in sidestreams. All sidestream processes investigated in the present study (struvite, partial nitrification/anammox, ammonia stripping, membranes, bioelectrochemical system, electrodialysis, ion exchange system and algae production) suffer from residual TSS in sidestreams. Above a certain threshold, residual COD and ions can also deteriorate the performance of the process or the purity of the final nutrient-based product. This article also provides a list of characteristics to measure to help in the choice of a specific process.
Collapse
Affiliation(s)
| | - Ahlem Filali
- Université Paris-Saclay, INRAE, UR PROSE, F-92761, Antony, France
| | - Paloma Grau
- Ceit and Tecnun, Manuel de Lardizabal 15, 20018, San Sebastian, Spain
| | | |
Collapse
|
31
|
Otgonbayar T, Pérez-Calvo JF, Lucke M, Raiser T, Wehrli M, Mazzotti M. Development and optimization of a novel industrial process solution for stripping of carbon dioxide and ammonia from bio-process wastewater. Chem Eng Res Des 2023. [DOI: 10.1016/j.cherd.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
32
|
Boasiako CA, Zhou Z, Huo X, Ye T. Development of Pd-based catalysts for hydrogenation of nitrite and nitrate in water: A review. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130661. [PMID: 36587602 DOI: 10.1016/j.jhazmat.2022.130661] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Pd-based catalytic hydrogenation for nitrate decontamination has been the subject of extensive research over the past 30 years. Advances in computational simulation, nanomaterial synthesis, and experimental characterization in the past decade have generated new understandings of the reaction mechanisms, guided the development of various catalysts with enhanced performance, and brought revolutionary upgrades to conventional nitrate treatment technologies. However, technical and economic challenges are still limiting its large-scale implementation. In this review, we provide a brief summary of the up-to-date reaction pathways. We then critically examine the methods for the synthesis of supported Pd-based catalysts and the supports that are used for the immobilization of Pd-based catalysts, identifying candidate catalysts with the most promising future. To facilitate practical deployment and niche applications of catalytic hydrogenation, we introduce alternative easy-to-handle hydrogen carriers and cost-effective metal catalysts that can potentially substitute precious Pd. Afterwards, we emphasize the significance of new development in hybrid catalytic systems that couple catalytic processes with other modules, enabling economically and sustainably treating nitrate-contaminated water. Future research needs are accordingly proposed. Through this review, we aim to provide guidance for standardized catalyst synthesis strategies and candidate catalyst evaluation and motivate future research that produces catalysts with industrially relevant performance.
Collapse
Affiliation(s)
- Collins Antwi Boasiako
- Department of Civil and Environmental Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, United States
| | - Zhe Zhou
- Department of Civil and Environmental Engineering, The George Washington University, Washington DC 20052, United States
| | - Xiangchen Huo
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, United States
| | - Tao Ye
- Department of Civil and Environmental Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, United States.
| |
Collapse
|
33
|
Recovery of Ammonium from Biomass-Drying Condensate Via Ion Exchange and Its Valorization as a Fertilizer. Processes (Basel) 2023. [DOI: 10.3390/pr11030815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
In this study, an industrial biomass-drying wastewater condensate containing > 3200 mg/L NH4+ and >8900 mg/L CH3COO− was treated in ion-exchange columns for the recovery of NH4+. Two commercial resins (CS12GC and CS16GC) were studied on laboratory and pilot scales. CS16GC outperformed CS12GC by achieving better separation at the condensate temperature (60 °C), which was energy-efficient regarding NH4+ removal. K3PO4 was used for regeneration to produce a liquid compound fertilizer containing nutrient elements (N, K, and P) as a byproduct. The N/K ratio in the byproduct was found to be adjustable by varying the operating parameters. Regeneration with 2 mol/L K3PO4 gave a higher regeneration efficiency (97.67% at 3 BV and ~100% at 4 BV). The stability tests performed on a laboratory scale showed that the cyclic runs of the column separation process were steady and repeatable. Based on the outcomes of the laboratory-scale tests, the pilot-scale tests applied a loading volume of 7 BV. The pilot column purified the feed and achieved the target NH4+ level in the treated effluent within the seven tested cycles, revealing that the industrial application of the cation ion-exchange resin CS16GC is worth further study.
Collapse
|
34
|
Jang Y, Hou CH, Kwon K, Kang JS, Chung E. Selective recovery of lithium and ammonium from spent lithium-ion batteries using intercalation electrodes. CHEMOSPHERE 2023; 317:137865. [PMID: 36642144 DOI: 10.1016/j.chemosphere.2023.137865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Recycling lithium-ion batteries has recently become a major concern. Ammonia leaching is commonly employed in such battery recycling methods since it has various advantages such as low toxicity and excellent selectivity toward precious metals. In this study, an electrochemical system with intercalation-type electrodes was used to investigate the selective recovery of lithium and ammonium from ammonia battery leachate. Using an activated carbon electrode as a counter electrode, the selectivity of lithium from the lithium manganese oxide (LMO) electrode and the selectivity of ammonium from the nickel hexacyanoferrate (NiHCF) electrode were examined within the system. The LMO//NiHCF system was next evaluated for lithium and ammonium recovery using a synthetic solution as well as real ammonia battery leachate. When compared to previous ammonium recovery methods, the results revealed good selectivity of lithium and ammonium from each LMO and NiHCF electrode with relatively low energy consumption for ammonium recovery (2.43 Wh g-N-1). The average recovery capacity of lithium was 1.39 mmol g-1 with a purity of up to 96.8% and the recovery capacity of ammonium was 1.09 mmol g-1 with 97.8% purity from the pre-treated leachate. This electrochemical method together with ammonia leaching can be a promising method for selective resource recovery from spent lithium-ion batteries.
Collapse
Affiliation(s)
- Yunjai Jang
- Department of Energy Systems Engineering, Seoul National University, 1 Gwanak-ro, Seoul, 08826, Republic of Korea; Research Institute of Energy and Resources, Seoul National University, 1 Gwanak-ro, Seoul, 08826, Republic of Korea
| | - Chia-Hung Hou
- Graduate Institute of Environmental Engineering, National Taiwan University, No. 1, Sec. 4. Roosevelt Rd., Taipei, 10617, Taiwan
| | - Kyungjung Kwon
- Department of Energy & Mineral Resources Engineering, Sejong University, 209, Neungdong-ro, Seoul, 05006, Republic of Korea
| | - Jin Soo Kang
- Department of Energy Systems Engineering, Seoul National University, 1 Gwanak-ro, Seoul, 08826, Republic of Korea; Research Institute of Energy and Resources, Seoul National University, 1 Gwanak-ro, Seoul, 08826, Republic of Korea
| | - Eunhyea Chung
- Department of Energy Systems Engineering, Seoul National University, 1 Gwanak-ro, Seoul, 08826, Republic of Korea; Research Institute of Energy and Resources, Seoul National University, 1 Gwanak-ro, Seoul, 08826, Republic of Korea.
| |
Collapse
|
35
|
Chinello D, Myrstad A, de Smet L, Miedema H. Modelling the required membrane selectivity for NO3⁻ recovery from effluent also containing Cl⁻, while saving water. Chem Eng Res Des 2023. [DOI: 10.1016/j.cherd.2023.03.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
36
|
Bhattacharya R, Mazumder D. Performance evaluation of moving bed bioreactor for simultaneous nitrification denitrification and phosphorus removal from simulated fertilizer industry wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:49060-49074. [PMID: 36763265 DOI: 10.1007/s11356-023-25708-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023]
Abstract
With increasing demand for agricultural production, chemical fertilizers are now being intensively manufactured and used to provide readily available nutrients in larger quantities, which often leach out and contaminate the groundwater source. At the same time, effluents from fertilizer plants also pollute water bodies, when disposed of without proper treatment. The present study evaluates nitrogen and phosphorus removal efficiencies in a single-stage aerobic moving bed bioreactor (MBBR) from diammonium phosphate (DAP)-spiked wastewater containing no organic carbon. To date, no similar study has been undertaken that treats fertilizer plant effluent or agricultural runoff without the aid of external carbon, where organic carbon is hypothesized to be supplied from endogenous degradation of biomass. Both denitrification and phosphorus removal occurs in the anoxic zones of deeper layers of the biofilm. The present investigation demonstrates the feasibility of the processes with the requirement of a two-stage MBBR for effective simultaneous nitrification, denitrification, and phosphorus removal (SNDPr) together with a polishing technology to bring down the phosphorus concentration within limits. A novel bio-carrier designed for efficient SND was used in the study, with a carrier filling ratio of 35% that supported the formation of deep biofilms creating anoxic zones in the inner surface. Identification of the bacterial species reflects the occurrence of simultaneous nitrification, denitrification, and phosphorous removal (SNDPr) in the reactor. A maximum ammonium nitrogen removal efficiency of 98% was recorded with 95% total nitrogen removal, 69% phosphorus removal, and 85% SND efficiency, indicating the applicability of the process with a tertiary phosphorus removal unit to lower the nutrient concentration of effluents prior to disposal.
Collapse
Affiliation(s)
- Roumi Bhattacharya
- Civil Engineering Department, Indian Institute of Engineering Science and Technology, Shibpur, India.
| | - Debabrata Mazumder
- Civil Engineering Department, Indian Institute of Engineering Science and Technology, Shibpur, India
| |
Collapse
|
37
|
Kar S, Singh R, Gurian PL, Hendricks A, Kohl P, McKelvey S, Spatari S. Life cycle assessment and techno-economic analysis of nitrogen recovery by ammonia air-stripping from wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159499. [PMID: 36257433 DOI: 10.1016/j.scitotenv.2022.159499] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Wastewater treatment plants (WWTPs) with anaerobic digestion of biosolids produce an ammonia-rich sidestream out of which nitrogen can be recovered through air stripping. Recovered ammonia can be used to produce ammonium sulfate (AS) for agricultural use, enabling the circular return of nitrogen as fertilizer to the food system. We investigate the cost and life cycle environmental impact of recovering ammonia from the sidestream of WWTPs for conversion to AS and compare it to AS production from the Haber Bosch process. We perform life cycle assessment (LCA) to investigate the environmental impact of AS fertilizer production by air-stripping ammonia from WWTP sidestreams at varying sidestream nitrogen concentrations. Techno-economic analysis (TEA) is performed to assess the break-even selling price of sidestream AS production at a WWTP in the City of Philadelphia. Greenhouse gas emissions for air-stripping technology range between 0.2 and 0.5 kg CO2e/kg AS, about six times lower than the hydrocarbon-based Haber-Bosch process, estimated at 2.5 kg CO2e/kg AS. Further reduction of greenhouse gas emissions is feasible by replacing fossil-based energy use in air-stripping process (82-98 % of net energy demand) with renewable sources. Also, a significant reduction in mineral depletion and improvement in human and ecosystem health are observed for the air-stripping approach. Furthermore, the break-even selling price for installing sidestream-based AS production at the Philadelphia's WWTP, considering capital and operating costs, is estimated at $0.046/kg AS (100 %), which is 92 % lower than the 2014 estimate of AS's average selling price at farms in the United States. We conclude that even with varying ammonia concentrations and high sidestream volume, air-stripping technology offers an environmentally and economically favorable option for implementing nitrogen recovery and simultaneous production of AS at WWTPs.
Collapse
Affiliation(s)
- Saurajyoti Kar
- Civil, Architectural & Environmental Engineering, Drexel University, Philadelphia 19104, United States.
| | - Rajveer Singh
- Civil, Architectural & Environmental Engineering, Drexel University, Philadelphia 19104, United States
| | - Patrick L Gurian
- Civil, Architectural & Environmental Engineering, Drexel University, Philadelphia 19104, United States
| | - Adam Hendricks
- Philadelphia Water Department, Philadelphia 19107, United States
| | - Paul Kohl
- Philadelphia Water Department, Philadelphia 19107, United States
| | - Sean McKelvey
- Philadelphia Water Department, Philadelphia 19107, United States
| | - Sabrina Spatari
- Civil, Architectural & Environmental Engineering, Drexel University, Philadelphia 19104, United States; Civil and Environmental Engineering, Technion Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
38
|
Sniatala B, Kurniawan TA, Sobotka D, Makinia J, Othman MHD. Macro-nutrients recovery from liquid waste as a sustainable resource for production of recovered mineral fertilizer: Uncovering alternative options to sustain global food security cost-effectively. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159283. [PMID: 36208738 DOI: 10.1016/j.scitotenv.2022.159283] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/27/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Global food security, which has emerged as one of the sustainability challenges, impacts every country. As food cannot be generated without involving nutrients, research has intensified recently to recover unused nutrients from waste streams. As a finite resource, phosphorus (P) is largely wasted. This work critically reviews the technical applicability of various water technologies to recover macro-nutrients such as P, N, and K from wastewater. Struvite precipitation, adsorption, ion exchange, and membrane filtration are applied for nutrient recovery. Technological strengths and drawbacks in their applications are evaluated and compared. Their operational conditions such as pH, dose required, initial nutrient concentration, and treatment performance are presented. Cost-effectiveness of the technologies for P or N recovery is also elaborated. It is evident from a literature survey of 310 published studies (1985-2022) that no single technique can effectively and universally recover target macro-nutrients from liquid waste. Struvite precipitation is commonly used to recover over 95 % of P from sludge digestate with its concentration ranging from 200 to 4000 mg/L. The recovered precipitate can be reused as a fertilizer due to its high content of P and N. Phosphate removal of higher than 80 % can be achieved by struvite precipitation when the molar ratio of Mg2+/PO43- ranges between 1.1 and 1.3. The applications of artificial intelligence (AI) to collect data on critical parameters control optimization, improve treatment effectiveness, and facilitate water utilities to upscale water treatment plants. Such infrastructure in the plants could enable the recovered materials to be reused to sustain food security. As nutrient recovery is crucial in wastewater treatment, water treatment plant operators need to consider (1) the costs of nutrient recovery techniques; (2) their applicability; (3) their benefits and implications. It is essential to note that the treatment cost of P and/or N-laden wastewater depends on the process applied and local conditions.
Collapse
Affiliation(s)
- Bogna Sniatala
- Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Gdańsk, Poland
| | - Tonni Agustiono Kurniawan
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia.
| | - Dominika Sobotka
- Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Gdańsk, Poland
| | - Jacek Makinia
- Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Gdańsk, Poland.
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| |
Collapse
|
39
|
Gonzales RR, Nakagawa K, Hasegawa S, Matsuoka A, Kumagai K, Yoshioka T, Matsuyama H. Ammoniacal nitrogen concentration by osmotically assisted reverse osmosis. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
40
|
Ochs P, Martin B, Germain-Cripps E, Stephenson T, van Loosdrecht M, Soares A. Techno-economic analysis of sidestream ammonia removal technologies: Biological options versus thermal stripping. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2023; 13:100220. [PMID: 36437889 PMCID: PMC9691913 DOI: 10.1016/j.ese.2022.100220] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 05/26/2023]
Abstract
Over the past twenty years, various commercial technologies have been deployed to remove ammonia (NH4-N) from anaerobic digestion (AD) liquors. In recent years many anaerobic digesters have been upgraded to include a pre-treatment, such as the thermal hydrolysis process (THP), to produce more biogas, increasing NH4-N concentrations in the liquors are costly to treat. This study provides a comparative techno-economic assessment of sidestream technologies to remove NH4-N from conventional AD and THP/AD dewatering liquors: a deammonification continuous stirred tank reactor (PNA), a nitrification/denitrification sequencing batch reactor (SBR) and thermal ammonia stripping process with an ammonia scrubber (STRIP). The SBR and PNA were based on full-scale data, whereas the STRIP was designed using a computational approach to achieve NH4-N removals of 90-95%. The PNA presented the lowest whole-life cost (WLC) over 40 years, with £7.7 M, while the STRIP had a WLC of £43.9 M. This study identified that THP dewatering liquors, and thus a higher ammonia load, can lead to a 1.5-3.0 times increase in operational expenditure with the PNA and the SBR. Furthermore, this study highlighted that deammonification is a capable and cost-effective nitrogen removal technology. Processes like the STRIP respond to current pressures faced by the water industry on ammonia recovery together with targets to reduce nitrous oxide emissions. Nevertheless, ammonia striping-based processes must further be demonstrated in WWTPs and WLC reduced to grant their wide implementation and replace existing technologies.
Collapse
Affiliation(s)
- Pascal Ochs
- Cranfield University, College Road, Cranfield, Bedford, MK43 0AL, United Kingdom
- Thames Water, Reading STW, Island Road, RG2 0RP, Reading, United Kingdom
| | - Ben Martin
- Thames Water, Reading STW, Island Road, RG2 0RP, Reading, United Kingdom
| | - Eve Germain-Cripps
- Thames Water, Reading STW, Island Road, RG2 0RP, Reading, United Kingdom
| | - Tom Stephenson
- Cranfield University, College Road, Cranfield, Bedford, MK43 0AL, United Kingdom
| | - Mark van Loosdrecht
- Delft University of Technology, Building 58, Van der Maasweg 9, 2629, Delft, Netherlands
| | - Ana Soares
- Cranfield University, College Road, Cranfield, Bedford, MK43 0AL, United Kingdom
| |
Collapse
|
41
|
Orner KD, Smith S, Nordahl S, Chakrabarti A, Breunig H, Scown CD, Leverenz H, Nelson KL, Horvath A. Environmental and Economic Impacts of Managing Nutrients in Digestate Derived from Sewage Sludge and High-Strength Organic Waste. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17256-17265. [PMID: 36409840 DOI: 10.1021/acs.est.2c04020] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Increasingly stringent limits on nutrient discharges are motivating water resource recovery facilities (WRRFs) to consider the implementation of sidestream nutrient removal or recovery technologies. To further increase biogas production and reduce landfilled waste, WRRFs with excess anaerobic digestion capacity can accept other high-strength organic waste (HSOW) streams. The goal of this study was to characterize and evaluate the life-cycle global warming potential (GWP), eutrophication potential, and economic costs and benefits of sidestream nutrient management and biosolid management strategies following digestion of sewage sludge augmented by HSOW. Five sidestream nutrient management strategies were analyzed using environmental life-cycle assessment (LCA) and life-cycle cost analysis (LCCA) for codigestion of municipal sewage sludge with and without HSOW. As expected, thermal stripping and ammonia stripping were characterized by a much lower eutrophication potential than no sidestream treatment; significantly higher fertilizer prices would be needed for this revenue stream to cover the capital and chemical costs. Composting all biosolids dramatically reduced the GWP relative to the baseline biosolid option but had slightly higher eutrophication potential. These complex environmental and economic tradeoffs require utilities to consider their social, environmental, and economic values in addition to present or upcoming nutrient discharge limits prior to making decisions in sidestream and biosolids management.
Collapse
Affiliation(s)
- Kevin D Orner
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
- National Science Foundation Engineering Research Center for Re-inventing the Nation's Urban Water Infrastructure, Berkeley, California 94720, United States
| | - Sarah Smith
- Energy Analysis and Environmental Impacts Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Sarah Nordahl
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
- Energy Analysis and Environmental Impacts Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Alicia Chakrabarti
- East Bay Municipal Utility District, Oakland, California 94607, United States
| | - Hanna Breunig
- Energy Analysis and Environmental Impacts Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Corinne D Scown
- Energy Analysis and Environmental Impacts Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Energy and Biosciences Institute, University of California, Berkeley, California 94720, United States
- Life-Cycle, Economics, and Agronomy Division, Joint BioEnergy Institute, Emeryville, California 94608, United States
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Harold Leverenz
- Department of Civil and Environmental Engineering, University of California, Davis, California 95616, United States
| | - Kara L Nelson
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
- National Science Foundation Engineering Research Center for Re-inventing the Nation's Urban Water Infrastructure, Berkeley, California 94720, United States
| | - Arpad Horvath
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
- National Science Foundation Engineering Research Center for Re-inventing the Nation's Urban Water Infrastructure, Berkeley, California 94720, United States
| |
Collapse
|
42
|
Kozaderova O, Kozaderov O, Niftaliev S. Electromass Transfer in the System "Cation Exchange Membrane-Ammonium Nitrate Solution". MEMBRANES 2022; 12:1144. [PMID: 36422136 PMCID: PMC9692625 DOI: 10.3390/membranes12111144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
The paper describes an experimental study and the mathematical simulation of the electromembrane transfer of cations of weak electrolytes (namely, ammonium ions), hindered by hydrolysis reactions taking place in the surface layers of the cation exchange membrane. Using the finite element method, we found a solution to the corresponding diffusion-kinetic electrodialysis problem in potentiostatic mode. Based on the experimental data and the results of theoretical simulation, we analyzed the effect of hydrolysis on the concentration polarization of the electromembrane system and the transport characteristics of ions, and suggested a mechanism of transfer of the components of the ammonium nitrate solution through the cation exchange membrane.
Collapse
Affiliation(s)
- Olga Kozaderova
- Faculty of Ecology and Chemical Technology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
- Faculty of Chemistry, Voronezh State University, 394018 Voronezh, Russia
| | - Oleg Kozaderov
- Faculty of Chemistry, Voronezh State University, 394018 Voronezh, Russia
| | - Sabukhi Niftaliev
- Faculty of Ecology and Chemical Technology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
| |
Collapse
|
43
|
Lee YJ, Lin BL, Xue M, Tsunemi K. Ammonia/ammonium removal/recovery from wastewaters using bioelectrochemical systems (BES): A review. BIORESOURCE TECHNOLOGY 2022; 363:127927. [PMID: 36096326 DOI: 10.1016/j.biortech.2022.127927] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
This review updates the current research efforts on using BES to recover NH3/NH4+, highlighting the novel configurations and introducing the working principles and the applications of microbial fuel cell (MFC), microbial electrolysis cell (MEC), microbial desalination cell (MDC), and microbial electrosynthesis cell (MESC) for NH3/NH4+ removal/recovery. However, commonly studied BES processes for NH3/NH4+ removal/recovery are energy intensive with external aeration needed for NH3 stripping being the largest energy input. In such a process bipolar membranes used for yielding a local alkaline pool recovering NH3 is not cost-effective. This gives a chance to microbial electrosynthesis which turned out to be a potential alternative option to approach circular bioeconomy. Furtherly, the reactor volume and NH3/NH4+ removal/recovery efficiency has a weakly positive correlation, indicating that there might be other factors controlling the reactor performance that are yet to be investigated.
Collapse
Affiliation(s)
- Yu-Jen Lee
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan.
| | - Bin-Le Lin
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Mianqiang Xue
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Kiyotaka Tsunemi
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| |
Collapse
|
44
|
Efficient electrochemical reduction of nitrate by bimetallic Cu-Fe phosphide derived from Prussian blue analogue. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
45
|
Yang D, Chen Q, Liu R, Song L, Zhang Y, Dai X. Ammonia recovery from anaerobic digestate: State of the art, challenges and prospects. BIORESOURCE TECHNOLOGY 2022; 363:127957. [PMID: 36113813 DOI: 10.1016/j.biortech.2022.127957] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Nitrogen-containing wastewater and organic wastes are inevitably produced during human activities. To reduce nitrogen pollution, much energy has been used to convert ammonia nitrogen into nitrogen gas through biological nitrogen removal method. However, it needs to consume high energy again during industrial nitrogen fixation, which give rise to massive greenhouse gas (GHG) emissions. Therefore, ammonia recovery from organic wastes has attracted much attention in recent years. In this review, the advantages and disadvantages of ammonia stripping, membrane separation and struvite precipitation are discussed firstly. The ammonia stripping mechanisms, influencing factors, mass transfer process, and the latest innovative ammonia stripping techniques from the anaerobic digestate of organic wastes are critically reviewed. Additionally, a comprehensive economic analysis of different ammonia removal or recovery processes is carried out. The challenges and prospects of ammonia recovery are suggested. Ammonia recovery is of great significance for promoting nitrogen cycle, energy saving and GHG emission reduction.
Collapse
Affiliation(s)
- Donghai Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Qiuhong Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Rui Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Liang Song
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yue Zhang
- China Civil Engineering Society Water Industry Association, Beijing 100082, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
46
|
Haraguchi Y, Okamoto Y, Shimizu T. A circular cell culture system using microalgae and mammalian myoblasts for the production of sustainable cultured meat. Arch Microbiol 2022; 204:615. [PMID: 36094577 PMCID: PMC9465669 DOI: 10.1007/s00203-022-03234-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 08/27/2022] [Accepted: 08/31/2022] [Indexed: 11/26/2022]
Abstract
For sustainable production of cultured meat, we propose a novel circular cell culture (CCC) system in which microalgae are used as nutrient supply for the mammalian cell culture and as a waste-medium recycler. Chlorococcum littorale, RL34 hepatocytes, and C2C12 myoblasts were used as cell sources for microalgae, growth factor-producing cells, and muscle cells, respectively. In the first cycle, C2C12 cells were amplified 4.0-fold after 48 h of culture in an RL34 cell-conditioned medium. In the second cycle, C2C12 cells were cultured in the C. littorale culture waste medium to which the C. littorale-derived nutrients were added. The proliferation rates of C. littorale and C2C12 and the nutrient extraction efficiency from C. littorale were the same in the first and second cycles. Therefore, this CCC system, which works without additional grain-derived nutrients and animal sera, will help drastically reduce environmental load, resource/energy consumption, and costs in future cultured meat production.
Collapse
Affiliation(s)
- Yuji Haraguchi
- Institute of Advanced Biomedical Engineering and Science, TWIns, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
| | - Yuta Okamoto
- Institute of Advanced Biomedical Engineering and Science, TWIns, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
- Department of Life Science & Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science, TWIns, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
| |
Collapse
|
47
|
Gonzales RR, Sasaki Y, Istirokhatun T, Li J, Matsuyama H. Ammonium enrichment and recovery from synthetic and real industrial wastewater by amine-modified thin film composite forward osmosis membranes. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
48
|
Liu F, Worland A, Tang Y, Moustafa H, Hassouna MSED, He Z. Microbial electrochemical ammonia recovery from anaerobic digester centrate and subsequent application to fertilize Arabidopsis thaliana. WATER RESEARCH 2022; 220:118667. [PMID: 35667170 DOI: 10.1016/j.watres.2022.118667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/30/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Although ammonia recovery from wastewater can be environmentally friendly and energy efficient compared to the conventional Haber-Bosch process, there is a lack of research on the reuse of the recovered ammonia to exhibit a complete picture of resource recovery. In this study, a microbial electrochemical system (MES) was used to recover ammonia from a mixture of anaerobic digester (AD) centrate and food wastewater at a volume ratio of 3:1. More than 60% of ammonia nitrogen was recovered with energy consumption of 2.7 kWh kg-1 N. The catholyte of the MES, which contained the recovered ammonia, was used to prepare fertilizers to support the growth of a model plant Arabidopsis thaliana. It was observed that A. thaliana grown on the MES generated fertilizer amended with extra potassium, phosphorus, and trace elements showed comparable sizes and an even lower death rate (0%) than the control group (24%) that was added with a commercial fertilizer. RNA-Seq analyses were used to examine A. thaliana genetic responses to the MES generated fertilizers or the commercial counterpart. The comparative study offered metabolic insights into A. thaliana physiologies subject to the recovered nitrogen fertilizers. The results of this study have demonstrated the potential application of using the recovered ammonia from AD centrate as a nitrogen source in fertilizer and identified the necessity of supplementing other nutrient elements.
Collapse
Affiliation(s)
- Fubin Liu
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, United States of America
| | - Alyssa Worland
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, United States of America
| | - Yinjie Tang
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, United States of America
| | - Hanan Moustafa
- Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt
| | | | - Zhen He
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, United States of America.
| |
Collapse
|
49
|
Baby MG, Ahammed MM. Nutrient removal and recovery from wastewater by microbial fuel cell-based systems - A review. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:29-55. [PMID: 35838281 DOI: 10.2166/wst.2022.196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Microbial fuel cell (MFC) is a green innovative technology that can be employed for nutrient removal/recovery as well as for energy production from wastewater. This paper summarizes the recent advances in the use of MFCs for nutrient removal/recovery. Different configurations of MFCs used for nutrient removal are first described. Different types of nutrient removal/recovery mechanisms such as precipitation, biological uptake by microalgae, nitrification, denitrification and ammonia stripping occurring in MFCs are discussed. Recovery of nutrients as struvite or cattiite by precipitation, as microalgal biomass and as ammonium salts are common. This review shows that while higher nutrient removal/recovery is possible with MFCs and their modifications compared to other techniques as indicated by many laboratory studies, field-scale studies and optimization of operational parameters are needed to develop efficient MFCs for nutrient removal and recovery and electricity generation from different types of wastewaters.
Collapse
Affiliation(s)
- Merin Grace Baby
- Civil Engineering Department, S V National Institute of Technology, Surat 395007, India E-mail:
| | - M Mansoor Ahammed
- Civil Engineering Department, S V National Institute of Technology, Surat 395007, India E-mail:
| |
Collapse
|
50
|
Zhang DX, Zhai SY, Zeng R, Liu CY, Zhang B, Yu Z, Yang LH, Li XQ, Hou YN, Wang AJ, Cheng HY. A tartrate-EDTA-Fe complex mediates electron transfer and enhances ammonia recovery in a bioelectrochemical-stripping system. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2022; 11:100186. [PMID: 36158760 PMCID: PMC9487993 DOI: 10.1016/j.ese.2022.100186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 05/06/2023]
Abstract
Traditional bioelectrochemical systems (BESs) coupled with stripping units for ammonia recovery suffer from an insufficient supply of electron acceptors due to the low solubility of oxygen. In this study, we proposed a novel strategy to efficiently transport the oxidizing equivalent provided at the stripping unit to the cathode by introducing a highly soluble electron mediator (EM) into the catholyte. To validate this strategy, we developed a new kind of iron complex system (tartrate-EDTA-Fe) as the EM. EDTA-Fe contributed to the redox property with a midpoint potential of -0.075 V (vs. standard hydrogen electrode, SHE) at pH 10, whereas tartrate acted as a stabilizer to avoid iron precipitation under alkaline conditions. At a ratio of the catholyte recirculation rate to the anolyte flow rate (RC-A) of 12, the NH4 +-N recovery rate in the system with 50 mM tartrate-EDTA-Fe complex reached 6.9 ± 0.2 g N m-2 d-1, approximately 3.8 times higher than that in the non-EM control. With the help of the complex, our system showed an NH4 +-N recovery performance comparable to that previously reported but with an extremely low RC-A (0.5 vs. 288). The strategy proposed here may guide the future of ammonia recovery BES scale-up because the introduction of an EM allows aeration to be performed only at the stripping unit instead of at every cathode, which is beneficial for the system design due to its simplicity and reliability.
Collapse
Affiliation(s)
- De-Xin Zhang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Si-Yuan Zhai
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Ran Zeng
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Civil Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Cheng-Yan Liu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bo Zhang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Zhe Yu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li-Hui Yang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xi-Qi Li
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China
| | - Ya-Nan Hou
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China
| | - Ai-Jie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China
| | - Hao-Yi Cheng
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China
| |
Collapse
|