1
|
Zhao J, Peng L, Ma X. Innovative microalgae technologies for mariculture wastewater treatment: Single and combined microalgae treatment mechanisms, challenges and future prospects. ENVIRONMENTAL RESEARCH 2025; 266:120560. [PMID: 39647683 DOI: 10.1016/j.envres.2024.120560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/18/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
The discharge of aquaculture wastewater, comprising nitrogen, phosphorus, heavy metals, and antibiotics from large-scale aquaculture, poses a significant threat to marine ecosystems and human health. Consequently, addressing the treatment of marine aquaculture wastewater is imperative. Conventional physicochemical treatment methods have various limitations, whereas microalgae-based biological treatment technologies have gained increasing attention in the field of water purification due to their ability to efficiently absorb organic matter from mariculture wastewater and convert CO₂ into biomass products. Microalgae offer potential for highly efficient and cost-effective mariculture wastewater treatment, with particularly noteworthy advancements in the application of combined microalgae technologies. This paper explores the research hotspots in this field through bibliometric analysis and systematically discusses the following aspects: (1) summarizing the current pollution status of mariculture wastewater, including the types and sources of pollutants in various forms of mariculture wastewater, treatment methods, and associated treatment efficiencies; (2) analyzing the factors contributing to the gradual replacement of single microalgae technology with combined microalgae technology, highlighting its synergistic effects, enhanced pollutant removal efficiencies, resource recovery potential, and alignment with sustainable development goals; (3) exploring the mechanisms of pollutant removal by combined microalgae technologies, focusing on their technical advantages in bacterial-algal coupling, immobilized microalgae systems, and microalgal biofilm technologies; (4) discussing the challenges faced by the three main categories of combined microalgae technologies and proposing future improvement strategies to further enhance their application effectiveness. In conclusion, this paper offers a detailed analysis of these emerging technologies, providing a forward-looking perspective on the future development of microalgae-based mariculture wastewater treatment solutions.
Collapse
Affiliation(s)
- Jinjin Zhao
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi, 530004, China
| | - Licheng Peng
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/School of Ecology and Environment, Hainan University, Haikou, 570228, China
| | - Xiangmeng Ma
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi, 530004, China; Key Laboratory of Environmental Protection (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, Guangxi Nanning, 530004, China; Guangxi Key Laboratory of Emerging Contaminants Monitoring, Early Warning and Environmental Health Risk Assessment, China.
| |
Collapse
|
2
|
Wang B, Zhang L, Lian L, Zhang X, Qi Y. Treatment of compound pollution in simulated livestock and poultry wastewater by algae-bacteria symbiosis system. CHEMOSPHERE 2025; 370:143927. [PMID: 39662840 DOI: 10.1016/j.chemosphere.2024.143927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/25/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024]
Abstract
Livestock and poultry breeding wastewater contains a large number of heavy metals and antibiotics; the volume is huge, and it is difficult to treat, which causes serious pollution of the environment. Some studies have shown that symbiotic systems can effectively improve the efficiency of sewage treatment, but there is still a lack of research on the treatment of livestock and poultry wastewater. This experiment not only provides a more in-depth discussion of previous studies, but also demonstrates the feasibility of symbiotic treatment of livestock and poultry wastewater and explores the survival mode and operation mechanism of algal and bacterial symbiosis. The results show that the presence of bacteria greatly promoted the growth of microalgae, with production of 0.50-0.59 g/L biomass and 17.5% lipid content. Lipid levels in the algae from the symbiotic system were 1.3 times higher than for the system of pure algae, which is attributed to the bacteria releasing extracellular substances to promote their own growth and providing small molecules of organic matter and other essential elements which can be used by microalgae. In addition, during the removal of complex pollutants in the symbiotic system we found that the main contributor to the removal of heavy metal ions was the adsorption by Chlorella, while the decomposition of antibiotics mainly originated from bacteria. Furthermore, in the context of this experiment was obtained the highest removal rate of SM2 reached 28.8%, while the removal rate of Cu(II) reached 60.6%-66.7%. The technology of symbiotic treatment of wastewater from livestock and poultry breeding fills a gap and lays a theoretical foundation for the improvement of wastewater treatment.
Collapse
Affiliation(s)
- Bo Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Lijie Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China.
| | - Lu Lian
- Shandong Institute for Product Quality Inspection, Jinan, 250102, China
| | - Xiao Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Yuejun Qi
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| |
Collapse
|
3
|
Rayamajhi V, An Y, Byeon H, Lee J, Kim T, Choi A, Lee J, Lee K, Kim C, Shin H, Jung S. A Study on the Effect of Various Media and the Supplementation of Organic Compounds on the Enhanced Production of Astaxanthin from Haematococcus lacustris (Girod-Chantrans) Rostafinski (Chlorophyta). Microorganisms 2024; 12:1040. [PMID: 38930422 PMCID: PMC11205594 DOI: 10.3390/microorganisms12061040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Natural astaxanthin is in high demand due to its multiple health benefits. The microalga Haematococcus lacustris has been used for the commercial production of astaxanthin. In this study, we investigated the effects of six different media with and without a nitrogen source and supplementation with nine organic compounds on the growth and astaxanthin accumulation of H. lacustris. The highest astaxanthin contents were observed in cultures of H. lacustris in Jaworski's medium (JM), with a level of 9.099 mg/L in JM with a nitrogen source supplemented with leucine (0.65 g/L) and of 20.484 mg/L in JM without a nitrogen source supplemented with sodium glutamate (0.325 g/L). Six of the nine organic compounds examined (leucine, lysine, alanine, sodium glutamate, glutamine, and cellulose) enhanced the production of astaxanthin in H. lacustris, while malic acid, benzoic acid, and maltose showed no beneficial effects.
Collapse
Affiliation(s)
- Vijay Rayamajhi
- Department of Biology, Soonchunhyang University, Asan 31538, Chungcheongnam-do, Republic of Korea
| | - Yunji An
- Department of Biology, Soonchunhyang University, Asan 31538, Chungcheongnam-do, Republic of Korea
| | - Huijeong Byeon
- Department of Biology, Soonchunhyang University, Asan 31538, Chungcheongnam-do, Republic of Korea
| | - Jihyun Lee
- Korea Fisheries Resources Agency East Sea Branch, Samho-ro, Buk-gu, Pohang 37601, Gyungsangbuk-do, Republic of Korea
| | - Taesoo Kim
- Department of Biology, Soonchunhyang University, Asan 31538, Chungcheongnam-do, Republic of Korea
| | - AhJung Choi
- Department of Biology, Soonchunhyang University, Asan 31538, Chungcheongnam-do, Republic of Korea
| | - JongDae Lee
- Department of Environmental Health Science, Soonchunhyang University, Asan 31538, Chungcheongnam-do, Republic of Korea
| | - KwangSoo Lee
- Department of Sports Science, Soonchunhyang University, Asan 31538, Chungcheongnam-do, Republic of Korea
| | - ChulHyun Kim
- Department of Sports Medicine, Soonchunhyang University, Asan 31538, Chungcheongnam-do, Republic of Korea
| | - HyunWoung Shin
- Department of Biology, Soonchunhyang University, Asan 31538, Chungcheongnam-do, Republic of Korea
- AlgaeBio, Inc., Asan 31459, Chungcheongnam-do, Republic of Korea
| | - SangMok Jung
- Research Institute for Basic Science, Soonchunhyang University, Asan 31538, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
4
|
Zhang L, Wang B, Zhang L, Lian L, Cheng X, Yang Z, Jin Y, Chen J, Ren Z, Qi Y, Chen F, Wu D, Wang L. Responses of Chlorella vulgaris to the native bacteria in real wastewater: Improvement in wastewater treatment and lipid production. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 339:122737. [PMID: 37838313 DOI: 10.1016/j.envpol.2023.122737] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/16/2023]
Abstract
Alga-bacterium interaction can improve wastewater treatment efficiency. To unravel the mystery of the interaction between microalgae and bacteria in wastewater, mono-cultures and co-cultures of Chlorella vulgaris and native bacteria in pretreated biochemical wastewater from landfill leachate were investigated. The results showed that the microalgae selected dominant commensal bacteria, creating a further reduction in species richness for the co-culture, which in turn aids in the dominant commensal bacteria's survival, thereby enhancing algal and bacterial metabolic activity. Strikingly, the lipid productivity of Chlorella in co-culture - namely 41.5 mg/L·d - was 1.4 times higher than in algal monoculture. Additionally, pollutant removal was enhanced in co-cultures, attributed to the bacterial community associated with pollutants' degradation. Furthermore, this study provides an important advance towards observations on the migration and transformation pathways of nutrients and metals, and bridges the gap in algal-bacterial synergistic mechanisms in real wastewater, laying the theoretical foundation for improving wastewater treatment.
Collapse
Affiliation(s)
- Lijie Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Bo Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Libin Zhang
- School of Civil Engineering, Tianjin University, Tianjin, 300072, China
| | - Lu Lian
- Shandong Institute for Product Quality Inspection, Jinan, 250102, China
| | - Xiaoxiang Cheng
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Zhigang Yang
- Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan, 250101, China
| | - Yan Jin
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Junren Chen
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Zian Ren
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Yuejun Qi
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Feiyong Chen
- Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan, 250101, China
| | - Daoji Wu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Lin Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China.
| |
Collapse
|
5
|
Liu W, Ji Y, Long Y, Huang W, Zhang C, Wang H, Xu Y, Lei Z, Huang W, Liu D. The role of light wavelengths in regulating algal-bacterial granules formation, protein and lipid accumulation, and microbial functions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 337:117750. [PMID: 36934501 DOI: 10.1016/j.jenvman.2023.117750] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/03/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
High value-added products recovery from algal-bacterial granular sludge (ABGS) has received great attention recently. This study aimed to explore the role of different light wavelengths in regulating granule formation, protein and lipid production, and microbial functions. Bacterial granular sludge (BGS, R0) was most conducive to forming ABGS under blue (R2) light with the highest chlorophyll a (10.2 mg/g-VSS) and diameter (1800 μm), followed by red (R1) and white (R3) lights. R0-R3 acquired high protein contents (>164.8 mg/g-VSS) with essential amino acids above 44.4%, all of which were suitable for recycling, but R2 was the best. Also, blue light significantly increased total lipid production, while red light promoted the accumulation of some unsaturated fatty acids (C18:2 and C18:3). Some unique algae and dominant bacteria (e.g., Stigeoclonium, Chlamydomonas, and Flavobacteria) enrichment and some key functions (e.g., amino acid, fatty acid, and lipid biosynthesis) up-regulation in R2 might help to improve proteins and lipids quality. Combined, this study provides valuable guidance for protein and lipid recovery from ABGS.
Collapse
Affiliation(s)
- Wenhao Liu
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yuan Ji
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yuhan Long
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Weiwei Huang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Renmin Road, Haikou 570228, China
| | - Chuanbing Zhang
- Huaxia Besince Environmental Technology Co., Ltd., Zhengzhou, Henan 450000, China
| | - Huifang Wang
- Huaxia Besince Environmental Technology Co., Ltd., Zhengzhou, Henan 450000, China
| | - Yahui Xu
- Huaxia Besince Environmental Technology Co., Ltd., Zhengzhou, Henan 450000, China
| | - Zhongfang Lei
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Wenli Huang
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Dongfang Liu
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
6
|
Application of Green Technology to Extract Clean and Safe Bioactive Compounds from Tetradesmus obliquus Biomass Grown in Poultry Wastewater. Molecules 2023; 28:molecules28052397. [PMID: 36903642 PMCID: PMC10005368 DOI: 10.3390/molecules28052397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Microalgae are capable of assimilating nutrients from wastewater (WW), producing clean water and biomass rich in bioactive compounds that need to be recovered from inside the microalgal cell. This work investigated subcritical water (SW) extraction to collect high-value compounds from the microalga Tetradesmus obliquus after treating poultry WW. The treatment efficiency was evaluated in terms of total Kjeldahl nitrogen (TKN), phosphate, chemical oxygen demand (COD) and metals. T. obliquus was able to remove 77% TKN, 50% phosphate, 84% COD, and metals (48-89%) within legislation values. SW extraction was performed at 170 °C and 30 bar for 10 min. SW allowed the extraction of total phenols (1.073 mg GAE/mL extract) and total flavonoids (0.111 mg CAT/mL extract) with high antioxidant activity (IC50 value, 7.18 µg/mL). The microalga was shown to be a source of organic compounds of commercial value (e.g., squalene). Finally, the SW conditions allowed the removal of pathogens and metals in the extracts and residues to values in accordance with legislation, assuring their safety for feed or agriculture applications.
Collapse
|
7
|
Zhang L, Lin X, Yang Z, Jiang L, Hou Q, Xie Z, Li Y, Pei H. The role of microtubules in microalgae: promotion of lipid accumulation and extraction. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:7. [PMID: 36635732 PMCID: PMC9837904 DOI: 10.1186/s13068-023-02257-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/01/2023] [Indexed: 01/14/2023]
Abstract
BACKGROUND Microtubules in cells are closely related to the growth and metabolism of microalgae. To date, the study of microalgal microtubules has mainly concentrated on revealing the relationship between microtubule depolymerization and synthesis of precursors for flagellar regeneration. While information on the link between microtubule depolymerization and biosynthesis of precursors for complex organic matter (such as lipid, carbohydrate and protein), is still lacking, a better understanding of this could help to achieve a breakthrough in lipid regulation. With the aim of testing the assumption that microtubule disruption could regulate carbon precursors and redirect carbon flow to promote lipid accumulation, Chlorella sorokiniana SDEC-18 was pretreated with different concentrations of oryzalin. RESULTS Strikingly, microalgae that were pretreated with 1.5 mM oryzalin accumulated lipid contents of 41.06%, which was attributed to carbon redistribution induced by microtubule destruction. To promote the growth of microalgae, two-stage cultivation involving microtubule destruction was employed, which resulted in the lipid productivity being 1.44 times higher than that for microalgae with routine single-stage cultivation, as well as yielding a desirable biodiesel quality following from increases in monounsaturated fatty acid (MUFA) content. Furthermore, full extraction of lipid was achieved after only a single extraction step, because microtubule destruction caused removal of cellulose synthase and thereby blocked cellulose biosynthesis. CONCLUSIONS This study provides an important advance towards observation of microtubules in microalgae through immunocolloidal gold techniques combined with TEM. Moreover, the observation of efficient lipid accumulation and increased cell fragility engendered by microtubule destruction has expanded our knowledge of metabolic regulation by microtubules. Finally, two-stage cultivation involving microtubule destruction has established ideal growth, coupling enhanced lipid accumulation and efficient oil extraction; thus gaining advances in both applied and fundamental research in algal biodiesel production.
Collapse
Affiliation(s)
- Lijie Zhang
- grid.27255.370000 0004 1761 1174School of Environmental Science and Engineering, Shandong University, Qingdao, 266237 China
| | - Xiao Lin
- grid.5335.00000000121885934Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS UK
| | - Zhigang Yang
- grid.27255.370000 0004 1761 1174School of Environmental Science and Engineering, Shandong University, Qingdao, 266237 China
| | - Liqun Jiang
- grid.27255.370000 0004 1761 1174School of Environmental Science and Engineering, Shandong University, Qingdao, 266237 China
| | - Qingjie Hou
- grid.27255.370000 0004 1761 1174School of Environmental Science and Engineering, Shandong University, Qingdao, 266237 China
| | - Zhen Xie
- grid.27255.370000 0004 1761 1174School of Environmental Science and Engineering, Shandong University, Qingdao, 266237 China
| | - Yizhen Li
- grid.27255.370000 0004 1761 1174School of Environmental Science and Engineering, Shandong University, Qingdao, 266237 China
| | - Haiyan Pei
- grid.27255.370000 0004 1761 1174School of Environmental Science and Engineering, Shandong University, Qingdao, 266237 China ,grid.8547.e0000 0001 0125 2443Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433 China ,Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan, 250061 China
| |
Collapse
|
8
|
Chen Z, Qiu S, Li M, Xu S, Ge S. Effect of free ammonia shock on Chlorella sp. in wastewater: Concentration-dependent activity response and enhanced settleability. WATER RESEARCH 2022; 226:119305. [PMID: 36332297 DOI: 10.1016/j.watres.2022.119305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/12/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
The unstable microbial activity and unsatisfactory settling performance impede the development and implementation of microalgal wastewater treatment, especially in high-ammonium wastewater in the presence of free ammonia (FA). The shock of FA due to the nutrient fluctuation in wastewater was demonstrated as the primary stress factor suppressing microalgal activities. Recent study has clearly revealed the inhibition mechanism of FA at a specific high level (110.97 mg/L) by inhibiting the genetic information processing, photosynthesis, and nutrient metabolism. However, the effects of various FA shock concentrations on microalgal activities and settling performance remain unknown, limiting the wastewater bioremediation efficiencies improvement and the process development. Herein, a concentration-dependent shock FA (that was employed on microalgae during their exponential growth stages) effect on microalgal growth and photosynthesis was observed. Results showed that the studied five FA shock concentrations ranging from 25 to 125 mg/L significantly inhibited biomass production by 14.7-57.0%, but sharp reductions in photosynthesis with the 36.0-49.0% decreased Fv/Fm values were only observed when FA concentration was above 75.0 mg/L. On the other hand, FA shock enhanced microalgal settling efficiency by 12.8-fold, which was believed to be due to the stimulated intra- and extracellular protein contents and thereby the enhanced extracellular polymer substances (EPS) secretion. Specifically, FA shock induced 40.2 ± 2.3% higher cellular protein content at the cost of the decreased carbohydrates (22.6 ± 1.3%) and fatty acid (39.0 ± 0.8%) contents, further improving the protein secretion by 1.21-fold and the EPS production by 40.2 ± 2.3%. These FA shock-induced variations in intra- and extracellular biomolecules were supported by the up-regulated protein processing and export at the assistance of excessive energy generated from fatty acid degradation and carbohydrates consumption. In addition, FA shock significantly decreased the biomass nutritional value as indicated by the 1.86-fold lower essential amino acid score and nearly 50% reduced essential to non-essential amino acids ratio, while slightly decreased the biodiesel quality. This study is expected to enrich the knowledge of microalgal activities and settling performance in response to fluctuant ammonium concentrations in wastewater and to promote the development of microalgal wastewater treatment.
Collapse
Affiliation(s)
- Zhipeng Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing, Jiangsu 210094, China
| | - Shuang Qiu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing, Jiangsu 210094, China
| | - Mengting Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing, Jiangsu 210094, China
| | - Shiling Xu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing, Jiangsu 210094, China
| | - Shijian Ge
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing, Jiangsu 210094, China.
| |
Collapse
|
9
|
López-Pacheco IY, Rodas-Zuluaga LI, Cuellar-Bermudez SP, Hidalgo-Vázquez E, Molina-Vazquez A, Araújo RG, Martínez-Ruiz M, Varjani S, Barceló D, Iqbal HMN, Parra-Saldívar R. Revalorization of Microalgae Biomass for Synergistic Interaction and Sustainable Applications: Bioplastic Generation. Mar Drugs 2022; 20:601. [PMID: 36286425 PMCID: PMC9605595 DOI: 10.3390/md20100601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 11/23/2022] Open
Abstract
Microalgae and cyanobacteria are photosynthetic microorganisms' sources of renewable biomass that can be used for bioplastic production. These microorganisms have high growth rates, and contrary to other feedstocks, such as land crops, they do not require arable land. In addition, they can be used as feedstock for bioplastic production while not competing with food sources (e.g., corn, wheat, and soy protein). In this study, we review the macromolecules from microalgae and cyanobacteria that can serve for the production of bioplastics, including starch and glycogen, polyhydroxyalkanoates (PHAs), cellulose, polylactic acid (PLA), and triacylglycerols (TAGs). In addition, we focus on the cultivation of microalgae and cyanobacteria for wastewater treatment. This approach would allow reducing nutrient supply for biomass production while treating wastewater. Thus, the combination of wastewater treatment and the production of biomass that can serve as feedstock for bioplastic production is discussed. The comprehensive information provided in this communication would expand the scope of interdisciplinary and translational research.
Collapse
Affiliation(s)
- Itzel Y. López-Pacheco
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | | | | | | | | | - Rafael G. Araújo
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Manuel Martínez-Ruiz
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382010, Gujarat, India
| | - Damià Barceló
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
- Catalan Institute for Water Research (ICRA-CERCA), Parc Científic i Tecnològic de la Universitat de Girona, c/Emili Grahit, 101, Edifici H2O, 17003 Girona, Spain
- Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| |
Collapse
|
10
|
Goswami RK, Agrawal K, Mehariya S, Verma P. Current perspective on wastewater treatment using photobioreactor for Tetraselmis sp.: an emerging and foreseeable sustainable approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:61905-61937. [PMID: 34618318 DOI: 10.1007/s11356-021-16860-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
Urbanization is a revolutionary and necessary step for the development of nations. However, with development emanates its drawback i.e., generation of a huge amount of wastewater. The existence of diverse types of nutrient loads and toxic compounds in wastewater can reduce the pristine nature of the ecosystem and adversely affects human and animal health. The conventional treatment system reduces most of the chemical contaminants but their removal efficiency is low. Thus, microalgae-based biological wastewater treatment is a sustainable approach for the removal of nutrient loads from wastewater. Among various microalgae, Tetraselmis sp. is a robust strain that can remediate industrial, municipal, and animal-based wastewater and reduce significant amounts of nutrient loads and heavy metals. The produced biomass contains lipids, carbohydrates, and pigments. Among them, carbohydrates and lipids can be used as feedstock for the production of bioenergy products. Moreover, the usage of a photobioreactor (PBR) system improves biomass production and nutrient removal efficiency. Thus, the present review comprehensively discusses the latest studies on Tetraselmis sp. based wastewater treatment processes, focusing on the use of different bioreactor systems to improve pollutant removal efficiency. Moreover, the applications of Tetraselmis sp. biomass, advancement and research gap such as immobilized and co-cultivation have also been discussed. Furthermore, an insight into the harvesting of Tetraselmis biomass, effects of physiological, and nutritional parameters for their growth has also been provided. Thus, the present review will broaden the outlook and help to develop a sustainable and feasible approach for the restoration of the environment.
Collapse
Affiliation(s)
- Rahul Kumar Goswami
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, 305817, Rajasthan, India
| | - Komal Agrawal
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, 305817, Rajasthan, India
| | | | - Pradeep Verma
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, 305817, Rajasthan, India.
| |
Collapse
|
11
|
Nishshanka GKSH, Anthonio RADP, Nimarshana PHV, Ariyadasa TU, Chang JS. Marine microalgae as sustainable feedstock for multi-product biorefineries. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
12
|
Pei H, Zhang L, Betenbaugh MJ, Jiang L, Lin X, Ma C, Yang Z, Wang X, Chen S, Lin WF. Highly efficient harvesting and lipid extraction of limnetic Chlorella sorokiniana SDEC-18 grown in seawater for microalgal biofuel production. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
13
|
Ding Y, Wang S, Ma H, Ma B, Guo Z, You H, Mei J, Hou X, Liang Z, Li Z. Effect of Different Influent Conditions on Biomass Production and Nutrient Removal by Aeration Microalgae Membrane Bioreactor (ICFB-MMBR) System for Mariculture Wastewater Treatment. MEMBRANES 2021; 11:membranes11110874. [PMID: 34832103 PMCID: PMC8625849 DOI: 10.3390/membranes11110874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022]
Abstract
The nutrient removal and biomass production of the internal circulating fluidized bed microalgae membrane bioreactor (ICFB-MMBR) was studied under different cultivation modes, influent TOC, influent pH, and influent N/P. Platymonas helgolandica tsingtaoensis was used as the biological source. The growth of P. helgolandica tsingtaoensis and the removal efficiency of pollutants in the mixotrophy culture mode were improved compared with other culture modes. With the increased influent TOC, the average growth rate of P. helgolandica tsingtaoensis increased, and ammonia nitrogen and total phosphorus removal rate were improved. The P. helgolandica tsingtaoensis growth rate and nutrient removal efficiencies at the influent pH of 8 were the best among the different influent pH values. As the influent N/P ratio increased from 5 to 20, the P. helgolandica tsingtaoensis growth rate and pollutant removal rate increased gradually. When the influent N/P ratio was higher than 20, the P. helgolandica tsingtaoensis growth rate and pollutant removal rate tended to be stable and did not significantly change with the increase of influent N/P ratio. At the proper influent conditions, the high P. helgolandica tsingtaoensis biomass and nutrient removal efficiency could be obtained in the microalgae membrane bioreactor, which could provide a theoretical basis for the application of the system for wastewater treatment.
Collapse
Affiliation(s)
- Yi Ding
- Marine College, Shandong University, Weihai 264209, China; (Y.D.); (Z.G.); (J.M.); (X.H.); (Z.L.)
| | - Shiyuan Wang
- State Key Laboratory of Urban Water Resources and Water Environment, School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264200, China; (S.W.); (H.M.); (B.M.); (H.Y.)
| | - Hang Ma
- State Key Laboratory of Urban Water Resources and Water Environment, School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264200, China; (S.W.); (H.M.); (B.M.); (H.Y.)
| | - Binyu Ma
- State Key Laboratory of Urban Water Resources and Water Environment, School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264200, China; (S.W.); (H.M.); (B.M.); (H.Y.)
| | - Zhansheng Guo
- Marine College, Shandong University, Weihai 264209, China; (Y.D.); (Z.G.); (J.M.); (X.H.); (Z.L.)
| | - Hong You
- State Key Laboratory of Urban Water Resources and Water Environment, School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264200, China; (S.W.); (H.M.); (B.M.); (H.Y.)
| | - Junxue Mei
- Marine College, Shandong University, Weihai 264209, China; (Y.D.); (Z.G.); (J.M.); (X.H.); (Z.L.)
| | - Xuguang Hou
- Marine College, Shandong University, Weihai 264209, China; (Y.D.); (Z.G.); (J.M.); (X.H.); (Z.L.)
| | - Zhenlin Liang
- Marine College, Shandong University, Weihai 264209, China; (Y.D.); (Z.G.); (J.M.); (X.H.); (Z.L.)
| | - Zhipeng Li
- State Key Laboratory of Urban Water Resources and Water Environment, School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264200, China; (S.W.); (H.M.); (B.M.); (H.Y.)
- Correspondence:
| |
Collapse
|
14
|
Zhang L, Zhang L, Wu D, Wang L, Yang Z, Yan W, Jin Y, Chen F, Song Y, Cheng X. Biochemical wastewater from landfill leachate pretreated by microalgae achieving algae's self-reliant cultivation in full wastewater-recycling chain with desirable lipid productivity. BIORESOURCE TECHNOLOGY 2021; 340:125640. [PMID: 34325398 DOI: 10.1016/j.biortech.2021.125640] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Heightened awareness of additional pretreatment for wastewater, has driven studies towards building a full wastewater-recycling chain wherein the wastewater pretreatment is performed by microalgae themselves. We applied biochemical wastewater from landfill leachate with added K2HPO4 (BWLL + P) directly to microalgal cultivation. The results showed that the pretreatment provided by the 1st cultivation reduced suspended solids by nearly half, greatly boosting microalgal growth, which thus yielded 1.06 g/L of dry mass and 87.06 mg/L·d of biomass productivity. From the 2nd to the 4th cultivation, lipid accumulation in BWLL + P was 1.12-1.27 times and 1.95-2.36 times higher than in BG11 and BWLL, respectively, mainly attributed to the comfortable environment engendered by the microalgal pretreatment and the organic carbon in the wastewater. Strikingly, the biodiesel production fed with BWLL + P could save 99% of the cost compared with in BG11. In combination, our pioneering full wastewater-recycling chain achieved microalgae's self-reliant cultivation, with wastewater nourishment.
Collapse
Affiliation(s)
- Lijie Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Libin Zhang
- School of Civil Engineering, Tianjin University, Tianjin 300072, China
| | - Daoji Wu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Lin Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Zhigang Yang
- Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan, 250101, China
| | - Wenbao Yan
- Environmental Monitoring Station of Lanshan Branch of Rizhao Ecological and Environment Bureau, 539 Jiaodingshan Road, Rizhao, 276800, China
| | - Yan Jin
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Feiyong Chen
- Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan, 250101, China
| | - Yang Song
- Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan, 250101, China
| | - Xiaoxiang Cheng
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China.
| |
Collapse
|
15
|
Wu J, Gu X, Yang D, Xu S, Wang S, Chen X, Wang Z. Bioactive substances and potentiality of marine microalgae. Food Sci Nutr 2021; 9:5279-5292. [PMID: 34532034 PMCID: PMC8441504 DOI: 10.1002/fsn3.2471] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/30/2021] [Accepted: 06/12/2021] [Indexed: 02/05/2023] Open
Abstract
Microalgae is one of the most important components in the aquatic ecosystem, and they are increasingly used in food and medicine production for human consumption due to their rapid growth cycle and survival ability in the harsh environment. Now, the exploration of microalgae has been gradually deepening, mainly focused on the field of nutrition, medicine, and cosmetics. A great deal of studies has shown that microalgae have a variety of functions in regulating the body health and preventing disease, such as nitrogen fixation, antitumor, antivirus, antioxidation, anti-inflammatory, and antithrombotic. Furthermore, microalgae can synthesize various high-valued bioactive substances, such as proteins, lipids, polysaccharides, and pigments. In this paper, we have briefly reviewed the research progress of main bioactive components in microalgae, proteins, lipids, polysaccharides, pigments, and other nutrients included, as well as their present application situation. This paper can provide the guidance for research and development of industrial production of microalgae.
Collapse
Affiliation(s)
- Jinhong Wu
- South China Sea Fisheries Research InstituteChinese Academy of Fishery Sciences/Key Laboratory of South China Sea Fishery Resources Exploitation & UtilizationMinistry of Agriculture and Rural Affairs/Guangdong Provincial Key Laboratory of Fishery Ecology and EnvironmentGuangzhouChina
- Department of Food Science and EngineeringSchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Xinzhe Gu
- Department of Food Science and EngineeringSchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Danlu Yang
- Department of Food Science and EngineeringSchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Shannan Xu
- South China Sea Fisheries Research InstituteChinese Academy of Fishery Sciences/Key Laboratory of South China Sea Fishery Resources Exploitation & UtilizationMinistry of Agriculture and Rural Affairs/Guangdong Provincial Key Laboratory of Fishery Ecology and EnvironmentGuangzhouChina
- Scientific Observation and Research Field Station of Pearl River Estuary EcosystemGuangzhouChina
- Southern Marine Science and Engineering
Guangdong LaboratoryGuangzhouChina
| | - Shaoyun Wang
- College of Biological Science and TechnologyFuzhou UniversityFuzhouChina
| | - Xu Chen
- College of Biological Science and TechnologyFuzhou UniversityFuzhouChina
| | - Zhengwu Wang
- Department of Food Science and EngineeringSchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
16
|
Viegas C, Gouveia L, Gonçalves M. Aquaculture wastewater treatment through microalgal. Biomass potential applications on animal feed, agriculture, and energy. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 286:112187. [PMID: 33609932 DOI: 10.1016/j.jenvman.2021.112187] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/28/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
The use of microalgae to remediate raw effluent from brown crab aquaculture was evaluated by performing batch mode growth tests using separately the microalgae Chlorella vulgaris (Cv), Scenedesmus obliquus (Sc), Isochrysis galbana (Ig), Nannocloropsis salina (Ns), and Spirulina major (Sp). Removal efficiencies in batch growth were 100% for total nitrogen and total phosphorus for all microalgae. Chemical oxygen demand (COD) remediations were all above 72%. Biomass productivity varied from 20.9 mg L-1 day-1 (N. salina) to 146.4 mg L-1 day-1 (C. vulgaris). The two best performing algae were C. vulgaris and S. obliquus and they were tested in semi-continuous growth, reaching productivities of 879.8 mg L-1 day-1 and 811.7 mg L-1 day-1, respectively. The bioremediation of the effluent was tested with a transfer system consisting of three independent containers and compared with the use of a single container. The single container had the same capacity and received weekly the same volume of effluent as the three containers together. The remediation capacity of the 3 containers was much higher than the single one. The supplementation with NaNO3 was tested to improve the nutrient removal microalgae' capacity, with positive results. The removal efficiencies were 100% for total nitrogen and total phosphorus and higher than 96% for COD. The obtained C. vulgaris and S. obliquus biomass were composed of 31 and 35% proteins, 6 and 8% lipids, 39 and 30% carbohydrates, respectively. The composition of these biomass suggest that it can be used as novel and sustainable ingredients in aquaculture feeds. The algal biomass of Cv and Sc were used as biostimulants in the germination of wheat and watercress, and very promising results were attained, with increases in the germination index for Cv and Sc of 175% and 48% in watercress and 84% and 98% in wheat, respectively. The biomasses of Cv and Sc were also subjected to a torrefaction process with 72.5 ± 1.7% char yields. The obtained biochars were tested as biostimulants for germination seeds (wheat and watercress) and as bio-adsorbent of dye solutions.
Collapse
Affiliation(s)
- Catarina Viegas
- MEtRICs, Mechanical Engineering and Resource Sustainability Center, Department of Science and Technology of Biomass, FCT-NOVA, Campus de Caparica, 2829-516, Caparica, Portugal.
| | - Luísa Gouveia
- LNEG - Laboratório Nacional de Energia e Geologia, I.P./Bioenergy and Bioerefineries Unit, Estrada do Paço do Lumiar 22, 1649-038, Lisbon, Portugal; GreenCoLab - Green Ocean Technologies and Products Collaborative Laboratory, CCMAR, Algarve University, Portugal
| | - Margarida Gonçalves
- MEtRICs, Mechanical Engineering and Resource Sustainability Center, Department of Science and Technology of Biomass, FCT-NOVA, Campus de Caparica, 2829-516, Caparica, Portugal
| |
Collapse
|
17
|
Zkeri E, Iliopoulou A, Katsara A, Korda A, Aloupi M, Gatidou G, Fountoulakis MS, Stasinakis AS. Comparing the use of a two-stage MBBR system with a methanogenic MBBR coupled with a microalgae reactor for medium-strength dairy wastewater treatment. BIORESOURCE TECHNOLOGY 2021; 323:124629. [PMID: 33421834 DOI: 10.1016/j.biortech.2020.124629] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/22/2020] [Accepted: 12/25/2020] [Indexed: 05/05/2023]
Abstract
Two systems were compared for medium-strength dairy wastewater treatment. The first comprised a methanogenic Moving Bed Biofilm Reactor (AnMBBR) and an aerobic MBBR (AeMBBR), while the second an AnMBBR and a sequencing batch reactor (SBR) with Chlorella sorokiniana. The AnMBBR, under ambient conditions, achieves biogas production sufficient enough to attain energy autonomy. The produced energy was 0.538 kWh m-3, whereas the energy consumption 0.025 kWh m-3. Its coupling with the AeMBBR removed COD, NH4-N TKN, and PO4-P by 93 ± 4%, 97 ± 3%, 99 ± 1% and 49 ± 15%, respectively, while the use of the SBR as a second step eliminated totally COD but partially the other pollutants. The higher nitrogen removal in the first system was due to nitrification occurring in the AeMBBR. The acclimatization of microalgae to dairy wastewater enhanced their growth. Their protein content was 54.56%, while starch and lipids were 3.39% and 23.1%, respectively.
Collapse
Affiliation(s)
- Eirini Zkeri
- Water and Air Quality Laboratory, Department of Environment, University of the Aegean, 81100, Greece
| | - Athanasia Iliopoulou
- Water and Air Quality Laboratory, Department of Environment, University of the Aegean, 81100, Greece
| | - Alexandra Katsara
- Water and Air Quality Laboratory, Department of Environment, University of the Aegean, 81100, Greece
| | - Angeliki Korda
- Water and Air Quality Laboratory, Department of Environment, University of the Aegean, 81100, Greece
| | - Maria Aloupi
- Water and Air Quality Laboratory, Department of Environment, University of the Aegean, 81100, Greece
| | - Georgia Gatidou
- Water and Air Quality Laboratory, Department of Environment, University of the Aegean, 81100, Greece
| | - Michail S Fountoulakis
- Water and Air Quality Laboratory, Department of Environment, University of the Aegean, 81100, Greece
| | - Athanasios S Stasinakis
- Water and Air Quality Laboratory, Department of Environment, University of the Aegean, 81100, Greece.
| |
Collapse
|
18
|
Xie F, Zhang F, Zhou K, Zhao Q, Sun H, Wang S, Zhao Y, Fu J. Breeding of high protein Chlorella sorokiniana using protoplast fusion. BIORESOURCE TECHNOLOGY 2020; 313:123624. [PMID: 32593146 DOI: 10.1016/j.biortech.2020.123624] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
To improve Chlorella's economic viability as a natural bait in aquaculture, protoplast fusion technology was used for two Chlorella mutants, H10 and Z13, selected by UV and chemical mutagenesis. Chlorella sorokiniana protoplast was prepared using the enzyme method, and then the optimal enzyme combination of 4% cellulase and 2% driselase was screened out. Z13 and H10 protoplast preparation rates reached 34.72% and 31.11%, respectively. Nine fusions with higher growth rates were selected to assess their biomass, total and soluble proteins contents. Dry cell weight, total protein, and soluble protein of fusion R7 were 0.92 g.L-1, 67.16%, and 0.59 mg.g-1, respectively. The biomass was 1.59, 1.43 times that of H10 and Z13; total and soluble proteins increased by 8.89%, 10.25% and 50.12%, 74.62% respectively, compared with the original algae. These results have implications for breeding excellent strains, and for large-scale and optimal application of Chlorella in aquaculture.
Collapse
Affiliation(s)
- Fengxing Xie
- Tianjin Research Center of Agricultural Biotechnology, Tianjin 300384, China.
| | - Fengfeng Zhang
- Tianjin Research Center of Agricultural Biotechnology, Tianjin 300384, China
| | - Ke Zhou
- Tianjin Research Center of Agricultural Biotechnology, Tianjin 300384, China
| | - Qiong Zhao
- Tianjin Research Center of Agricultural Biotechnology, Tianjin 300384, China
| | - Haibo Sun
- Tianjin Research Center of Agricultural Biotechnology, Tianjin 300384, China
| | - Shu Wang
- Tianjin Research Center of Agricultural Biotechnology, Tianjin 300384, China
| | - Yujie Zhao
- Tianjin Research Center of Agricultural Biotechnology, Tianjin 300384, China
| | - Jinran Fu
- Tianjin Research Center of Agricultural Biotechnology, Tianjin 300384, China
| |
Collapse
|
19
|
Castro JDS, Calijuri ML, Ferreira J, Assemany PP, Ribeiro VJ. Microalgae based biofertilizer: A life cycle approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 724:138138. [PMID: 32268288 DOI: 10.1016/j.scitotenv.2020.138138] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/19/2020] [Accepted: 03/21/2020] [Indexed: 06/11/2023]
Abstract
Waste, especially biomass in general, is a large reservoir of nutrients that can be recovered through different technologies and used to produce biofertilizers. In the present study, environmental impacts of the production of microalgae biomass-based phosphate biofertilizer compared to triple superphosphate through life-cycle assessment conducted in the Simapro® software were investigated. The functional unit of the analysis was 163 g of P for both fertilizers. Phosphorus was recovered from a meat processing industry effluent in a high-rate algal pond. Impacts related to the entire biofertilizer chain impacted mainly on climate changes (3.17 kg CO2eq). Microalgae biofertilizer had higher environmental impact than conventional fertilizer in all impact categories, highlighting climate change and terrestrial ecotoxicity. An ideal scenario was created considering that: all energy used comes from photovoltaic panels; in the separation step a physical method will be used, without energy expenditure (i.e. gravimetric sedimentation) and; biomass will be dried in a drying bed instead of the thermal drying. In this scenario, the impact of biofertilizer approached considerably those of triple superphosphate. When impacts of biomass cultivation and concentration stages were disregarded, drying step was of great relevance, contributing to increase biofertilizer impacts. More research is needed to optimize the algae production chain and determine the possibility of obtaining higher added value products more environmental attractive.
Collapse
Affiliation(s)
- Jackeline de Siqueira Castro
- Department of Civil Engineering, Federal University of Viçosa, Av. Peter Henry Rolfs, s/n, Campus da Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil.
| | - Maria Lúcia Calijuri
- Department of Civil Engineering, Federal University of Viçosa, Av. Peter Henry Rolfs, s/n, Campus da Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Jessica Ferreira
- Department of Civil Engineering, Federal University of Viçosa, Av. Peter Henry Rolfs, s/n, Campus da Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Paula Peixoto Assemany
- Department of Water Resources and Sanitation, Federal University of Lavras, Campus Universitário, 37200-900 Lavras, Minas Gerais, Brazil
| | - Vinícius José Ribeiro
- Department of Civil Engineering, Federal University of Viçosa, Av. Peter Henry Rolfs, s/n, Campus da Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| |
Collapse
|
20
|
Castro JDS, Calijuri ML, Mattiello EM, Ribeiro VJ, Assemany PP. Algal biomass from wastewater: soil phosphorus bioavailability and plants productivity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 711:135088. [PMID: 31818600 DOI: 10.1016/j.scitotenv.2019.135088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/17/2019] [Accepted: 10/19/2019] [Indexed: 06/10/2023]
Abstract
The cultivation of microalgae in wastewater allows to obtain a biomass concentrated in nutrients and organic material. This biomass added to phosphate fertilizers can promote a slow release of the nutrient and consequently a higher absorption of phosphorus (P). The objective of this study was to investigate P uptake by plants subjected to triple superphosphate (TSP) fertilization, added with microalgae biomass (MB) grown in wastewater. TSP was added with different MB proportions in order to verify if there would be a different behaviour in P release for millet (Pennisetum glaucum L.) plants. With the proportion that maximized P accumulation in plants, a second experiment was carried out to investigate whether MB exerts influence of P diffusion in the soil. Finally, a third trial was conducted in a greenhouse, where TSP and TSP + 12% MB were applied to the soil under different phosphorus doses in corn (Zea mays L.). The proportion of MB in TSP that maximized the increase of P content and concentration in plants was approximately 12% MB. From this proportion, a reduction in the values of the variables analysed in the plant with the increase of the proportion of MB in the biofertilizer was observed. Similar behaviour was observed when evaluating P diffusion in sandy and clay soils. Fertilizers TSP and TSP + 12% MB showed no difference in P diffusion in the soil, while the ratio of 30% MB clearly impaired P diffusion. In a greenhouse, the P content presented significant difference for the tests carried out with TSP and TSP + 12% MB fertilizer, in which the latter provided higher P recovery rate by plants. Therefore, MB added to TSP had a positive influence on plant development and its P recovery capacity when applied in a proportion of 12% MB to the fertilizer mass.
Collapse
Affiliation(s)
- Jackeline de Siqueira Castro
- Department of Civil Engineering, Federal University of Viçosa, Av. Peter Henry Rolfs, s/n, Campus da Universidade Federal de Viçosa, Viçosa3, Minas Gerais 36570-900, Brazil.
| | - Maria Lúcia Calijuri
- Department of Civil Engineering, Federal University of Viçosa, Av. Peter Henry Rolfs, s/n, Campus da Universidade Federal de Viçosa, Viçosa3, Minas Gerais 36570-900, Brazil
| | - Edson Marcio Mattiello
- Department of Soil Science, Federal University of Viçosa, Av. Peter Henry Rolfs, s/n, Campus da Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Vinícius José Ribeiro
- Department of Soil Science, Federal University of Viçosa, Av. Peter Henry Rolfs, s/n, Campus da Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Paula Peixoto Assemany
- Department of Water Resources and Sanitation, Federal University of Lavras, Campus Universitario, Lavras, Minas Gerais, 37200-000, Brazil
| |
Collapse
|