1
|
Li X, Wang S, Zheng J, Fan X, Qin J, Yang Y, Zhou A, Li R, Li H, Li X, Yue X. Biochar-loaded iron oxide as a novel electrode for the electro-Fenton degradation of sulfaquinoxaline: Performance evaluation, mechanistic insights, and toxicity transformation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 387:125884. [PMID: 40408863 DOI: 10.1016/j.jenvman.2025.125884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 05/15/2025] [Accepted: 05/17/2025] [Indexed: 05/25/2025]
Abstract
In this work, carboxymethyl cellulose (CMC)-modified biochar (BC)-supported Fe3O4 was prepared for the degradation of sulfaquinoxaline (SQX) in a heterogeneous electro-Fenton process. The degradation rate of 10 mg/L SQX reached 94.2 % after 180 min of Fe3O4(CMC)/BC treatment, compared to 61.2 % with Fe3O4/BC. CMC allowed Fe3O4 particles to be more evenly distributed on the biochar surface, and its electron transfer capacity effectively activated the in situ generated H2O2 on the electrode with a maximum H2O2 yield of 17.9 mg/L. The produced 1O2 and ⋅O2- are the primary contributors to SQX degradation. The aniline of SQX is susceptible to electrophilic attack, whereas quinoxaline is susceptible to free radical attack, with bis-methylation, heterocyclic oxidation, and amino oxidation being the major reactions in the decomposition of SQX. Toxicity assessment by ECOSAR and T.E.S.T. modeling showed that all the intermediates were considerably less biotoxic than the parent compound. Density functional theory calculations showed that the O2 adsorption and H2O2 decomposition processes are spontaneous reactions, and the intermediates absorbed on the Fe atom have an increased energy potential and a tendency to be less active. The results of material cycling tests and metal ion leaching experiments confirmed the good reusability of the prepared cathode. Additionally, Fe3O4(CMC)/BC achieved excellent performance in livestock wastewater (SQX removal of 93.4 % and COD removal of 79.9 %), demonstrating the possibility of practical application. This study offers a theoretical foundation for the use of novel composite cathode materials to degrade persistent pollutants.
Collapse
Affiliation(s)
- Xiaowen Li
- Department of Water Supply and Drainage, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Sufang Wang
- Department of Water Supply and Drainage, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Jierong Zheng
- Department of Water Supply and Drainage, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Xin Fan
- Department of Water Supply and Drainage, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Jilong Qin
- Department of Water Supply and Drainage, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yu Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Aijuan Zhou
- Department of Water Supply and Drainage, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Rui Li
- Department of Water Supply and Drainage, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Houfen Li
- Department of Water Supply and Drainage, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Xingfa Li
- Department of Water Supply and Drainage, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Xiuping Yue
- Department of Water Supply and Drainage, Taiyuan University of Technology, Taiyuan, 030024, China
| |
Collapse
|
2
|
Lee JI, Choi D, Kim S, Park SJ, Kwon EE. Fabrication of Fe-doped biochar for Pb adsorption through pyrolysis of agricultural waste with red mud. CHEMOSPHERE 2025; 370:143930. [PMID: 39667532 DOI: 10.1016/j.chemosphere.2024.143930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/26/2024] [Accepted: 12/08/2024] [Indexed: 12/14/2024]
Abstract
Synthesis of metal-doped biochar have gained prominence due to their adsorption capability for heavy metal(loid)s. In this study, iron-doped biochar (Fe-BC) was fabricated through pyrolysis of waste mushroom substrate (WMS) with red mud (RM). The synthesised Fe-BC was employed as an adsorbent for Pb removal. During pyrolysis of WMS, introducing RM contributed to the enhanced syngas formation, this observation was attributed to the catalytic function of Fe species in RM. The Fe-BCs were made at three different temperatures (500, 600, and 700 °C), and their adsorption capabilities for Pb were evaluated. Among the prepared Fe-BCs, Fe-BC fabricated at 700 °C (Fe-BC-700) demonstrated the highest Pb adsorption performance (243.07 mg g-1). This performance primarily stemmed from the presence of zero-valent Fe and surface functional groups (-OH) in Fe-BC-700. Pb removal by Fe-BC-700 was dominated by surface precipitation and complexation mechanisms. Therefore, this study highlights a promising approach for producing an effective adsorbent for Pb removal from industrial wastewater by utilizing wastes such as RM and WMS.
Collapse
Affiliation(s)
- Jae-In Lee
- Institute of Agricultural Environmental Science, Hankyong National University, Anseong, 17579, Republic of Korea
| | - Dongho Choi
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Seungwon Kim
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Seong-Jik Park
- Institute of Agricultural Environmental Science, Hankyong National University, Anseong, 17579, Republic of Korea; Department of Bioresources and Rural System Engineering, Hankyong National University, Anseong, 17579, Republic of Korea.
| | - Eilhann E Kwon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
3
|
Liu Y, Li B, Tong WK, Tang H, Ping Z, Wang W, Gao MT, Dai C, Liu N, Hu J, Li J. Eco-friendly, stable, and high-performance biochar prepared by a twice-modification scheme: Saccharification of raw materials & thermal air oxidation of biochar. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123226. [PMID: 39522191 DOI: 10.1016/j.jenvman.2024.123226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/15/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Organic pollutants, such as phenolic compounds, pose significant risks to both the environment and human health. While biochar is an effective adsorbent for removing these pollutants, its dissolved solid (DS) components can lead to the loss of functional groups, structural disintegration, unstable performance, and environmental issues. This study introduces a twice-modification scheme designed to produce a biochar (BC-M) that combines high stability with superior performance. The process begins with the preparation of a stable biochar from cellulase-treated lignocellulose. This precursor biochar is then subjected to thermal air oxidation to enhance its oxygen-containing functional groups, thereby improving its adsorption capabilities. A mathematical model was developed to explore the relationship between different thermal air oxidation conditions and the properties of BC-M, aiming to optimize both adsorption capacity and DS. The model's multi-objective optimization indicated the optimal modification conditions. Compared to unmodified biochar (BC-O), BC-M showed significant improvements: its specific surface area increased by 63.6%, pore volume by 139%, and functional groups by 50%-1271%. Notably, the DS of BC-M was reduced to just 1.08 mg/L, representing a 97.5% reduction from BC-O, with a minimal mass loss of only 0.78 ± 0.45% during modification. BC-M also demonstrated a remarkable enhancement in the adsorption of phenolic compounds, with a capacity 21%-2408% higher than BC-O. Furthermore, calculations indicated that BC-M could reduce carbon emissions by 0.70 t CO2/yr/t, outperforming activated carbon in this regard. This study offers valuable insights into biochar modification, providing a low-cost, high-stability, and high-efficiency alternative for environmental cleanup.
Collapse
Affiliation(s)
- Yundong Liu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Bu Li
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Wang Kai Tong
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China; College of Civil Engineering, Tongji University, Shanghai, 200092, China
| | - Han Tang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China; Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 200120, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaoli Ping
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Water and Environment, Chang'an University, Xi'an, 710054, China
| | - Wenjuan Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 200120, China
| | - Min-Tian Gao
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Chaomeng Dai
- College of Civil Engineering, Tongji University, Shanghai, 200092, China
| | - Nan Liu
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Jiajun Hu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| | - Jixiang Li
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 200120, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
4
|
Zhu M, Hu M, Deng W, Su Y. Preparation of red mud-modified sludge char through microwave-assisted one-step pyrolysis and steam activation and its adsorption properties for hydrogen sulfide. CHEMOSPHERE 2024; 368:143723. [PMID: 39528131 DOI: 10.1016/j.chemosphere.2024.143723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/04/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
To improve the hydrogen sulfide (H2S) adsorption performance of sludge-derived char, a type of red mud-modified sludge char (RSC) was prepared through microwave-assisted one-step pyrolysis and steam activation of sludge and red mud (RM). The effects of pyrolysis temperature, RM mass percentage, and steam flow rate on the cumulative adsorption capacity of H2S were systematically investigated using response surface method. The results indicated that the sludge char showed a significant increase in cumulative adsorption capacity from 1.47 mg/g to 22.83 mg/g when it was modified with RM at a pyrolysis temperature of 625 °C, a mass percentage of RM of 20%, and a steam flow rate of 0.46 mmol/min. The XRD and XPS analysis results indicated that the RM doping generated abundant iron oxides on the surface of RSC, which is beneficial for the adsorption of H2S. Adsorption thermodynamics, isotherm fitting and thermodynamic calculations indicate that the adsorption mechanism of H2S on the RSC surface was attributed to the combined effects of physisorption and chemisorption. Additionally, the material exhibited reliable reusability, retaining more than 80% of its initial breakthrough capacity after three adsorption-regeneration cycles. Therefore, the RSC prepared in this study can be regarded as a promising adsorbent due to its low cost, effective adsorption capabilities, and reusability. The developed method is promising as it achieves environmental remediation through the utilization of waste sludge and RM.
Collapse
Affiliation(s)
- Mengyao Zhu
- School of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Songjiang Dist., Shanghai, 201620, PR China
| | - Mingtao Hu
- School of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Songjiang Dist., Shanghai, 201620, PR China
| | - Wenyi Deng
- School of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Songjiang Dist., Shanghai, 201620, PR China.
| | - Yaxin Su
- School of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Songjiang Dist., Shanghai, 201620, PR China
| |
Collapse
|
5
|
Arabzadeh Nosratabad N, Yan Q, Cai Z, Wan C. Exploring nanomaterial-modified biochar for environmental remediation applications. Heliyon 2024; 10:e37123. [PMID: 39315228 PMCID: PMC11417198 DOI: 10.1016/j.heliyon.2024.e37123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024] Open
Abstract
Environmental pollution, particularly from heavy metals and toxic elements, poses a significant threat to both human health and ecological systems. While various remediation technologies exist, there is an urgent need for cost-effective and sustainable solutions. Biochar, a carbon-rich product derived from the pyrolysis of organic matter, has emerged as a promising material for environmental remediation. However, its pristine form has limitations, such as low adsorption capacities, a relatively narrow range of pH adaptability which can limit its effectiveness in diverse environmental conditions, and a tendency to lose adsorption capacity rapidly in the presence of competing ions or organic matters. This review aims to explore the burgeoning field of nanomaterial-modified biochar, which seeks to overcome the limitations of pristine biochar. By incorporating nanomaterials, the adsorptive and reactive properties of biochar can be significantly enhanced. Such modifications, especially biochar supported with metal nanoparticles (biochar-MNPs), have shown promise in various applications, including the removal of heavy metals, organic contaminants, and other inorganic pollutants from aqueous environments, soil, and air. This review provides a comprehensive overview of the synthesis techniques, characterization methods, and applications of biochar-MNPs, as well as discusses their underlying mechanisms for contaminant removal. It also offers insights into the advantages and challenges of using nanomaterial-modified biochar for environmental remediation and suggests directions for future research.
Collapse
Affiliation(s)
- Neda Arabzadeh Nosratabad
- Department of Chemical and Biomedical Engineering, University of Missouri, 1406 East Rollins Street, Columbia, MO, 65211, USA
| | - Qiangu Yan
- Forest Products Laboratory, USDA Forest Service, One Gifford Pinchot Drive, Madison, WI, 53726-2398, USA
| | - Zhiyong Cai
- Forest Products Laboratory, USDA Forest Service, One Gifford Pinchot Drive, Madison, WI, 53726-2398, USA
| | - Caixia Wan
- Department of Chemical and Biomedical Engineering, University of Missouri, 1406 East Rollins Street, Columbia, MO, 65211, USA
| |
Collapse
|
6
|
Zhang H, Sun H, Huang S, Lan J, Li H, Yue H. Biomass-Derived Carbon Materials for Electrochemical Sensing: Recent Advances and Future Perspectives. Crit Rev Anal Chem 2024:1-26. [PMID: 39331419 DOI: 10.1080/10408347.2024.2401504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
In recent years, biomass carbon materials have received widespread attention in the field of electrochemical sensors. As a new type of renewable green energy, biomass carbon has the advantages of low cost and abundant resources. After special treatment, it can be used as an ideal electrode material. Since biomass carbon materials have diverse sources and their morphology is difficult to control, researchers have conducted in-depth research on their preparation process, morphology regulation and application. This review summarizes different biomass carbon structures and their preparation methods and explores the applications of these materials in electrochemical sensors. Modification of biomass carbon materials through pretreatment, physical and chemical activation, heteroatom doping, metal compound composite and other methods can make up for the deficiencies in its pore structure, electrical conductivity and surface wettability, thereby improving its electrochemical performance. The effects of different biomass sources, functional groups, constituent elements and modification methods on the morphology, structure and electrochemical properties of biomass carbon materials are discussed, and the applications of this type of material in biological molecules, heavy metal ions and pesticide residues are reviewed. Biomass carbon-based materials show great application potential and development prospects in the field of electrochemical sensors.
Collapse
Affiliation(s)
- Haopeng Zhang
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, People's Republic of China
| | - Huaze Sun
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, People's Republic of China
| | - Shuo Huang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Jingming Lan
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, People's Republic of China
| | - Haiyang Li
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, People's Republic of China
| | - Hongyan Yue
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, People's Republic of China
| |
Collapse
|
7
|
He Y, Liu Z, Chen J, Deng Y. Performance and mechanism of sulfadiazine and norfloxacin adsorption from aqueous solution by magnetic coconut shell biochar. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:48561-48575. [PMID: 39031314 DOI: 10.1007/s11356-024-34359-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/08/2024] [Indexed: 07/22/2024]
Abstract
In this study, magnetic coconut shell biochar loaded with spherical Fe3O4 and γ-Fe2O3 particles was successfully synthesized using a chemical coprecipitation method. The magnetic biochar exhibited a good magnetic separability and environmental security. The maximum sulfadiazine (SDZ) and norfloxacin (NOR) removal efficiencies were 94.8% and 92.3% at pH 4 and 25 °C with adsorbent dosage of 2.5 g/L, respectively. When antibiotic concentrations ranged from 5 to 50 mg/L, the theoretical maximum adsorption capacities of SDZ and NOR were 16.7 mg/g and 25.8 mg/g, respectively. The Langmuir isotherm and pseudo-second-order kinetic models could better describe the adsorption process of both antibiotics, implying the monolayer chemical adsorption. The thermodynamic analysis indicated that the adsorption process was spontaneous and endothermic. The ionic strength had no significant effect on the adsorption behavior of either antibiotic. Combined with BET, FTIR, and XPS results, the dominant mechanisms for SDZ and NOR adsorption were pore filling, π-π electron-donor-acceptor interaction, hydrogen bonds and surface complexation. Moreover, Lewis acid-base interaction also contributed to SDZ adsorption.
Collapse
Affiliation(s)
- Yan He
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, China.
| | - Ziruo Liu
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Jiale Chen
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Yuehua Deng
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, China
| |
Collapse
|
8
|
Huang W, Wang L, Zhu J, Dong L, Hu H, Yao H, Wang L, Lin Z. Application of machine learning in prediction of Pb 2+ adsorption of biochar prepared by tube furnace and fluidized bed. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:27286-27303. [PMID: 38507168 DOI: 10.1007/s11356-024-32951-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 03/12/2024] [Indexed: 03/22/2024]
Abstract
Data mining by machine learning (ML) has recently come into application in heavy metals purification from wastewater, especially in exploring lead removal by biochar that prepared using tube furnace (TF-C) and fluidized bed (FB-C) pyrolysis methods. In this study, six ML models including Random Forest Regression (RFR), Gradient Boosting Regression (GBR), Support Vector Regression (SVR), Kernel Ridge Regression (KRR), Extreme Gradient Boosting (XGB), and Light Gradient Boosting Machine (LGBM) were employed to predict lead adsorption based on a dataset of 1012 adsorption experiments, comprising 422 TF-C groups from our experiments and 590 FB-C groups from literatures. The XGB model showed superior accuracy and predictive performance for adsorption, achieving R2 values for TF-C (0.992) and FB-C (0.981), respectively. Contrasting inferior results were observed in other models, including RF (0.962 and 0.961), GBR (0.987 and 0.975), SVR (0.839 and 0.763), KRR (0.817 and 0.881), and LGBM (0.975 and 0.868). Additionally, a hybrid dataset combining both biochars in Pb adsorption also indicated high accuracy (0.972) as obtained from XGB model. The investigation revealed that the influence of char characteristics and adsorption conditions on Pb adsorption differs between the two biochar. Specific char characteristics, particularly nitrogen content, significantly influence lead adsorption in both biochar. Interestingly, the influence of pyrolysis temperature (PT) on lead adsorption is found to be greater for TF-C than for FB-C. Consequently, careful consideration of PT is crucial when preparing TF-C biochar. These findings offer practical guidance for optimizing biochar preparation conditions during heavy metal removal from wastewater.
Collapse
Affiliation(s)
- Wei Huang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Faculty of Engineering, China University of Geosciences, Wuhan, 430074, China
| | - Liang Wang
- China Power Hua Chuang (Suzhou) Electricity Technology Research Company Co., Ltd., Suzhou, 215125, China
| | - JingJing Zhu
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lu Dong
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
- Research Institute, Huazhong University of Science and Technology in Shenzhen, Wuhan, 430074, China.
| | - Hongyun Hu
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Research Institute, Huazhong University of Science and Technology in Shenzhen, Wuhan, 430074, China
| | - Hong Yao
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - LinLing Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhong Lin
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, PR China
- Shenzhen Research Institute of Guangdong Ocean University, Shenzhen, 518108, PR China
| |
Collapse
|
9
|
Zulfiqar N, Shariatipour M, Inam F. Sequestration of chromium(vi) and nickel(ii) heavy metals from unhygienic water via sustainable and innovative magnetic nanotechnology. NANOSCALE ADVANCES 2023; 6:287-301. [PMID: 38125608 PMCID: PMC10729917 DOI: 10.1039/d3na00923h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023]
Abstract
In a stride towards sustainable solutions, this research endeavors to address the critical issue of water pollution via heavy metals by coupling the power of magnetic nanotechnology, in combination with a green chemistry approach, to eliminate two noxious inorganic pollutants: chromium(vi) and nickel(ii) from aqueous environments. The synthesis of magnetite (Fe3O4) nanoparticles was achieved using ferric chloride hexahydrate (FeCl3·6H2O) as a precursor, with the assistance of Ziziphus mauritiana Lam. leaves extract, known for its remarkable salt-reducing properties. A range of bio-adsorbents, derived from corncob biomass, corncob pyrolyzed biochar, and magnetite/corncob biochar nanocomposite (NC), were engineered for their eco-friendly and biocompatible characteristics. Extensive parametric optimizations, including variations in pH, contact time, dose rate, and concentration, were carried out to gain insights into the adsorption behavior and capacity of these bioadsorbents concerning Cr(vi) and Ni(ii). Equilibrium and kinetic studies were undertaken to comprehensively understand the adsorption dynamics. In the case of Ni(ii), the Freundlich isotherm model provided a satisfactory fit for all bio-adsorbents, demonstrating R2 values of 0.91, 0.95, and 0.96 for BM, BC, and NC, respectively. Furthermore, the pseudo 1st order model emerged as the most suitable fit for Cr(vi) sequestration in corncob BM with an R2 value of 0.98, while pseudo 2nd order models were robustly fitted for BC and NC, yielding R2 values of 0.88 and 0.99, respectively. The magnetite/corncob nanocomposite outperformed other bioadsorbents in removing heavy metals from wastewater due to its environmental friendliness, larger surface area, reusability, and cost-effectiveness at an industrial scale.
Collapse
Affiliation(s)
- Noor Zulfiqar
- Department of Chemistry, Faculty of Science, University of Agriculture Faisalabad Pakistan
| | - Monireh Shariatipour
- Department of Chemistry, Faculty of Science, Tarbiat Modares University Tehran Iran
| | - Fawad Inam
- School of Architecture, Computing and Engineering, University of East London EB 1.102 Docklands Campus, University Way London E16 2RD UK
- Executive Principal Office, Oxford Business College 23-38 Hythe Bridge Street Oxford OX1 2EP UK
| |
Collapse
|
10
|
Lin K, Afzal S, Xu L, Ding T, Li F, Zhang M. Heterogeneous photo-Fenton degradation of acid orange 7 activated by red mud biochar under visible light irradiation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121454. [PMID: 36997142 DOI: 10.1016/j.envpol.2023.121454] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/11/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
The heterogeneous photo-Fenton process is an effective technology for degrading organic contaminants in wastewater, and Fe-based catalysts are recently preferred due to their low biotoxicity and geological abundance. Herein, we synthesized a Fe-containing red mud biochar (RMBC) via one-step co-pyrolysis of red mud and shaddock peel as a photo-Fenton catalyst to activate H2O2 and degrade an azo dye (acid orange 7, AO7). RMBC showed excellent AO7 removal capability with a decolorization efficiency of nearly 100% and a mineralization efficiency of 87% in the heterogeneous photo-Fenton process with visible light irradiation, which were kept stable in five successive reuses. RMBC provided Fe2+ for H2O2 activation, and the light irradiation facilitated the redox cycle of Fe2+/Fe3+ in the system to produce more reactive oxygen species (ROS, i.e., •OH) for AO7 degradation. Further investigation revealed that •OH was the predominant ROS responsible for AO7 degradation in the light-free condition, while more ROS were produced in the system with light irradiation, and 1O2 was the primary ROS in the photo-Fenton process for AO7 removal, followed by •OH and O2•-. This study provides insight into the interfacial mechanisms of RMBC as a photo-Fenton catalyst for treating non-degradable organic contaminants in water through advanced oxidation processes under visible light irradiation.
Collapse
Affiliation(s)
- Kun Lin
- Department of Environmental Engineering, China Jiliang University, Hangzhou, 310018, Zhejiang, China
| | - Shahzad Afzal
- Department of Environmental Engineering, China Jiliang University, Hangzhou, 310018, Zhejiang, China
| | - Liheng Xu
- Department of Environmental Engineering, China Jiliang University, Hangzhou, 310018, Zhejiang, China
| | - Tao Ding
- Department of Environmental Engineering, China Jiliang University, Hangzhou, 310018, Zhejiang, China
| | - Feng Li
- College of Environment Science and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Ming Zhang
- Department of Environmental Engineering, China Jiliang University, Hangzhou, 310018, Zhejiang, China.
| |
Collapse
|
11
|
Galhoum AA. Mesoporous chitosan derivatives for effective uranyl sorption: Synthesis, characterization, and mechanism-application to ore leachate. Int J Biol Macromol 2023; 242:124634. [PMID: 37119908 DOI: 10.1016/j.ijbiomac.2023.124634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023]
Abstract
Two sorbents were developed from chitosan aminophosphonation: via one-pot process to produce aminophosphonated derivative (r-AP), followed by further pyrolysis to produce mesoporous improved biochar (IBC). Sorbents structures were elucidated using CHNP/O, XRD, BET, XPS, DLS, FTIR, and pHZPC-titration. The IBC exhibits an improved specific surface (262.12 m2/g) and mesopore size (8.34 nm) compared to its organic precursor (r-AP), 52.53 m2/g and 3.39 nm. IBC surface is also enriched with high electron density heteroatoms (P/O/N). These unique merits of porosity and surface-active-sites improved sorption efficiency. Sorption characteristics were determined for uranyl recovery, and binding mechanisms were elucidated using FTIR and XPS. The maximum sorption capacity increased from 0.571 to 1.974 mmol/g for r-AP and IBC, respectively, roughly correlated with the active-sites density per mass. Equilibrium occurred within 60/120 min, and the half-sorption-time (tHST) was decreased from 10.73 for r-AP to 5.48 min for IBC. Langmuir and pseudo-second-order equation fits experimental data well. Sorption is endothermic for IBC (whereas exothermic with r-AP), spontaneous, and governed by entropy change. Both sorbents show high durability over multiple-cycles with desorption efficiency >94 % over seven cycles using NaHCO3 (0.25 M). The sorbents efficiently tested for U(VI) recovery from acidic ore leachate with outstanding selectivity coefficients.
Collapse
Affiliation(s)
- Ahmed A Galhoum
- Nuclear Materials Authority, P.O. Box 530, El-Maadi, Cairo, Egypt; Graduate Faculty of Science, Menoufia University, Shebin El-Kom, Egypt.
| |
Collapse
|
12
|
Saravanan A, Kumar PS. Biochar derived carbonaceous material for various environmental applications: Systematic review. ENVIRONMENTAL RESEARCH 2022; 214:113857. [PMID: 35835170 DOI: 10.1016/j.envres.2022.113857] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/19/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Biochar is the solid material produced from the carbonization of organic feedstock biomass. This material has several unique characteristics such as greater carbon content, good electrical conductivity, high stability and large surface area, which can be applied in several research areas such as generation of power and wastewater treatment. In connection with this, recently, the investigations on biochar significantly focus on the removal of toxic heavy metals since the biochar material is easily available and environmentally friendly. According to an environmental analytical device, biochar-derived carbonaceous material has been additionally applied to the synthesis of an effective, sensitive, and low-cost electrochemical sensor. Biochar with an assessment of electrochemical properties has engaged with different redox reactions in water. In this survey, electrochemical ways of behaving of biochar in light of the electrochemical structures were analytically compiled as well as the impact from biomass sources and manufacturing process including carbonization strategies, pre-treatment/changed techniques. This review emphasizes the various synthesis methods of biochar form organic feedstock, properties and different modulations of biochar for the bioremediation of heavy metals. This review study emphasizes the utilization of biochar as sensing platform and supercapacitor for electrode fabrication in electrochemical biosensor to enhance the remediation of toxic contaminants from water streams and by switching the less ecological traditional materials. Brief information on the techniques employed for packaging biochar as carbon electrode is summarized. Scope in the aspect of environmental concern of biochar, future challenges and prospects are proposed in detail.
Collapse
Affiliation(s)
- A Saravanan
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai - 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai - 603110, India.
| |
Collapse
|
13
|
Barasarathi J, Abdullah PS, Uche EC. Application of magnetic carbon nanocomposite from agro-waste for the removal of pollutants from water and wastewater. CHEMOSPHERE 2022; 305:135384. [PMID: 35724716 DOI: 10.1016/j.chemosphere.2022.135384] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 05/22/2023]
Abstract
Water pollution has significant impact on water usage, and various contaminants, such as organic and inorganic compounds, heavy metals, dyes, pharmaceuticals compounds, pathogens and radioactive compounds, are implicated. The quest for globalisation, structural developments and other related anthropogenic activities promote the release of contaminants that induce water pollution. Hence, treatment and remediation options that can remove pollutants from watercourses and wastewater have been developed. Applied nanotechnology using carbon nanocomposites has recently drawn attention because it has the advantages of low preparation cost, high surface area, pore volume and environmental stability. Magnetic carbon nanocomposites usually exhibit excellent performance in adsorbing contaminants from aqueous solutions, and thus expanding the use of nanotechnology in water treatment is of great importance. Therefore, this review explores the geographical outlook of water pollution, sources of water pollution and types of contaminants found in water and discusses the use of carbon nanocomposites as an emerging sustainable technology for water pollutant removal. The various properties of carbon-based composites influence the extent of pollutant adsorption during water treatment processes. Most carbon-based nanocomposites are generated from biomass produced by agro-waste materials. Magnetic activated carbon nanocomposites produced from walnut shells and rice husk waste can remove 78% of Cd(II) from contaminated aqueous systems. Magnetic nanocomposites from peanut shell, tea waste, curcumin nanoparticles, sunflower head waste, rice husk, hydrophyte biomass, palm waste and sugarcane bagasse facilitate hydrothermal carbonisation, chemical precipitation, co-precipitation, chemical activation, calcination and fast pyrolysis. These nanocomposites have benefitted wastewater treatment by increasing efficiency in removing pharmaceutical, dye and organic contaminants, such as promazine, ciprofloxacin, amoxicillin, rhodamine 6G, methyl blue, phenol and phenanthrene. Hence, this review discusses the relatively low costs, good biocompatibility, large surface-to-volume ratio, magnetic separation capability and reusability carbon materials and highlights the advantages of using magnetic carbon nanocomposites in the removal of contaminants from water or wastewater through adsorption mechanisms.
Collapse
Affiliation(s)
- Jayanthi Barasarathi
- Faculty of Health & Life Sciences (FHLS), Inti International University, Nilai, Malaysia
| | | | - Emenike Chijioke Uche
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Canada; Natural and Applied Sciences, Hezekiah University, Umudi, Nigeria.
| |
Collapse
|
14
|
Tee GT, Gok XY, Yong WF. Adsorption of pollutants in wastewater via biosorbents, nanoparticles and magnetic biosorbents: A review. ENVIRONMENTAL RESEARCH 2022; 212:113248. [PMID: 35405129 DOI: 10.1016/j.envres.2022.113248] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/08/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Adsorption has gained much attention as one of the efficient approaches to remediate the contaminants in wastewater. Herein, this critical review focuses on the preparation, modification, application and regeneration of the biosorbents, nanoparticles and magnetic biosorbents for the wastewater treatment in recent 5 years (2017-2021). Among these materials, the development of magnetic biosorbents is attractive owing to their variable active sites, high specific surface area, easy separation and low cost. To improve the adsorption performance of biosorbents, the chemical activations such as acid, alkali and salt activations of biosorbents are discussed. In general, the oxidation reaction in acid, alkali and salt activations increases the porosity of biosorbents. The surface characteristics, surface chemistry of the biosorbents and magnetic biosorbents such as electrostatic interaction, π-π interaction and hydrogen bonding are highlighted. Ionic compounds are separated through ion exchange, surface charge and electrostatic interactions while the organic pollutants are removed via hydrophobicity, π-π interactions and hydrogen bonding. The effect of solution pH, adsorbent dosage, initial concentration of pollutants, adsorption duration and temperature on the adsorption capacity, and removal efficiency are discussed. Generally, an increase in adsorbent dosage resulted in a decrease in adsorption capacity due to the excessive active sites. On the other hand, a higher initial concentration or an increase in contact time of adsorbent increased the driving force, subsequently enhancing the adsorption capacity. Finally, this review will be concluded with a summary, challenges and future outlook of magnetic biosorbents. It is anticipated that this review will provide insights into engineering advanced and suitable materials to achieve cost-effective and scalable adsorbents for practical and sustainable environmental remediation.
Collapse
Affiliation(s)
- Guat Teng Tee
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia
| | - Xie Yuen Gok
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia
| | - Wai Fen Yong
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia; College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China.
| |
Collapse
|
15
|
Review of Advanced Oxidation Processes Based on Peracetic Acid for Organic Pollutants. WATER 2022. [DOI: 10.3390/w14152309] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In recent years, the removal of organic pollutants from water and wastewater has attracted more attention to different advanced oxidation processes (AOPs). There has been increasing interest in using peroxyacetic acid (PAA), an emerging oxidant with low or no toxic by-products, yet the promotion and application are limited by unclear activation mechanisms and complex preparation processes. This paper synthesized the related research results reported on the removal of organic pollutants by PAA-based AOPs. Based on the research of others, this paper not only introduced the preparation method and characteristics of PAA but also summarized the mechanism and reactivity of PAA activated by the free radical pathway and discussed the main influencing factors. Furthermore, the principle and application of the newly discovered methods of non-radical activation of PAA in recent years were also reviewed for the first time. Finally, the shortcomings and development of PAA-based AOPs were discussed and prospected. This review provides a reference for the development of activated PAA technology that can be practically applied to the treatment of organic pollutants in water.
Collapse
|
16
|
Deena SR, Vickram AS, Manikandan S, Subbaiya R, Karmegam N, Ravindran B, Chang SW, Awasthi MK. Enhanced biogas production from food waste and activated sludge using advanced techniques - A review. BIORESOURCE TECHNOLOGY 2022; 355:127234. [PMID: 35489575 DOI: 10.1016/j.biortech.2022.127234] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/21/2022] [Accepted: 04/23/2022] [Indexed: 06/14/2023]
Abstract
Biogas generation using food waste anaerobic co-digestion with activated sludge provides a cleaner addressable system, an excellent solution to global challenges, the increasing energy demands, fuel charges, pollution and wastewater treatment. Regardless of the anaerobic digestate end product values, the technology lacks efficiency and process instability due to substrate irregularities. Process parameters and substrate composition, play a vital role in the efficiency and outcome of the system. Intrinsic biochar properties such as pore size, specific surface properties and cation exchange capacity make it an ideal additive that enriches microbial functions and enhances anaerobic digestion. The pretreatment and co-digestion of food waste and activated sludge are found to be significant for efficient biogas generation. The advantages, drawbacks, limitations, and technical improvements are covered extensively in the present review besides the recent advancement in the anaerobic digestion system.
Collapse
Affiliation(s)
- Santhana Raj Deena
- College of Natural Resources and Environment, Northwest A&F University, TaichengRoad3# Shaanxi, Yangling 712100, China; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai 602 105. Tamil Nadu, India
| | - A S Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai 602 105. Tamil Nadu, India
| | - S Manikandan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai 602 105. Tamil Nadu, India
| | - R Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P O Box 21692, Kitwe, Zambia
| | - N Karmegam
- Department of Botany, Government Arts College (Autonomous), Salem 636007, Tamil Nadu, India
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong-Gu, Suwon, Gyeonggi-Do 16227, South Korea
| | - Soon Woong Chang
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong-Gu, Suwon, Gyeonggi-Do 16227, South Korea
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, TaichengRoad3# Shaanxi, Yangling 712100, China.
| |
Collapse
|
17
|
Gopalan J, Buthiyappan A, Raman AAA. Insight into metal-impregnated biomass based activated carbon for enhanced carbon dioxide adsorption: A review. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.06.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Li H, Jiang Q, Li R, Zhang R, Jiang S, Zhang J, Qu J, Zhang L, Zhang Y. Facile one-step synthesis of biochar supported iron nanoparticles for enhancing Pb(II) scavenging from water: Performance and mechanisms. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Zhao N, Liu K, He C, Zhao D, Zhu L, Zhao C, Zhang W, Oh WD, Zhang W, Qiu R. H 3PO 4 activation mediated the iron phase transformation and enhanced the removal of bisphenol A on iron carbide-loaded activated biochar. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 300:118965. [PMID: 35134429 DOI: 10.1016/j.envpol.2022.118965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/30/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Zero valent iron-loaded biochar (Fe0-BC) has shown promise for the removal of various organic pollutants, but is restricted by reduced specific surface area, low utilization efficiency and limited production of reactive oxygen species (ROS). In this study, iron carbide-loaded activated biochar (Fe3C-AB) with a high surface area was synthesized through the pyrolysis of H3PO4 activated biochar with Fe(NO3)3, tested for removing bisphenol A (BPA) and elucidated the adsorption and degradation mechanisms. As a result, H3PO4 activated biochar was beneficial for the transformation of Fe0 to Fe3C. Fe3C-AB exhibited a significantly higher removal rate and removal capacity for BPA than that of Fe0-BC within a wide pH range of 5.0-11.0, and its performance was maintained even under extremely high salinity and different water sources. Moreover, X-ray photoelectron spectra and density functional theory calculations confirmed that hydrogen bonds were formed between the COOH groups and BPA. 1O2 was the major reactive species, constituting 37.0% of the removal efficiency in the degradation of BPA by Fe3C-AB. Density functional reactivity theory showed that degradation pathway 2 of BPA was preferentially attacked by ROS. Thus, Fe3C-AB with low cost and excellent recycling performance could be an alternative candidate for the efficient removal of contaminants.
Collapse
Affiliation(s)
- Nan Zhao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China; Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Kunyuan Liu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Chao He
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Dongye Zhao
- Department of Civil & Environmental Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Ling Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Chuanfang Zhao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Weihua Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China; Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Wen-Da Oh
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Weixian Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, PR China
| | - Rongliang Qiu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, PR China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, PR China.
| |
Collapse
|
20
|
Zhang M, Lin K, Zhong Y, Zhang D, Ahmad M, Yu J, Fu H, Xu L, Wu S, Huang L. Functionalizing biochar by Co-pyrolysis shaddock peel with red mud for removing acid orange 7 from water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 299:118893. [PMID: 35085649 DOI: 10.1016/j.envpol.2022.118893] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/08/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Biochar modification by metal/metal oxide is promising for improving its adsorption capability for contaminants, especially the anions. However, conventional chemical modifications are complicated and costly. In this study, novel Fe/Fe oxide loaded biochars (RMBCs) were synthesized from a one-step co-pyrolysis of red mud (RM) and shaddock peel (SP), and their potential application for removing anionic azo dye (acid orange 7, AO7) from the aqueous environment was evaluated. Fe from red mud was successfully loaded onto biochars pyrolyzed at 300-800 °C, which presented from oxidation form (Fe2O3) to the reduction forms (FeO and Fe0) with increasing pyrolysis temperature. The RMBC produced at 800 °C with RM:SP mass ratio of 1:1 (RMBC8001:1) exhibited the best capability for AO7 removal (∼32 mg/g), attributed to both adsorption and degradation. The higher surface area of RMBC8001:1 and its greater affinity for AO7 led to the higher adsorption. In addition, RMBC8001:1-induced degradation of AO7 was another key mechanism for AO7 removal. The reduction forms of Fe (FeO or Fe0) in RMBC8001:1 may provide electrons for breaking down the azo bond in AO7 molecules and result in degradation, which is further enhanced in acid conditions due to the participation of readily release of Fe2+ and the available H+ in AO7 degradation. Furthermore, RMBC8001:1 can be easily separated from the treated water by using magnetic field, which significantly benefits its separation in wastewater treatment.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Environmental Engineering, China Jiliang University, Hangzhou, 310018, Zhejiang, China.
| | - Kun Lin
- Department of Environmental Engineering, China Jiliang University, Hangzhou, 310018, Zhejiang, China
| | - Yuchi Zhong
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Dong Zhang
- Institute of Environmental Materials & Technology, Hangzhou Dianzi University, Hangzhou, 310018, Zhejiang Province, China
| | - Mahtab Ahmad
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Jie Yu
- Department of Environmental Engineering, China Jiliang University, Hangzhou, 310018, Zhejiang, China
| | - Hailu Fu
- Department of Environmental Engineering, China Jiliang University, Hangzhou, 310018, Zhejiang, China
| | - Liheng Xu
- Department of Environmental Engineering, China Jiliang University, Hangzhou, 310018, Zhejiang, China
| | - Songlin Wu
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Longbin Huang
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
21
|
Abstract
Biochar has attracted increasing research attention. Various modification methods have been proposed to enhance a certain biochar function. However, these modifications may also result in an unstable structure, additional energy consumption, secondary pollution, and/or extra cost. Balanced consideration of different aspects will ensure the sustainable development of biochar technology. This review first summarizes the most commonly used methods for biochar modification. These methods are categorized according to the purposes of modification, such as surface area enlargement, persistent free radical manipulation, magnetism introduction, and redox potential enhancement. More importantly, a systematic analysis and discussion are provided regarding the balanced consideration of biochar designs, such as the balance between effectiveness and stability, functions and risks, as well as effectiveness and cost. Then, perspectives regarding biochar modification are presented. This review calls for attention that biochar modifications should not be evaluated for their functions only. A balanced design of biochars will ensure both the practicability and the effectiveness of this technology.
Collapse
Affiliation(s)
- Peng Zhang
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Wenyan Duan
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Hongbo Peng
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
- Faculty of Modern Agricultural Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Bo Pan
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
22
|
Li Y, Zhao Y, Cheng K, Yang F. Effects of biochar on transport and retention of phosphorus in porous media: Laboratory test and modeling. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 297:118788. [PMID: 34990736 DOI: 10.1016/j.envpol.2022.118788] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/29/2021] [Accepted: 01/01/2022] [Indexed: 06/14/2023]
Abstract
Given the complexity of soil components, a detailed understanding of the effects of single factors on phosphorus transport and retention will play a key role in understanding the environmental effects of phosphorus. In this work, quartz sand columns (considering five factors: doping rate, pH, particle size, ionic strength and cation type), combined with a two-site nonequilibrium transport model (TSM), were used to investigate phosphate (P) transport behavior. The results show that changes in doping ratio (0.4%-1.6%) and pH (5-9) have a notable effect on the transport of P, while, particle size of quartz sand hardly impacts the transport. When biochar was added at 1.6%, the surface of biochar increased the P fixation rate by about 37% through direct interaction with phosphate and bridging action with metal ions. As the morphology of P changed under different pH conditions, a part of P was immobilized in the form of precipitation. The immobilization of P was further enhanced with the increase of ionic strength. Compared with the direct interaction of P with biochar in Na+ solution, Ca2+ and Mg2+ solutions are more likely to adsorb P. Meanwhile, the TSM model also fits the transport behavior well. This study provides a perspective for evaluating the environmental behavior of P in the porous media interaction with biochar.
Collapse
Affiliation(s)
- Yuelei Li
- School of Water Conservancy & Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin, 150030, China
| | - Ying Zhao
- School of Water Conservancy & Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin, 150030, China
| | - Kui Cheng
- Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin, 150030, China; School of Engineering, Northeast Agricultural University, Harbin, 150030, China
| | - Fan Yang
- School of Water Conservancy & Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin, 150030, China.
| |
Collapse
|
23
|
Xu X, Zhu D, Wang X, Deng L, Fan X, Ding Z, Zhang A, Xue G, Liu Y, Xuan W, Li X, Makinia J. Transformation of polyvinyl chloride (PVC) into a versatile and efficient adsorbent of Cu(II) cations and Cr(VI) anions through hydrothermal treatment and sulfonation. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:126973. [PMID: 34461533 DOI: 10.1016/j.jhazmat.2021.126973] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/11/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
The reuse of waste polyvinyl chloride (PVC) has drawn much attention as it can reduce plastic waste and associated pollution, and provide valuable raw materials and products. In this study, sulfonated PVC-derived hydrochar (HS-PVC) was synthesized by two-stage hydrothermal treatment (HT) and sulfonation, and shown to be a versatile adsorbent. The removal of Cu(II) cations and Cr(VI) anions using HS-PVC reached 81.2 ± 1.6% and 60.3 ± 3.8%, respectively. The first stage of HT was crucial for the dichlorination of PVC and the formation of an aromatic structure. This stage guaranteed the introduction of -SO3H onto PVC-derived hydrochar through subsequent sulfonation. HT intensities (i.e., temperature and time) and sulfonation intensity strongly determined the adsorption capacity of HS-PVC. Competitive adsorption between Cu(II) and Cr(VI) onto HS-PVC was demonstrated by binary and preloading adsorption. The proposed Cu(II) cations adsorption mechanism was electrostatic adsorption, while Cr(VI) were possibly complexed by the phenolic -OH and reduced to Cr(III) cations by CC groups in HS-PVC. In addition, HS-PVC derived from PVC waste pipes performed better than PVC powder for Cu(II) and Cr(VI) removal (>90%). This study provides an efficient method for recycling waste PVC and production of efficient adsorbents.
Collapse
Affiliation(s)
- Xianbao Xu
- College of Environmental Science and Engineering, State Environmental Protection Engineering Centre for Pollution Treatment and Control in Textile Industry, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Daan Zhu
- College of Environmental Science and Engineering, State Environmental Protection Engineering Centre for Pollution Treatment and Control in Textile Industry, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Xiaonuan Wang
- College of Environmental Science and Engineering, State Environmental Protection Engineering Centre for Pollution Treatment and Control in Textile Industry, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Liling Deng
- College of Environmental Science and Engineering, State Environmental Protection Engineering Centre for Pollution Treatment and Control in Textile Industry, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Xinyun Fan
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Zizhen Ding
- College of Environmental Science and Engineering, State Environmental Protection Engineering Centre for Pollution Treatment and Control in Textile Industry, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Ai Zhang
- College of Environmental Science and Engineering, State Environmental Protection Engineering Centre for Pollution Treatment and Control in Textile Industry, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Gang Xue
- College of Environmental Science and Engineering, State Environmental Protection Engineering Centre for Pollution Treatment and Control in Textile Industry, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Yanbiao Liu
- College of Environmental Science and Engineering, State Environmental Protection Engineering Centre for Pollution Treatment and Control in Textile Industry, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Weimin Xuan
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Xiang Li
- College of Environmental Science and Engineering, State Environmental Protection Engineering Centre for Pollution Treatment and Control in Textile Industry, Donghua University, 2999 North Renmin Road, Shanghai 201620, China.
| | - Jacek Makinia
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233 Gdansk, Poland
| |
Collapse
|
24
|
Ma ZP, Zhang L, Ma X, Zhang YH, Shi FN. Design of Z-scheme g-C 3N 4/BC/Bi 25FeO 40 photocatalyst with unique electron transfer channels for efficient degradation of tetracycline hydrochloride waste. CHEMOSPHERE 2022; 289:133262. [PMID: 34906528 DOI: 10.1016/j.chemosphere.2021.133262] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/28/2021] [Accepted: 12/10/2021] [Indexed: 05/27/2023]
Abstract
High electron transfer rates and a higher number of electron transfer active sites play important roles in inhibiting the recombination of photogenerated electron-hole pairs. In the experiments described in this article, the g-C3N4/BC/Bi25FeO40 composite material was prepared to use biochar (BC) as the conductive channel. The presence of BC significantly increases the electron transfer rate due to its excellent electrical conductivity and can provide more electron transfer active sites. At the same time, BC provides a larger surface area and has a loose porous structure, which lead to excellent adsorption performance. Based on various characterization results, it was confirmed that the Z-scheme heterojunction was successfully constructed between g-C3N4 and Bi25FeO40. The photocatalytic experiment results showed that the degradation efficiency of g-C3N4/BC/Bi25FeO40 on the tetracycline hydrochloride (TCH) could reach 92.2% within 60 min. Parameters such as circulation stability, pH value of the solution and the amount of composite materials were studied. The synthesized composite material has good reusability and high efficiency in a wide pH range of 3-11. Its excellent photocatalytic activity is attributed to the formation of an effective Z-scheme heterostructure, as well as the rapid photoelectron transfer and excellent adsorption capacity of BC. This work provides a way to design new photocatalysts using semiconductor composite materials and BC materials.
Collapse
Affiliation(s)
- Zhi-Peng Ma
- Key Laboratory of Polymer and Catalyst Synthesis Technology of Liaoning Province, School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang, 110870, China
| | - Linnan Zhang
- Key Laboratory of Polymer and Catalyst Synthesis Technology of Liaoning Province, School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang, 110870, China.
| | - Xue Ma
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Yu-Hang Zhang
- Key Laboratory of Polymer and Catalyst Synthesis Technology of Liaoning Province, School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang, 110870, China
| | - Fa-Nian Shi
- Key Laboratory of Polymer and Catalyst Synthesis Technology of Liaoning Province, School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang, 110870, China.
| |
Collapse
|
25
|
Dong J, Shen L, Shan S, Liu W, Qi Z, Liu C, Gao X. Optimizing magnetic functionalization conditions for efficient preparation of magnetic biochar and adsorption of Pb(II) from aqueous solution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151442. [PMID: 34742966 DOI: 10.1016/j.scitotenv.2021.151442] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/20/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Recoverable magnetic biochar has great potential for treating wastewater contaminants such as Pb(II). However, whether magnetic modification could enhance metal adsorption efficiency is currently contradictory in the literature mainly due to the differences in selecting various magnetic functionalization conditions. Considering this gap in knowledge, the effects of magnetic functionalization method (impregnation and precipitation), concentration of precursor iron solution (0.01-1 M), and pyrolysis temperature (300-700 °C) on the characteristics and Pb(II) adsorption capacity of biochar were systematically investigated in this paper. Results indicated that Fe3O4 was the main product for magnetic biochars synthesized using the impregnation (denoted as FWFe(3)) and precipitation methods (denoted as FWFe(2)). Magnetic functionalization resulted in remarkably increased pH and more negative zeta potential for FWFe(2) samples, whereas FWFe(3) samples showed the opposite trends. The adsorption of Pb(II) on different biochars fitted the pseudo-second order model and the Langmuir model. The maximum adsorption capacity was 817.64 mg/g for FWFe(2)1M700C (precipitation by 1 M of Fe(II)/Fe(III), pyrolysis at 700 °C), outperforming FWFe(3) and pristine biochar samples by around 5-13 times. Mechanism study indicated that the adsorption mainly involved electrostatic attraction, ion exchange, co-precipitation, and complexation. Pb(II) adsorption capacity was strongly dependent on the alkali pH of biochar. However, this efficiency was less affected by biochar surface area and its morphology. The higher pH of FWFe(2) samples not only led to an increased surface charge for stronger electrostatic attraction and ion exchange but also favored the formation of co-precipitates. By contrast, FWFe(3) samples showed a decreased adsorption capacity for Pb(II) with increased concentration of embedded iron. Overall, magnetic biochar, prepared using precipitation followed by high-temperature pyrolysis (such as, FWFe(2)1M700C), can be a promising adsorbent for Pb(II) adsorption from wastewater.
Collapse
Affiliation(s)
- Jun Dong
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, 310027 Hangzhou, China; Zhejiang Energy R&D Institute Co., Ltd., 311121 Hangzhou, China; Key Laboratory of Energy Conservation & Pollutant Control Technology for Thermal Power of Zhejiang Province, 311121 Hangzhou, China.
| | - Lingfang Shen
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, 310023 Hangzhou, China
| | - Shengdao Shan
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, 310023 Hangzhou, China
| | - Wanpeng Liu
- Power China Huadong Engineering Co., Ltd., 311122 Hangzhou, China
| | - Zhifu Qi
- Zhejiang Energy R&D Institute Co., Ltd., 311121 Hangzhou, China; Key Laboratory of Energy Conservation & Pollutant Control Technology for Thermal Power of Zhejiang Province, 311121 Hangzhou, China
| | - Chunhong Liu
- Zhejiang Energy R&D Institute Co., Ltd., 311121 Hangzhou, China; Key Laboratory of Energy Conservation & Pollutant Control Technology for Thermal Power of Zhejiang Province, 311121 Hangzhou, China
| | - Xiang Gao
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, 310027 Hangzhou, China
| |
Collapse
|
26
|
Han B, Weatherley AJ, Mumford K, Bolan N, He JZ, Stevens GW, Chen D. Modification of naturally abundant resources for remediation of potentially toxic elements: A review. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126755. [PMID: 34364213 DOI: 10.1016/j.jhazmat.2021.126755] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/14/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
Water and soil contamination due to potentially toxic elements (PTEs) represents a critical threat to the global ecosystem and human health. Naturally abundant resources have significant advantages as adsorbent materials for environmental remediation over manufactured materials such as nanostructured materials and activated carbons. These advantages include cost-effectiveness, eco-friendliness, sustainability, and nontoxicity. In this review, we firstly compare the characteristics of representative adsorbent materials including bentonite, zeolite, biochar, biomass, and effective modification methods that are frequently used to enhance their adsorption capacity and kinetics. Following this, the adsorption pathways and sites are outlined at an atomic level, and an in-depth understanding of the structure-property relationships are provided based on surface functional groups. Finally, the challenges and perspectives of some emerging naturally abundant resources such as lignite are examined. Although both unamended and modified naturally abundant resources face challenges associated with their adsorption performance, cost performance, energy consumption, and secondary pollution, these can be tackled by using advanced techniques such as tailored modification, formulated mixing and reorganization of these materials. Recent studies on adsorbent materials provide a strong foundation for the remediation of PTEs in soil and water. We speculate that the pursuit of effective modification strategies will generate remediation processes of PTEs better suited to a wider variety of practical application conditions.
Collapse
Affiliation(s)
- Bing Han
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; College of Chemistry and Environmental Science, Hebei University, Baoding 071002, PR China; Institute of Life Science and Green Development, Hebei University, Baoding 071002, PR China.
| | - Anthony J Weatherley
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Kathryn Mumford
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Nanthi Bolan
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia; Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Ji-Zheng He
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Geoffrey W Stevens
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Deli Chen
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
27
|
Lakshmi D, Akhil D, Kartik A, Gopinath KP, Arun J, Bhatnagar A, Rinklebe J, Kim W, Muthusamy G. Artificial intelligence (AI) applications in adsorption of heavy metals using modified biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149623. [PMID: 34425447 DOI: 10.1016/j.scitotenv.2021.149623] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/29/2021] [Accepted: 08/09/2021] [Indexed: 05/22/2023]
Abstract
The process of removal of heavy metals is important due to their toxic effects on living organisms and undesirable anthropogenic effects. Conventional methods possess many irreconcilable disadvantages pertaining to cost and efficiency. As a result, the usage of biochar, which is produced as a by-product of biomass pyrolysis, has gained sizable traction in recent times for the removal of heavy metals. This review elucidates some widely recognized harmful heavy metals and their removal using biochar. It also highlights and compares the variety of feedstock available for preparation of biochar, pyrolysis variables involved and efficiency of biochar. Various adsorption kinetics and isotherms are also discussed along with the process of desorption to recycle biochar for reuse as adsorbent. Furthermore, this review elucidates the advancements in remediation of heavy metals using biochar by emphasizing the importance and advantages in the usage of machine learning (ML) and artificial intelligence (AI) for the optimization of adsorption variables and biochar feedstock properties. The usage of AI and ML is cost and time-effective and allows an interdisciplinary approach to remove heavy metals by biochar.
Collapse
Affiliation(s)
- Divya Lakshmi
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110 Chennai, Tamil Nadu, India
| | - Dilipkumar Akhil
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110 Chennai, Tamil Nadu, India
| | - Ashokkumar Kartik
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110 Chennai, Tamil Nadu, India
| | - Kannappan Panchamoorthy Gopinath
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110 Chennai, Tamil Nadu, India
| | - Jayaseelan Arun
- Centre for Waste Management, International Research Centre, Sathyabama Institute of Science and Technology, Jeppiaar Nagar (OMR), Chennai 600119, Tamil Nadu, India
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130 Mikkeli, Finland
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, 98 Gunja-Dong, Guangjin-Gu, Seoul, Republic of Korea
| | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Govarthanan Muthusamy
- Department of Environmental Engineering, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
28
|
Liu H, Kumar V, Yadav V, Guo S, Sarsaiya S, Binod P, Sindhu R, Xu P, Zhang Z, Pandey A, Kumar Awasthi M. Bioengineered biochar as smart candidate for resource recovery toward circular bio-economy: a review. Bioengineered 2021; 12:10269-10301. [PMID: 34709979 PMCID: PMC8809956 DOI: 10.1080/21655979.2021.1993536] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/02/2021] [Accepted: 10/09/2021] [Indexed: 12/25/2022] Open
Abstract
Biochar's ability to mediate and facilitate microbial contamination degradation, as well as its carbon-sequestration potential, has sparked interest in recent years. The scope, possible advantages (economic and environmental), and future views are all evaluated in this review. We go over the many designed processes that are taking place and show why it is critical to look into biochar production for resource recovery and the role of bioengineered biochar in waste recycling. We concentrate on current breakthroughs in the fields of engineered biochar application techniques to systematically and sustainable technology. As a result, this paper describes the use of biomass for biochar production using various methods, as well as its use as an effective inclusion material to increase performance. The impact of biochar amendments on microbial colonisation, direct interspecies electron transfer, organic load minimization, and buffering maintenance is explored in detail. The majority of organic and inorganic (heavy metals) contaminants in the environment today are caused by human activities, such as mining and the use of chemical fertilizers and pesticides, which can be treated sustainably by using engineered biochar to promote the establishment of a sustainable engineered process by inducing the circular bioeconomy.
Collapse
Affiliation(s)
- Hong Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, PR China
| | - Vinay Kumar
- Department of Biotechnology, Indian Institute of Technology(IIT) Roorkee, Roorkee, India
| | - Vivek Yadav
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, YanglingChina
| | - Shasha Guo
- Institute of Tea Science, Zhejiang University, Hangzhou, China
| | - Surendra Sarsaiya
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, India
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, India
| | - Ping Xu
- Institute of Tea Science, Zhejiang University, Hangzhou, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, PR China
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, PR China
| |
Collapse
|
29
|
Sui L, Tang C, Du Q, Zhao Y, Cheng K, Yang F. Preparation and characterization of boron-doped corn straw biochar: Fe (Ⅱ) removal equilibrium and kinetics. J Environ Sci (China) 2021; 106:116-123. [PMID: 34210427 DOI: 10.1016/j.jes.2021.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/29/2020] [Accepted: 01/03/2021] [Indexed: 06/13/2023]
Abstract
Nowadays, iron ions as a ubiquitous heavy metal pollutant are gradually concerned and the convenient and quick removal of excessive iron ions in groundwater has become a major challenge for the safety of drinking water. In this study, boron-doped biochar (B-BC) was successfully prepared at various preparation conditions with the addition of boric acid. The as-prepared material has a more developed pore structure and a larger specific surface area (up to 897.97 m²/g). A series of characterization results shows that boric acid effectively activates biochar, and boron atoms are successfully doped on biochar. Compared with the ratio of raw materials, the pyrolysis temperature has a greater influence on the amount of boron doping. Based on Langmuir model, the maximum adsorption capacity of 800B-BC1:2 at 25 °C, 40 °C, 55 °C are 50.02 mg/g, 95.09 mg/g, 132.78 mg/g, respectively. Pseudo-second-order kinetic model can better describe the adsorption process, the adsorption process is mainly chemical adsorption. Chemical complexation, ions exchange, and co-precipitation may be the main mechanisms for Fe2+ removal.
Collapse
Affiliation(s)
- Long Sui
- Joint laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China; School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Chunyu Tang
- Joint laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China; School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Qing Du
- Joint laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China; School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Ying Zhao
- Joint laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China; School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Kui Cheng
- Joint laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China; College of Engineering, Northeast Agricultural University, Harbin 150030, China.
| | - Fan Yang
- Joint laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China; School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
30
|
Zhao Y, Li Y, Fan D, Song J, Yang F. Application of kernel extreme learning machine and Kriging model in prediction of heavy metals removal by biochar. BIORESOURCE TECHNOLOGY 2021; 329:124876. [PMID: 33640697 DOI: 10.1016/j.biortech.2021.124876] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
Kernel extreme learning machine (KELM) and Kriging models are proposed to predict biochar adsorption efficiency of heavy metals. Both six popular ions (Pb2+, Cd2+, Zn2+, Cu2+, Ni2+, As3+) and single ion are considered to test the accuracy of KELM and Kriging models. Two ways (data selection and fix output value) are attempted to improve the model fitting accuracy and the best R2 can reach 0.919 (KELM) and 0.980 (Kriging). In addition, stepwise regression and local sensitivity analysis show that adsorption efficiency has strong relationship with pHsolute and T. Moreover, the most sensitive parameters are T, pHH2O, r, C and pHsolute. The accurate KELM and Kriging models identify the most important controlling factors on metal adsorption, and ultimately provide some sort of predictive framework that will be useful in selecting appropriate biochar for particular treatment scenarios. This, in turn, will reduce the number of metal-biochar adsorption experiments needed going forward.
Collapse
Affiliation(s)
- Ying Zhao
- Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China; School of Water Conservancy & Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Yuelei Li
- Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China; School of Water Conservancy & Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Da Fan
- Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China; School of Water Conservancy & Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Jingpeng Song
- Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China; School of Water Conservancy & Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Fan Yang
- Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China; School of Water Conservancy & Civil Engineering, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
31
|
Din SU, Awan JM, Imran M, Zain-Ul-Abdin, Haq S, Hafeez M, Hussain S, Khan MS. Novel nanocomposite of biochar-zerovalent copper for lead adsorption. Microsc Res Tech 2021; 84:2598-2606. [PMID: 34057266 DOI: 10.1002/jemt.23810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 12/25/2022]
Abstract
In this study, a composite of zerovalent copper-biochar was investigated for its ability to remove lead from water. The prepared material was characterized by using scanning electron microscopy (SEM), fourier transform infrared spectroscopy (FTIR), X-ray diffractomter (XRD), and X-ray photoelectron spectroscopy (XPS). The pH effect on adsorption of lead was investigated within the range of 2-8 and the effect of temperature was studied at 303, 308, 313, and 318 K. The kinetics of lead adsorption on biochar composite was evaluated and the equilibrium time of 12 hr was established. To further evaluate the nature of adsorption, Langmuir model was tested and the adsorption capacities were evaluated for lead adsorption on the surface of copper biochar composite. The activation energy, entropy, and enthalpy values indicated the adsorption phenomenon to be chemisorptive and spontaneous in nature. Comparison of adsorption capacities with the reported adsorbents in the literature concluded zerovalent copper-biochar composite to be an efficient adsorbent for the removal of lead in the experimental conditions under study. RESEARCH HIGHLIGHTS: Highly efficient composite of zerovalent copper with biochar was synthesized for lead adsorption. XPS and XRD shows the presence of zerovalent copper in the biochar composite. pH and temperature were the main governing factors in the adsorption process. Adsorption capacity for lead is higher than many of the reported adsorbents.
Collapse
Affiliation(s)
- Salah Ud Din
- Department of Chemistry, University of Azad Jammu and Kashmir, Muzaffarabad, Azad Kashmir, Pakistan
| | - Junaid Murtaza Awan
- Department of Chemistry, University of Azad Jammu and Kashmir, Muzaffarabad, Azad Kashmir, Pakistan
| | - Muhammad Imran
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Zain-Ul-Abdin
- Department of Chemistry, University of Azad Jammu and Kashmir, Muzaffarabad, Azad Kashmir, Pakistan
| | - Sirajul Haq
- Department of Chemistry, University of Azad Jammu and Kashmir, Muzaffarabad, Azad Kashmir, Pakistan
| | - Muhammad Hafeez
- Department of Chemistry, University of Azad Jammu and Kashmir, Muzaffarabad, Azad Kashmir, Pakistan
| | - Sajjad Hussain
- School of Chemistry, Faculty of Basic sciences and Mathematics, Minhaj University, Lahore, Pakistan, Lahore, Pakistan
| | - Muhammad Sarfraz Khan
- Department of Chemistry, University of Azad Jammu and Kashmir, Muzaffarabad, Azad Kashmir, Pakistan
| |
Collapse
|
32
|
Liu T, Chen Z, Li Z, Fu H, Chen G, Feng T, Chen Z. Preparation of magnetic hydrochar derived from iron-rich Phytolacca acinosa Roxb. for Cd removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:145159. [PMID: 33482558 DOI: 10.1016/j.scitotenv.2021.145159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 05/28/2023]
Abstract
Considering that hyperaccumulators can accumulate high concentrations of iron salt, they can successfully obtain magnetic hydrochar from iron-rich hyperaccumulators. In this study, iron-rich biomass was obtained by irrigating Phytolacca acinosa Roxb. using iron salt. Magnetic nano-Fe3O4 hydrochar was prepared from iron-rich Phytolacca acinosa Roxb. via hydrothermal carbonization to remove Cd. The characterization results showed that the synthesized magnetic nanoparticles had an average size of 2.62 ± 0.56 nm and N elements were doped into magnetic nano-Fe3O4 hydrochar with abundant oxygenic groups. Cd adsorption on magnetic nano-Fe3O4 hydrochar was better fitted using the Langmuir isotherm and the pseudo-second-order kinetic model. The maximum adsorption capacity was 246.6 mg g-1 of Cd. The research confirmed that Cd adsorption was controlled by multiple mechanisms from the jar test, transmission electron microscopy mapping, scanning electron microscopy-energy dispersive X-ray spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. CdCO3 crystals can be formed after adsorption, indicating that surface precipitation played an important role in Cd adsorption. The abundance of O atoms and the doping of N atoms on the hydrochar surface were conducive to Cd adsorption, indicating that the mechanisms were related to surface complexation and electrostatic attraction. In addition, the significant decrease in Na+ content after Cd adsorption illustrated that ion exchange had a non-negligible effect on Cd adsorption. This study not only provides a strategy for preparing magnetic nano-Fe3O4 hydrochar derived from iron-rich plants but also verifies multiple Cd adsorption mechanisms using magnetic nano-Fe3O4 hydrochar.
Collapse
Affiliation(s)
- Tao Liu
- Hunan Province Key Laboratory of Coal Resources Clean Utilization and Mine Environment Protection, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China; School of Resource Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Zhenshan Chen
- Hunan Province Key Laboratory of Coal Resources Clean Utilization and Mine Environment Protection, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China; School of Resource Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Zhixian Li
- Hunan Province Key Laboratory of Coal Resources Clean Utilization and Mine Environment Protection, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China; School of Resource Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Hao Fu
- School of Resource Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Guoliang Chen
- Hunan Province Key Laboratory of Coal Resources Clean Utilization and Mine Environment Protection, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China; School of Resource Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Tao Feng
- Hunan Province Key Laboratory of Coal Resources Clean Utilization and Mine Environment Protection, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China; School of Resource Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Zhang Chen
- Hunan Province Key Laboratory of Coal Resources Clean Utilization and Mine Environment Protection, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China; School of Resource Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China.
| |
Collapse
|
33
|
Yang F, Sui L, Tang C, Li J, Cheng K, Xue Q. Sustainable advances on phosphorus utilization in soil via addition of biochar and humic substances. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:145106. [PMID: 33736348 DOI: 10.1016/j.scitotenv.2021.145106] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
The intervention of human in phosphorus pool seems to be a vicious circle. The rapid population growth leads to the global food shortage, which leads to the massive use of phosphate fertilizer and the continuous exploitation of phosphate rocks. With the massive loss and fixation of phosphate fertilizer in the soil, the unavailable phosphorus in the soil becomes superfluous, while the phosphate mineral resources turn to scarce. Interestingly, exogenous carbonaceous materials, notably, biochar and humic substances, have been widely used as soil conditioners in agricultural production up to date, among other actions to interfere with the balance between the different phosphate species, which offer effective roles for increasing soil available phosphorus. This article reviews the regulation mechanisms of biochar and humic substances on phosphorus availability and circulation, including improving soil physicochemical characteristics, regulating microbial community structure, and directly interacting with phosphorus to affect the fate of phosphorus in soil. Finally, the prospects for future research directions are made, and it is hoped that the review of this article can arouse people's attention to the current plight of agricultural production and provide some methods for improving the efficiency of phosphate fertilizer use in the future.
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China; Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China; School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China.
| | - Long Sui
- Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China; School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Chunyu Tang
- Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China; School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Jiangshan Li
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Kui Cheng
- Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China; College of Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Qiang Xue
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China.
| |
Collapse
|
34
|
Yang F, Du Q, Sui L, Cheng K. One-step fabrication of artificial humic acid-functionalized colloid-like magnetic biochar for rapid heavy metal removal. BIORESOURCE TECHNOLOGY 2021; 328:124825. [PMID: 33609885 DOI: 10.1016/j.biortech.2021.124825] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/31/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
A novel functional colloid-like magnetic biochar (Col-L-MBC) with high dispersibility is prepared by the one-step method with the prepared porous biochar as the skeleton. Notably, A-HA obtained from waste biomass through hydrothermal humification (HTH) technology has rich functional groups (i.e., phenolic-OH, -COOH, etc.), which is conducive to the uniform dispersion of magnetic nanoparticles on the porous biochar skeleton, providing rich active sites for heavy metal ion removal. Interestingly, the introduction of A-HA can also lead to the formation of new iron species. Besides, A-HA coated on the surface of the magnetic substance also improves the dispersion of the magnetic biochar (Col-L-MBC) in the solution, forming a colloid-like magnetic biochar adsorbent, bringing superior removal performance for Cd2+ (maximum removal capacity up to 169.68 mg/g). Various removal mechanisms, including Cd-π interaction, complexation, ion exchange, and precipitation are introduced, making a great contribution to rapid removal performance.
Collapse
Affiliation(s)
- Fan Yang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China.
| | - Qing Du
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China
| | - Long Sui
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China
| | - Kui Cheng
- Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China; College of Engineering, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
35
|
Feng Z, Yuan R, Wang F, Chen Z, Zhou B, Chen H. Preparation of magnetic biochar and its application in catalytic degradation of organic pollutants: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:142673. [PMID: 33071122 DOI: 10.1016/j.scitotenv.2020.142673] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 05/12/2023]
Abstract
In recent years, magnetic biochar (MBC) has been greatly concerned because of its magnetic separation characteristics, and has been successfully used as a catalyst in the catalytic degradation of organic pollutants. However, there is currently a lack of a more systematic summary of MBC preparation methods, and no detailed overview of the catalytic mechanism of MBC catalysts for the degradation of organic pollutants. Therefore, we carry out this work to fill the above gaps. At first, we summarize the raw materials, preparation methods, and types of MBC in detail, and emphasize the MBC prepared by iron-containing sludge. Then, the catalytic mechanisms of MBC in peroxydisulfate, peroxymonosulfate, Fenton-like, photocatalysis, and NaBH4 systems are carefully summarized, highlighting the contribution of various parts of MBC in catalysis. The degradation efficiency of organic pollutants in the above systems is evaluated. Finally, the stability and reusability of MBC catalysts are evaluated. In conclusion, this review contributes a meager force to the future development of MBC.
Collapse
Affiliation(s)
- Zhuqing Feng
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Rongfang Yuan
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Fei Wang
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhongbing Chen
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic
| | - Beihai Zhou
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Huilun Chen
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
36
|
Zhao Y, Li Y, Yang F. Critical review on soil phosphorus migration and transformation under freezing-thawing cycles and typical regulatory measurements. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:141614. [PMID: 32889455 DOI: 10.1016/j.scitotenv.2020.141614] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/25/2020] [Accepted: 08/08/2020] [Indexed: 06/11/2023]
Abstract
Freezing-thawing period plays an important role in the soil nutrient cycling. The frequency of freezing-thawing cycles (FTCs) can directly affect the supply of effective soil nutrients, further influences the growth and development of crops. Phosphorus is one of the essential nutrients for crop growth, and almost no compounds in gas form in nature, which is non-renewable resources. In modern agricultural production, phosphorus required by plants is mainly from the soil, but the utilization rate of phosphorus fertilizer in soil is generally only 10%-25%. Therefore, it is of great significance to study phosphorus migration and transformation behavior of soil in the non-growth period and related interfacial processes for improving the utilization efficiency of phosphorus fertilizer, increasing crop yield, reducing excessive application of phosphorus fertilizer, and subsiding environmental pollution. This paper systematically concludes key interfacial process of soil phosphorus in freezing-thawing soil system and relative mechanisms describing migration and transformation behavior of soil phosphorus. Besides, it summarizes the mediating effects of widely used soil conditioner on phosphorus cycling. The results show that freezing- thawing will destroy the structure of the soil, causing phosphorus to migrate along with runoff, soil water and heat movement. It also affects the types of microorganisms, the activity of microbial communities and the oxidation-reduction reaction of related minerals, making the phosphorus in soil from an unstable form to an active form. Biochar and humic substances can improve the physical and chemical properties of the soil, and have favorable effects on soil during freezing-thawing period. This review has important significance for the rational utilization of existing phosphorus resources, the maintenance of soil phosphorus cycle balance and the sustainable development of agriculture, meanwhile, has guiding significance for the reasonable utilization of agricultural wastes.
Collapse
Affiliation(s)
- Ying Zhao
- Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China; School of Water Conservancy & Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Yuelei Li
- Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China; School of Water Conservancy & Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Fan Yang
- Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China; School of Water Conservancy & Civil Engineering, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
37
|
Zhou C, Zhou H, Huang B, Yao G, Lai B. Recent advances in the preparation, application and end-of-life treatment of magnetic waste-derived catalysts for the pollutant oxidation degradation in water. CHEMOSPHERE 2021; 263:128197. [PMID: 33297162 DOI: 10.1016/j.chemosphere.2020.128197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 06/12/2023]
Affiliation(s)
- Chenying Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Hongyu Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Bingkun Huang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Gang Yao
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu, 610065, China; Institute of Environmental Engineering, RWTH Aachen University, Germany
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
38
|
Manikandan S, Karmegam N, Subbaiya R, Karthiga Devi G, Arulvel R, Ravindran B, Kumar Awasthi M. Emerging nano-structured innovative materials as adsorbents in wastewater treatment. BIORESOURCE TECHNOLOGY 2021; 320:124394. [PMID: 33220545 DOI: 10.1016/j.biortech.2020.124394] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/31/2020] [Accepted: 11/05/2020] [Indexed: 06/11/2023]
Abstract
Water supply around the globe is struggling to meet the rapidly increasing demand by the population, drastic changes in climate and degrading water quality. Even though, many large-scale methods are employed for wastewater treatment they display several negative impacts owing to the presence of pollutants. Technological innovation is required for integrated water management with different groups of nanomaterials for the removal of toxic metal ions, microbial disease, organic and inorganic solutes. The method of manipulating atoms on a nanoscale is nanotechnology. Nanomembranes are used in nanotechnology to soften water and eliminate physical, chemical and biological pollutants. The present review concentrates on various nanotechnological approaches in wastewater remedy, mechanisms involved to promote implementation, benefits and limitations in comparison with current processes, properties, barriers and commercialization research needs. Also the review identifies opportunities for further exploiting the exclusive features for green water management by following the advances in nanotechnology.
Collapse
Affiliation(s)
- Sivasubramanian Manikandan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai 602 105, Tamil Nadu, India
| | - Natchimuthu Karmegam
- Department of Botany, Government Arts College (Autonomous), Salem 636 007, Tamil Nadu, India
| | - Ramasamy Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P O Box 21692, Kitwe, Zambia
| | - Guruviah Karthiga Devi
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai 602 105, Tamil Nadu, India
| | - Ramaswamy Arulvel
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai 602 105, Tamil Nadu, India
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong - Gu, Suwon 16227, South Korea
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road 3#, Yangling, Shaanxi 712100, China.
| |
Collapse
|
39
|
Li S, Yang F, Li J, Cheng K. Porous biochar-nanoscale zero-valent iron composites: Synthesis, characterization and application for lead ion removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 746:141037. [PMID: 32745850 DOI: 10.1016/j.scitotenv.2020.141037] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Nano-zero-valent iron has been used in combination with a variety of support carriers to remove heavy metals in solution. However, pre-treatment of the carrier can reflect a better synergistic effect and thus achieve high heavy metal removal capabilities. In this study, the hydrophilic biochar obtained by an acid ammonium persulfate oxidation has an adsorption capacity of up to 135.4 mg g-1 for Pb2+ (25 °C, pH = 6 with adsorbent amount of 10 mg and Pb2+ concentration of 50 mg L-1). Due to the strong Fe-C-O covalent bond, nZVI increases the binding force with the carbon matrix. Benefitting from the high specific surface area, porous structure and rich oxygen-containing functional groups, the resultant nZVI-HPB samples are favourable for Pb2+ diffusion and adsorption, exhibiting maximum adsorption capacity of 480.9 mg g-1 (pH = 6, 25 °C with adsorbent amount of 10 mg and Pb2+ concentration of 200 mg L-1). The multiple interaction mechanisms in the Pb2+ removal process such as the reduction reaction, complexation and co-precipitation proceed simultaneously are concluded by the analyses of Fourier-Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) spectra.
Collapse
Affiliation(s)
- Shuaishuai Li
- College of Engineering, Northeast Agricultural University, Harbin 150030, China; College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Fan Yang
- College of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China.
| | - Jiangshan Li
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Kui Cheng
- College of Engineering, Northeast Agricultural University, Harbin 150030, China; College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China.
| |
Collapse
|
40
|
Wu J, Lin J, Zhan Y. Interception of phosphorus release from sediments using Mg/Fe-based layered double hydroxide (MF-LDH) and MF-LDH coated magnetite as geo-engineering tools. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:139749. [PMID: 32535461 DOI: 10.1016/j.scitotenv.2020.139749] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
A magnesium/iron-based layered double hydroxide (MF-LDH) and a composite of MF-LDH and magnetite (MF-LDH@Fe3O4) were synthesized, characterized and used as solid-phase phosphorus (P)-sorbents (SPPSs) to control the release of sedimentary P. The behavior and mechanism of phosphate adsorption onto MF-LDH and MF-LDH@Fe3O4 were studied. The effect of MF-LDH capping and amendment on the migration of P in sediments were comparatively investigated, and the impact of fabric-wrapped and unwrapped MF-LDH@Fe3O4 capping on P mobilization in sediments were also comparatively investigated. Results showed that both MF-LDH and MF-LDH@Fe3O4 had good phosphate adsorption performance, and the adsorption mechanisms included cation exchange, electrostatic attraction, ligand exchange and inner-sphere complex formation. Sediment capping and amendment using MF-LDH both could dramatically reduce the risk of the release of soluble reactive P (SRP) and diffusive gradient in thin-films-labile P (P-DGT) from sediments into overlying waters (OLY-Ws), and the MF-LDH capping had a better suppressing efficiency of sediment-P release into OLY-W than the MF-LDH amendment. Sediment capping with the fabric-wrapped and unwrapped MF-LDH@Fe3O4 both greatly decreased the risk of SRP and P-DGT released from sediment into OLY-W, and the efficiency of the prevention of SRP released from sediment into OLY-W by the fabric-wrapped MF-LDH@Fe3O4 capping layer (about 81-90%) was slightly lower than that by the unwrapped MF-LDH@Fe3O4 capping layer (about 94-99%). The reduction of P-DGT in the top sediment and the direct interception of the soluble P from pore water (POR-W) to OLY-W by the MF-LDH@Fe3O4 capping layer were the keys to the management of P released from sediment by the MF-LDH@Fe3O4 capping. From the standpoint of the efficiency of sedimentary P suppression, the convenience of application and the sustainability of sediment remediation, sediment capping with the fabric-wrapped MF-LDH@Fe3O4 is a promising approach to manage the release of sedimentary P into OLY-W.
Collapse
Affiliation(s)
- Junlin Wu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Jianwei Lin
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China.
| | - Yanhui Zhan
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
41
|
Liu S, Feng H, Tang L, Dong H, Wang J, Yu J, Feng C, Liu Y, Luo T, Ni T. Removal of Sb(III) by sulfidated nanoscale zerovalent iron: The mechanism and impact of environmental conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 736:139629. [PMID: 32474279 DOI: 10.1016/j.scitotenv.2020.139629] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/15/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
Pollution of Sb(III) in water has caused great concern in recent years. Nanoscale zero-valent iron (nZVI) can detoxify Sb(III) polluted water, but the rapid passivation and low adsorption capacity limit its practical application. Hence, this study provides a new and efficient nanotechnology to remove Sb(III) using the sulfidated nanoscale zero-valent iron (S-nZVI). The S-nZVI exhibits higher Sb(III)-removal efficiency than pristine nZVI under both aerobic and anoxic conditions. The adsorption capacity of Sb(III) by optimized S-nZVI (465.1 mg/g) is 6 times as high as that of the pristine nZVI (83.3 mg/g) under aerobic conditions. The results indicate that Sb(III) and Sb(V) can be immobilized on the surface of S-nZVI by forming Fe-S-Sb precipitates. Moreover, characterization results demonstrate that the existence of S2- can not only activate H2O2 to produce hydroxyl radical, but also accelerate the cycle of Fe3+/Fe2+ to improve the efficiency of Fenton reaction. Therefore, S-nZVI can produce more hydroxyl radicals to oxidize Sb (III) to Sb (V) and results in 2.3-fold higher oxidation rate of Sb(III) compared to pristine nZVI. The formed FeS layer on the S-nZVI surface can also improve the release ability of Fe2+ and accelerate the formation of nZVI corrosion products. S-nZVI thus holds great potential to be applied in antimony removal.
Collapse
Affiliation(s)
- Sishi Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Haopeng Feng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China.
| | - Haoran Dong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Jiajia Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Jiangfang Yu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Chengyang Feng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Yani Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Ting Luo
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Ting Ni
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| |
Collapse
|
42
|
Wang H, Cai J, Liao Z, Jawad A, Ifthikar J, Chen Z, Chen Z. Black liquor as biomass feedstock to prepare zero-valent iron embedded biochar with red mud for Cr(VI) removal: Mechanisms insights and engineering practicality. BIORESOURCE TECHNOLOGY 2020; 311:123553. [PMID: 32454422 DOI: 10.1016/j.biortech.2020.123553] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/12/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
Black liquor (BL) is an agro-industrial residue with high number of lignocellulosic components which could be recognized as a biomass feedstock. In this work, BL coupled with red mud (RM), were applied to prepare cost-effective zero-valent iron (ZVI) embedded in biochar. The oligomers in BL acted as reductants for RM to generate ZVI, while the organic components could be converted into biochar during pyrolysis. The RM/BL demonstrated excellent performance in the removal of Cr(VI) (349.5 mg/g), as the mechanisms were reduction and adsorption. The fixed-bed column study was conducted and 1.7 L simulated wastewater could be treated by 1.0 g RM/BL. After reaction, 95.5% ± 0.8% and 82.5%±3.2% Cr-loaded adsorbents could be recovered by an external magnet for batch and fixed-bed experiments, respectively. All these results shed light on valorizing these two widespread agro-industrial byproducts, and bridged the knowledge gap between magnetic bio-adsorbent preparation and its industrial practicality on wastewater purification.
Collapse
Affiliation(s)
- Huabin Wang
- Department of Environmental Engineering, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Jiayi Cai
- Department of Environmental Engineering, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China; Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Zhuwei Liao
- Urban Construction Engineering Division, Wenhua College, Wuhan 430074, PR China
| | - Ali Jawad
- Department of Environmental Engineering, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China; Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Jerosha Ifthikar
- Department of Environmental Engineering, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China; Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Zhulei Chen
- Department of Environmental Engineering, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Zhuqi Chen
- Department of Environmental Engineering, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China; Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
43
|
Cui Q, Xu J, Wang W, Tan L, Cui Y, Wang T, Li G, She D, Zheng J. Phosphorus recovery by core-shell γ-Al 2O 3/Fe 3O 4 biochar composite from aqueous phosphate solutions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 729:138892. [PMID: 32360908 DOI: 10.1016/j.scitotenv.2020.138892] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/12/2020] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
Biochar can act as an adsorbent for phosphate removal from water sources, which can be highly beneficial in limiting eutrophication and recycling elemental phosphorus (P). However, it is difficult to use a single biochar material to overcome problems such as low adsorption efficiency, difficulty in reuse, and secondary pollution. This study addresses these challenges using a novel core-shell structure γ-Al2O3/Fe3O4 biochar adsorbent (AFBC) with significant P uptake capabilities in terms of its high adsorption capacity (205.7 mg g-1), magnetic properties (saturation magnetization 24.70 emu g-1), and high reuse stability (91.0% removal efficiency after five adsorption-desorption cycles). The highest partition coefficient 1.04 mg g-1 μM-1, was obtained at a concentration of 322.89 μM. Furthermore, AFBC exhibited strong regeneration ability in multiple cycle trials, making it extremely viable for sustainable resource management. P removal mechanisms, i.e., electrostatic attraction and inner-sphere complexation, were explained using Fourier transform infrared (FT-IR) spectra and X-ray photoelectron spectroscopy (XPS) measurements. A surface complexation model was established by considering the formation of monodentate mononuclear and bidentate binuclear surface complexes of P to illustrate the adsorption process. Owing to its high adsorption efficiency, easy separation from water, and environmental friendliness, AFBC is a potential adsorbent for P recovery from polluted waters.
Collapse
Affiliation(s)
- Qingliang Cui
- State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Northwest A&F University, Yangling 712100, PR China; State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jinling Xu
- College of Geography and Environment, Shandong Normal University, Jinan, Shandong 250014, PR China
| | - Wei Wang
- Ningxia Agricultural Development Center, Yinchuan, Ningxia 750000, PR China
| | - Lianshuai Tan
- State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Northwest A&F University, Yangling 712100, PR China
| | - Yongxing Cui
- State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Tongtong Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Northwest A&F University, Yangling 712100, PR China
| | - Gaoliang Li
- State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Diao She
- State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Northwest A&F University, Yangling 712100, PR China; State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China
| | - Jiyong Zheng
- State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Northwest A&F University, Yangling 712100, PR China; State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China.
| |
Collapse
|
44
|
Zhang S, Song J, Du Q, Cheng K, Yang F. Analog synthesis of artificial humic substances for efficient removal of mercury. CHEMOSPHERE 2020; 250:126606. [PMID: 32234628 DOI: 10.1016/j.chemosphere.2020.126606] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/19/2020] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
A cost-effective artificial humic substances (humic acid-modified biochar, HA-BCs) is fabricated by using conventional hydrothermal-assisted pyrolysis technique, and then is considered as a promising adsorbent material for removing mercury ions from aqueous solution. Artificial humic acid (A-HA), humic acid-modified biochar (HA-BCs) are analyzed by using SEM, EA, XRD, FTIR, XPS, and BET techniques. The removal efficiency of mercury ions was greater than 95% after reaching the adsorption equilibrium. Meanwhile, the adsorption kinetics coincided with the pseudo-second-order model and the isotherms for mercury ion sorption can be best interpreted using Freundlich isotherm model, with high regression coefficients (R2 = 0.967-0.990). Furthermore, the surface properties of HA-BCs before and after mercury adsorption are compared and evaluated, realizing that the mechanisms of removal of mercury ions on HA-BCs mainly include surface complexation with oxygen/nitrogen functional groups (-OH, -COOH and -NH2) and formation of precipitation with CO32- and OH-. Furthermore, the used HA-BCs can be regenerated via 0.05 mol/L KI solution and the adsorption capacity of mercury still reaches at 32.57 mg/g after four cyclic utilization.
Collapse
Affiliation(s)
- Shuaishuai Zhang
- Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin, 150030, China
| | - Jingpeng Song
- Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin, 150030, China; School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China
| | - Qing Du
- Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin, 150030, China; School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China
| | - Kui Cheng
- College of Engineering, Northeast Agricultural University, Harbin, 150030, China
| | - Fan Yang
- Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin, 150030, China; School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
45
|
Li Y, Zimmerman AR, He F, Chen J, Han L, Chen H, Hu X, Gao B. Solvent-free synthesis of magnetic biochar and activated carbon through ball-mill extrusion with Fe 3O 4 nanoparticles for enhancing adsorption of methylene blue. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 722:137972. [PMID: 32208286 DOI: 10.1016/j.scitotenv.2020.137972] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/13/2020] [Accepted: 03/14/2020] [Indexed: 05/22/2023]
Abstract
Magnetic carbonaceous adsorbents were synthesized by ball-milling biochar (BC) or activated carbon (AC) with Fe3O4 nanoparticles, and their capacities to sorb methylene blue (MB) from water were evaluated and compared. Ball milling with magnetite not only improved the surface properties of the carbonaceous adsorbents, especially BC, but also introduced magnetic properties through mechanical extrusion. Furthermore, ball-mill extrusion increased the MB adsorption capacity of BC at all pH values by 14-fold, on average, but BC ball milled with magnetite had even greater MB adsorption capacity (27-fold, greater, on average). While ball milling of AC also improved its MB adsorption capacity (by almost 3-fold, on average), ball milling with magnetite did not further improve its MB adsorption capacity. All the magnetic adsorbents showed fast MB adsorption kinetics, reaching equilibrium within about 8 h. The Langmuir maximum MB adsorption capacity of the magnetic ball-milled BC (MBM-BC) was the highest (500.5 mg/g) among all the samples including the ones derived from AC. After five adsorption-desorption cycles, MBM-BC maintained about 80% MB removal capacity. The high MB adsorption capacity of MBM-BC was attributed to its increased surface area, opened pore structure, functional groups and aromatic CC bonds, which promoted π-π and electrostatic interactions. Findings from this study indicate that the magnetic ball-milled BC is a promising adsorbent due to its environmentally friendly synthesis, high efficiency, low cost, and convenience in operation.
Collapse
Affiliation(s)
- Yanfei Li
- Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University, Beijing 100083, China; Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Andrew R Zimmerman
- Department of Geological Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Feng He
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianjun Chen
- Mid-Florida Research & Education Center, University of Florida, Apopka, FL 32703, USA
| | - Lujia Han
- Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University, Beijing 100083, China.
| | - Hao Chen
- Department of Agriculture, University of Arkansas at Pine Bluff, Pine Bluff, AR 71601, USA
| | - Xin Hu
- Center of Material Analysis, Nanjing University, Nanjing 210093, China
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
46
|
Wang L, Bolan NS, Tsang DCW, Hou D. Green immobilization of toxic metals using alkaline enhanced rice husk biochar: Effects of pyrolysis temperature and KOH concentration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137584. [PMID: 32145631 DOI: 10.1016/j.scitotenv.2020.137584] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/23/2020] [Accepted: 02/25/2020] [Indexed: 06/10/2023]
Abstract
Biochar is a "green" material that has been widely used in environmental applications for its capability to remove or immobilize contaminants in different environmental media (i.e. soil, water and air) and mitigate climate change. In this study, the feasibility of using KOH enhanced biochar for soil Cd and Pb stabilization was investigated, and the effects of pyrolysis temperature and alkaline concentrations for modification were explored. Field-emission scanning electron microscopy (FESEM), N2 adsorption-desorption, and Fourier Transform Infrared Spectroscopy (FTIR) analyses were conducted to reveal the influence on biochar physiochemical properties. The immobilization performances were examined through Toxicity Characteristics Leaching Procedure (TCLP), and Response Surface Methodology (RSM) was adopted to visualize the results from leaching tests. The stabilization mechanisms of alkaline enhanced biochars were investigated using Time of Flight Secondary Ion Mass Spectroscopy (TOF-SIMS), Tessier sequential extraction method and X-ray diffraction (XRD) analyses. The results indicated that rice husk biochar pyrolyzed at a relatively low temperature (i.e., 300 °C) and activated by moderate alkaline concentrations (i.e., 1 M or 3 M KOH) rendered optimum stabilization performance. KOH activation was a double-edged sword, with high alkaline concentrations destroying biochar's cell structures. Moreover, the integration of TOF-SIMS, XRD and sequential leaching method shed lights on the underlying mechanisms involved in metal stabilization. Surface complexation between toxic metals and oxygen-containing functional groups rather than liming or precipitation was proven to be the fundamental stabilization mechanism.
Collapse
Affiliation(s)
- Liuwei Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Nanthi S Bolan
- Global Centre for Environmental Remediation, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
47
|
Zhang S, Du Q, Sun Y, Song J, Yang F, Tsang DCW. Fabrication of L-cysteine stabilized α-FeOOH nanocomposite on porous hydrophilic biochar as an effective adsorbent for Pb 2+ removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137415. [PMID: 32325559 DOI: 10.1016/j.scitotenv.2020.137415] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 02/04/2020] [Accepted: 02/16/2020] [Indexed: 06/11/2023]
Abstract
Lead (Pb) pollution has caused worldwide attention as it can cause hazards to humans and the environment. Chemical properties and structures of the adsorbent greatly influence the Pb2+ removal efficiency. L-cysteine (L-cy) stabilized porous hydrophilic biochar-supported α-FeOOH nanocomposites (L-cy/FeOOH@PHB) are prepared as an efficient adsorbent via a cheap and simple one-step hydrothermal method for removing Pb2+ from aqueous solution. Characterizations of the synthesized L-cy/FeOOH@PHB revealed that the iron particles distributed uniformly on the surface of porous hydrophilic biochar. The equilibrium adsorption capacity of the L-cy/FeOOH@PHB reaches up to 103.04 mg g-1for Pb2+ removal, higher than other typical materials reported preiously. The adsorption kinetics and isotherms were fitted well with the pseudo-second-order model and the Freundlich model, respectively, suggesting chemical adsorption on the heterogeneous surface and pores of L-cy/FeOOH@PHB. The introduction of L-cysteine provides abundant surface N- and S-containing functional groups as active sites for Pb2+ adsorption and also plays an important role in altering the porous structure, distribution of α-FeOOH nanoparticles, affinity of iron species to biochar, and surface functional groups, which determined the performance of the resultant composites. Notably, regeneration experiments show that Pb2+ adsorption capacity still maintains at 77.3 mg g-1 on L-cy/FeOOH@PHB after five successive utilizations, indicating the potential applicability for removing Pb2+ from aqueous solution.
Collapse
Affiliation(s)
- Shuaishuai Zhang
- Joint laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China
| | - Qing Du
- Joint laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China; School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Yuqing Sun
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Jingpeng Song
- Joint laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China; School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Fan Yang
- Joint laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China; School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China.
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
48
|
Du Q, Zhang S, Song J, Zhao Y, Yang F. Activation of porous magnetized biochar by artificial humic acid for effective removal of lead ions. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:122115. [PMID: 32006936 DOI: 10.1016/j.jhazmat.2020.122115] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/31/2019] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
In this paper, we have successfully prepared porous magnetic biochar with excellent surface area and recovery rate using corn stalks (CS) and waste iron (WI) as precursors. Notably, in order to prevent the incorporated iron oxides from blocking the carbon pores, then resulting in a decrease in specific surface area and reducing the removal efficiency of the material, the optimum range of iron ions can be determined to be 0.04-0.06 mol/L according to the effect of the amount of iron on the magnetic biochar recovery rate and Pb2+ removal capacity. Furthermore, as-synthesized artificial humic acid (A-HA) obtained from waste biomass by hydrothermal humification (HTH) technology has abundant functional groups, which can complex with heavy metals and metal oxides. Therefore, A-HA is introduced as an activator to produce novel porous magnetic biochar materials (AHA/Fe3O4-γFe2O3@PBC) with abundant functional groups (i.e., phenolic-OH, -COOH, etc.), providing high dispersibility and stability, further leading to excellent removal performance (Langmuir removal capacity up to 99.82 mg/g) and recyclable performance (removal capacity after 5 removal cycles is 79.04 mg/g). Multiple removal mechanisms have been revealed, including reduction, complexation, and precipitation.
Collapse
Affiliation(s)
- Qing Du
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China
| | - Shuaishuai Zhang
- Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China
| | - Jingpeng Song
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China
| | - Ying Zhao
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China
| | - Fan Yang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China.
| |
Collapse
|
49
|
Li S, Tang J, Liu Q, Liu X, Gao B. A novel stabilized carbon-coated nZVI as heterogeneous persulfate catalyst for enhanced degradation of 4-chlorophenol. ENVIRONMENT INTERNATIONAL 2020; 138:105639. [PMID: 32179320 DOI: 10.1016/j.envint.2020.105639] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/07/2020] [Accepted: 03/04/2020] [Indexed: 06/10/2023]
Abstract
Nano zero-valent iron (nZVI) and its composite materials have been extensively studied in the field of environmental remediation. However, the oxidation and agglomeration of nZVI limits the large-scale application of nZVI in environmental remediation. This study developed a two-step method to prepare stable carbon-coated nZVI (Fe0@C) which combined hydrothermal carbonization and carbothermal reduction methods and used glucose and iron oxide (Fe3O4) as precursors. When the carbothermal reduction temperature was 700 °C and the elemental molar ratio of carbon to iron was 22:1, stable Fe0@C can be generated. The nZVI particles are encapsulated by mesoporous carbon and embedded in the carbon spheres. The unique structure of carbon coating not only inhibits the agglomeration of nZVI, but also makes nZVI stable in air for more than 120 days. Not only that, the as-synthesized Fe0@C exhibited high catalytic activity toward the degradation of 4-chlorophenol (4-CP) by activating persulfate. Different from conventional nZVI catalysts in generation of sulfate radicals, Fe0@C selectively induced hydroxyl radicals for 4-CP degradation. Moreover, Fe0@C has been shown to efficiently degrade 4-CP by using the dissolved oxygen in water to form hydroxyl radicals. This study not only provides a simple, green method for the preparation of stabilized nZVI, but also provides the possibility of large-scale application of nZVI in the field of environmental remediation.
Collapse
Affiliation(s)
- Song Li
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jingchun Tang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
| | - Qinglong Liu
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Xiaomei Liu
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin 300350, China
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, United States
| |
Collapse
|
50
|
Liu J, Jiang J, Meng Y, Aihemaiti A, Xu Y, Xiang H, Gao Y, Chen X. Preparation, environmental application and prospect of biochar-supported metal nanoparticles: A review. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:122026. [PMID: 31958612 DOI: 10.1016/j.jhazmat.2020.122026] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 05/27/2023]
Abstract
Biochar is a low-cost, porous, and carbon-rich material and it exhibits a great potential as an adsorbent and a supporting matrix due to its high surface activity, high specific surface area, and high ion exchange capacity. Metal nanomaterials are nanometer-sized solid particles which have high reactivity, high surface area, and high surface energy. Owing to their aggregation and passivation, metal nanomaterials will lose excellent physiochemical properties. Carbon-enriched biochar can be applied to overcome these drawbacks of metal nanomaterials. Combining the advantages of biochar and metal nanomaterials, supporting metal nanomaterials on porous and stable biochar creates a new biochar-supported metal nanoparticles (MNPs@BC). Therefore, MNPs@BC can be used to design the properties of metal nanoparticles, stabilize the anchored metal nanoparticles, and facilitate the catalytic/redox reactions at the biochar-metal interfaces, which maximizes the efficiency of biochar and metal nanoparticles in environmental application. This work detailedly reviews the synthesis methods of MNPs@BC and the effects of preparation conditions on the properties of MNPs@BC during the preparation processes. The characterization methods of MNPs@BC, the removal/remediation performance of MNPs@BC for organic contaminants, heavy metals and other inorganic contaminants in water and soil, and the effect of MNPs@BC properties on the remediation efficiency were discussed. In addition, this paper summarizes the effect of various parameters on the removal of contaminants from water, the effect of MNPs@BC remediation on soil properties, and the removal/remediation mechanisms of the contaminants by MNPs@BC in water and soil. Moreover, the potential directions for future research and development of MNPs@BC have also been discussed.
Collapse
Affiliation(s)
- Jiwei Liu
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jianguo Jiang
- School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Yuan Meng
- School of Environment, Tsinghua University, Beijing, 100084, China
| | | | - Yiwen Xu
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Honglin Xiang
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yuchen Gao
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Xuejing Chen
- School of Environment, Tsinghua University, Beijing, 100084, China
| |
Collapse
|