1
|
Lin X, Zhou Q, Xu H, Chen H, Xue G. Advances from conventional to biochar enhanced biotreatment of dyeing wastewater: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167975. [PMID: 37866601 DOI: 10.1016/j.scitotenv.2023.167975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/04/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023]
Abstract
DW (Dyeing wastewater) contains a large amount of dye organic compounds. A considerable proportion of dye itself or its intermediate products generated during wastewater treatment process exhibits CMR (Carcinogenic/Mutagenic/Toxic to Reproduction) toxicity. Compared with physicochemical methods, biological treatment is advantageous in terms of operating costs and greenhouse gas emissions, and has become the indispensable mainstream technology for DW treatment. This article reviews the adsorption and degradation mechanisms of dye organic compounds in wastewater and analyzed different biological processes, ranging from traditional methods to processes enhanced by biochar (BC). For traditional biological processes, microbial characteristics and communities were discussed, as well as the removal efficiency of different bioreactors. BC has adsorption and redox electron mediated effects, and coupling with biological treatment can further enhance the process of biosorption and degradation. Although BC coupled biological treatment shows promising dye removal, further research is still needed to optimize the treatment process, especially in terms of technical and economic competitiveness.
Collapse
Affiliation(s)
- Xumeng Lin
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Qifan Zhou
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Huanghuan Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hong Chen
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Gang Xue
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200000, China.
| |
Collapse
|
2
|
Tripathi M, Singh S, Pathak S, Kasaudhan J, Mishra A, Bala S, Garg D, Singh R, Singh P, Singh PK, Shukla AK, Pathak N. Recent Strategies for the Remediation of Textile Dyes from Wastewater: A Systematic Review. TOXICS 2023; 11:940. [PMID: 37999592 PMCID: PMC10674586 DOI: 10.3390/toxics11110940] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023]
Abstract
The presence of dye in wastewater causes substantial threats to the environment, and has negative impacts not only on human health but also on the health of other organisms that are part of the ecosystem. Because of the increase in textile manufacturing, the inhabitants of the area, along with other species, are subjected to the potentially hazardous consequences of wastewater discharge from textile and industrial manufacturing. Different types of dyes emanating from textile wastewater have adverse effects on the aquatic environment. Various methods including physical, chemical, and biological strategies are applied in order to reduce the amount of dye pollution in the environment. The development of economical, ecologically acceptable, and efficient strategies for treating dye-containing wastewater is necessary. It has been shown that microbial communities have significant potential for the remediation of hazardous dyes in an environmentally friendly manner. In order to improve the efficacy of dye remediation, numerous cutting-edge strategies, including those based on nanotechnology, microbial biosorbents, bioreactor technology, microbial fuel cells, and genetic engineering, have been utilized. This article addresses the latest developments in physical, chemical, eco-friendly biological and advanced strategies for the efficient mitigation of dye pollution in the environment, along with the related challenges.
Collapse
Affiliation(s)
- Manikant Tripathi
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, India
| | - Sakshi Singh
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, India
| | - Sukriti Pathak
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, India
| | - Jahnvi Kasaudhan
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, India
| | - Aditi Mishra
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, India
| | - Saroj Bala
- Department of Microbiology, Punjab Agricultural University, Ludhiana 141001, India
| | - Diksha Garg
- Department of Microbiology, Punjab Agricultural University, Ludhiana 141001, India
| | - Ranjan Singh
- Department of Microbiology, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, India
| | - Pankaj Singh
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, India
| | - Pradeep Kumar Singh
- Department of Biochemistry, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, India
| | | | - Neelam Pathak
- Department of Biochemistry, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, India
| |
Collapse
|
3
|
Yao HY, Guo H, Shen F, Li T, Show DY, Ling M, Yan YG, Show KY, Lee DJ. Anaerobic-aerobic treatment of high-strength and recalcitrant textile dyeing effluents. BIORESOURCE TECHNOLOGY 2023; 379:129060. [PMID: 37075851 DOI: 10.1016/j.biortech.2023.129060] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
Eco-friendly treatment of complex textile and dyeing wastewaters poses a pressing environmental concern. An approach adopting different treatment paths and integrated anaerobic-aerobic processes for high-strength and recalcitrant textile dyeing wastewater was examined. The study demonstrated that over 97% of suspended solids (SS) and more than 70% of chemical oxygen demand (COD) were removed by polyaluminum chloride pre-coagulation of suede fabric dyeing stream. Up to 58% of COD and 83% of SS were removed through hydrolysis pretreatment of other low-strength streams. Notable COD removal of up to 99% from a feed of 20,862 mg COD/L was achieved by integrated anaerobic-aerobic treatment of high strength stream. Besides achieving high COD removal of 97%, the anaerobic granular sludge process demonstrated multi-faceted attributes, including high feed loading, smaller footprint, little sludge production, and good stability. The integrated anaerobic-aerobic treatment offers a robust and viable option for highly contaminated and recalcitrant textile dyeing wastewater.
Collapse
Affiliation(s)
- Hai-Yong Yao
- Jiangnan University, Wuxi, Jiangsu, China; ZheJiang JuNeng Co., Ltd., Tongxiang, Zhejiang, China
| | - Hui Guo
- Jiangnan University, Wuxi, Jiangsu, China; ZheJiang JuNeng Co., Ltd., Tongxiang, Zhejiang, China
| | - Feng Shen
- ZheJiang JuNeng Co., Ltd., Tongxiang, Zhejiang, China
| | - Ting Li
- ZheJiang JuNeng Co., Ltd., Tongxiang, Zhejiang, China
| | - De-Yang Show
- Shuhan Technologies Co., Ltd., Tongxiang, Zhejiang, China
| | - Ming Ling
- ZheJiang JuNeng Co., Ltd., Tongxiang, Zhejiang, China
| | - Yue-Gen Yan
- Puritek Research Institute, Puritek Co. Ltd., Nanjing, China
| | - Kuan-Yeow Show
- Jiangnan University, Wuxi, Jiangsu, China; ZheJiang JuNeng Co., Ltd., Tongxiang, Zhejiang, China; Puritek Research Institute, Puritek Co. Ltd., Nanjing, China
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-li 32003, Taiwan.
| |
Collapse
|
4
|
Wei D, Zhang X, Li C, Ma Z, Zhao M, Wei L. Efficiency and microbial community characteristics of strong alkali ASP flooding produced water treated by composite biofilm system. Front Microbiol 2023; 14:1166907. [PMID: 37303803 PMCID: PMC10247963 DOI: 10.3389/fmicb.2023.1166907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/05/2023] [Indexed: 06/13/2023] Open
Abstract
Strong alkali alkali-surfactant-polymer (ASP) flooding produced water is a by-product of oil recovery, and it is a stable system composed of petroleum, polyacrylamide, surfactant, and inorganic salts. Efficient, green, and safe ASP produced water treatment technology is essential for oilfield exploitation and environmental protection. In this study, an anaerobic/anoxic/moving bed biofilm reactor with a microfiltration membrane was established and assessed for the real strong alkali ASP flooding produced water (pH 10.1-10.4) treatment. The results show that the average removal rates of COD, petroleum, suspended solids, polymers and surfactants in this process are 57, 99, 66, 40, and 44%, respectively. GC-MS results show that most of the organic compounds such as alkanes and olefins in the strong alkali ASP produced water are degraded. Microfiltration membrane can significantly improve the efficiency and stability of sewage treatment system. Paracoccus (AN), Synergistaceae (ANO) and Trichococcus (MBBR) are the main microorganisms involved in the degradation of pollutants. This study reveals the potential and adaptability of composite biofilm system in treating the produced water of strong alkali ASP produced water.
Collapse
Affiliation(s)
- Dong Wei
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Xinxin Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, China
- Guangzhou HKUST Fok Ying Tung Research Institute, Guangzhou, Guangdong, China
| | - Chunying Li
- School of Energy and Civil Engineering, Harbin University of Commerce, Harbin, Heilongjiang, China
| | - Zhongting Ma
- PetroChina Karamay Petrochemical Co., Ltd., Karamay, China
| | - Min Zhao
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Li Wei
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, China
- Guangzhou HKUST Fok Ying Tung Research Institute, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Anaerobic Membrane Bioreactor (AnMBR) for the Removal of Dyes from Water and Wastewater: Progress, Challenges, and Future Perspectives. Processes (Basel) 2023. [DOI: 10.3390/pr11030855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
The presence of dyes in aquatic environments can have harmful effects on aquatic life, including inhibiting photosynthesis, decreasing dissolved oxygen levels, and altering the behavior and reproductive patterns of aquatic organisms. In the initial phase of this review study, our aim was to examine the categories and properties of dyes as well as the impact of their toxicity on aquatic environments. Azo, phthalocyanine, and xanthene are among the most frequently utilized dyes, almost 70–80% of used dyes, in industrial processes and have been identified as some of the most commonly occurring dyes in water bodies. Apart from that, the toxicity effects of dyes on aquatic ecosystems were discussed. Toxicity testing relies heavily on two key measures: the LC50 (half-lethal concentration) and EC50 (half-maximal effective concentration). In a recent study, microalgae exposed to Congo Red displayed a minimum EC50 of 4.8 mg/L, while fish exposed to Disperse Yellow 7 exhibited a minimum LC50 of 0.01 mg/L. Anaerobic membrane bioreactors (AnMBRs) are a promising method for removing dyes from water bodies. In the second stage of the study, the effectiveness of different AnMBRs in removing dyes was evaluated. Hybrid AnMBRs and AnMBRs with innovative designs have shown the capacity to eliminate dyes completely, reaching up to 100%. Proteobacteria, Firmicutes, and Bacteroidetes were found to be the dominant bacterial phyla in AnMBRs applied for dye treatment. However, fouling has been identified as a significant drawback of AnMBRs, and innovative designs and techniques are required to address this issue in the future.
Collapse
|
6
|
Guo H, Yao HY, Huang QQ, Li T, Show DY, Ling M, Yan YG, Show KY, Lee DJ. Anaerobic-anoxic-oxic biological treatment of high-strength, highly recalcitrant polyphenylene sulfide wastewater. BIORESOURCE TECHNOLOGY 2023; 371:128640. [PMID: 36681351 DOI: 10.1016/j.biortech.2023.128640] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/10/2023] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
This paper outlines an integrated anaerobic-anoxic-oxic (A2O) treatment scheme for high-strength, highly recalcitrant wastewater from the production of polyphenylene sulfide (PPS) resins and their composite chemicals. An integrated anaerobic granular sludge blanket (GSB) and anoxic-oxic (AO) reactor indicated that the A2O removed chemical oxygen demand (COD) of up to 7,043 mg/L with no adverse impact from high total dissolved solids (25,000 mg/L) on the GSB COD removal and effluent suspended solids. At a Total Kjeldahl Nitrogen (TKN) nitrification load of 0.11 g TKN/L.d and 400 mg NH3/L, almost 99 % of the NH3 was degraded with effluent NH3 < 5 mg/L, meeting the limit of 35 mg/L. High S2- levels of up to 1470 mg/L can be transformed through aerobic microbial degradation to meet a limit of 1.0 mg/L. With proper microbial acclimation and process designs, the integrated A2O scheme offers a resilient and robust treatment for high-strength recalcitrant PPS wastewater.
Collapse
Affiliation(s)
- Hui Guo
- Zhejiang Juneng Co. Ltd., Zhejiang, China; Jiangnan University, Wuxi, Zhejiang, China
| | - Hai-Yong Yao
- Zhejiang Juneng Co. Ltd., Zhejiang, China; Jiangnan University, Wuxi, Zhejiang, China
| | | | - Ting Li
- Zhejiang Juneng Co. Ltd., Zhejiang, China
| | | | - Ming Ling
- Zhejiang Juneng Co. Ltd., Zhejiang, China
| | - Yue-Gen Yan
- Puritek Research Institute, Puritek Co. Ltd., Nanjing, China
| | - Kuan-Yeow Show
- Zhejiang Juneng Co. Ltd., Zhejiang, China; Jiangnan University, Wuxi, Zhejiang, China; Puritek Research Institute, Puritek Co. Ltd., Nanjing, China
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; Department of Chemical Engineering & Material Science, Yuan Ze University, Taoyuan 320, Taiwan.
| |
Collapse
|
7
|
El-Bondkly AMA, El-Gendy MMAA. Bioremoval of some heavy metals from aqueous solutions by two different indigenous fungi Aspergillus sp. AHM69 and Penicillium sp. AHM96 isolated from petroleum refining wastewater. Heliyon 2022; 8:e09854. [PMID: 35815132 PMCID: PMC9260626 DOI: 10.1016/j.heliyon.2022.e09854] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/19/2022] [Accepted: 06/28/2022] [Indexed: 11/03/2022] Open
Abstract
Myco-remediation of heavy metals using indigenous fungi of different petroleum refining areas in Egypt was applied. Among the physicochemical parameters determined in these refineries effluents, the highest levels of heavy metals were recorded for the most toxic heavy metals Fe3+ and Co2+. The fungal isolates under the isolation codes AHM69 and AHM96 isolated from the mycobiome of Mostorod and Tanta refineries, respectively showed the best bioremoval efficiency toward heavy metals from the real wastewater mixture and polycyclic aromatic hydrocarbons from aqueous solutions. Based on phenotypic and genotypic analysis they were identified as Aspergillus sp. AHM69 and Penicillium sp. AHM96. The optimum conditions for the best bioremoval of Fe3+ and Co2+ from aqueous solutions by Aspergillus sp. AHM69 were live biomass, temperature 45–55 °C, pH 4.5–5.0, contact time 180 min, metal concentration equal to 1000 and 400 mg/L of Fe3+ and Co2+ with live fungal biomass dose of 0.5% and 0.4% with Fe3+ and Co2+, respectively. Concerning to the biomass of Penicillium sp. AHM96, the optimum operation conditions for the best removal of Fe3+ and Co2+ were 45 °C, pH 5.0 and 400 mg/L of Fe3+ with 1.0% biosorbent dosage or 1000 mg/L of Co2+ with 0.5% biosorbent dosage for 180 min as process time. Furthermore, FTIR analysis showed masking, shifting, creating and absenting of different functional groups in the fungal biomass surface of AHM96 and AHM69 strains in the presence of Fe3+ and Co2+ compared to unloaded biomasses. Microscopy with Energy Dispersive X-ray analysis (SEM-EDX) indicated that the removal of Fe3+ and Co2+ by fungi AHM69 and AHM96 was via biosorption and bioaccumulation on the biomass surface. Our results suggested that in the near future, fungal treatment is likely to outperform and replace other chemical and biological treatments in industrial wastewater treatment for oil refining.
Collapse
|
8
|
Sun R, Jin Y. Pilot Scale Application of a Ceramic Membrane Bioreactor for Treating High-Salinity Oil Production Wastewater. MEMBRANES 2022; 12:membranes12050473. [PMID: 35629800 PMCID: PMC9144106 DOI: 10.3390/membranes12050473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023]
Abstract
The offshore oil extraction process generates copious amounts of high-salinity oil-bearing wastewater; at present, treating such wastewater in an efficient and low-consumption manner is a major challenge. In this study, a flat ceramic membrane bioreactor (C−MBR) process combining aerobic microbial treatment technology and ceramic membrane filtration technology was used to treat oil-bearing wastewater. The pilot test results demonstrated the remarkable performance of the combined sequential batch reactor (SBR) and C-MBR process, wherein the chemical oxygen demand (COD) and ammonia nitrogen (NH4+−N) removal rates reached 93% and 98.9%, respectively. Microbial analysis indicated that the symbiosis between Marinobacterium, Marinobacter, and Nitrosomonas might have contributed to simultaneously removing NH4+−N and reducing COD, and the increased enrichment of Nitrosomonas significantly improved the nitrogen removal efficiency. Cleaning ceramic membranes with NaClO solution reduces membrane contamination and membrane cleaning frequency. The combined SBR and C−MBR process is an economical and feasible solution for treating high-salinity oil-bearing wastewater. Based on the pilot application study, the capital expenditure for operating the full-scale combined SBR and C−MBR process was estimated to be 251,717 USD/year, and the unit wastewater treatment cost was 0.21 USD/m3, which saved 62.5% of the energy cost compared to the conventional MBR process.
Collapse
Affiliation(s)
- Ronglin Sun
- Guangxi Key Laboratory of Theory & Technology for Environmental Pollution Control, College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China;
- Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
| | - Yue Jin
- Guangxi Key Laboratory of Theory & Technology for Environmental Pollution Control, College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China;
- Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
- College of Civil Engineering and Architecture, Guilin University of Technology, Guilin 541004, China
- Correspondence: ; Tel.: +86-773-589-6340
| |
Collapse
|
9
|
Qian G, Liu P, Wei L, Mackey H, Hao T. Can a compact biological system be used for real hydraulic fracturing wastewater treatment? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151524. [PMID: 34752873 DOI: 10.1016/j.scitotenv.2021.151524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Hydraulic fracturing wastewater (HFW), a byproduct of hydraulic fracturing oil extraction, contains a complex mixture of oil, aldehydes, and benzene compounds. Efficient and eco-friendly HFW treatment means are critical for the oil extraction industry, particularly in developing countries. In this study, two biological processes namely an anaerobic/anoxic/moving bed biofilm reactor (A2-MBBR) and an A2-MBBR with a microfiltration membrane (A2-MFMBBR) were established, and assessed for the real HFW treatment. Removal efficiencies of chemical oxygen demand (COD) and NH4+-N were over 92% and 95%, respectively, in both processes with a hydraulic retention time of 72 h. The majority of organic compounds in both systems identified by GC-MS were degraded in the anaerobic units. In comparison, A2-MFMBBR demonstrated higher removal efficiencies for oil, total suspended solids, and complex compounds. The average relative abundances of refractory compound degrading bacteria were 43.4% and 51.6% in the A2-MBBR and A2-MFMBBR, respectively, which was consistent with the COD and oil removal, and suggested that the MBR could maintain a high diversity of microorganisms and contribute to deep recalcitrant organics degradation. This study sheds light on the potential of using a compact biological process for the real HFW treatment.
Collapse
Affiliation(s)
- Guangsheng Qian
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau 999078, China
| | - Pu Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150006, China
| | - Li Wei
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150006, China.
| | - Hamish Mackey
- College of Science and Engineering, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha 999043, Qatar
| | - Tianwei Hao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau 999078, China.
| |
Collapse
|
10
|
Effect of biofilm media application on biomass characteristics and membrane permeability in the biological spatiotemporal phase-separation process. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Show KY, Lo EKV, Wong WS, Lee JY, Yan Y, Lee DJ. Integrated Anaerobic/Oxic/Oxic treatment for high strength palm oil mill effluent. BIORESOURCE TECHNOLOGY 2021; 338:125509. [PMID: 34271500 DOI: 10.1016/j.biortech.2021.125509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
Safe disposal of effluent from palm oil production poses an environmental concern. The highly polluting effluent is customarily treated by unsustainable open ponds with low efficiency, direct emissions, and massive land use. This study looks into an application of integrated anaerobic/oxic/oxic scheme for treatment of high strength palm oil mill effluent. The anaerobic reactors functioned as a prime degrader that removed up to 97.5% of the chemical oxygen demand (COD), while the aerobic reactors played a role of an effluent polisher that further reduced the COD. Their complementing roles resulted in a remarkable removal of 99.7%. Assessment of emission mitigation and biogas energy revealed that yearly energy of 53.2 TJ, emissions reduction of 239,237 tCO2 and revenue of USD 1.40 millions can be generated out of electricity generation and heating. The integrated scheme provides a viable and sustainable treatment of the high strength palm oil mill effluent.
Collapse
Affiliation(s)
- Kuan Yeow Show
- Puritek Research Institute, Puritek Co. Ltd, Nanjing, China
| | - Eric Kian Vui Lo
- UAGB Biotech Sdn. Bhd. Cheras Traders Square, Cheras, Selangor 43200, Malaysia
| | - Wee Shen Wong
- UAGB Biotech Sdn. Bhd. Cheras Traders Square, Cheras, Selangor 43200, Malaysia
| | - Ji Yuan Lee
- UAGB Biotech Sdn. Bhd. Cheras Traders Square, Cheras, Selangor 43200, Malaysia
| | - Yuegen Yan
- Puritek Research Institute, Puritek Co. Ltd, Nanjing, China
| | - Duu Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan; Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tang, Hong Kong.
| |
Collapse
|
12
|
Nilusha RT, Wei Y. New Insights into the Microbial Diversity of Cake Layer in Yttria Composite Ceramic Tubular Membrane in an Anaerobic Membrane Bioreactor (AnMBR). MEMBRANES 2021; 11:108. [PMID: 33546268 PMCID: PMC7913466 DOI: 10.3390/membranes11020108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/19/2021] [Accepted: 01/27/2021] [Indexed: 11/17/2022]
Abstract
Cake layer formation is an inevitable challenge in membrane bioreactor (MBR) operation. The investigations on the cake layer microbial community are essential to control biofouling. This work studied the bacterial and archaeal communities in the cake layer, the anaerobic sludge, and the membrane cleaning solutions of anaerobic membrane bioreactor (AnMBR) with yttria-based ceramic tubular membrane by polymerase chain reaction (PCR) amplification of 16S rRNA genes. The cake layer resistance was 69% of the total membrane resistance. Proteins and soluble microbial by-products (SMPs) were the dominant foulants in the cake layer. The pioneering archaeal and bacteria in the cake layer were mostly similar to those in the anaerobic bulk sludge. The dominant biofouling bacteria were Proteobacteria, Bacteroidetes, Firmicutes, and Chloroflexi and the dominant archaeal were Methanosaetacea and Methanobacteriacea at family level. This finding may help to develop antifouling membranes for AnMBR treating domestic wastewater.
Collapse
Affiliation(s)
- Rathmalgodage Thejani Nilusha
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Environment Technology Section, Industrial Technology Institute, 363, Bauddhaloka Mawatha, Colombo 07 00700, Sri Lanka; or
- Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuansong Wei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Energy, Jiangxi Academy of Sciences, Nanchang 330029, China
| |
Collapse
|
13
|
Song P, Huang G, An C, Xin X, Zhang P, Chen X, Ren S, Xu Z, Yang X. Exploring the decentralized treatment of sulfamethoxazole-contained poultry wastewater through vertical-flow multi-soil-layering systems in rural communities. WATER RESEARCH 2021; 188:116480. [PMID: 33065414 DOI: 10.1016/j.watres.2020.116480] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/02/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023]
Abstract
Sulfamethoxazole (SMX) is the most widely distributed sulfonamide antibiotics detected in decentralized poultry wastewater in rural communities. As an economically-feasible and eco-friendly technology for decentralized wastewater treatment in rural areas, vertical-flow multi-soil-layering (MSL) system was promising to mitigate the ecological and human health risks from SMX in such areas. The treatment of SMX-contained poultry wastewater by using MSL systems was investigated for the first time, and the main and interactive effects of related multiple variables on system performance were explored through factorial analysis, including material of permeable layer, concentration of SMX, and pH of influent. Results indicated that SMX concentration and pH of influent showed significantly negative effects on SMX removal. Medical stone used in MSL systems with larger surface area could intensify the SMX removal compared to anthracite. MSL systems showed stable performances on SMX removal with the best SMX removal efficiency more than 91%. A novel stepwise-cluster inference (SCI) model was developed for the first time to map the multivariate numeric relationships between state variables and SMX removal under discrete and nonlinear complexities. It was demonstrated that the effect of SMX in wastewater with high concentration was significant on the differentiation of soil bacteria composition in MSL systems based on microbial diversity analysis. These results can help better understand the mechanism of SMX removal in MSL systems from perspectives of factorial analysis, numeric modeling, and microbiological change.
Collapse
Affiliation(s)
- Pei Song
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China
| | - Guohe Huang
- Center for Energy, Environment and Ecology Research, UR-BNU, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Quebec, H3G 1M8, Canada
| | - Xiaying Xin
- Department of Civil Engineering, Memorial University of Newfoundland, St. John's, A1C 5S7, Canada
| | - Peng Zhang
- Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, S4S 0A2, Canada
| | - Xiujuan Chen
- Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, S4S 0A2, Canada
| | - Shan Ren
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China
| | - Ziqing Xu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, CEEER-URBNU, College of Environment, Beijing Normal University, Beijing, 100875, China
| | - Xiaohan Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, CEEER-URBNU, College of Environment, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
14
|
Show KY, Yan YG, Zhao J, Shen J, Han ZX, Yao HY, Lee DJ. Startup and performance of full-scale anaerobic granular sludge blanket reactor treating high strength inhibitory acrylic acid wastewater. BIORESOURCE TECHNOLOGY 2020; 317:123975. [PMID: 32799077 DOI: 10.1016/j.biortech.2020.123975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/01/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
High strength inhibitory wastewaters from chemical industries are commonly treated by energy-intensive physicochemical methods. The present work examines the startup and performance of a full-scale anaerobic granular sludge blanket (GSB) plant for treatment of an inhibitory acrylic acid wastewater. From a performance test on chemical oxygen demand (COD) loading up to 9800 mg/L and 3074 kg/d, the GSB plant removed 95% of COD. Coupled with a two-stage aerobic effluent polishing unit, the integrated anaerobic-aerobic plant achieved a remarkable total COD removal of 98-99% at full design load. Final effluent ranging from 173 to 278 mg COD/L conformed to the public sewer limits of 500 mg/L. Acclimated microbes and granulation resulted in efficient degradation of the inhibitory wastewater. Adequate reactor and process designs are crucial for granulation and robust treatment. The anaerobic and aerobic processes complement each other as anaerobic prime degrader and aerobic polisher in the integrated processes.
Collapse
Affiliation(s)
- Kuan-Yeow Show
- Puritek Research Institute, Puritek Co. Ltd., Nanjing, China
| | - Yue-Gen Yan
- Puritek Research Institute, Puritek Co. Ltd., Nanjing, China
| | - Jian Zhao
- Puritek Research Institute, Puritek Co. Ltd., Nanjing, China
| | - Jie Shen
- Puritek Research Institute, Puritek Co. Ltd., Nanjing, China
| | - Zhong-Xu Han
- Puritek Research Institute, Puritek Co. Ltd., Nanjing, China
| | - Hai-Yong Yao
- Puritek Research Institute, Puritek Co. Ltd., Nanjing, China
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; College of Engineering, City University of Hong Kong, Kowloon, Hong Kong.
| |
Collapse
|
15
|
Show KY, Yan YG, Zhao J, Shen J, Han ZX, Yao HY, Lee DJ. Laboratory trial and full-scale implementation of integrated anaerobic-aerobic treatment for high strength acrylic acid wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 738:140323. [PMID: 32806384 DOI: 10.1016/j.scitotenv.2020.140323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
Sustainable treatment of highly polluting industrial wastewaters poses a challenge to many municipalities. This study presented treatment of a high strength inhibitory acrylic acid wastewater by integrated anaerobic-aerobic processes. A novel scheme integrating anaerobic granular sludge blanket (GSB) reactor, aerobic carrier biofilm (CBR) reactor and activated sludge reactor (ASR) was tested. The laboratory trial showed that the GSB was able to degrade exceptionally high chemical oxygen demand (COD up to 32,420 mg/L) acrylic acid wastewater laden with 5% waste oil. Operated under a high volumetric loading (VLR) rate of 21.6 g/L·d, the integrated GSB-CBR-ASB achieved 99% of COD removal, of which 90% were removed by the anaerobic process and 9% by the aerobic processes. Full-scale implementation indicated comparable performance with overall removal up to 99%, thus meeting the discharge limits of 500 mg COD/L of public sewer. The integrated scheme was effective in which the anaerobic GSB functioning as a prime degrader that degraded most of the pollutants, while the aerobic CBR-ASB serving as a polisher that removed the remaining COD. With adequate microbial acclimation and granulation, the novel integrated scheme offers a resilient and robust treatment system for high strength inhibitory acrylic acid wastewater.
Collapse
Affiliation(s)
- Kuan-Yeow Show
- Puritek Research Institute, Puritek Co. Ltd., Nanjing, China
| | - Yue-Gen Yan
- Puritek Research Institute, Puritek Co. Ltd., Nanjing, China
| | - Jian Zhao
- Puritek Research Institute, Puritek Co. Ltd., Nanjing, China
| | - Jie Shen
- Puritek Research Institute, Puritek Co. Ltd., Nanjing, China
| | - Zhong-Xu Han
- Puritek Research Institute, Puritek Co. Ltd., Nanjing, China
| | - Hai-Yong Yao
- Puritek Research Institute, Puritek Co. Ltd., Nanjing, China
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
| |
Collapse
|
16
|
Arabi S, Pellegrin ML, Aguinaldo J, Sadler ME, McCandless R, Sadreddini S, Wong J, Burbano MS, Koduri S, Abella K, Moskal J, Alimoradi S, Azimi Y, Dow A, Tootchi L, Kinser K, Kaushik V, Saldanha V. Membrane processes. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1447-1498. [PMID: 32602987 DOI: 10.1002/wer.1385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
This literature review provides a review for publications in 2018 and 2019 and includes information membrane processes findings for municipal and industrial applications. This review is a subsection of the annual Water Environment Federation literature review for Treatment Systems section. The following topics are covered in this literature review: industrial wastewater and membrane. Bioreactor (MBR) configuration, membrane fouling, design, reuse, nutrient removal, operation, anaerobic membrane systems, microconstituents removal, membrane technology advances, and modeling. Other sub-sections of the Treatment Systems section that might relate to this literature review include the following: Biological Fixed-Film Systems, Activated Sludge, and Other Aerobic Suspended Culture Processes, Anaerobic Processes, and Water Reclamation and Reuse. This publication might also have related information on membrane processes: Industrial Wastes, Hazardous Wastes, and Fate and Effects of Pollutants.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joseph Wong
- Brown and Caldwell, Walnut Creek, California, USA
| | | | | | | | - Jeff Moskal
- Suez Water Technologies & Solutions, Oakville, ON, Canada
| | | | | | - Andrew Dow
- Donohue and Associates, Chicago, Illinois, USA
| | | | | | | | | |
Collapse
|
17
|
Ji J, Kakade A, Yu Z, Khan A, Liu P, Li X. Anaerobic membrane bioreactors for treatment of emerging contaminants: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 270:110913. [PMID: 32721347 DOI: 10.1016/j.jenvman.2020.110913] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/15/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Emerging contaminants (ECs) are synthetic organic chemicals that released into the environment, which pose a serious threat to the ecosystem and human health. Due to the high costs of physicochemical methods and the possibility of secondary pollution, and conventional biological treatment techniques are not efficient to remove ECs. Thus, there is a need to develop novel technologies to treat ECs. Anaerobic digestion (AD) is reported to degrade most ECs. Anaerobic membrane bioreactor (AnMBR) is an upgraded AD technology that has high system stability and microbial community abundance. The biogas production and EC biodegradation efficiency in the AnMBR system are markedly higher than those in the traditional AD system. In recent years, AnMBR is widely used to remove environmental ECs. This review analyzes the feasibility and challenges of AnMBR in the treatment of ECs and provides useful insights for improving the performance and efficiency of AnMBR to treat ECs.
Collapse
Affiliation(s)
- Jing Ji
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Apurva Kakade
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Zhengsheng Yu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Aman Khan
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Pu Liu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Xiangkai Li
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, PR China; Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou, 730020, Gansu, PR China.
| |
Collapse
|
18
|
Show KY, Ling M, Guo H, Lee DJ. Laboratory and full-scale performances of integrated anaerobic granule-aerobic biofilm-activated sludge processes for high strength recalcitrant paint wastewater. BIORESOURCE TECHNOLOGY 2020; 310:123376. [PMID: 32334358 DOI: 10.1016/j.biortech.2020.123376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/10/2020] [Accepted: 04/11/2020] [Indexed: 06/11/2023]
Abstract
Sustainable treatment of wastewaters generated from paint production is increasingly posing an environmental concern. Recalcitrant paint wastewaters are mostly treated by energy and cost intensive physicochemical methods like incineration, distillation or advanced oxidation. This paper reported for the first time a case study applying biological treatment processes to properly handle a high-strength recalcitrant paint wastewater with 5-day biochemical oxygen demand (BOD5)/chemical oxygen demand (COD) less than 0.02. A biological treatment scheme integrating anaerobic granular sludge blanket reactor, aerobic carrier biofilm reactor and aerobic activated sludge bioreactor was proposed and examined. Laboratory and full-scale trials demonstrated satisfactory operation with overall COD removal up to 99%. Besides yielding consistent effluent quality conforming to the discharge limits, the full-scale plant gained considerable savings in operating cost over a 5-year operation. With proper microbial adaptation and cultivation, as well as adequate reactor and process designs, the scheme offers a good feasibility for efficient and cost-effective treatment of the high strength and recalcitrant paint wastewater.
Collapse
Affiliation(s)
- Kuan-Yeow Show
- Puritek Research Institute, Puritek Co. Ltd., Nanjing, China
| | - Ming Ling
- Puritek Research Institute, Puritek Co. Ltd., Nanjing, China
| | - Hui Guo
- Puritek Research Institute, Puritek Co. Ltd., Nanjing, China
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; College of Engineering, Tunghai University, Taichung 407302, Taiwan.
| |
Collapse
|
19
|
Zheng X, Xie X, Liu Y, Cong J, Fan J, Fang Y, Liu N, He Z, Liu J. Deciphering the mechanism of carbon sources inhibiting recolorization in the removal of refractory dye: Based on an untargeted LC-MS metabolomics approach. BIORESOURCE TECHNOLOGY 2020; 307:123248. [PMID: 32248066 DOI: 10.1016/j.biortech.2020.123248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/20/2020] [Accepted: 03/22/2020] [Indexed: 06/11/2023]
Abstract
In this study, the biological decolorization of reactive black 5 (RB5) by Klebsiella sp. KL-1 in yeast extract (YE) medium was captured the recolorization after exposure to O2, which induced a 15.82% reduction in decolorization efficiency. Similar result was also observed in YE + lactose medium, but not in YE + glucose/xylose media (groups YE + Glu/Xyl). Through biodegradation studies, several degradation intermediates without quinoid structure were produced in groups YE + Glu/Xyl and differential degradation pathways were deduced in diverse groups. Metabolomics analysis revealed significant variations in up-/down-regulated metabolites using RB5 and different carbon sources. Moreover, the underlying mechanism of recolorization inhibition was proposed. Elevated reducing power associated with variable metabolites (2-hydroxyhexadecanoic acid, 9(R)-HODE cholesteryl ester, linoleamide, oleamide) rendered additional reductive cleavage of C-N bond on naphthalene ring. This study provided a new orientation to inhibit recolorization and deepened the understanding of the molecular mechanism of carbon sources inhibiting recolorization in the removal of refractory dyes.
Collapse
Affiliation(s)
- Xiulin Zheng
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xuehui Xie
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Yanbiao Liu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Junhao Cong
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jiao Fan
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yingrong Fang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Na Liu
- School of Environment and Surveying Engineering, Suzhou University, Suzhou, Anhui 234000, China
| | - Zhenjiang He
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China
| | - Jianshe Liu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
20
|
Liu J, Wang C, Wu K, Huang L, Tang Z, Zhang C, Wang C, Zhao X, Yin F, Yang B, Liu J, Yang H, Zhang W. Novel start-up process for the efficient degradation of high COD wastewater with up-flow anaerobic sludge blanket technology and a modified internal circulation reactor. BIORESOURCE TECHNOLOGY 2020; 308:123300. [PMID: 32278996 DOI: 10.1016/j.biortech.2020.123300] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 05/21/2023]
Abstract
To avoid wastage of water resources and operating cost increases caused by the traditional start-up process of large amounts of dilution influent chemical oxygen demand (COD), a novel start-up process (NSP) was developed and verified with water hyacinth juice (WHJ) on an up-flow anaerobic sludge blanket (UASB) and modified internal circulation (MIC) reactor. Results show that UASB and MIC reactors were started successfully and that the MIC reactor exhibited a superior performance. The NSP time of the MIC reactor (46 days) was less than that of the UASB reactor (52 days), although the start-up organic loading rate (OLR) of the MIC reactor was higher than that of the UASB reactor. Interestingly, high-throughput sequencing analysis indicated that the reactor configuration significantly impacted the microbial diversity, however, the UASB and MIC reactors had similar predominant methanogens: Methanosaeta and Methanosarcina. Therefore, acetoclastic methanogenesis is the primary pathway of methane formation during WHJ treatment.
Collapse
Affiliation(s)
- Jianfeng Liu
- Yunnan Research Center of Biogas Technology and Engineering, School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China; Engineering and Research Center of Sustainable Development and Utilization of Bioenergy, Ministry of Education, Yunnan Normal University, Kunming 650500, PR China; Jilin Dongsheng Institute of Biomass Energy Engineering, Tonghua 134118, PR China
| | - Chengxian Wang
- Yunnan Research Center of Biogas Technology and Engineering, School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China
| | - Kai Wu
- Yunnan Research Center of Biogas Technology and Engineering, School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China
| | - Li Huang
- Yunnan Research Center of Biogas Technology and Engineering, School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China
| | - Zhengkang Tang
- Yunnan Research Center of Biogas Technology and Engineering, School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China
| | - Chengbo Zhang
- Yunnan Research Center of Biogas Technology and Engineering, School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China; Engineering and Research Center of Sustainable Development and Utilization of Bioenergy, Ministry of Education, Yunnan Normal University, Kunming 650500, PR China
| | - Changmei Wang
- Yunnan Research Center of Biogas Technology and Engineering, School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China
| | - Xingling Zhao
- Yunnan Research Center of Biogas Technology and Engineering, School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China
| | - Fang Yin
- Yunnan Research Center of Biogas Technology and Engineering, School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China; Engineering and Research Center of Sustainable Development and Utilization of Bioenergy, Ministry of Education, Yunnan Normal University, Kunming 650500, PR China; Jilin Dongsheng Institute of Biomass Energy Engineering, Tonghua 134118, PR China
| | - Bin Yang
- Yunnan Research Center of Biogas Technology and Engineering, School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China; Engineering and Research Center of Sustainable Development and Utilization of Bioenergy, Ministry of Education, Yunnan Normal University, Kunming 650500, PR China
| | - Jing Liu
- Yunnan Research Center of Biogas Technology and Engineering, School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China
| | - Hong Yang
- Yunnan Research Center of Biogas Technology and Engineering, School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China
| | - Wudi Zhang
- Yunnan Research Center of Biogas Technology and Engineering, School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China; Engineering and Research Center of Sustainable Development and Utilization of Bioenergy, Ministry of Education, Yunnan Normal University, Kunming 650500, PR China; Jilin Dongsheng Institute of Biomass Energy Engineering, Tonghua 134118, PR China.
| |
Collapse
|
21
|
Optimization of In Situ Backwashing Frequency for Stable Operation of Anaerobic Ceramic Membrane Bioreactor. Processes (Basel) 2020. [DOI: 10.3390/pr8050545] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The cost-effective and stable operation of an anaerobic ceramic membrane bioreactor (AnCMBR) depends on operational strategies to minimize membrane fouling. A novel strategy for backwashing, filtration and relaxation was optimized for stable operation of a side stream tubular AnCMBR treating domestic wastewater at the ambient temperature. Two in situ backwashing schemes (once a day at 60 s/day, and twice a day at 60 s × 2/day) maintaining 55 min filtration and 5 min relaxation as a constant were compared. A flux level over 70% of the initial membrane flux was stabilized by in situ permeate backwashing irrespective of its frequency. The in situ backwashing by permeate once a day was better for energy saving, stable membrane filtration and less permeate consumption. Ex situ chemical cleaning after 60 days’ operation was carried out using pure water, sodium hypochlorite (NaOCl), and citric acid as the order. The dominant cake layer was effectively reduced by in situ backwashing, and the major organic foulants were fulvic acid-like substances and humic acid-like substances. Proteobacteria, Firmucutes, Epsilonbacteria and Bacteroides were the major microbes attached to the ceramic membrane fouling layer which were effectively removed by NaOCl.
Collapse
|
22
|
Liu W, Bin L, Tang B, Li P, Huang S, Fu F, Huang Z, Guan G. Operational and fouling characteristics of the combined oxidation ditch—membrane bioreactor under a continuous-flow mode. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Wei Y, Jin Y, Zhang W. Treatment of High-Concentration Wastewater from an Oil and Gas Field via a Paired Sequencing Batch and Ceramic Membrane Reactor. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17061953. [PMID: 32192017 PMCID: PMC7143815 DOI: 10.3390/ijerph17061953] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/07/2020] [Accepted: 03/13/2020] [Indexed: 01/31/2023]
Abstract
A sequencing batch reactor (SBR) and a ceramic membrane bioreactor (CMBR) were used in conjunction (SBR+CMBR) to treat high-concentration oil and gas field wastewater (HCOGW) from the China National Offshore Oil Corporation Zhanjiang Branch (Zhanjiang, Guangdong, China). The chemical oxygen demand (COD) and the oil concentrations in the wastewater were 20,000–76,000 and 600–2200 mg/L, respectively. After the SBR+CMBR process, the effluent COD and oil content values were less than 250 mg/L and 2 mg/L, respectively, which met the third level of the Integrated Wastewater Discharge Standards of China (GB8978-1996). Through microbiological analysis, it was found that the CMBR domesticated a previously unreported functional microorganism (JF922467.1) that successfully formed a new microbial ecosystem suitable for HCOGW treatment. In conjunction with the SBR process, the CMBR process effectively reduced pollutant concentrations in HCOGW. Moreover, economic analyses indicated that the total investment required to implement the proposed infrastructure would be approximately 671,776.61 USD, and the per-unit water treatment cost would be 1.04 USD/m3.
Collapse
Affiliation(s)
- Yuan Wei
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China;
| | - Yue Jin
- College of Civil Engineering and Architecture, Guilin University of Technology, Guilin 541004, China;
- Correspondence: ; Tel.: +86-773-253-6922; Fax: +86-773-253-6922
| | - Wenjie Zhang
- College of Civil Engineering and Architecture, Guilin University of Technology, Guilin 541004, China;
| |
Collapse
|
24
|
Liu G, Li T, Ning X, Bi X. A comparative study of the effects of microbial agents and anaerobic sludge on microalgal biotransformation into organic fertilizer. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 246:737-744. [PMID: 31220734 DOI: 10.1016/j.jenvman.2019.06.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 06/09/2023]
Abstract
The effects of Lactobacillus bulgaricus, Rhodopseudomonas palustris, Issatchenkia orientalis and anaerobic sludge on anaerobic digestion of microalgae to organic fertilizer were studied. High-throughput sequencing was used to analyze characteristics of microbial community structure during anaerobic digestion of microalgae using different inocula. Lactobacillales and Saccharomycetales were more likely to become dominant bacteria and eukaryotes. The relative abundance of Lactobacillales was 98.15%, 88.61% and 81.73% of total bacteria at the beginning, middle and end of the experiment, respectively. Meanwhile, the relative abundance of Saccharomycetales was 90.91%, 98.41% and 98.8% of eukaryotes at the beginning, middle and end of the experiment, respectively. At the end of digestion, the microcystin content in the reactor inoculated with Issatchenkia orientalis decreased to 0.71 μg/kg, which met drinking water standards. Rhodopseudomonas palustris did not become a dominant microorganism and had the most negative impact on the atmosphere. Volatile organic compounds were 11.92 mg/kg while the odor concentration reached 97,724 ou/m3. The organic matter content in reactors inoculated with specific groups of microbial agents, which was higher than the standard required for bio-organic fertilizer, occupying over 96% dry weight. In addition, the effective microorganism counts of Issatchenkia orientalis and Lactobacillus bulgaricus in fermentation products reached 1.8E+09 colony-forming units (cfu)/g and 1.6E+09 cfu/g, respectively, which are suitable values for microbial fertilizer.
Collapse
Affiliation(s)
- Gang Liu
- Key Laboratory of Aquatic-Ecology and Aquaculture of Tianjin, College of Fishery, Tianjin Agricultural University, Tianjin, 300384, China; Department of Environmental Science and Engineering, Nankai University Binhai College, Tianjin, 300270, China; State Environmental Protection Key Laboratory of Odor Pollution Control, Environmental Protection Research Institute, Tianjin, 300191, China
| | - Ting Li
- Department of Environmental Science and Engineering, Nankai University Binhai College, Tianjin, 300270, China
| | - Xiaoyu Ning
- State Environmental Protection Key Laboratory of Odor Pollution Control, Environmental Protection Research Institute, Tianjin, 300191, China
| | - Xiangdong Bi
- Key Laboratory of Aquatic-Ecology and Aquaculture of Tianjin, College of Fishery, Tianjin Agricultural University, Tianjin, 300384, China.
| |
Collapse
|
25
|
Cai F, Lei L, Li Y. Different bioreactors for treating secondary effluent from recycled paper mill. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 667:49-56. [PMID: 30825821 DOI: 10.1016/j.scitotenv.2019.02.377] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/18/2019] [Accepted: 02/24/2019] [Indexed: 06/09/2023]
Abstract
Secondary effluent from paper mill was characterized by poor biodegradability and containing recalcitrant compounds. In this study, four bioreactors, including a sequencing batch biofilm reactor (SBBR), a stirred-tank reactor (STR) and two submerged aeration reactors (SAR) were used to treat secondary effluent from a recycled paper mill respectively. The results indicated that chemical oxygen demand (COD) was increased by SAR2 treatment and COD removal efficiency for SBBR, SAR1 and STR was 39.7%, 15.7% and 30.9% respectively. It is suggested that recalcitrant compounds were removed by SBBR, SAR1 and STR respectively. Total nitrogen (TN) and total phosphorus (TP) of wastewater were increased by treatments of each bioreactor, which suggested that endogenous respiration of biomass occurred during the treatment. Microbial analysis of sludge from different bioreactors suggested that the removal of recalcitrant compounds in SBBR and STR might be related to the presence of unique microorganisms in each reactor.
Collapse
Affiliation(s)
- Fangrui Cai
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Lirong Lei
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Youming Li
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
26
|
Performance Evaluation of Pilot-scale Hybrid Anaerobic Baffled Reactor (HABR) to Process Dyeing Wastewater Based on Grey Relational Analysis. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9101974] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A pilot-scale six-compartment hybrid anaerobic baffled reactor (HABR) with effective volume of 18 m3 was used to treat dyeing wastewater. The HABR system was able to treat the wastewater efficiently after FeSO4 pretreatment, as indicated by removal efficiencies of 33.7% for chemical oxygen demand (COD), 39.9% for suspended solid (SS), and 22.5% for sulfate (SO42−) during steadily operational period. Gas chromatography–mass spectrometry (GC-MS) showed that the concentrations of alkanes, amides, organic acids, ketones, phenols, and esters were much lower in the effluent than those in the influent; many high-molecular-weight compounds such as cyclanes, quinolines, and phenols were successfully transformed to low-molecular-weight ones. As illustrated from the results of generalized grey relational analysis (GGRA), COD removal efficiency was more closely associated with flow rate, organic loading rate (OLR), water temperature, and influent SS among the whole selected possible factors. Based on the overall treating effectiveness and the GGRA study, the optimized operation strategy of the dyeing wastewater treatment by HABR was obtained as the hydraulic retention time (HRT) of 12 h for steady-state operation with an up-flow velocity of 1.7 m/h as well as OLR of 1.5–2.0 kg COD/(m3·d).
Collapse
|
27
|
Newly Designed Hydrolysis Acidification Flat-Sheet Ceramic Membrane Bioreactor for Treating High-Strength Dyeing Wastewater. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16050777. [PMID: 30836624 PMCID: PMC6427172 DOI: 10.3390/ijerph16050777] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/24/2019] [Accepted: 02/26/2019] [Indexed: 11/17/2022]
Abstract
Cost-effective treatment of dyeing wastewater remains a challenge. In this study, a newly designed hydrolysis acidification flat-sheet ceramic membrane bioreactor (HA-CMBR) was used in treating high-strength dyeing wastewater. The start-up phase of the HA-CMBR was accomplished in 29 days by using cultivated seed sludge. Chemical oxygen demand (COD) removal rate reached about 62% with influent COD of 7800 mg/L and an organic loading rate of 7.80 kg-COD/(m³·d). Chromaticity removal exceeded 99%. The results show that the HA-CMBR has good removal performance in treating dyeing wastewater. The HA-CMBR could run with low energy consumption at trans-membrane pressure (TMP) <10 kPa due to the good water permeability of the flat-sheet ceramic membrane. New strains with 92%⁻96% similarity to Alkalibaculum bacchi, Pseudomonas sp., Desulfovibrio sp., and Halothiobacillaceae were identified in the HA-CMBR. Microbial population analysis indicated that Desulfovibrio sp., Deltaproteobacteria, Halothiobacillaceae, Alkalibaculum sp., Pseudomonas sp., Desulfomicrobium sp., and Chlorobaculum sp. dominated in the HA-CMBR.
Collapse
|