1
|
Zeng Y, Zhao C, Ma D, Bin L, Chen W, Li P, Tang B. Recognizing the state of aerobic granular sludge over its life-cycle in a continuous-flow membrane bioreactor with an artificial intelligence approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 384:125527. [PMID: 40315654 DOI: 10.1016/j.jenvman.2025.125527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 04/15/2025] [Accepted: 04/21/2025] [Indexed: 05/04/2025]
Abstract
The continuous-flow aerobic granular sludge-membrane bioreactor (AGS-MBR) system represents an efficient and sustainable technology for wastewater treatment. AGS, a spherical or ellipsoidal granular sludge formed through microbial self-aggregation under aerobic conditions, progresses through four distinct life-cycle stages in the AGS-MBR system: initial, growth, mature, and cleaved. Accurate identification and classification of these stages are crucial for optimizing AGS-MBR operations and maintaining system stability; however, traditional monitoring methods are labor-intensive and error-prone. This study utilized Artificial Intelligence (AI) to develop a machine learning model based on the You Only Look Once (YOLOv8) algorithm for automated AGS monitoring and classification. Trained on 862 annotated images, the model achieved average precision of 0.985 at an Intersection over Union (IoU) threshold of 0.5 (mAP50), and the mAP50-95 of 0.837, demonstrating high accuracy in AGS classification. The t-distributed Stochastic Neighbor Embedding (t-SNE) revealed distinct clusters of AGS features across life-cycle stages, while SHapley Additive exPlanations (SHAP) demonstrated that the model focused on global features of small-grained images and edge features of large-grained images, both confirming the robustness of classification. The model's statistical functionality, supported by global variables, enabled real-time AGS monitoring in MBR system. This study provides a powerful tool for detecting and classifying the AGS life-cycle, offering guidance for the operation and maintenance of AGS-MBR system and demonstrating the potential applications of AI in wastewater treatment.
Collapse
Affiliation(s)
- Yu Zeng
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Chenguang Zhao
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Danling Ma
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Liying Bin
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Weirui Chen
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Ping Li
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Bing Tang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
2
|
de Carvalho CB, da Silva VEPSG, Frutuoso FKA, Dos Santos AB. Influence of saline stress in alternating pulses on aerobic granulation and resource production using different inoculum sources. Bioprocess Biosyst Eng 2025:10.1007/s00449-025-03163-z. [PMID: 40221615 DOI: 10.1007/s00449-025-03163-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 03/29/2025] [Indexed: 04/14/2025]
Abstract
Aerobic granular sludge (AGS) is a promising technology for wastewater treatment, particularly for its ability to recover valuable resources such as polyhydroxyalkanoates, alginate-like exopolysaccharide, and phosphorus. However, achieving stable granule formation remains a significant challenge. Research has shown that the addition of salt can accelerate the granulation process and enhance bioresource production. The source of the seed biomass is also critical for the system's success, with most AGS studies using activated sludge as the inoculum. This study aims to compare granulation, reactor performance, and bioresource recovery outcomes using inocula from different sources while also evaluating the impact of saline stress. Four sequential batch reactors were monitored, differing in the type of inoculum sludge (biomass from an aerated biofilter or activated sludge systems) and the presence of NaCl in the feed. The saline feed alternated between cycles containing 5 gNaCl/L and conventional feed without NaCl. Osmotic pressure was found to favor granulation and solids accumulation in both types of biomasses. Reactors inoculated with activated sludge and subjected to salt addition achieved complete granulation more rapidly. In contrast, reactors inoculated with submerged aerated biofilter sludge exhibited higher solids concentrations. All systems demonstrated excellent chemical oxygen demand removal, with activated sludge reactors showing superior performance in ammonia and total nitrogen removal and bioresources recovery. Salt addition stimulated the production of extracellular polymeric substances and amino acids such as tyrosine and tryptophan while reducing the intensity of fulvic acid-like substances, irrespective of the inoculum type.
Collapse
Affiliation(s)
- Clara Bandeira de Carvalho
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Campus do Pici, Bloco 713, Pici, Fortaleza, Ceará, CEP: 60455-900, Brazil
| | | | - Francisca Kamila Amancio Frutuoso
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Campus do Pici, Bloco 713, Pici, Fortaleza, Ceará, CEP: 60455-900, Brazil
| | - André Bezerra Dos Santos
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Campus do Pici, Bloco 713, Pici, Fortaleza, Ceará, CEP: 60455-900, Brazil.
| |
Collapse
|
3
|
Zhang H, Zhang R, Du Y, Huang S, Zhao F, Kim DH, Ng HY, Shi X, Xu B. From waste to wealth: Exploring the effect of particle size on biopolymer harvesting from aerobic granular sludge. BIORESOURCE TECHNOLOGY 2025; 418:131977. [PMID: 39674353 DOI: 10.1016/j.biortech.2024.131977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
This study aimed to examine the impact of aerobic granular sludge (AGS) sizes on its properties and alginate-like exopolymers (ALE) recovery potential. The AGS was cultivated in a lab-scale bioreactor and categorized into six size classes with 200 μm intervals. There appeared a critical size (400-800 μm) for developing stable AGS structure and excellent ALE recovery. A higher hydrophobicity (74.36 %) and density (1,037 g/L) was observed in AGS400-600μm than other sizes. Moreover, the highest ALE yield was obtained in ALE600-800μm (388 mg/g VSS) for its higher abundance of EPS-producers (35.1 %), while the PN content of ALE400-600μm was higher than other samples. Meanwhile, the concentrations of metal elements within the ALE and AGS identified that there was no bio-accumulation of metal elements in the ALE. This study offers an in-depth understanding of biopolymer recovery from AGS, paving the way for a novel resource recovery strategy through the regulation of AGS sizes.
Collapse
Affiliation(s)
- Haifeng Zhang
- National and Local & Joint Engineering Research Center for Urban Sewage Treatment and Resource Recycling, School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao 266033, China
| | - Runze Zhang
- National and Local & Joint Engineering Research Center for Urban Sewage Treatment and Resource Recycling, School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao 266033, China
| | - Yupeng Du
- National and Local & Joint Engineering Research Center for Urban Sewage Treatment and Resource Recycling, School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao 266033, China
| | - Shujuan Huang
- National and Local & Joint Engineering Research Center for Urban Sewage Treatment and Resource Recycling, School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao 266033, China
| | - Fei Zhao
- National and Local & Joint Engineering Research Center for Urban Sewage Treatment and Resource Recycling, School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao 266033, China
| | - Dong-Hoon Kim
- Department of Smart City Engineering, Inha University, 100 Inharo, Michuhol-gu, Incheon 22212, South Korea
| | - How Yong Ng
- Centre for Water Research, Advanced Institute of National Sciences, Beijing Normal University at Zhuhai, 519087, China
| | - Xueqing Shi
- National and Local & Joint Engineering Research Center for Urban Sewage Treatment and Resource Recycling, School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao 266033, China.
| | - Boyan Xu
- Centre for Water Research, Advanced Institute of National Sciences, Beijing Normal University at Zhuhai, 519087, China.
| |
Collapse
|
4
|
Kedves A, Kónya Z. Effects of nanoparticles on anaerobic, anammox, aerobic, and algal-bacterial granular sludge: A comprehensive review. Biofilm 2024; 8:100234. [PMID: 39524692 PMCID: PMC11550140 DOI: 10.1016/j.bioflm.2024.100234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Nanoparticles (NPs) are of significant interest due to their unique properties, such as large surface area and high reactivity, which have facilitated advancements in various fields. However, their increased use raises concerns about environmental impacts, including on wastewater treatment processes. This review examines the effects of different nanoparticles on anaerobic, anammox, aerobic, and algal-bacterial granular sludge used in wastewater treatment. CeO2 and Ag NPs demonstrated adverse effects on aerobic granular sludge (AGS), reducing nutrient removal and cellular function, while anaerobic granular sludge (AnGS) and anammox granular sludge (AxGS) showed greater resilience due to their higher extracellular polymeric substance (EPS) content. TiO2 NPs had fewer negative effects on algal-bacterial granular sludge (ABGS) than on AGS, as algae played a crucial role in enhancing EPS production and stabilizing the granules. The addition of Fe3O4 NPs significantly enhanced both aerobic and anammox granulation by reducing granulation time, promoting microbial interactions, improving granule stability, and increasing nitrogen removal efficiency, primarily through increased EPS production and enzyme activity. However, Cu and CuO NPs exhibited strong inhibitory effects on aerobic, anammox, and anaerobic systems, affecting EPS structure, cellular integrity, and microbial viability. ZnO NPs demonstrated dose-dependent toxicity, with higher concentrations inducing oxidative stress and reducing performance in AGS and AnGS, whereas AxGS and ABGS were more tolerant due to enhanced EPS production and algae-mediated protection. The existing knowledge gaps and directions for future research on NPs are identified and discussed.
Collapse
Affiliation(s)
- Alfonz Kedves
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
- HUN-REN Reaction Kinetics and Surface Chemistry Research Group, Szeged, Hungary
| |
Collapse
|
5
|
Barbosa PT, Dos Santos AB, da Silva MER, Firmino PIM. Color removal in acidogenic reactor followed by aerobic granular sludge reactor: Operational and microbiological aspects. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123175. [PMID: 39488956 DOI: 10.1016/j.jenvman.2024.123175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/08/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
This work investigated the operational and microbiological aspects of the decolorization of the azo dye Reactive Black 5 in acidogenic reactors followed by aerobic granular sludge (AGS) reactors, evaluating the effect of the acidogenic hydraulic retention time (HRT) (3, 2, and 1 h), effluent recirculation in the AGS reactor (50 mL min-1), dye concentration (50 and 100 mg L-1), and the redox mediator sodium anthraquinone-2-disulfonate (AQS) (50 μM). The acidogenic reactors were mainly responsible for the dye decolorization, with AQS significantly improving its efficiency and enabling the use of a shorter HRT (2 h). The recirculation effect was not so evident, probably masked by the adaptation of the acidogenic microbiota. Increasing the dye concentration did not affect the total decolorization, but reduced nitrogen removal in the AGS reactors. Furthermore, the dye and its byproducts may have negatively affected the long-term AGS stability. While the acidogenic microbiota maintained its diversity, the AGS tended to become more specialist. However, in both, some abundant genera that may have acted in reducing the dye were found, such as Clostridium_sensu_stricto_1 and Raoutella in the acidogenic sludge and Dechloromonas and Defluviicoccus in the AGS.
Collapse
Affiliation(s)
- Plínio Tavares Barbosa
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - André Bezerra Dos Santos
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | - Paulo Igor Milen Firmino
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil.
| |
Collapse
|
6
|
Yuan Q, Chen S, Chen Y, Zhang X, Lou Y, Li X, Liang Q, Zhang Y, Sun Y. Evaluating AGS efficiency in PHA synthesis and extraction integrated with nutrient removal: The impact of COD concentrations. CHEMOSPHERE 2024; 368:143708. [PMID: 39515542 DOI: 10.1016/j.chemosphere.2024.143708] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/29/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
As natural and biodegradable biopolymers, Polyhydroxyalkanoates (PHA) were synthetized by aerobic granules sludge (AGS) in a sequential batch reactor in this study. The effect of different COD concentrations on PHA accumulation and nutrients removal were investigated. At the same time, different pretreatment methods for PHA extraction, including NaClO pretreatment for extracellular polymeric substances (EPS) removal, Na2CO3 pretreatment for EPS recovery, and grinding pretreatment to reduce particle size and augment the surface area available for interaction with the extraction solvent, were compared. The results showed that the PHA yield increased more than 2 times (from 91.1 to 233.3 mgPHA/gCDW (cell dry weight)) when COD concentration increased from 800 to 1600 mg/L. Polyhydroxybutyrate (PHB) and polyhydroxyvalerate (PHV) both accounted for half of the total, while PHB fraction rose to 71% when COD concentration went up to 1600 mg/L. The PHB can be consumed 3 times faster than PHV. High COD concentration (1600 mg/L) adversely impacted the structure stability of AGS and the phosphorus removal efficiency, while the system consistently exhibited robust nitrogen removal capabilities, with ammonium and TN removal efficiencies exceeding >90%. The dominant bacteria shifted from Flavobacterium to Halomona and Hydrogenophaga as the COD concentration increased. In terms of PHA extraction, Na2CO3 pretreatment, which was used for EPS recovery, had the best PHA recovery with nearly 100% purity and EPS removal efficiency compared with NaClO and grinding pretreatments.
Collapse
Affiliation(s)
- Quan Yuan
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| | - Song Chen
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| | - Yun Chen
- Thunip Co., Ltd., Beijing, 100084, China
| | - Xinyu Zhang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| | - Yuqing Lou
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| | - Xueting Li
- Thunip Co., Ltd., Beijing, 100084, China
| | - Qian Liang
- Thunip Co., Ltd., Beijing, 100084, China
| | - Yanping Zhang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| | - Yingxue Sun
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
7
|
Cao T, Yang Y, Li X, Liu L, Fei X, Zhao Y, Zhang L, Lu Y, Zhou D. In-situ rapid cultivation of aerobic granular sludge in A/O bioreactor by using Ca(ClO) 2 pretreating sludge. BIORESOURCE TECHNOLOGY 2024; 410:131278. [PMID: 39151572 DOI: 10.1016/j.biortech.2024.131278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
The efficient utilization of residual sludge and the rapid cultivation of aerobic granular sludge in continuous-flow engineering applications present significant challenges. In this study, aerobic granular cultivation was fostered in a continuous-flow system using Ca(ClO)2-sludge carbon (Ca-SC). Ca-SC retained the original sludge properties, contributing to granular growth in an A/O bioreactor. By day 40, the granule diameters increased to 0.8 mm with the SVI30 decreased by 2.7 times. Moreover, Ca-SC facilitated protein secretion, reaching 98.06 mg/g VSS and enhanced the hydrophobicity to 68.4 %. The continuous-flow aerobic granular sludge exhibited a nutrient removal rate above 90 %. Furthermore, Tessaracoccus and Nitrospira were enriched to promote granular formation and nitrogen removal. The residual sludge was carbonized and reused in the traditional wastewater treatment process to culture granular sludge in situ, aiming to achieve "self-production and self-consumption" of sludge and promote the innovative model of "treating waste with waste" in urban sewage environmental restoration.
Collapse
Affiliation(s)
- Tingting Cao
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China; School of Environment, Northeast Normal University, Changchun 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China.
| | - Yue Yang
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China; School of Environment, Northeast Normal University, Changchun 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China
| | - Xiaomeng Li
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China; School of Environment, Northeast Normal University, Changchun 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China
| | - Liang Liu
- Jilin Huatian Environmental Protection Group Co., Ltd., 130000, China
| | - Xiyang Fei
- Jilin Huatian Environmental Protection Group Co., Ltd., 130000, China
| | - Yuanhang Zhao
- Jilin Huatian Environmental Protection Group Co., Ltd., 130000, China
| | - Leilei Zhang
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China; School of Environment, Northeast Normal University, Changchun 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China
| | - Ying Lu
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China; School of Environment, Northeast Normal University, Changchun 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China
| | - Dandan Zhou
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China; School of Environment, Northeast Normal University, Changchun 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China
| |
Collapse
|
8
|
Wang C, Qi WK, Zhang SJ, Liu LF, Peng YZ. Innovation for continuous aerobic granular sludge process in actual municipal sewage treatment: Self-circulating up-flow fluidized bed process. WATER RESEARCH 2024; 260:121862. [PMID: 38908310 DOI: 10.1016/j.watres.2024.121862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/24/2024]
Abstract
Aerobic granular sludge (AGS) capable of nitrogen and phosphorus removal is mainly limited to the applications in sequencing batch reactors. This study introduced an innovative continuous self-circulating up-flow fluidized bed process (Zier process) using separate aeration. The process was composed of an anoxic column (Zier-A), aeration column (Zier-OO) and aerobic column (Zier-O), and was used to treat actual municipal sewage continuously for 170 days. The process achieved self-circulation of 20-32 times and an up-flow velocity within the reactor of 7-16 m/h which were accurately controlled with only separate aeration. The larger proportion of self-circulating multiple times contributed to particle formation and stability, providing hydraulic shear conditions, and screened the precipitation performance of the granular sludge (GS). Meanwhile, the dissolved oxygen (DO) of Zier-O was controlled at 0.1-0.3 mg/L, and the DO of Zier-A input water was zero. The accurate oxygen supply enhanced simultaneous nitrification and denitrification (SND) as well as short-cut nitrification and denitrification in Zier-O and improved the COD utilization rate and the nitrogen removal rate in Zier-A. The COD treatment capacity reached 2.46 kg-COD/(m³·d). With a hydraulic retention time of 10 h, the process consistently ensured that the average concentrations of ammonia nitrogen and total nitrogen in the effluent were maintained below 5 and 15 mg/L, respectively. Moreover, the process maintained the shape and stability of GS, the median diameter of GS ranged between 300-1210 μm, the percentage of mass with particle size distribution < 200 μm at a height of 150 cm within Zier-A and Zier-O accounted for as low as 0.04%-0.05%, and showed good settling performance. The suspended solids in effluent can be maintained at 50-80 mg/L. Overall, the unique structural setting and control method of the Zier process provide another approach for the application of continuous AGS treatment for municipal sewage.
Collapse
Affiliation(s)
- Cong Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China; Beijing Drainage Group Co., Ltd., Beijing 100044, China
| | - Wei-Kang Qi
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Shu-Jun Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China; Beijing Drainage Group Co., Ltd., Beijing 100044, China
| | - Li-Fang Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yong-Zhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
9
|
Lv YT, Wang Y, Dong J, Miao R, Wang X, Chen X, Wang L. Mechanisms of denitrifying granular sludge disintegration and calcium ion-enhanced re-granulation in acidic wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121794. [PMID: 38986371 DOI: 10.1016/j.jenvman.2024.121794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 06/01/2024] [Accepted: 07/07/2024] [Indexed: 07/12/2024]
Abstract
Granular sludge is an alternative technology for the direct treatment of acidic nitrate-containing wastewater. Rapid remediation of disintegrated granules is essential to achieve efficient nitrogen removal. In this study, denitrifying granules were inactivated and disintegrated when the influent nitrate-nitrogen concentration was elevated from 240 to 360 mg L-1 in acidic wastewater (pH = 4.1) in a sequencing batch reactor. Tightly bound extracellular polymeric substances (TB-EPS) decreased by 60%, and extracellular protein (PN) was the main component of the reduced EPS. The three-dimensional excitation emission matrices (3D-EEM) results confirmed that the PNs that decreased were mainly tryptophan-like, tyrosine-like, and aromatic. This study further confirmed that the decrease in PN was mainly from the destruction of C=O (amide I) and N-H functional groups. Overloading of nitrogen-inhibited denitrifying activity and the destruction and dissolution of TB-EPS by acidic pH were responsible for granule disintegration, with PNs playing a major role in maintaining granule stability. Based on this, new granules with an average particle size of 454.4 μm were formed after calcium chloride addition; EPS nearly doubled during granule formation with PN as the dominant component, accounting for 64.7-78.4% of the EPS. Atomic force microscopy (AFM) revealed that PN-PN adhesion increased by 1.6-4.9 times in the presence of calcium ions, accelerating the re-granulation of disintegrated particles. This study provides new insights into the disintegration and remediation of granular sludge under acidic conditions.
Collapse
Affiliation(s)
- Yong-Tao Lv
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, China; Key Laboratory of Membrane Separation of Shaanxi Province, Research Institute of Membrane Separation Technology of Shaanxi Province, No. 13 Yanta Road, Xi'an 710055, China; Key Laboratory of Environmental Engineering of Shaanxi Province, No. 13 Yanta Road, Xi'an 710055, China
| | - Yixin Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, China; Key Laboratory of Membrane Separation of Shaanxi Province, Research Institute of Membrane Separation Technology of Shaanxi Province, No. 13 Yanta Road, Xi'an 710055, China; Key Laboratory of Environmental Engineering of Shaanxi Province, No. 13 Yanta Road, Xi'an 710055, China
| | - Jian Dong
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, China; Key Laboratory of Membrane Separation of Shaanxi Province, Research Institute of Membrane Separation Technology of Shaanxi Province, No. 13 Yanta Road, Xi'an 710055, China; Key Laboratory of Environmental Engineering of Shaanxi Province, No. 13 Yanta Road, Xi'an 710055, China
| | - Rui Miao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, China; Key Laboratory of Membrane Separation of Shaanxi Province, Research Institute of Membrane Separation Technology of Shaanxi Province, No. 13 Yanta Road, Xi'an 710055, China; Key Laboratory of Environmental Engineering of Shaanxi Province, No. 13 Yanta Road, Xi'an 710055, China
| | - Xudong Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, China; Key Laboratory of Membrane Separation of Shaanxi Province, Research Institute of Membrane Separation Technology of Shaanxi Province, No. 13 Yanta Road, Xi'an 710055, China; Key Laboratory of Environmental Engineering of Shaanxi Province, No. 13 Yanta Road, Xi'an 710055, China
| | - Xiaolin Chen
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, China; Key Laboratory of Membrane Separation of Shaanxi Province, Research Institute of Membrane Separation Technology of Shaanxi Province, No. 13 Yanta Road, Xi'an 710055, China; Key Laboratory of Environmental Engineering of Shaanxi Province, No. 13 Yanta Road, Xi'an 710055, China
| | - Lei Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, China; Key Laboratory of Membrane Separation of Shaanxi Province, Research Institute of Membrane Separation Technology of Shaanxi Province, No. 13 Yanta Road, Xi'an 710055, China; Key Laboratory of Environmental Engineering of Shaanxi Province, No. 13 Yanta Road, Xi'an 710055, China.
| |
Collapse
|
10
|
Adekunle A, Ukaigwe S, Bezerra Dos Santos A, Iorhemen OT. Potential for curdlan recovery from aerobic granular sludge wastewater treatment systems - A review. CHEMOSPHERE 2024; 362:142504. [PMID: 38825243 DOI: 10.1016/j.chemosphere.2024.142504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/04/2024]
Abstract
The aerobic granular sludge (AGS) biotechnology has been explored for wastewater treatment for over two decades. AGS is gaining increased interest due to its enhanced treatment performance ability and the potential for resource recovery from AGS-based wastewater treatment systems. Resource recovery from AGS is a promising approach to sustainable wastewater treatment and attaining a circular economy in the wastewater management industry. Currently, research is at an advanced stage on recovering value-added resources such as phosphorus, polyhydroxyalkanoates, alginate-like exopolysaccharides, and tryptophan from waste aerobic granules. Recently, other value-added resources, including curdlan, have been identified in the aerobic granule matrix, and this may increase the sustainability of biotechnology in the wastewater industry. This paper provides an overview of AGS resource recovery potential. In particular, the potential for enhanced curdlan biosynthesis in the granule matrix and its recovery from AGS wastewater treatment systems is outlined.
Collapse
Affiliation(s)
- Adedoyin Adekunle
- School of Engineering, University of Northern British Columbia, 3333 University Way, Prince George, BC, V2N 4Z9, Canada
| | - Sandra Ukaigwe
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - André Bezerra Dos Santos
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Oliver Terna Iorhemen
- School of Engineering, University of Northern British Columbia, 3333 University Way, Prince George, BC, V2N 4Z9, Canada.
| |
Collapse
|
11
|
Wang J, Li Z, Xiong P, Li Z, Liu H, Zhang Y, Lei Z, Liu X, Lee DJ, Qian X. Reduction of greenhouse gas emissions from closed activated sludge- to aerobic granular sludge-based biosystems via gas circulation. BIORESOURCE TECHNOLOGY 2024; 401:130748. [PMID: 38677387 DOI: 10.1016/j.biortech.2024.130748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 04/29/2024]
Abstract
Greenhouse gas (GHG) emissions from biological treatment units are challenging wastewater treatment plants (WWTPs) due to their wide applications and global warming. This study aimed to reduce GHG emissions (especially N2O) using a gas circulation strategy in a closed sequencing-batch reactor when the biological unit varies from activated sludge (AS) to aerobic granular sludge (AGS). Results show that gas circulation lowers pH to 6.3 ± 0.2, facilitating regular granules but elevating total N2O production. From AS to AGS, N2O emission factor increased (0.07-0.86 %) due to decreasing ammonia-oxidizing rates while the emissions of CO2 (0.3 ± 0.1 kg-CO2/kg-chemical oxygen demand) and CH4 remained in the closed biosystem. The gas circulation decreased N2O emission factor by 63 ± 15 % after granulation higher than 44 ± 34 % before granulation, which is implemented by heterotrophic denitrification. This study provides a feasible strategy to enhance heterotrophic N2O elimination in the biological WWTPs.
Collapse
Affiliation(s)
- Jixiang Wang
- Shanghai Academy of Environmental Sciences, Shanghai 200233, China; Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Zejiao Li
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Pengyu Xiong
- Shanghai Academy of Environmental Sciences, Shanghai 200233, China; Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Zhengwen Li
- Shanghai Academy of Environmental Sciences, Shanghai 200233, China; Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Hui Liu
- Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Yili Zhang
- Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Zhongfang Lei
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Xiang Liu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tang, Hong Kong; Department of Chemical Engineering & Materials Science, Yuan-Ze University, Chungli 320, Taiwan
| | - Xiaoyong Qian
- Shanghai Academy of Environmental Sciences, Shanghai 200233, China.
| |
Collapse
|
12
|
Li J, Tang L, Zhang Y, Gao M, Wang S, Wang X. Hydrodynamic cultivation of aeration-free oxygenic photogranules is favored by sufficient amounts of organic carbon. BIORESOURCE TECHNOLOGY 2024; 401:130736. [PMID: 38670289 DOI: 10.1016/j.biortech.2024.130736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/09/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Oxygenic photogranules (OPGs) have great potential for the aeration-free treatment of various wastewater, however, the effects of wastewater carbon composition on OPGs remain unknown. This study investigated the hydrodynamic photogranulation in three types of wastewater with the same total carbon concentration but different inorganic/organic carbon compositions, each operated at two replicated reactors. Results showed that photogranulation failed in reactors fed with only inorganic carbon. In reactors with equal inorganic and organic carbon, loose-structured OPGs formed but then disintegrated. Comparatively, reactors treating organic carbon-based wastewater obtained regular and dense OPGs with better settleability, lower effluent turbidity, excellent structural stability, and higher carbon assimilation rate. Sufficient amounts of organic carbon were crucial for the formation and stability of OPGs as they promoted the secretion of extracellular polymeric substances (EPS) and the growth of filamentous cyanobacteria. This study provides a basis for the startup of OPGs process and facilitates its large-scale application.
Collapse
Affiliation(s)
- Junrong Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Liaofan Tang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yuqing Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Mingming Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Shuguang Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Weihai Research Institute of Industrial Technology of Shandong University, Weihai 264209, China
| | - Xinhua Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
13
|
Zhou L, Liang M, Zhang D, Niu X, Li K, Lin Z, Luo X, Huang Y. Recent advances in swine wastewater treatment technologies for resource recovery: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171557. [PMID: 38460704 DOI: 10.1016/j.scitotenv.2024.171557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
Swine wastewater (SW), characterized by highly complex organic and nutrient substances, poses serious impacts on aquatic environment and public health. Furthermore, SW harbors valuable resources that possess substantial economic potential. As such, SW treatment technologies place increased emphasis on resource recycling, while progressively advancing towards energy saving, sustainability, and circular economy principles. This review comprehensively encapsulates the state-of-the-art knowledge for treating SW, including conventional (i.e., constructed wetlands, air stripping and aerobic system) and resource-utilization-based (i.e., anaerobic digestion, membrane separation, anaerobic ammonium oxidation, microbial fuel cells, and microalgal-based system) technologies. Furthermore, this research also elaborates the key factors influencing the SW treatment performance, such as pH, temperature, dissolved oxygen, hydraulic retention time and organic loading rate. The potentials for reutilizing energy, biomass and digestate produced during the SW treatment processes are also summarized. Moreover, the obstacles associated with full-scale implementation, long-term treatment, energy-efficient design, and nutrient recovery of various resource-utilization-based SW treatment technologies are emphasized. In addition, future research prospective, such as prioritization of process optimization, in-depth exploration of microbial mechanisms, enhancement of energy conversion efficiency, and integration of diverse technologies, are highlighted to expand engineering applications and establish a sustainable SW treatment system.
Collapse
Affiliation(s)
- Lingling Zhou
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Ming Liang
- Bureau of Ecology and Environment, Maoming 525000, PR China
| | - Dongqing Zhang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, PR China.
| | - Xiaojun Niu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, PR China; School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; Sino-Singapore International Joint Research Institute, Guangzhou 510700, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China.
| | - Kai Li
- The Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China.
| | - Zitao Lin
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, PR China
| | - Xiaojun Luo
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, PR China
| | - Yuying Huang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, PR China
| |
Collapse
|
14
|
Yang J, Qian M, Wu S, Liao H, Yu F, Zou J, Li J. Insight into the role of chitosan in rapid recovery and re-stabilization of disintegrated aerobic granular sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120613. [PMID: 38547824 DOI: 10.1016/j.jenvman.2024.120613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/16/2024] [Accepted: 03/10/2024] [Indexed: 04/07/2024]
Abstract
The disintegration and instability of aerobic granular sludge (AGS) systems during long-term operation pose significant challenges to its practical implementation, and rapid recovery strategies for disintegrated AGS are gaining more attention. In this study, the recovery and re-stabilization of disintegrated AGS was investigated by adding chitosan to a sequencing batch reactor and simultaneously adjusting the pH to slightly acidic condition. Within 7 days, chitosan addition under slight acidity led to the re-aggregation of disintegrated granules, increasing the average particle size from 166.4 μm to 485.9 μm. Notably, sludge volume indexes at 5 min (SVI5) and 30 min (SVI30) decreased remarkably from 404.6 mL/g and 215.1 mL/g (SVI30/SVI5 = 0.53) to 49.1 mL/g and 47.6 mL/g (SVI30/SVI5 = 0.97), respectively. Subsequent operation for 43 days successfully re-stabilized previous collapsed AGS system, resulting in an average particle size of 750.2 μm. These mature and re-stabilized granules exhibited characteristics of large particle size, excellent settleability, compact structure, and high biomass retention. Furthermore, chitosan facilitated the recovery of COD and nitrogen removal performances within 17-23 days of operation. It effectively facilitated the rapid aggregation of disintegrated granules by charge neutralization and bridging effects under a slightly acidic environment. Moreover, the precipitated chitosan acted as carriers, promoting the adhesion of microorganisms once pH control was discontinued. The results of batch tests and microbial community analysis confirmed that chitosan addition increased sludge retention time, enriching slow-growing microorganisms and enhancing the stability and pollutant removal efficiency of the AGS system.
Collapse
Affiliation(s)
- Jiaqi Yang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Mengjie Qian
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shuyun Wu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hanglei Liao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Fengfan Yu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jinte Zou
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China; Shaoxing Research Institute, Zhejiang University of Technology, Shaoxing, 312000, China.
| | - Jun Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
15
|
Jachimowicz P, Peng R, Hüffer T, Hofmann T, Cydzik-Kwiatkowska A. Tire materials disturb transformations of nitrogen compounds and affect the structure of biomass in aerobic granular sludge reactors. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133223. [PMID: 38113742 DOI: 10.1016/j.jhazmat.2023.133223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/13/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023]
Abstract
Tire materials (TMs) present a notable hazard due to their potential to release harmful chemicals and microplastics into the environment. They can infiltrate wastewater treatment plants, where their effects remain inadequately understood, raising concerns regarding their influence on treatment procedures. Thus, this study investigated the impact of TMs in wastewater (10, 25, 50 mg/L) on wastewater treatment efficiency, biomass morphology, and microbial composition in aerobic granular sludge (AGS) reactors. TM dosage negatively correlated with nitrification and denitrification efficiencies, reducing overall nitrogen removal, but did not affect the efficiency of chemical-oxygen-demand removal. The presence of TMs increased the diameter of the granules due to TM incorporation into the biomass. The most frequently leached additives from TMs were N-(1,3-dimethylbutyl)-N'-phenyl-1,4-phenylenediamine, benzothiazole (BTH), and 2-hydroxybenzothiazole. In the treated wastewater, only BTH and aniline were detected in higher concentrations, which indicates that tire additives were biodegraded by AGS. The microbial community within the AGS adapted to TMs and their chemicals, highlighting the potential for efficient degradation of tire additives by bacteria belonging to the genera Rubrivivax, Ferruginibacter, and Xanthomonas. Additionally, our research underscores AGS's ability to incorporate TMs into biomass and effectively biodegrade tire additives, offering a promising solution for addressing environmental concerns related to TMs.
Collapse
Affiliation(s)
- Piotr Jachimowicz
- Department of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn, 10-709 Olsztyn, Poland.
| | - Ruoting Peng
- Centre for Microbiology and Environmental Systems Science, Department of Environmental Geosciences, University of Vienna, 1090 Vienna, Austria; Doctoral School in Microbiology and Environmental Science, University of Vienna, 1090 Vienna, Austria
| | - Thorsten Hüffer
- Centre for Microbiology and Environmental Systems Science, Department of Environmental Geosciences, University of Vienna, 1090 Vienna, Austria
| | - Thilo Hofmann
- Centre for Microbiology and Environmental Systems Science, Department of Environmental Geosciences, University of Vienna, 1090 Vienna, Austria
| | | |
Collapse
|
16
|
Rosa-Masegosa A, Rodriguez-Sanchez A, Gorrasi S, Fenice M, Gonzalez-Martinez A, Gonzalez-Lopez J, Muñoz-Palazon B. Microbial Ecology of Granular Biofilm Technologies for Wastewater Treatment: A Review. Microorganisms 2024; 12:433. [PMID: 38543484 PMCID: PMC10972187 DOI: 10.3390/microorganisms12030433] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 04/02/2025] Open
Abstract
Nowadays, the discharge of wastewater is a global concern due to the damage caused to human and environmental health. Wastewater treatment has progressed to provide environmentally and economically sustainable technologies. The biological treatment of wastewater is one of the fundamental bases of this field, and the employment of new technologies based on granular biofilm systems is demonstrating success in tackling the environmental issues derived from the discharge of wastewater. The granular-conforming microorganisms must be evaluated as functional entities because their activities and functions for removing pollutants are interconnected with the surrounding microbiota. The deep knowledge of microbial communities allows for the improvement in system operation, as the proliferation of microorganisms in charge of metabolic roles could be modified by adjustments to operational conditions. This is why engineering must consider the intrinsic microbiological aspects of biological wastewater treatment systems to obtain the most effective performance. This review provides an extensive view of the microbial ecology of biological wastewater treatment technologies based on granular biofilms for mitigating water pollution.
Collapse
Affiliation(s)
- Aurora Rosa-Masegosa
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; (A.R.-M.); (A.R.-S.); (A.G.-M.); (J.G.-L.)
| | - Alejandro Rodriguez-Sanchez
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; (A.R.-M.); (A.R.-S.); (A.G.-M.); (J.G.-L.)
| | - Susanna Gorrasi
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, 01100 Viterbo, Italy; (S.G.); (M.F.)
| | - Massimiliano Fenice
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, 01100 Viterbo, Italy; (S.G.); (M.F.)
| | - Alejandro Gonzalez-Martinez
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; (A.R.-M.); (A.R.-S.); (A.G.-M.); (J.G.-L.)
| | - Jesus Gonzalez-Lopez
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; (A.R.-M.); (A.R.-S.); (A.G.-M.); (J.G.-L.)
| | - Barbara Muñoz-Palazon
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, 01100 Viterbo, Italy; (S.G.); (M.F.)
| |
Collapse
|
17
|
Mills S, Trego AC, Prevedello M, De Vrieze J, O’Flaherty V, Lens PN, Collins G. Unifying concepts in methanogenic, aerobic, and anammox sludge granulation. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 17:100310. [PMID: 37705860 PMCID: PMC10495608 DOI: 10.1016/j.ese.2023.100310] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 06/17/2023] [Accepted: 08/05/2023] [Indexed: 09/15/2023]
Abstract
The retention of dense and well-functioning microbial biomass is crucial for effective pollutant removal in several biological wastewater treatment technologies. High solids retention is often achieved through aggregation of microbial communities into dense, spherical aggregates known as granules, which were initially discovered in the 1980s. These granules have since been widely applied in upflow anaerobic digesters for waste-to-energy conversions. Furthermore, granular biomass has been applied in aerobic wastewater treatment and anaerobic ammonium oxidation (anammox) technologies. The mechanisms underpinning the formation of methanogenic, aerobic, and anammox granules are the subject of ongoing research. Although each granule type has been extensively studied in isolation, there has been a lack of comparative studies among these granulation processes. It is likely that there are some unifying concepts that are shared by all three sludge types. Identifying these unifying concepts could allow a unified theory of granulation to be formed. Here, we review the granulation mechanisms of methanogenic, aerobic, and anammox granular sludge, highlighting several common concepts, such as the role of extracellular polymeric substances, cations, and operational parameters like upflow velocity and shear force. We have then identified some unique features of each granule type, such as different internal structures, microbial compositions, and quorum sensing systems. Finally, we propose that future research should prioritize aspects of microbial ecology, such as community assembly or interspecies interactions in individual granules during their formation and growth.
Collapse
Affiliation(s)
- Simon Mills
- Microbial Communities Laboratory, School of Biological and Chemical Sciences, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Anna Christine Trego
- Microbial Ecology Laboratory School of Biological and Chemical Sciences, University of Galway, University Road, Galway, H91 TK33, Ireland
| | - Marco Prevedello
- Microbial Communities Laboratory, School of Biological and Chemical Sciences, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Jo De Vrieze
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B-9000, Gent, Belgium
| | - Vincent O’Flaherty
- Microbial Ecology Laboratory School of Biological and Chemical Sciences, University of Galway, University Road, Galway, H91 TK33, Ireland
| | - Piet N.L. Lens
- University of Galway, University Road, Galway, H91 TK33, Ireland
| | - Gavin Collins
- Microbial Communities Laboratory, School of Biological and Chemical Sciences, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| |
Collapse
|
18
|
Zhang B, Shi J, Shi W, Guo Y, Lens PNL, Zhang B. Effect of different inocula on the granulation process, reactor performance and biodiesel production of algal-bacterial granular sludge (ABGS) under low aeration conditions. CHEMOSPHERE 2023; 345:140391. [PMID: 37839748 DOI: 10.1016/j.chemosphere.2023.140391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/24/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023]
Abstract
The algal-bacterial granular sludge (ABGS) system is a prospective wastewater treatment technology, but few studies focused on the effects of different inoculum types on the establishment of the ABGS system under low aeration conditions (step-decrease superficial gas velocity from 1.4 to 0.5 cm/s). Results from this study indicated that compared with other inocula, the ABGS formed by co-inoculating aerobic granular sludge (AGS) and targeted algae (Chlorella) exhibited a shorter granulation period (shortened by 15 days), higher total nitrogen (89.4%) and PO43--P (95.0%) removal efficiencies, and a greater yield of fatty acid methyl esters (FAMEs) (9.04 mg/g MLSS). This was possibly attributed to that the functional bacteria (e.g. Thauera, Gemmobacter and Rhodobacter) in the inoculated AGS facilitated the ABGS granulation. The inoculated algae promoted their effective enrichment under illumination conditions and enhanced the production of extracellular polymeric substances, thus improving the stability of ABGS. The enriched algae were attached to the outer layer of the granules, which could provide sufficient oxygen for bacterial metabolism, revealing the inherent mechanisms for the good stability of ABGS under low aeration intensity. Overall, the rapid granulation of ABGS can be achieved by inoculating optimal inocula under low aeration conditions, which is convenient and economically feasible, and motivates the application of algal-bacterial consortia.
Collapse
Affiliation(s)
- Bing Zhang
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| | - Jinyu Shi
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| | - Wenxin Shi
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China.
| | - Yuan Guo
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, China
| | - Piet N L Lens
- UNESCO-IHE, Institute for Water Education, Westvest 7, 2601, DA, Delft, the Netherlands
| | - Bing Zhang
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China.
| |
Collapse
|
19
|
Zhao H, Guo Y, Zhang Z, Sun H, Wang X, Li S, Liao J, Li YY, Wang Q. The stable operation of nitritation process with the continuous granular sludge-type reactor and microbial community analysis. CHEMOSPHERE 2023; 345:140527. [PMID: 37884092 DOI: 10.1016/j.chemosphere.2023.140527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/22/2023] [Accepted: 10/22/2023] [Indexed: 10/28/2023]
Abstract
The nitritation step is the fundament for the biological nitrogen removal regardless of the traditional nitrification and denitrification process, the nitrite shunt process or the anammox process. Thus, exploring the effective nitritation performance is an important aspect of biological nitrogen removal. This study explored the upper limit of nitritation rate by increasing hydraulic residence time with the well-mixed and continuous granular sludge-type reactor characterized with low complexity and easy operation. The results showed that with the nitrogen loading rate of 1.0 kg/m3/d, the nitrite production rate could reach up to 0.65 kg/m3/d with the nitrite production efficiency of 63.49%, which is remarkable compared to that in the previously similar research. The microbial analysis indicated that ammonia-oxidizing bacteria was successfully enriched (13.27%) and genus Nitrosomonas was the dominant bacteria type. Besides, the activity of ammonium oxidizing bacteria in the continuous flow reactor was higher than that of other reactor types. The growth of vorticella on the sludge was also found in the reactor. The test of specific sludge activity and the microbe analysis both indicated that the nitrite-oxidizing bacteria was well inhibited during the whole experiment, which indicated the strategy of simply adjusting the dissolved oxygen is effective for running of nitritation process. The phosphorus removal performance was also achieved with a removal efficiency of 23.53%. The functional composition of the microbial community in the samples was predicted and finally transformation mechanism of nitrogen in sludge was drawn. In sum, this study indicated the superior performance of the granule sludge-type nitritation process and give a reference for the application of biological nitrogen removal technology.
Collapse
Affiliation(s)
- Hongjun Zhao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Yan Guo
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China; Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, People's Republic of China.
| | - Ze Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Haishu Sun
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China; Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, People's Republic of China
| | - Xiaona Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China; Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, People's Republic of China
| | - Shuang Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Jianbo Liao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Qunhui Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China; Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, People's Republic of China
| |
Collapse
|
20
|
Li Z, Wang J, Liu W, Zhao Y, Lei Z, Yuan T, Shimizu K, Zhang Z, Lee DJ. Photosynthetic oxygen-supported algal-bacterial aerobic granular sludge can facilitate carbon, nitrogen and phosphorus removal from wastewater: Focus on light intensity selection. BIORESOURCE TECHNOLOGY 2023; 388:129752. [PMID: 37714495 DOI: 10.1016/j.biortech.2023.129752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/02/2023] [Accepted: 09/07/2023] [Indexed: 09/17/2023]
Abstract
Photosynthetic O2 is a promising alternative for mechanical aeration, the major energy-intensive unit in wastewater treatment plants. This study aimed to investigate the effects of light intensity varied from 190 to 1400 µmol·s-1·m-2 on photosynthetic O2-supported algal-bacterial aerobic granular sludge (AGS) system. Results indicate photosynthetic O2 can implement aerobic phosphorus (P) uptake and ammonia oxidation under the test illumination range even at dissolved oxygen concentration < 0.5 mg/L. An obvious O2 accumulation occurred after 60-90% nutrients being removed under 330-1400 µmol·s-1·m-2, and highly efficient ammonia removal, P uptake, and dissolved inorganic carbon removal were achieved under 670-1400 µmol·s-1·m-2. On the other hand, photosynthesis as O2 supplier showed little effect on major ions except for K+. This study provides a better understanding of the roles of light intensity on photosynthetic O2-supported algal-bacterial AGS system, targeting a sustainable wastewater industry.
Collapse
Affiliation(s)
- Zejiao Li
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Jixiang Wang
- Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Wenjun Liu
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Yankai Zhao
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhongfang Lei
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| | - Tian Yuan
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Kazuya Shimizu
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhenya Zhang
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tang, Hong Kong, China; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-li, Taiwan 32003
| |
Collapse
|
21
|
Wang G, Huang X, Wang S, Yang F, Sun S, Yan P, Chen Y, Fang F, Guo J. Effect of food-to-microorganisms ratio on aerobic granular sludge settleability: Microbial community, potential roles and sequential responses of extracellular proteins and polysaccharides. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118814. [PMID: 37591089 DOI: 10.1016/j.jenvman.2023.118814] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/18/2023] [Accepted: 08/12/2023] [Indexed: 08/19/2023]
Abstract
The food-to-microorganism ratio (F/M) is an important parameter in wastewater biotreatment that significantly affects the granulation and settleability of aerobic granular sludge (AGS). Hence, understanding the long-term effects and internal mechanisms of F/M on AGS settling performance is essential. This study investigated the relationship between F/M and the sludge volume index (SVI) within a range of 0.23-2.50 kgCOD/(kgMLVSS·d). Thiothrix and Candidatus_Competibacter were identified as two dominant bacterial genera influencing AGS settling performance. With F/M increased from 0.27 kgCOD/(kgMLVSS·d) to 1.53 kgCOD/(kgMLVSS·d), the abundance of Thiothrix significantly increased from 0.20% to 27.02%, and the hydrophobicity of extracellular proteins (PN) decreased, which collectively reduced AGS settling performance. However, under high-F/M conditions, the gel-like polysaccharides (PS) effectively retained the granular biomass by binding to the highly abundant Thiothrix (53.65%). The progressive increment in biomass led to a concomitant reduction in F/M, resulting in the recovery of AGS settleability. In addition, two-dimensional correlation infrared spectroscopy analysis revealed the preferential responses of PN and PS to the increase and decrease of F/M, and the content and characteristics of PN and PS played important roles in granular settling. The study provides insight into the microbial composition and the potential role of extracellular polymer substances in the AGS sedimentation behavior, offering valuable theoretical support for stable AGS operation.
Collapse
Affiliation(s)
- Gonglei Wang
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Xiaoxiao Huang
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Shuai Wang
- College of Environment Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Fan Yang
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Shiting Sun
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Peng Yan
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Youpeng Chen
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Fang Fang
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
| | - Jinsong Guo
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| |
Collapse
|
22
|
Liu J, Han X, Zhu X, Li J, Zhong D, Wei L, Liang H. A systemic evaluation of aerobic granular sludge among granulation, operation, storage, and reactivation processes in an SBR. ENVIRONMENTAL RESEARCH 2023; 235:116594. [PMID: 37467940 DOI: 10.1016/j.envres.2023.116594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/27/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023]
Abstract
As a biological promising wastewater treatment technology, aerobic granular sludge (AGS) technology had been widely studied in sequencing batch reactors (SBRs) for the decades. Presently, the whole processes of its granulation, long-term operation, storage, and reactivation have not been thoroughly evaluated, and also the relationships among microbial diversity, granular size, and characteristics were still not that clear. Hence, they were systematically evaluated in an AGS-SBR in this work. The results demonstrated that Proteobacteria and Bacteroidetes were the dominant phyla, Flavobacterium, Acinetobacter, Azoarcus, and Chryseobacterium were the core genera with discrepant abundances in diverse stages or granular size. Microbial immigration was significant in various stages due to microbial diversity had a line relationship with COD/MLVSS ratio (R2 = 0.367). However, microbial diversity had no line relationship with granular size (R2 = 0.001), indicating the microbial diversity in different-sized AGS was similar, although granular size had a line relationship with settleability (R2 = 0.978). Overall, compared to sludge traits (e.g., sludge size, settleability), COD/MLVSS played a key role on microbial evolution. This study revealed the relationships between granule characteristics and microbial community, and contributed to the future AGS-related studies.
Collapse
Affiliation(s)
- Jun Liu
- School of Modern Agriculture, Jiaxing Vocational & Technical College, Jiaxing, 314036, PR China; Department of Civil Engineering, Tongji Zhejiang College, Jiaxing, 314051, PR China
| | - Xushen Han
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Xuewu Zhu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, PR China
| | - Jun Li
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Dan Zhong
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| |
Collapse
|
23
|
He Q, Yan X, Xie Z, Xu P, Fu Z, Li J, Liu L, Bi P, Xu B, Ma J. Advanced low-strength wastewater treatment, side-stream phosphorus recovery, and in situ sludge reduction with aerobic granular sludge. BIORESOURCE TECHNOLOGY 2023; 386:129574. [PMID: 37506946 DOI: 10.1016/j.biortech.2023.129574] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Modern paradigm has upgraded wastewater treatment plants (WWTPs) to water resources recovery facilities (WRRFs), where aerobic granular sludge (AGS) is a sewage treatment technology with promising phosphorus recovery (PR) potential. Herein, the AGS-based simultaneous nitrification, denitrification, and phosphorus removal coupling side-stream PR process (AGS-SNDPRr) was developed with municipal wastewater. Results revealed that AGS always maintained good structural stability, and pollutant removal was unaffected and effective after 40 days of anaerobic phosphorus-rich liquid extraction (fixed rate of 30%). The AGS-SNDPRr achieved a stable phosphorus recovery efficiency of 63.40%, and the side-stream PR further exaggerated in situ sludge reduction by 7.7-10%. Apart from responses of extracellular polymeric substances (EPS), the Matthew effect of typical denitrifying glycogen accumulating organisms (DGAOs) Candidatus_Competibacter up to 67.40% mainly contributed to enhanced performance of this new process. This study demonstrated a new approach for simultaneous advanced wastewater treatment, phosphorus recovery, and excess sludge minimization.
Collapse
Affiliation(s)
- Qiulai He
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha 410082, China.
| | - Xiaohui Yan
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Zhiyi Xie
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Peng Xu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha 410082, China
| | - Zhidong Fu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Jinfeng Li
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Liang Liu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Peng Bi
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Baokun Xu
- Agricultural Water Conservancy Department, Changjiang River Scientific Research Institute, Wuhan 430010, China
| | - Jingwei Ma
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha 410082, China
| |
Collapse
|
24
|
Yan L, Yin M, Jiao Y, Zheng Y, Sun L, Yang M, Miao J, Song X, Sun N. The presence of copper ions alters tetracycline removal pathway in aerobic granular sludge: Performance and mechanism. BIORESOURCE TECHNOLOGY 2023; 385:129446. [PMID: 37399954 DOI: 10.1016/j.biortech.2023.129446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
This study investigated the removal characteristics of tetracycline (TC) in the presence of copper ions (Cu2+) in aerobic granular sludge by analyzing the TC removal pathway, composition and functional group changes of extracellular polymeric substances (EPS), and microbial community structure. The TC removal pathway changed from cell biosorption to EPS biosorption, and the microbial degradation rate of TC was reduced by 21.37% in the presence of Cu2+. Cu2+ and TC induced enrichment of denitrifying bacteria and EPS-producing bacteria by regulating the expression of signaling molecules and amino acid synthesis genes to increase the content of EPS and -NH2 groups in EPS. Although Cu2+ reduced the content of acidic hydroxyl functional groups (AHFG) in EPS, an increase in TC concentration stimulated the secretion of more AHFG and -NH2 groups in EPS. The long-term presence of TC presence of the relative abundances of Thauera, Flavobacterium and Rhodobacter and improved the removal efficiency.
Collapse
Affiliation(s)
- Lilong Yan
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 China.
| | - Mingyue Yin
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 China
| | - Yue Jiao
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 China
| | - Yaoqi Zheng
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 China
| | - Luotinng Sun
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 China
| | - Mengya Yang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 China
| | - Jingwen Miao
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 China
| | - Xu Song
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 China
| | - Nan Sun
- College of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030 China
| |
Collapse
|
25
|
Yang B, Liang W, Bin L, Chen W, Chen X, Li P, Wen S, Huang S, Tang B. Insights into the life-cycle of aerobic granular sludge in a continuous flow membrane bioreactor by tracing its heterogeneous properties at different stages. WATER RESEARCH 2023; 243:120419. [PMID: 37536250 DOI: 10.1016/j.watres.2023.120419] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/05/2023]
Abstract
This work gave insights into the life-cycle of aerobic granular sludge (AGS) by tracing its heterogeneity in the basic properties at different stages in a closed system (a continuous flow membrane bioreactor, MBR), including physical and chemical characteristics and microbial communities. The results indicate that the entire life-cycle consists of the following four stages, namely, the initial, growing, mature and cleaved stages, where multiple AGS properties synergistically affect the rheological properties of the AGS over its life-cycle. The storage modulus (G') of AGS reached its maximum value at the mature stage, whose value was significantly and positively correlated with the protein (PN) in extracellular polymeric substances (EPS) and granule size, specifically the peak area of granule size distribution, but this value was strongly and negatively correlated with the roughness. The AGS at the mature stage would be more vulnerable to be destroyed than that at other stages under the condition of higher shear strain, such as γ = 50%, which was associated with larger granule size and fewer polysaccharide (PS)-related functional groups (especially in the soluble microbial products (SMPs) in the outermost layer of AGS), and the decrease in PS was correlated with a higher relative abundance of Chloroflexi. Additionally, the value of shear strain that AGS was subjected to had a good linear correlation (R2=0.993) with the Young's modulus, which indicated the ability of AGS to resist deformation improved with increasing values of shear strain.
Collapse
Affiliation(s)
- Biao Yang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Weifeng Liang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Liying Bin
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Weirui Chen
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Xinyi Chen
- Guangdong Guangshen Environmental Protection Technology Co., Ltd., Guangzhou, 510006, PR China
| | - Ping Li
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Shanglong Wen
- Guangdong Guangshen Environmental Protection Technology Co., Ltd., Guangzhou, 510006, PR China
| | - Shaosong Huang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Bing Tang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
26
|
Xu J, Gao Y, Bi X, Li L, Xiang W, Liu S. Positive effects of lignocellulose on the formation and stability of aerobic granular sludge. Front Microbiol 2023; 14:1254152. [PMID: 37670989 PMCID: PMC10475587 DOI: 10.3389/fmicb.2023.1254152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 07/31/2023] [Indexed: 09/07/2023] Open
Abstract
Introduction Lignocellulose is one of the major components of particulate organic matter in sewage, which has a significant influence on biological wastewater treatment process. However, the effect of lignocellulose on aerobic granular sludge (AGS) system is still unknown. Methods In this study, two reactors were operated over 5 months to investigate the effect of lignocellulose on granulation process, structure stability and pollutants removal of AGS. Results and discussion The results indicated that lignocellulose not only promoted the secretion of tightly bound polysaccharide in extracellular polymeric substances, but also acted as skeletons within granules, thereby facilitating AGS formation, and enhancing structural strength. Lignocellulose imposed little effect on the removal efficiency of pollutants, with more than 95, 99, and 92% of COD, NH4+-N, and PO43--P were removed in both reactors. However, it did exhibit a noticeable influence on pollutants conversion processes. This might be due to that the presence of lignocellulose promoted the enrichment of functional microorganisms, including Candidatus_Accumulibacter, Candidatus_Competibacter, Nitrosomonas, and Nitrospira, etc. These findings might provide valuable insights into the control strategy of lignocellulose in practical AGS systems.
Collapse
Affiliation(s)
- Jie Xu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China
| | - Yuan Gao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China
| | - Xuejun Bi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China
| | - Lin Li
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, China
| | - Wenjuan Xiang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China
| | - Shichang Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China
| |
Collapse
|
27
|
Liu S, Zhou M, Daigger GT, Huang J, Song G. Granule formation mechanism, key influencing factors, and resource recycling in aerobic granular sludge (AGS) wastewater treatment: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 338:117771. [PMID: 37004484 DOI: 10.1016/j.jenvman.2023.117771] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/14/2023] [Accepted: 03/18/2023] [Indexed: 06/19/2023]
Abstract
The high-efficiency and additionally economic benefits generated from aerobic granular sludge (AGS) wastewater treatment have led to its increasing popularity among academics and industrial players. The AGS process can recycle high value-added biomaterials including extracellular polymeric substances (EPS), sodium alginate-like external polymer (ALE), polyhydroxyfatty acid (PHA), and phosphorus (P), etc., which can serve various fields including agriculture, construction, and chemical while removing pollutants from wastewaters. The effects of various key operation parameters on formation and structural stability of AGS are comprehensively summarized. The degradable metabolism of typical pollutants and corresponding microbial diversity and succession in the AGS wastewater treatment system are also discussed, especially with a focus on emerging contaminants removal. In addition, recent attempts for potentially effective production of high value-added biomaterials from AGS are proposed, particularly concerning improving the yield, quality, and application of these biomaterials. This review aims to provide a reference for in-depth research on the AGS process, suggesting a new alternative for wastewater treatment recycling.
Collapse
Affiliation(s)
- Shuli Liu
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China; Zhongzhou Water Holding Co., Ltd., Zhengzhou, 450046, China; Civil and Environmental Engineering, University of Michigan, 2350 Hayward St, G.G. Brown Building, Ann Arbor, MI, 48109, USA.
| | - Miao Zhou
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Glen T Daigger
- Civil and Environmental Engineering, University of Michigan, 2350 Hayward St, G.G. Brown Building, Ann Arbor, MI, 48109, USA.
| | - Jianping Huang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Gangfu Song
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China; Zhongzhou Water Holding Co., Ltd., Zhengzhou, 450046, China.
| |
Collapse
|
28
|
Yue J, Han X, Jin Y, Yu J. Potential of direct granulation and organic loading rate tolerance of aerobic granular sludge in ultra-hypersaline environment. ENVIRONMENTAL RESEARCH 2023; 228:115831. [PMID: 37024036 DOI: 10.1016/j.envres.2023.115831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/27/2023] [Accepted: 04/01/2023] [Indexed: 05/16/2023]
Abstract
Salt-tolerant aerobic granular sludge (SAGS) technology has shown potentials in the treatment of ultra-hypersaline high-strength organic wastewater. However, the long granulation period and salt-tolerance acclimation period are still bottlenecks that hinder SAGS applications. In this study, "one-step" development strategy was used to try to directly cultivate SAGS under 9% salinity, and the fastest cultivation process was obtained under such high salinity compared to the previous papers with the inoculum of municipal activated sludge without bioaugmentation. Briefly, the inoculated municipal activated sludge was almost discharged on Day 1-10, then fungal pellets appeared and it gradually transitioned to mature SAGS (particle size of ∼4156 μm and SVI30 of 57.8 mL/g) from Day 11 to Day 47 without fragmentation. Metagenomic revealed that fungus Fusarium played key roles in the transition process probably because it functioned as structural backbone. RRNPP and AHL-mediated systems might be the main QS regulation systems of bacteria. TOC and NH4+-N removal efficiencies maintained at ∼93.9% (after Day 11) and ∼68.5% (after Day 33), respectively. Subsequently, the influent organic loading rate (OLR) was stepwise increased from 1.8 to 11.7 kg COD/m3·d. It was found that SAGS could maintain intact structure and low SVI30 (< 55 mL/g) under 9% salinity and the OLR of 1.8-9.9 kg COD/m3·d with adjustment of air velocity. TOC and NH4+-N (TN) removal efficiencies could maintain at ∼95.4% (below OLR of 8.1 kg COD/m3·d) and ∼84.1% (below nitrogen loading rate of 0.40 kg N/m3·d) in ultra-hypersaline environment. Halomonas dominated the SAGS under 9% salinity and varied OLR. This study confirmed the feasibility of direct aerobic granulation in ultra-hypersaline environment and verified the upper OLR boundary of SAGS in ultra-hypersaline high-strength organic wastewater treatment.
Collapse
Affiliation(s)
- Jingxue Yue
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China; National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xushen Han
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China; National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Yan Jin
- National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jianguo Yu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China; National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
29
|
Samaei SHA, Chen J, Xue J. Current progress of continuous-flow aerobic granular sludge: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162633. [PMID: 36889385 DOI: 10.1016/j.scitotenv.2023.162633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 02/12/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Aerobic granular sludge (AGS) is promising for water resource recovery. Despite the mature granulation strategies in sequencing batch reactor (SBR), the application of AGS-SBR in wastewater treatment is usually costly as it requires extensive infrastructure conversion (e.g., from continuous-flow reactor to SBR). In contrast, continuous-flow AGS (CAGS) that does not require such infrastructure conversion is a more cost-effective strategy to retrofit existing wastewater treatment plants (WWTPs). Formation of aerobic granules in both batch and continuous-flow mode depends on many factors, including selection pressure, feast/famine conditions, extracellular polymeric substances (EPS), and environmental conditions. Compared with AGS in SBR, creating proper conditions to facilitate granulation in continuous-flow mode is challenging. Researchers have been seeking to tackle this bottleneck by studying the impacts of selection pressure, feast/famine conditions, and operating parameters on granulation and granule stability in CAGS. This review paper summarizes the state-of-the-art knowledge regarding CAGS for wastewater treatment. Firstly, we discuss the CAGS granulation process and effective parameters (i.e., selection pressure, feast/famine conditions, hydrodynamic shear force, reactor configuration, the role of EPS, and other operating factors). Then, we evaluate CAGS performance in removing COD, nitrogen, phosphorus, emerging pollutants, and heavy metals from wastewater. Finally, the applicability of the hybrid CAGS systems is presented. At last, we suggest that integrating CAGS with other treatment methods such as membrane bioreactor (MBR) or advanced oxidation processes (AOP) can benefit the performance and stability of granules. However, future research should address unknowns including the relationship between feast/famine ratio and stability of the granules, the effectiveness of applying particle size-based selection pressure, and the CAGS performance at low temperatures.
Collapse
Affiliation(s)
- Seyed Hesam-Aldin Samaei
- Cold-Region Water Resource Recovery Laboratory, Environmental Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| | - Jianfei Chen
- Cold-Region Water Resource Recovery Laboratory, Environmental Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| | - Jinkai Xue
- Cold-Region Water Resource Recovery Laboratory, Environmental Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada.
| |
Collapse
|
30
|
Zhang B, Tang H, Huang D, Liu C, Shi W, Shen Y. Effect of superficial gas velocity on membrane fouling behavior and evolution during municipal wastewater treatment. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
31
|
Nuid M, Aris A, Abdullah S, Fulazzaky MA, Muda K. Bioaugmentation and enhanced formation of biogranules for degradation of oil and grease: Start-up, kinetic and mass transfer studies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 341:118032. [PMID: 37163834 DOI: 10.1016/j.jenvman.2023.118032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/16/2023] [Accepted: 04/25/2023] [Indexed: 05/12/2023]
Abstract
Biogranulation technology is an emerging biological process in treating various wastewater. However, the development of biogranules requires an extended period of time when treating wastewaters with high oil and grease (O&G) content. A study was therefore conducted to assess the formation of biogranules through bioaugmentation with the Serratia marcescens SA30 strain, in treating real anaerobically digested palm oil mill effluent (AD-POME), with O&G of about 4600 mg/L. The biogranules were developed in a lab-scale sequencing batch reactor (SBR) system under alternating anaerobic and aerobic conditions. The experimental data were assessed using the modified mass transfer factor (MMTF) models to understand the mechanisms of biosorption of O&G on the biogranules. The system was run with variable organic loading rates (OLR) of 0.69-9.90 kg/m3d and superficial air velocity (SAV) of 2 cm/s. After 60 days of being bioaugmented with the Serratia marcescens SA30 strain, the flocculent biomass transformed into biogranules with excellent settleability with improved treatment efficiency. The biogranules showed a compact structure and good settling ability with an average diameter of about 2 mm, a sludge volume index at 5 min (SVI5) of 43 mL/g, and a settling velocity (SV) of 81 m/h after 256 days of operation. The average removal efficiencies of O&G increased from 6 to 99.92%, respectively. The application of the MMTF model verified that the resistance to O&G biosorption is controlled via film mass transfer. This research indicates successful bioaugmentation of biogranules using the Serratia marcescens SA30 strain for enhanced biodegradation of O&G and is capable to treat real AD-POME.
Collapse
Affiliation(s)
- Maria Nuid
- Centre for Environmental Sustainability and Water Security, Research Institute for Sustainable Environment, Universiti Teknologi Malaysia, 81310, UTM Skudai, Johor Bahru, Malaysia
| | - Azmi Aris
- Centre for Environmental Sustainability and Water Security, Research Institute for Sustainable Environment, Universiti Teknologi Malaysia, 81310, UTM Skudai, Johor Bahru, Malaysia; Department of Water and Environmental Engineering, Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310, UTM Skudai, Johor Bahru, Malaysia.
| | - Shakila Abdullah
- Faculty of Applied Sciences and Technology Universiti Tun Hussein Onn Malaysia, Pagoh Education Hub, Panchor, 84600, Muar, Johor, Malaysia
| | - Mohamad Ali Fulazzaky
- School of Postgraduate Studies, Universitas Djuanda, Jalan Tol Ciawi No. 1, Ciawi, Bogor, 16700, Indonesia
| | - Khalida Muda
- Department of Water and Environmental Engineering, Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310, UTM Skudai, Johor Bahru, Malaysia
| |
Collapse
|
32
|
Li Z, Wang J, Liu J, Chen X, Lei Z, Yuan T, Shimizu K, Zhang Z, Lee DJ, Lin Y, Adachi Y, van Loosdrecht MCM. Highly efficient carbon assimilation and nitrogen/phosphorus removal facilitated by photosynthetic O 2 from algal-bacterial aerobic granular sludge under controlled DO/pH operation. WATER RESEARCH 2023; 238:120025. [PMID: 37156104 DOI: 10.1016/j.watres.2023.120025] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/26/2023] [Accepted: 04/29/2023] [Indexed: 05/10/2023]
Abstract
Reducing CO2 emission and energy consumption is crucial for the sustainable management of wastewater treatment plants (WWTPs). In this study, an algal-bacterial aerobic granular sludge (AGS) system was developed for efficient carbon (C) assimilation and nitrogen (N)/phosphorus (P) removal without the need for mechanical aeration. The photosynthetic O2 production by phototrophic organisms maintained the dissolved oxygen (DO) level at 3-4 mg/L in the bulk liquid, and an LED light control system reduced 10-30% of light energy consumption. Results showed that the biomass assimilated 52% of input dissolved total carbon (DTC), and the produced O2 simultaneously facilitated aerobic nitrification and P uptake with the coexisting phototrophs serving as a C fixer and O2 supplier. This resulted in a stably high total N removal of 81 ± 7% and an N assimilation rate of 7.55 mg/(g-MLVSS∙d) with enhanced microbial assimilation and simultaneous nitrification/denitrification. Good P removal of 92-98% was maintained during the test period at a molar ∆P/∆C ratio of 0.36 ± 0.03 and high P release and uptake rates of 10.84 ± 0.41 and 7.18 ± 0.24 mg/(g- MLVSS∙h), respectively. Photosynthetic O2 was more advantageous for N and P removal than mechanical aeration. This proposed system can contribute to a better design and sustainable operation of WWTPs using algal-bacterial AGS.
Collapse
Affiliation(s)
- Zejiao Li
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Jixiang Wang
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Jialin Liu
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Xingyu Chen
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhongfang Lei
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| | - Tian Yuan
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Kazuya Shimizu
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan; Faculty of Life Sciences, Toyo University, 1-1-1 Izumino, Oura-gun Itakura, Gunma 374-0193, Japan
| | - Zhenya Zhang
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tang, Hong Kong; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li 32003Taiwan
| | - Yuemei Lin
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, HZ, Delft 2629, the Netherlands
| | - Yasuhisa Adachi
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, HZ, Delft 2629, the Netherlands
| |
Collapse
|
33
|
Amancio Frutuoso FK, Ferreira Dos Santos A, da Silva França LL, Mendes Barros AR, Bezerra Dos Santos A. Influence of operating regime on resource recovery in aerobic granulation systems under osmotic stress. BIORESOURCE TECHNOLOGY 2023; 376:128850. [PMID: 36898562 DOI: 10.1016/j.biortech.2023.128850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Aerobic granular sludge (AGS) systems have great potential for biopolymers recovery, especially when subjected to adverse conditions. This work aimed to study the production of alginate-like exopolymers (ALE) and tryptophan (TRY) under osmotic pressure in conventional and staggered feeding regimes. The results revealed that systems operated with conventional feed accelerated the granulation, although less resistant to saline pressures. The staggered feeding systems favored better denitrification conditions and long-term stability. Salt addition gradient increase influenced biopolymers' production. However, staggered feeding, despite decreasing the famine period, did not influence the production of resources and extracellular polymeric substances (EPS). Sludge retention time (SRT), which was not controlled, proved to be an important operational parameter with negative influences on biopolymers' production in values greater than 20 days. Thus, the principal component analysis confirmed that the production of ALE at low SRT is related to better-formed granules with good sedimentation characteristics and good AGS performances.
Collapse
Affiliation(s)
| | - Amanda Ferreira Dos Santos
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | | | - André Bezerra Dos Santos
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil.
| |
Collapse
|
34
|
Performance and Bacterial Characteristics of Aerobic Granular Sludge in Treatment of Ultra-Hypersaline Mustard Tuber Wastewater. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Mustard tuber wastewater (MTW) is an ultra-hypersaline high-strength acid organic wastewater. Aerobic granular sludge (AGS) has been demonstrated to have high tolerance to high organic loading rate (OLR), high salinity, and broad pH ranges. However, most studies were conducted under single stress, and the performance of AGS under multiple stresses (high salinity, high OLR, and low pH) was still unclear. Herein, mature AGS was used to try to treat the real MTW at 9% salinity, pH of 4.1–6.7, and OLR of 1.8–7.2 kg COD/m3·d. The OLR was increased, and the results showed that the upper OLR boundary of AGS was 5.4 kg COD/m3·d (pH of 4.2) with relatively compact structure and high removal of TOC (~93.1%), NH4+-N (~88.2%), and TP (~50.6%). Under 7.2 kg COD/m3·d (pH of 4.1), most of the AGS was fragmented, primarily due to the multiple stresses. 16S rRNA sequencing indicated that Halomonas dominated the reactor during the whole process with the presence of unclassified-f-Flavobacteriaceae, Aequorivita, Paracoccus, Bradymonas, and Cryomorpha, which played key roles in the removal of TOC, nitrogen, and phosphorus. This study investigated the performance of AGS under multiple stresses, and also brought a new route for highly-efficient simultaneous nitrification–denitrifying phosphorus removal of real MTW.
Collapse
|
35
|
Omar AH, Muda K, Omoregie AI, Majid ZA, Ali NSBA, Pauzi FM. Enhancement of biogranules development using magnetized powder activated carbon. Biodegradation 2023; 34:235-252. [PMID: 36840891 DOI: 10.1007/s10532-023-10016-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 02/06/2023] [Indexed: 02/26/2023]
Abstract
Biogranulation has emerged as a viable alternative biological wastewater treatment approach because of its strong biodegradability potential, toxicity tolerance, and biomass retention features. However, this process requires a long duration for biogranules formation to occur. In this study, magnetic powder activated carbon (MPAC) was used as support material in a sequencing batch reactor to enhance biogranules development for wastewater treatment. Two parallel SBRs (designated R1 and R2) were used, with R1 serving as a control without the presence of MPAC while R2 was operated with MPAC. The biodegradability capacity and biomass properties of MPAC biogranules were compared with a control system. The measured diameter of biogranules for R1 and R2 after 8 weeks of maturation were 2.2 mm and 3.4 mm, respectively. The integrity coefficient of the biogranules in R2 was higher (8.3%) than that of R1 (13.4%), indicating that the addition of MPAC improved the structure of the biogranules in R2. The components of extracellular polymeric substances were also higher in R2 than in R1. Scanning electronic microscopy was able to examine the morphological structures of the biogranules which showed there were irregular formations compacted together. However, there were more cavities situated in R1 biogranules (without MPAC) when compared to R2 biogranules (with MPAC). Dye removal reached 65% and 83% in R1 and R2 in the post-development stage. This study demonstrates that the addition of MPAC could shorten and improve biogranules formation. MPAC acted as the support media for microbial growth during the biogranulation developmental process.
Collapse
Affiliation(s)
- Ahmad Hanis Omar
- Department of Water and Environmental Engineering, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Khalida Muda
- Department of Water and Environmental Engineering, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
| | - Armstrong Ighodalo Omoregie
- Department of Water and Environmental Engineering, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Zaiton Abdul Majid
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Nur Shahidah Binti Aftar Ali
- Department of Water and Environmental Engineering, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Farhan Mohd Pauzi
- Department of Water and Environmental Engineering, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| |
Collapse
|
36
|
Sun Z, Zhang J, Wang J, Zhu H, Xiong J, Nong G, Luo M, Wang J. Direct start-up of aerobic granular sludge system with dewatered sludge granular particles as inoculant. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116540. [PMID: 36427360 DOI: 10.1016/j.jenvman.2022.116540] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Aerobic granular sludge (AGS) is a promising technology for engineering applications in the biological treatment of sewage. New objective is to skip the conventional granulation step to integrate it into a continuous-flow reactor directly. This study proposed a method for integrating spherical pelletizing granular sludge (SPGS) into a new patented aerobic granular sludge bed (AGSB), a continuous up-flow reactor. AGSB system could be startup directly, and after 120 days of operation, the SPGS maintained a relatively intact spherical structure and stability. With an initial high chemical oxygen demand (COD) volume loading of over 2.0 kg/(m3·d), this system achieved the desired effect as the same as a mature AGS system. The final mixed liquid suspended solids, and the ratio of 30 min-5 min sludge volume index (SVI30/SVI5) were 20,000 mg/L, and 0.84, respectively. Although hydraulic elution and filamentous bacteria (FBs) had a slightly negative impact on initial phase pollutant removal, the final removal rates for COD, total nitrogen (TN), ammonia nitrogen (NH4+-H), and total phosphorus (TP) were 90%, 70%, 95%, and 85%, respectively. The presence of specific functional microorganisms promoted the secretion of extracellular polymeric substances (EPS), from 90.65 to 209.78 mg/gVSS. The maturation process of SPGS altered the microbial community structures and reduced the species abundance of microbes in sludge.
Collapse
Affiliation(s)
- Zhuo Sun
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China; Branch Graduate School of Guangxi Bossco Environmental Protection Technology Co., Ltd, Guangxi University, Nanning, 530007, People's Republic of China
| | - Jiaming Zhang
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, People's Republic of China
| | - Jin Wang
- Department of Landscape Architecture, School of Design, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| | - Hongxiang Zhu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China.
| | - Jianhua Xiong
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, People's Republic of China
| | - Guoyou Nong
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, People's Republic of China
| | - Mengqi Luo
- Guangxi Bossco Environmental Protection Technology Co., Ltd., Nanning, 530007, People's Republic of China
| | - Jue Wang
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, People's Republic of China
| |
Collapse
|
37
|
Pan QR, Lai BL, Huang LJ, Feng YN, Li N, Liu ZQ. Regulating the Electronic Structure of Cu-N x Active Sites for Efficient and Durable Oxygen Reduction Catalysis to Improve Microbial Fuel Cell Performance. ACS APPLIED MATERIALS & INTERFACES 2023; 15:1234-1246. [PMID: 36578164 DOI: 10.1021/acsami.2c18876] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The efficient and durable oxygen reduction reaction (ORR) catalyst is of great significance to boost power generation and pollutant degradation in microbial fuel cells (MFCs). Although transition metal-nitrogen-codoped carbon materials are an important class of ORR catalysts, copper-nitrogen-codoped carbon is not considered a suitable MFC cathode catalyst due to the insufficient performance and especially instability. Herein, we report a three-dimensional (3D) hierarchical porous copper, nitrogen, and boron codoped carbon (3DHP Cu-N/B-C) catalyst synthesized by the dual template method. The introduced B atom as an electron donor increases the electron density around the Cu-Nx active site, which significantly promotes the efficiency of the ORR process and stabilizes the active site by preventing demetallization. Thus, the 3DHP Cu-N/B-C catalyst exhibited excellent ORR performance with the half-wave potential of 0.83 V (vs reversible hydrogen electrode (RHE)) in a 0.1 M KOH electrolyte and 0.68 V (vs RHE) in a 50 mM PBS electrolyte. Meanwhile, 3DHP Cu-N/B-C had satisfactory stability with 94.16% current retention after 24 h of chronoamperometry test, which is better than that of 20% Pt/C. The MFCs using 3DHP Cu-N/B-C not only showed a maximum power density of up to 760.14 ± 19.03 mW m-2 but also operating durability of more than 50 days. Moreover, the 16S rDNA sequencing results presented that the 3DHP Cu-N/B-C catalyst had a positive effect on the microbial community of the MFC with more anaerobic electroactive bacteria in the anode biofilm and fewer aerobic bacteria in the cathode biofilm. This study provides a new approach for the development of Cu-based ORR electrocatalysts as well as guidance for the rational design of high-performance MFCs.
Collapse
Affiliation(s)
- Qiu-Ren Pan
- School of Chemistry and Chemical Engineering, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou510006, China
| | - Bi-Lin Lai
- School of Chemistry and Chemical Engineering, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou510006, China
| | - Li-Juan Huang
- School of Chemistry and Chemical Engineering, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou510006, China
| | - Yan-Nan Feng
- School of Chemistry and Chemical Engineering, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou510006, China
| | - Nan Li
- School of Chemistry and Chemical Engineering, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou510006, China
| | - Zhao-Qing Liu
- School of Chemistry and Chemical Engineering, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou510006, China
| |
Collapse
|
38
|
Liu Z, Yang R, Li Z, Ning F, Wang J, Gao M, Zhang A, Liu Y. Role of cycle duration on the formation of quinoline-degraded aerobic granules in the aspect of sludge characteristics, extracellular polymeric substances and microbial communities. ENVIRONMENTAL RESEARCH 2023; 216:114589. [PMID: 36244442 DOI: 10.1016/j.envres.2022.114589] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/27/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
This study investigated the culture and characteristics of quinoline-degraded aerobic granular sludge (AGS) under 8-h and 12-h cycle duration. According to results, the cultivation of an 8-h cycle duration enhanced the growth of quinoline-degraded AGS, as well as the settleability of sludge and the retention of biomass. Quinoline can be removed from mature AGS at a rate of more than 90%, but it is removed at a rate slightly higher when the AGS are cultured for 12-h. Compared to 12-h cycle duration, 8-h cycle duration result in a greater increase in the production of extracellular polymeric substances, particularly extracellular proteins. In these two systems, Acidovorax and Paracoccus dominated the quinoline degrading bacteria. In addition, analysis by non-metric multidimensional scaling (based on Bray-curtis distance) showed significant differences of community structure between the two reactors. Clostridia and Acidaminobacter are different bacteria with an 8-h cycle duration compared to 12 h. Relative abundance of nitrogen metabolism genes based on PICRUSt2 prediction, which explain the better total nitrogen removal for an 8-h cycle duration compared to a 12-h cycle duration. Finally, the KEGG pathway was analyzed in order to confirm the results of the microbial analysis.
Collapse
Affiliation(s)
- Zhe Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Yulin Ecological Environment Monitoring Station, High-tech Zone Xingda Road, Yulin, 719000, China.
| | - Rushuo Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
| | - Zhengyang Li
- School of Architecture and Civil Engineering, Xi'an University of Science and Technology, Yan Ta Road No. 58, Xi'an, 710054, China
| | - Fangzhi Ning
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
| | - Jiaxuan Wang
- School of Architecture and Civil Engineering, Xi'an University of Science and Technology, Yan Ta Road No. 58, Xi'an, 710054, China
| | - Min Gao
- School of Environmental and Chemical Engineering, Xìan Polytechnic University, Jin Hua Nan Road. No.19, Xi'an, 710048, China
| | - Aining Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
| | - Yongjun Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
39
|
Feasibility Study of Applying Anaerobic Step-Feeding Mode for the Treatment of High-Strength Wastewater in Granular Sequencing Batch Reactors (GSBRs). Processes (Basel) 2022. [DOI: 10.3390/pr11010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
This study investigated the feasibility of applying an anaerobic step-feeding strategy to enhance the performance of granular sequencing batch reactors (GSBRs) in terms of operational stability of the cultivated mature granules and nutrient removal efficiencies. Two identical 5 L reactors were operated with a total cycle time of 8 h. GSBRs were operated with high-strength synthetic wastewater (COD = 1250 ± 43, ammonium (NH4-N) = 115.2 ± 4.6, and orthophosphate (PO4-P) = 17.02 ± 0.9 mg/L) for 360 days through three stages: (1) Cultivation, 125 days (>2.1 mm); (2) Maturation, 175 days (>3 mm); (3) alternate feed loading strategy for R2 only for 60 days (anaerobic step-feeding). The granulation process, the physical properties of the granules, the nutrients, and the substrate removal performance were recorded during the entire operational period. For the cultivation and maturation stages, both reactors followed the fast single feeding mode followed by anaerobic mixing, and the results indicated a strong correlation between R1 and R2 due to the same working conditions. During the cultivation stage, adopting high organic loading rate (OLR) at the reactor start-up did not accelerate the formation of granules. Removal efficiency of PO4-P was less than 76% during the maturation period, while it exceeded 90% for COD, and was higher than 80% for NH4-N without effect of nitrite or nitrate accumulations due to simultaneous nitrification–denitrification. After changing filling mode for R2 only, there was unexpected deterioration in the performance and a rapid disintegration of the matured granules (poor settleability) accompanied by poor effluent quality due to high content of suspended solids because of applying selection pressure of short settling time. Consequently, GSBRs operation under the effect of fast single feeding mode followed by anaerobic mixing favors stable long-term granule stability.
Collapse
|
40
|
Chen Y, Wang S, Geng N, Wu Z, Xiong W, Su H. Artificially constructing mixed bacteria system for bioaugmentation of nitrogen removal from saline wastewater at low temperature. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116351. [PMID: 36174474 DOI: 10.1016/j.jenvman.2022.116351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
To alleviate the inhibition effects of multi-stresses, a multi-bacterial bioaugmentation based on stimulating cell-to-cell interactions was applied to improve the stress potential of salt-tolerant aerobic granular sludge (AGS). Results showed that the consortium formed by a combination of salt-tolerant ammonia-nitrogen utilizing bacteria, salt-tolerant nitrite-nitrogen utilizing bacteria and salt-tolerant nitrate-nitrogen utilizing bacteria with a whole biomass ratio of 1:2:1 achieved maximum nitrogen consumption rate (μNH4+-N, μNO2--N and μNO3--N of 1.03, 0.57 and 11.62 mgN/L·h, respectively) at 35 gNaCl/L salinity and 15 °C. The flocculent consortium was aggregated by Aspergillus tubingensis mycelium pellet, which was made into a compound bacterial agent (CBA), and the comprehensive nitrogen consumption capability of CBA was further improved to 2.47-4.36-fold of single functional bacteria. 5% CBA (m/m) was introduced into the seafood processing wastewater in batches, in winter (12-16 °C), the removal efficiencies of NH4+-N and total nitrogen increased from 66.89% to 52.77% of native AGS system to 79.02% and 69.97% of nascent bioaugmentation system, respectively. The analysis of key enzyme activities demonstrated that the ammonia monooxygenase and nitrate reductase activities of the bioaugmentation system were increased to 2.73-folds and 1.94-folds those of the native system. Moreover, due to an increase of 6.18 mg/gVSS and 0.11 in the secreted exopolysaccharide and tightly-bound/total extracellular polymeric substances, respectively, bioaugmentation boosted the cell bioflocculation ability by 13.53%, which enhanced the robustness. This work provided a detailed and feasible technical proposal for enhancing the biological treatment performance of saline wastewater in cold regions.
Collapse
Affiliation(s)
- Yingyun Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Shaojie Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China.
| | - Nanfei Geng
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Zhiqing Wu
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Wei Xiong
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Haijia Su
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China.
| |
Collapse
|
41
|
Liang Y, Pan Z, Guo T, Feng H, Yan A, Ni Y, Li J. Filamentous Bacteria and Stalked Ciliates for the Stable Structure of Aerobic Granular Sludge Treating Wastewater. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15747. [PMID: 36497821 PMCID: PMC9735926 DOI: 10.3390/ijerph192315747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Aerobic granular sludge (AGS) is a promising technology for wastewater treatment. AGS formation belongs to microbial self-aggregation. Investigation of the formation and stability of AGS is widely paid attention to, in particular the structure stability of large size granules. Two types of AGS were developed in two sequencing batch reactors fed by two different wastewaters, respectively. Through confocal laser scanning microscope (CLSM) and scanning electron microscopy (SEM), the structure and composition of granules were analyzed. Filamentous bacteria were observed in granules from synthetic wastewater reactor, while filamentous bacteria and stalked ciliates (Epistylis sp.) were simultaneously found in granules from domestic wastewater reactor. The analytic results show that filamentous bacteria and stalked ciliates acting as skeletons play important roles in the formation and stability of granules. With the bonding of extracellular polymeric substances (EPS), the filamentous bacteria and stalked ciliates could build bridges and frames to promote the aggregation of bacteria; these microorganisms could create a space grid structure around the surface layer of granules to enhance the strength of granules, and the remnants of the stalks could serve as supports to fix the steadiness of granules.
Collapse
|
42
|
Chen X, Lee YJ, Yuan T, Lei Z, Adachi Y, Zhang Z, Lin Y, van Loosdrecht MCM. A review on recovery of extracellular biopolymers from flocculent and granular activated sludges: Cognition, key influencing factors, applications, and challenges. BIORESOURCE TECHNOLOGY 2022; 363:127854. [PMID: 36067889 DOI: 10.1016/j.biortech.2022.127854] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
A reasonable recovery of excess sludge may shift the waste into wealth. Recently an increasing attention has been paid to the recycling of extracellular biopolymers from conventional and advanced biological wastewater treatment systems such as flocculent activated sludge (AS), bacterial aerobic granular sludge (AGS), and algal-bacterial AGS processes. This review provides the first overview of current research developments and future directions in the recovery and utilization of high value-added biopolymers from the three types of sludge. It details the discussion on the recent evolvement of cognition or updated knowledge on functional extracellular biopolymers, as well as a comprehensive summary of the operating conditions and wastewater parameters influencing the yield, quality, and functionality of alginate-like exopolymer (ALE). In addition, recent attempts for potential practical applications of extracellular biopolymers are discussed, suggesting research priorities for overcoming identification challenges and future prospects.
Collapse
Affiliation(s)
- Xingyu Chen
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Yu-Jen Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Tian Yuan
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhongfang Lei
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| | - Yasuhisa Adachi
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhenya Zhang
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Yuemei Lin
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, the Netherlands
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, the Netherlands
| |
Collapse
|
43
|
Barrón-Hernández LM, Gonzaga-Galeana VE, Colín-Cruz A, Esparza-Soto M, Lucero-Chávez M, Bâ K, Fall C. Consistency between the metabolic performance of two aerobic granular sludge systems and the functional groups of bacteria detected by amplicon sequencing. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:83512-83525. [PMID: 35768715 DOI: 10.1007/s11356-022-21692-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Two sequential batch reactors (R1 and R2) of aerobic granular sludge (AGS) were inoculated with activated sludge of different origins. The objective was to investigate the granulation and the consistency between the structure of the microbial communities (16S rRNA amplicon sequencing) in each reactor and their metabolic performance (removal of C, N, and P). Both reactors were fed with acetate-based synthetic wastewater, targeting an anaerobic-aerobic cycle reputed to favor the phosphorus- and glycogen-accumulating organisms (PAO and GAO). Stable granulation was achieved in both reactors, where, instead of PAO, the dominant genera were ordinary heterotrophic organisms (OHO) such as Thauera, Paracoccus, and Flavobacterium known for their high capacity of aerobic storage of polyhydroxyalkanoates (PHA). Generally, there was good consistency between the metabolic behavior of each reactor and the bacterial genera detected. Both reactors showed high removals of C and complete nitrification (Nitrosomonas and Nitrospira detected) but a low level of simultaneous nitrification-denitrification (SND) during the aerated phase. The latter causes that nitrates were recycled to the initial phase, in detriment of PAO selection. Meanwhile, the study showed that selecting slow-growing OHOs (with aerobic storage capacity) favors stable granulation, revealing an alternative AGS technology for C and N removal.
Collapse
Affiliation(s)
- Lilia Magdalena Barrón-Hernández
- Instituto Interamericano de Tecnología Y Ciencias del Agua, Universidad Autónoma del Estado de México (UAEM), Apdo postal 367, 50091, Toluca, C.P, Mexico
| | - Víctor Enrique Gonzaga-Galeana
- Instituto Interamericano de Tecnología Y Ciencias del Agua, Universidad Autónoma del Estado de México (UAEM), Apdo postal 367, 50091, Toluca, C.P, Mexico
| | - Arturo Colín-Cruz
- UAEM, Facultad de Química, Unidad Colón, Paseo Colón Esq. Paseo Tollocán Residencial Colón Y Col Ciprés, Estado de México, 50120, Toluca, Mexico
| | - Mario Esparza-Soto
- Instituto Interamericano de Tecnología Y Ciencias del Agua, Universidad Autónoma del Estado de México (UAEM), Apdo postal 367, 50091, Toluca, C.P, Mexico
| | - Mercedes Lucero-Chávez
- Instituto Interamericano de Tecnología Y Ciencias del Agua, Universidad Autónoma del Estado de México (UAEM), Apdo postal 367, 50091, Toluca, C.P, Mexico
| | - Khalidou Bâ
- Instituto Interamericano de Tecnología Y Ciencias del Agua, Universidad Autónoma del Estado de México (UAEM), Apdo postal 367, 50091, Toluca, C.P, Mexico
| | - Cheikh Fall
- Instituto Interamericano de Tecnología Y Ciencias del Agua, Universidad Autónoma del Estado de México (UAEM), Apdo postal 367, 50091, Toluca, C.P, Mexico.
| |
Collapse
|
44
|
Gemza N, Janiak K, Zięba B, Przyszlak J, Kuśnierz M. Long-term effects of hydrocyclone operation on activated sludge morphology and full-scale secondary settling tank wet-weather operation in long sludge age WWTP. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157224. [PMID: 35835188 DOI: 10.1016/j.scitotenv.2022.157224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
This paper presents the study concerning long-term effects of a full scale hydrocyclone unit implemented in a continuous flow long sludge age system, on sedimentation, treatment efficiency and sludge morphology. The research concentrates on identifying the mechanisms of sludge behaviour within the system. The gravimetric selection of activated sludge via a hydrocyclone is a recent development for enhancing sludge separation, where heavier flocs are retained in the system, and lighter ones are discarded as waste sludge. The effects of implementing hydroclyclones were analysed with the use of SEM imagining and fractal dimensioning through the frequent assessment of sludge settling capabilities, effluent quality, and floc properties. Over the course of 60 weeks of hydrocyclone operation, sedimentation efficiency varied significantly. Sludge volume index values of 40 mL/g, achieved during the warm season, were not sustained when the temperature decreased and an overgrowth of filamentous bacteria occurred. Good settling efficiency was also observed in batch tests, where settling velocity of experimental sludge was app. 1 m/h higher than for the reference train at the same concentrations. This was confirmed during wet weather, as the experimental train sustained safe sludge blanket height in secondary clarifiers. SEM imaging and fractal dimension analysis revealed that the underflow that returned to the system had a more compact and spherical shape, which led to an increased content of granule-like particles in the reactor. The presence of flocs with a diameter exceeding 900 μm in the underflow, which is not observed in the feed, indicated agglomeration within the hydrocyclone. This is contradictory to most of the literature data coming from laboratory experiments. This phenomenon was attributed to differences in the size and geometry of the used hydrocyclones, and the potential process mechanism was presented.
Collapse
Affiliation(s)
- Natalia Gemza
- Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland; Wroclaw Municipal Water and Sewage Company, Na Grobli 19, 50-421 Wroclaw, Poland.
| | - Kamil Janiak
- Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland; Wroclaw Municipal Water and Sewage Company, Na Grobli 19, 50-421 Wroclaw, Poland
| | - Bartosz Zięba
- Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Jacek Przyszlak
- Wroclaw Municipal Water and Sewage Company, Na Grobli 19, 50-421 Wroclaw, Poland
| | - Magdalena Kuśnierz
- The Faculty of Environmental Engineering and Geodesy, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wroclaw, Poland
| |
Collapse
|
45
|
Di Capua F, Iannacone F, Sabba F, Esposito G. Simultaneous nitrification-denitrification in biofilm systems for wastewater treatment: Key factors, potential routes, and engineered applications. BIORESOURCE TECHNOLOGY 2022; 361:127702. [PMID: 35905872 DOI: 10.1016/j.biortech.2022.127702] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Simultaneous nitrification-denitrification (SND) is an advantageous bioprocess that allows the complete removal of ammonia nitrogen through sequential redox reactions leading to nitrogen gas production. SND can govern nitrogen removal in single-stage biofilm systems, such as the moving bed biofilm reactor and aerobic granular sludge system, as oxygen gradients allow the development of multilayered biofilms including nitrifying and denitrifying bacteria. Environmental and operational conditions can strongly influence SND performance, biofilm development and biochemical pathways. Recent advances have outlined the possibility to reduce the carbon and energy consumption of the process via the "shortcut pathway", and simultaneously remove both N and phosphorus under specific operational conditions, opening new possibilities for wastewater treatment. This work critically reviews the factors influencing SND and its application in biofilm systems from laboratory to full scale. Operational strategies to enhance SND efficiency and hints to reduce nitrous oxide emission and operational costs are provided.
Collapse
Affiliation(s)
- Francesco Di Capua
- Department of Civil, Environmental, Land, Building Engineering and Chemistry, Polytechnic University of Bari, Bari 70125, Italy.
| | | | | | - Giovanni Esposito
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, Naples 80125, Italy
| |
Collapse
|
46
|
Zheng Y, Wan Y, Zhang Y, Huang J, Yang Y, Tsang DCW, Wang H, Chen H, Gao B. Recovery of phosphorus from wastewater: A review based on current phosphorous removal technologies. CRITICAL REVIEWS IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY 2022; 53:1148-1172. [PMID: 37090929 PMCID: PMC10116781 DOI: 10.1080/10643389.2022.2128194] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Phosphorus (P) as an essential nutrient for life sustains the productivity of food systems; yet misdirected P often accumulates in wastewater and triggers water eutrophication if not properly treated. Although technologies have been developed to remove P, little attention has been paid to the recovery of P from wastewater. This work provides a comprehensive review of the state-of-the-art P removal technologies in the science of wastewater treatment. Our analyses focus on the mechanisms, removal efficiencies, and recovery potential of four typical water and wastewater treatment processes including precipitation, biological treatment, membrane separation, and adsorption. The design principles, feasibility, operation parameters, and pros & cons of these technologies are analyzed and compared. Perspectives and future research of P removal and recovery are also proposed in the context of paradigm shift to sustainable water treatment technology.
Collapse
Affiliation(s)
- Yulin Zheng
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, Florida, USA
| | - Yongshan Wan
- National Health and Environmental Effects Research Laboratory, US EPA, Gulf Breeze, Florida, USA
| | - Yue Zhang
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, Florida, USA
| | - Jinsheng Huang
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, Florida, USA
| | - Yicheng Yang
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, Florida, USA
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, China
| | - Hao Chen
- Department of Agriculture, University of Arkansas at Pine Bluff, Pine Bluff, Arkansas, USA
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
47
|
Fast Granulation by Combining External Sludge Conditioning with FeCl 3 Addition and Reintroducing into an SBR. Polymers (Basel) 2022; 14:polym14173688. [PMID: 36080762 PMCID: PMC9460750 DOI: 10.3390/polym14173688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
The separation of light and heavy sludge, as well as the aggregation rate of floccular sludge, are two critical aspects of the rapid granulation process in sequencing batch reactors (SBRs) in the early stages. In this study, we investigated the impact of a method to improve both sludge separation and granulation by coupling effluent sludge external conditioning with FeCl3 addition and then reintroducing it into the SBR. By supplementation with 0.1 g Fe3+ (g dried sludge (DS))−1, the concentration of extracellular polymeric substances (EPS) and sludge retention efficiency greatly increased, whereas the moisture content and specific oxygen uptake rate (SOUR) sharply decreased within 24 h external conditioning. Aggregates (1.75 ± 0.05 g·L−1) were reintroduced into the bioreactor once daily from day 13 to day 15. Afterwards, on day 17, aerobic granules with a concentration of mixed liquor suspended solids (MLSS) of 5.636 g/L, a sludge volume index (SVI30) of 45.5 mL/g and an average size of 2.5 mm in diameter were obtained. These results suggest that the external conditioning step with both air-drying and the addition of Fe3+ enhanced the production of EPS in the effluent sludge and improved rapid aggregation and high sludge retention efficiency. Consequently, the reintroduced aggregates with good traits shortened the time required to obtain mature aerobic granular sludge (AGS) and properly separate light and heavy sludge. Indeed, this method jump-started the aggregation, and rapid granulation processes were successful in this work. Additionally, while the removal efficiency of chemical oxygen demand (COD) and nitrogen from ammonium (NH4+-N) decreased when reintroducing the treated sludge into the SBR, such properties increased again as the AGS matured in the SBR, up to removal efficiencies of 96% and 95%, respectively.
Collapse
|
48
|
Peng T, Wang Y, Wang J, Fang F, Yan P, Liu Z. Effect of different forms and components of EPS on sludge aggregation during granulation process of aerobic granular sludge. CHEMOSPHERE 2022; 303:135116. [PMID: 35623422 DOI: 10.1016/j.chemosphere.2022.135116] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/21/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
The characteristics of three forms of extracellular polymeric substances (EPS) and their component proteins (PN) and polysaccharides (PS) during the granulation process of aerobic granular sludge (AGS) and their effects on the aggregation performance of AGS were studied. Meanwhile, Pearson correlation analysis was conducted to explore the correlations between different forms of EPS and their components and sludge properties in the granulation process. The results showed that the AGS reactor could be started within 40 days by using the strategy of decreasing sedimentation time, and the sludge granulation degree was 90.22%. It was found that the content of tightly bound EPS (TB-EPS) accounted for 72.81-93.11% of the total EPS. Compared with dissolved EPS (S-EPS) and loosely bound EPS (LB-EPS), TB-EPS had a great impact on the zeta potential and hydrophobicity of sludge surface. During the granulation process, the content and relative hydrophobicity of PN in TB-EPS increased from 30.38 ± 0.12 mg/g VSS to 83.99 ± 2.05 mg/g VSS and 37.63%-71.25%, respectively. Through the flocculation experiment, it showed that the contribution rate of TB-EPS to the flocculation capacity of sludge cells increased from 13.30% to 35.37% and that of PN to flocculation capacity was 76.93%, which was 6.8 times that of PS. It indicated that TB-EPS played the most critical role in the formation of AGS and the PN in EPS was the major contributor to promoting the formation of AGS and enhance its aggregation performance. This research could further understand the role of various forms of EPS and its components in the process of sludge granulation, reveal the sludge granulation mechanism, and provide theoretical support for the rapid start-up of AGS reactor.
Collapse
Affiliation(s)
- Ting Peng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; School of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Yaying Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; School of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Jiaqin Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; School of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Fang Fang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; School of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Peng Yan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; School of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Zhiping Liu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; School of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
49
|
Araújo JM, Berzio S, Gehring T, Nettmann E, Florêncio L, Wichern M. Influence of temperature on aerobic granular sludge formation and stability treating municipal wastewater with high nitrogen loadings. ENVIRONMENTAL RESEARCH 2022; 212:113578. [PMID: 35649490 DOI: 10.1016/j.envres.2022.113578] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
This study investigated the influence of temperature (20 and 30 °C) on the formation and stability of aerobic granules in sequential batch reactors (SBR). Therefore, two lab-scale SBRs operated at 20 and 30 °C (SBR20 and SBR30) were used. The reactors were fed with municipal wastewater (CODt:TN:TP 100:15:1.7), leading to mean organic loading rates (OLR) of 1.3 ± 0.4 kgCODt m-3 day-1. Both reactors had the same height/diameter ratio of 4.2 and were inoculated with activated sludge from a municipal wastewater treatment plant. The operational conditions were also the same for both temperatures and lasted in stable process parameters for over 100 days. By optimizing the aeration and oxygen concentration, a high removal efficiency of NH4-N (∼99%) and COD (∼90%) was achieved in both reactors, despite the poor C:N:P ratio at the influent. Furthermore, a relatively low oxygen concentration of 2 mg L-1 was defined as the set point for the control strategy. Nevertheless, granulation at 30 °C was significantly faster, resulting in more stable sludge volume index (SVI) values (SVI10/SVI30 < 1.1). The granules formed at 30 °C were also larger, more compact, and considerably more stable against system disturbances. However, at higher temperatures, larger granules might be required for nitrate removal because of the increased oxygen diffusion rates. Finally, microbiological 16S rRNA gene amplicon analysis for both systems indicated major differences relatively to the inoculum sludge only for nitrogen-degrading organisms.
Collapse
Affiliation(s)
- Julliana M Araújo
- Federal University of Pernambuco, Department of Civil and Environmental Engineering, Laboratory of Environmental Sanitation, Av. Acadêmico Hélio Ramos s/n, Recife, 50740-530, Brazil; Institute of Urban Water Management and Environmental Engineering, Ruhr-Universität Bochum, Universitätsstraße 150, Bochum, 44801, Germany.
| | - Stephan Berzio
- Institute of Urban Water Management and Environmental Engineering, Ruhr-Universität Bochum, Universitätsstraße 150, Bochum, 44801, Germany.
| | - Tito Gehring
- Institute of Urban Water Management and Environmental Engineering, Ruhr-Universität Bochum, Universitätsstraße 150, Bochum, 44801, Germany.
| | - Edith Nettmann
- Institute of Urban Water Management and Environmental Engineering, Ruhr-Universität Bochum, Universitätsstraße 150, Bochum, 44801, Germany.
| | - Lourdinha Florêncio
- Federal University of Pernambuco, Department of Civil and Environmental Engineering, Laboratory of Environmental Sanitation, Av. Acadêmico Hélio Ramos s/n, Recife, 50740-530, Brazil.
| | - Marc Wichern
- Institute of Urban Water Management and Environmental Engineering, Ruhr-Universität Bochum, Universitätsstraße 150, Bochum, 44801, Germany.
| |
Collapse
|
50
|
Enhancing the Stability of Aerobic Granular Sludge Process Treating Municipal Wastewater by Adjusting Organic Loading Rate and Dissolved Oxygen Concentration. SEPARATIONS 2022. [DOI: 10.3390/separations9080228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Aerobic granular sludge (AGS) application in treating municipal wastewater has been greatly restricted due to its low stability. It has been found that operation parameters have a great impact on stability. The organic loading rate (OLR) and dissolved oxygen (DO) concentration are two very important parameters that impact stability. In this study, the organic loading rate (OLR) and aeration rate were studied to verify their influence on AGS system stability, which is indicated by determining pollutant removal performance, including chemical oxygen demand (COD), ammonia nitrogen, and total nitrogen (TN). The physical and chemical property changes of AGS and the effects of pollutant removal during the formation of AGS were systematically investigated. The AGS was formed after about 25 days and remained stable for about 45–50 days. The AGS was light-yellow globular sludge with an average particle size of 1.25 mm and a sludge volume index (SVI) of 33.9 mL/g. The optimal condition was obtained at an OLR of 4.2 kg COD/m3·d, aeration rate of 4 L/min, and a hydraulic retention time (HRT) of 4 h. The corresponding removal efficiencies of COD, ammonia nitrogen, and TN were 94.1%, 98.4% and 74.1%, respectively. The study shows that the AGS system has great potential for pollutant removal from wastewater.
Collapse
|