1
|
Gao Q, Zhu F, Wang M, Shao S. A new perspective on the simultaneous removal of nitrogen, tetracycline, and phosphorus by moving bed biofilm reactor under co-metabolic substances. J Environ Sci (China) 2025; 155:431-441. [PMID: 40246478 DOI: 10.1016/j.jes.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 04/19/2025]
Abstract
With the burgeoning growth of aquaculture industry, high concentration of NH4+-N, phosphorus and tetracycline are the prevalent pollutants in aquaculture wastewater posing a significant health risk to aquatic organisms. Therefore, an effective method for treating aquaculture wastewater should be urgently explored. Simultaneous removal of NH4+-N, phosphorus, tetracycline, and chemical oxygen demand (COD) in aquaculture wastewater was developed by moving bed biofilm reactor (MBBR) under co-metabolic substances. The result showed that co-metabolism substances had different effects on MBBR performance, and 79.4 % of tetracycline, 68.2 % of NH4+-N, 61.3 % of total nitrogen, 88.3 % of COD, and 38.1 % of total phosphorus (TP) were synchronously removed with sodium acetate as a co-metabolic carbon source. Protein (PN), polysaccharide (PS), and electron transfer system activity were used to evaluate the MBBR performances, suggesting that PN/PS ratio was 1.48, 0.91, 1.07, 3.58, and 0.79 at phases I-V. Additionally, a mode of tetracycline degradation and TP removal was explored, and the cell apoptosis was evaluated by flow cytometry. The result suggested that 74 %, 83 %, and 83 % of tetracycline were degraded by extracellular extracts, intracellular extracts, and cell debris, and there was no difference between extracts and non-enzyme in TP removal. The ratio of viable and dead cells from biofilm reached 33.3 % and 7.68 % with sodium acetate as a co-metabolic carbon source. Furthermore, Proteobacteria and Bacteroidetes in biofilm were identified as the dominant phyla for tetracycline and nutrients removal. This study provides a new strategy for tetracycline and nutrients removal from aquaculture wastewater through co-metabolism.
Collapse
Affiliation(s)
- Qijuan Gao
- School of Computer and Artificial Intelligence, Hefei Normal University, Hefei 230061, China; Post-doctoral research station of Xie Yuda Tea Co., Ltd., Huangshan, Anhui 245999, China
| | - Fang Zhu
- College of Resources and Environment, Anhui Agricultural University, Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, Hefei 230036, China
| | - Minghui Wang
- College of Resources and Environment, Anhui Agricultural University, Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, Hefei 230036, China
| | - Sicheng Shao
- College of Resources and Environment, Anhui Agricultural University, Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, Hefei 230036, China.
| |
Collapse
|
2
|
Zhu X, Jiang L, Tian Y, Wang L, Pan Y, Li W, Li A. Strategy for repurposing waste anion exchange resins to construct a biofilter for removing dissolved organic matter: performance and mechanism. WATER RESEARCH 2025; 281:123687. [PMID: 40288243 DOI: 10.1016/j.watres.2025.123687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/31/2025] [Accepted: 04/20/2025] [Indexed: 04/29/2025]
Abstract
Anion exchange resins are widely employed in wastewater and drinking water treatment plants to remove dissolved organic matter (DOM). However, the degradation of resin performance necessitates the discontinuation of these treatment projects, resulting in the idling of underperforming resins, referred to as waste anion exchange resins (WAER). Given the substantial investment in operational costs, determining how to economically utilize WAER is essential for restarting the treatment projects. Therefore, this study proposed a strategy for repurposing WAER to construct a biofilter for DOM removal. A biofilter, termed biological anion exchange resin (BAER), was developed using WAER and compared with two conventional biofilters: biological activated carbon (BAC) and sand filter. After the acclimatization period, the BAER biofilter achieved a removal of up to 21.42 % of dissolved organic carbon (DOC), which is 5.8 times greater than the removal rate of the sand filter and comparable to the BAC. Notably, BAER exhibited the highest removal rate of aromatics, achieving 41.04 % UV254 removal, which are precursors to disinfection byproducts (DBPs). Consequently, BAER demonstrated superior control of DBPs, with a removal efficiency of 39.59 %. Additionally, BAER demonstrated effective removal of humic substances due to the bioregeneration of its adsorption sites, which led to significant differences in both the structural composition and functional expression of the biological community in BAER compared to other biofilters. This study also revealed that the bioregenerated adsorption sites primarily capture DOM through electrostatic attraction rather than ion exchange. Overall, these findings confirm the promising application of the BAER biofilter constructed with WAER and offer valuable insights into the associated removal processes.
Collapse
Affiliation(s)
- Xingqi Zhu
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Lu Jiang
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yechao Tian
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Leyi Wang
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yang Pan
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Wentao Li
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Aimin Li
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
3
|
Youcef S, Chebbi M, Youcef L, Bouaziz MG, Soudani A, Sahli A, Deroues C. Chemical oxygen demand (COD) reduction in wastewater from the textile industry by coagulation-flocculation and adsorption. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:536. [PMID: 40210808 DOI: 10.1007/s10661-025-13987-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 04/03/2025] [Indexed: 04/12/2025]
Abstract
The aim of this work was to test the effectiveness of coagulation-flocculation using ferric chloride (FeCl3) and adsorption on a biochar (OSB) prepared in the laboratory and their combination on textile industry wastewater treatment. By coagulation-flocculation, increasing the dose of FeCl3 significantly improved the reduction of chemical oxygen demand (COD) levels as well as turbidity in the wastewater. The COD value (1520 mg O2/L) decreased as the coagulant dose increased, reaching a value of 240 mg/L corresponding to an optimum FeCl3 dose of around 2500 mg/L. When adsorption was applied to the biochar after 4 h of agitation, the COD reduction efficiency was 83.65%. Application of the kinetic models confirmed that chemisorption of the pollutants presented by the COD on the surface of OSB was predominant. COD reduction efficiency improved significantly with increasing adsorbent dose and wastewater initial pH variations. Combining the two processes, starting with coagulation-flocculation followed by adsorption on OSB, was a cost-effective technique. This satisfactory result was based on the fact that this combination enables a lower dose of coagulant (2500 to 100 mg/L) and adsorbent (4 to 2 g/L) to be used than that required when treating by each process alone.
Collapse
Affiliation(s)
- Soufiane Youcef
- Civil Engineering and Hydraulic Department, LARHYSS Laboratory, Mohamed Khider University, Biskra, Algeria.
| | - Meriem Chebbi
- Civil Engineering and Hydraulic Department, LARHYSS Laboratory, Mohamed Khider University, Biskra, Algeria
| | - Leila Youcef
- Civil Engineering and Hydraulic Department, LARHYSS Laboratory, Mohamed Khider University, Biskra, Algeria
| | - Mohamed Ghrissi Bouaziz
- Civil Engineering and Hydraulic Department, LARHYSS Laboratory, Mohamed Khider University, Biskra, Algeria
| | - Amina Soudani
- Industrial Chemistry Department, LARHYSS Laboratory, Mohamed Khider University, Biskra, Algeria
| | - Amane Sahli
- CRND, EESD Laboratory, National Polytechnic School, El Harrach, Algiers, Algeria
| | - Chaima Deroues
- Civil Engineering and Hydraulic Department, Mohamed Khider University, Biskra, Algeria
| |
Collapse
|
4
|
Pandey A, Pathak VM, Navneet, Rajput M. A feasible approach for azo-dye (methyl orange) degradation by textile effluent isolate Serratia marcescens ED1 strain for water sustainability: AST identification, degradation optimization and pathway hypothesis. Heliyon 2024; 10:e32339. [PMID: 38961949 PMCID: PMC11219335 DOI: 10.1016/j.heliyon.2024.e32339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 05/29/2024] [Accepted: 06/02/2024] [Indexed: 07/05/2024] Open
Abstract
Methyl orange (MO) is a dye commonly used in the textile industry that harms aquatic life, soil and human health due to its potential as an environmental pollutant. The present study describes the dye degradation ability of Serratia marcescens strain ED1 isolated from textile effluent and characterized by 16S rRNA gene sequence analysis. The laccase property of bacterial isolate was confirmed qualitatively. The effects of various factors (pH, temperature, incubation time, and dye concentration) were evaluated using Response Surface Methodology (RSM). The maximum dye (MO) degradation was 81.02 % achieved at 37 °C temperature and 7.0 pH with 200 mg/L dye concentration after 48 h of incubation. The beef extract, ammonium nitrate and fructose supplementation showed better response during bioremediation among the different carbon and nitrogen sources. The degree of pathogenicity was confirmed through the simple plate-based method, and an antibiotic resistance profile was used to check the low-risk rate of antibiotic resistance. However, the fate and extinct of degraded MO products were analysed through UV-Vis spectroscopy, FT-IR, and GC-MS analysis to confirm the biodegradation potential of the bacterial strain ED1 and intermediate metabolites were identified to propose metabolic pathway. The phytotoxicity study on Vigna radiata L. seeds confirmed nontoxic effect of degraded MO metabolites and indicates promising degradation potential of S. marcescens strain ED1 to successfully remediate MO dye ecologically sustainably.
Collapse
Affiliation(s)
- Akanksha Pandey
- Department of Botany and Microbiology, Gurukula Kangri (Deemed to be University), Haridwar, 249404, India
| | - Vinay Mohan Pathak
- Department of Botany and Microbiology, Gurukula Kangri (Deemed to be University), Haridwar, 249404, India
- Department of Microbiology, University of Delhi, New Delhi, 110021, India
| | - Navneet
- Department of Botany and Microbiology, Gurukula Kangri (Deemed to be University), Haridwar, 249404, India
| | - Minakshi Rajput
- Department of Biotechnology, School of Applied and Life Sciences (SALS) Uttaranchal University, Dehradun, 248007, India
| |
Collapse
|
5
|
Yang F, Duan Y, Li Y, Zhu D, Wang Z, Luo Z, Zhang Y, Zhang G, He X, Kang X. S100A6 Regulates nucleus pulposus cell apoptosis via Wnt/β-catenin signaling pathway: an in vitro and in vivo study. Mol Med 2024; 30:87. [PMID: 38877413 PMCID: PMC11179208 DOI: 10.1186/s10020-024-00853-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/03/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Intervertebral disc degeneration (IDD) is a common musculoskeletal degenerative disease, which often leads to low back pain and even disability, resulting in loss of labor ability and decreased quality of life. Although many progresses have been made in the current research, the underlying mechanism of IDD remains unclear. The apoptosis of nucleus pulposus (NP) cells (NPCs) is an important pathological mechanism in intervertebral disc degeneration (IDD). This study evaluated the relationship between S100A6 and NPCs and its underlying mechanism. METHODS Mass spectrometry, bioinformatics, and quantitative real-time polymerase chain reaction (qRT-PCR) analyses were used to screen and verify hub genes for IDD in human IVD specimens with different degeneration degrees. Western blotting, immunohistochemistry (IHC), and/or immunofluorescence (IF) were used to detect the expression level of S100A6 in human NP tissues and NPCs. The apoptotic phenotype of NPCs and Wnt/β-catenin signaling pathway were evaluated using flow cytometry, western blotting, and IF. S100A6 was overexpressed or knocked down in NPCs to determine its impact on apoptosis and Wnt/β-catenin signaling pathway activity. Moreover, we used the XAV-939 to inhibit and SKL2001 to activate the Wnt/β-catenin signaling pathway. The therapeutic effect of S100A6 inhibition on IDD was also evaluated. RESULTS S100A6 expression increased in IDD. In vitro, increased S100A6 expression promoted apoptosis in interleukin (IL)-1β-induced NPCs. In contrast, the inhibition of S100A6 expression partially alleviated the progression of annulus fibrosus (AF) puncture-induced IDD in rats. Mechanistic studies revealed that S100A6 regulates NPC apoptosis via Wnt/β-catenin signaling pathway. CONCLUSIONS This study showed that S100A6 expression increased during IDD and promoted NPCs apoptosis by regulating the Wnt/β-catenin signaling pathway, suggesting that S100A6 is a promising new therapeutic target for IDD.
Collapse
Affiliation(s)
- Fengguang Yang
- Department of Orthopedics, The Second Hospital of Lanzhou University, 82 Cuiying Men, Lanzhou, Gansu Province, 730030, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Yanni Duan
- Department of Orthopedics, The Second Hospital of Lanzhou University, 82 Cuiying Men, Lanzhou, Gansu Province, 730030, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Yanhu Li
- Department of Orthopedics, The Second Hospital of Lanzhou University, 82 Cuiying Men, Lanzhou, Gansu Province, 730030, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Daxue Zhu
- Department of Orthopedics, The Second Hospital of Lanzhou University, 82 Cuiying Men, Lanzhou, Gansu Province, 730030, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Zhaoheng Wang
- Department of Orthopedics, The Second Hospital of Lanzhou University, 82 Cuiying Men, Lanzhou, Gansu Province, 730030, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Zhangbin Luo
- Department of Orthopedics, The Second Hospital of Lanzhou University, 82 Cuiying Men, Lanzhou, Gansu Province, 730030, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Yizhi Zhang
- Department of Orthopedics, The Second Hospital of Lanzhou University, 82 Cuiying Men, Lanzhou, Gansu Province, 730030, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Guangzhi Zhang
- Department of Orthopedics, The Second Hospital of Lanzhou University, 82 Cuiying Men, Lanzhou, Gansu Province, 730030, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Xuegang He
- Department of Orthopedics, The Second Hospital of Lanzhou University, 82 Cuiying Men, Lanzhou, Gansu Province, 730030, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Xuewen Kang
- Department of Orthopedics, The Second Hospital of Lanzhou University, 82 Cuiying Men, Lanzhou, Gansu Province, 730030, China.
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China.
- Orthopaedics Key Laboratory of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, 730030, China.
| |
Collapse
|
6
|
Fan Y, Yan D, Chen X, Ran X, Cao W, Li H, Wan J. Novel insights into the co-metabolism of pyridine with different carbon substrates: Performance, metabolism pathway and microbial community. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133396. [PMID: 38176261 DOI: 10.1016/j.jhazmat.2023.133396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/05/2023] [Accepted: 12/26/2023] [Indexed: 01/06/2024]
Abstract
Pyridine is a widely employed nitrogen-containing heterocyclic organic, and the discharge of pyridine wastewater poses substantial environmental challenges due to its recalcitrance and toxicity. Co-metabolic degradation emerged as a promising solution. In this study, readily degradable glucose and the structurally analogous phenol were used as co-metabolic substrates respectively, and the corresponding mechanisms were thoroughly explored. To treat 400 mg/L pyridine, all reactors achieved remarkably high removal efficiencies, surpassing 98.5%. And the co-metabolism reactors had much better pyridine-N removal performance. Batch experiments revealed that glucose supplementation bolstered nitrogen assimilation, thereby promoting the breakdown of pyridine, and resulting in the highest pyridine removal rate and pyridine-N removal efficiency. The high abundance of Saccharibacteria (15.54%) and the enrichment of GLU and glnA substantiated this finding. On the contrary, phenol delayed pyridine oxidation, potentially due to its higher affinity for phenol hydroxylase. Nevertheless, phenol proved valuable as a carbon source for denitrification, augmenting the elimination of pyridine-N. This was underscored by the abundant Thauera (30.77%) and Parcubacteria (7.21%) and the enriched denitrification enzymes (narH, narG, norB, norC, and nosZ, etc.). This study demonstrated that co-metabolic degradation can bolster the simultaneous conversion of pyridine and pyridine-N, and shed light on the underling mechanism.
Collapse
Affiliation(s)
- Yanyan Fan
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China; ZhiHe Environmental Science and Technology Co., Ltd., Zhengzhou 450001, China
| | - Dengke Yan
- ZhiHe Environmental Science and Technology Co., Ltd., Zhengzhou 450001, China
| | - Xiaolei Chen
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaoni Ran
- Research Center of Wastewater Low-Carbon Treatment and Resource Utilization, Huanghuai Laboratory, Zhengzhou 450046, China
| | - Wang Cao
- ZhiHe Environmental Science and Technology Co., Ltd., Zhengzhou 450001, China
| | - Haisong Li
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China; Research Center of Wastewater Low-Carbon Treatment and Resource Utilization, Huanghuai Laboratory, Zhengzhou 450046, China.
| | - Junfeng Wan
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
7
|
Zheng Y, Song H, Chen Q, Hou Y, Zhang X, Han S. Comparing biofilm reactors inoculated with Shewanella for decolorization of Reactive Black 5 using different carrier materials. Biotechnol J 2024; 19:e2300299. [PMID: 37909408 DOI: 10.1002/biot.202300299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/12/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023]
Abstract
This study assessed the performance of biofilm reactors inoculated with azo dye degrading Shewanella for the decolorization of Reactive Black 5 (RB5), using three different carrier materials, namely almond shell biochar, moving bed biofilm reactor (MBBR), and polypropylene carrier (PPC). The reactors were fed with low-nutrient artificial wastewater containing RB5, and all three carriers showed good RB5 decolorization performance, with varying efficiencies. Liquid Chromatography-Mass Spectrometry analysis revealed distinct RB5 degradation pathways associated with each carrier, influenced by carrier materials and microbial communities. The MBBR carrier exhibited good stability due to its rough surface and microbial aggregates. Sequencing results highlighted differences in the microbial community structures among the carriers. Shewanella predominated the functional bacteria in the MBBR and PPC carriers, while the biochar carrier fostered highly efficient degrading microbial communities. The physicochemical properties of carrier materials significantly influenced the microbial community and RB5 degradation efficiency. These findings provide valuable insights for optimizing biofilm reactors for dye-containing wastewater treatment.
Collapse
Affiliation(s)
- Yumin Zheng
- Department of Materials and Environmental Engineering, College of Chemistry & Chemical Engineering, Shantou University, Shantou, Guangdong, China
| | - Haihong Song
- Department of Materials and Environmental Engineering, College of Chemistry & Chemical Engineering, Shantou University, Shantou, Guangdong, China
| | - Qianfei Chen
- Department of Materials and Environmental Engineering, College of Chemistry & Chemical Engineering, Shantou University, Shantou, Guangdong, China
| | - Yayi Hou
- Department of Materials and Environmental Engineering, College of Chemistry & Chemical Engineering, Shantou University, Shantou, Guangdong, China
| | - Xinxin Zhang
- Foshan Institute of Environment and Energy Research, Foshan, Guangdong, China
| | - Songlei Han
- Sponge Center, Shanghai Municipal Engineering Design Institute (Group) Co., LTD, Shanghai, China
| |
Collapse
|
8
|
Tian F, Wang Y, Guo G, Ding K, Yang F, Wang C, Wang H, Yan M. Meta-genome analysis of a newly enriched azo dyes detoxification halo-thermophilic bacterial consortium. ENVIRONMENTAL RESEARCH 2023; 237:116828. [PMID: 37558110 DOI: 10.1016/j.envres.2023.116828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 08/11/2023]
Abstract
Treating textile wastewaters were always inhibited by its higher salt concentration and temperature. In this study, a halo-thermophilic bacterial consortium YM was enriched with ability to decolorize acid brilliant scarlet GR (ABS) at 55 °C and 10% salinity. Under optimum conditions of pH (8), temperature (55 °C), and salinity (10%), YM decolorized 97% of ABS under anaerobic conditions. Alteribacillus was identified to be the dominant genus in consortium YM. Consortium YM showed significant decolorization ability under a wide range of salinity (1%-10%), pH (7-9) and temperature (45 °C-60 °C). The degradation pathway of ABS was proposed by the combination of UV-vis spectral analysis, Fourier transform infrared (FTIR), gas chromatography mass spectrometric (GC-MS), and metagenomic analysis. Azoreductase, which was an important enzyme in decolorization process, was identified with great variation in the genome of consortium YM. Meanwhile, the metabolic intermediates after decolorization was identified with low biotoxicity by phytotoxicity tests. This study first identified that Alterbacillus play an important role in azo dye decolorization and degradation process under halo-thermophlic conditions and provided significant knowledge for azo dye decolorization and degradation process.
Collapse
Affiliation(s)
- Fang Tian
- College of Environmental Engineering, Nanjing Institute of Technology, Nanjing, 211167, China
| | - Yongbo Wang
- Shijiazhuang Institute of Pomology, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050061, China
| | - Guang Guo
- College of Environmental Engineering, Nanjing Institute of Technology, Nanjing, 211167, China
| | - Keqiang Ding
- College of Environmental Engineering, Nanjing Institute of Technology, Nanjing, 211167, China
| | - Feng Yang
- College of Environmental Engineering, Nanjing Institute of Technology, Nanjing, 211167, China
| | - Chongyang Wang
- Miami College, Henan University, Kaifeng, 475000, Henan, China.
| | - Huiya Wang
- College of Environmental Engineering, Nanjing Institute of Technology, Nanjing, 211167, China
| | - Mengdi Yan
- Miami College, Henan University, Kaifeng, 475000, Henan, China
| |
Collapse
|
9
|
Zhang Y, He Y, Huang J, Chen J, Jia X, Peng X. Dimorphism of Candida tropicalis and its effect on nitrogen and phosphorus removal and sludge settleability. BIORESOURCE TECHNOLOGY 2023; 382:129186. [PMID: 37201869 DOI: 10.1016/j.biortech.2023.129186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/10/2023] [Accepted: 05/14/2023] [Indexed: 05/20/2023]
Abstract
Candida tropicalis PNY, a novel dimorphic strain with the capacity of simultaneous carbon, nitrogen and phosphorus removal in anaerobic and aerobic conditions, was isolated from activated sludge. Dimorphism of C. tropicalis PNY had effect on removing nitrogen and phosphorous and slightly affected COD removal under aerobic condition. Sample with high hypha formation rate (40 ± 5%) had more removal efficiencies of NH4+-N (50 mg/L) and PO43--P (10 mg/L), which could achieve 82.19% and 97.53%, respectively. High hypha cells dosage exhibited good settleability and filamentous overgrowth was not observed. According to label-free quantitative proteomics assays. Up-regulated proteins involved in the mitogen-activated protein kinase (MAPK) pathway indicated the active growth and metabolism process of sample with high hypha formation rate (40 ± 5%). And proteins concerning about glutamate synthetase and SPX domain-contain protein explain for the nutrient removal mechanism including assimilation of ammonia and polyphosphates synthesis.
Collapse
Affiliation(s)
- Yaqi Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuzhe He
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Jingfei Huang
- College of Plant Protection, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou 350002, China.
| | - Jiejing Chen
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaoshan Jia
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xingxing Peng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
10
|
El-Liethy MA, Hemdan BA, El-Taweel GE. New insights for tracking bacterial community structures in industrial wastewater from textile factories to surface water using phenotypic, 16S rRNA isolates identifications and high-throughput sequencing. Acta Trop 2023; 238:106806. [PMID: 36574894 DOI: 10.1016/j.actatropica.2022.106806] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/13/2022] [Accepted: 12/24/2022] [Indexed: 12/26/2022]
Abstract
Industrial wastewater can possibly change the microbial ecological environment. There are few studies that focus on the bacterial variety in textile wastewater effluents and after combination with domestic wastewater. Thus, this study aimed to determine dye degrading bacteria from textile wastewater and environmental water samples using cultural method followed by phenotypic using BIOLOG and genotypic identification (16S rRNA) for dye degrading isolates identifications. Moreover, the bacterial communities in three textile and four environmental samples using Illumina MiSeq high-throughput sequencing were investigated. The findings revealed that in textile water samples, the ratio of dye-degrading bacteria (DDB) to total bacterial counts (TBC) was 27%. The identified DDB genera by 16S rRNA based on the cultural approach were Citrobacter spp., Klebsiella spp., Enterobacter spp., Pseudomonas spp., and Aeromonas spp. Regarding to the metagenomics analyses, the environmental samples had 5,598 Operational Toxanomic Units (OTUs) more than textile wastewater samples (1,463 OTUs). Additionally, the most abundant phyla in the textile wastewater were Proteobacteria (24.45-94.83%), Bacteriodetes (0.5-44.84%) and Firmicutes (3.72-67.40%), while, Proteobacteria (30.8-76.3%), bacteroidetes (8.5-50%) and Acentobacteria (0.5-23.12%) were the most abundant phyla in the environmental samples. The maximum abundant bacteria at species level in environmental samples were Aquabacterium parvum (36.71%), Delftia tsuruhatensis (17.61%), Parabacteriodes chartae (15.39%) and Methylorubrum populi (7.51%) in El-Rahawy Drain water (RDW), River Nile water (RNW), wastewater (RWW) from WWTP in Zennin and El-Rahawy Drain sediment (RDS), respectively, whereas the maximum abundant bacteria at species level in textile wastewater were Alkalibacterium pelagium (34.11%), Enterobacter kobei (26.09%) and Chryseobacterium montanum (16.93%) in factory 1 (HBT) sample, SHB sample (before mixing with domestic wastewater) and SHB sample (after mixing with domestic wastewater), respectively. In conclusion, the microbial communities in textile wastewaters are similar to those in environmental samples at the phylum level but distinct at the genus and species levels because they are exposed to a wider range of environmental circumstances.
Collapse
Affiliation(s)
- Mohamed Azab El-Liethy
- Environmental Microbiology Laboratory, Water Pollution Research Department, National Research Centre, Dokki, Giza 12622, Egypt.
| | - Bahaa A Hemdan
- Environmental Microbiology Laboratory, Water Pollution Research Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - Gamila E El-Taweel
- Environmental Microbiology Laboratory, Water Pollution Research Department, National Research Centre, Dokki, Giza 12622, Egypt
| |
Collapse
|
11
|
Cheng Z, Xu D, Zhang Q, Tao Z, Hong R, Chen Y, Tang X, Zeng S, Wang S. Enhanced nickel removal and synchronous bioelectricity generation based on substrate types in microbial fuel cell coupled with constructed wetland: performance and microbial response. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:19725-19736. [PMID: 36239892 DOI: 10.1007/s11356-022-23458-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
In this study, an attempt was made to clarify the impact of substrates on the microbial fuel cell coupled with constructed wetland (CW-MFC) towards the treatment of nickel-containing wastewater. Herein, zeolite (ZEO), coal cinder (COA), ceramsite (CER), and granular activated carbon (GAC) were respectively introduced into lab-scaled CW-MFCs to systematically investigate the operational performances and microbial community response. GAC was deemed as the most effective substrate, and the corresponding device yielded favorable nickel removal efficiencies over 99% at different initial concentrations of nickel. GAC-CW-MFC likewise produced a maximum output voltage of 573 mV, power density of 8.95 mW/m2, and internal resistance of 177.9 Ω, respectively. The strong adsorptive capacity of nickel by GAC, accounting for 54.5% of total contaminant content, was mainly responsible for the favorable nickel removal performances of device GAC-CW-MFC. The high-valence Ni2+ was partially reduced to elemental Ni0 on the cathode, which provided evidence for the removal of heavy metals via the cathodic reduction of CW-MFC. The microbial community structure varied considerably as a result of substrates addition. For an introduction of GAC into the CW-MFC, a remarkably enriched population of genera Thermincola, norank_f__Geobacteraceae, Anaerovorax, Bacillus, etc. was noted. This study was dedicated to providing a theoretical guidance for an effective regulation of CW-MFC treatment on nickel-containing wastewater and accompanied by bioelectricity generation via the introduction of optimal substrate.
Collapse
Affiliation(s)
- Zhan Cheng
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China
| | - Dayong Xu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China.
| | - Qingyun Zhang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China
| | - Zhengkai Tao
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China
| | - Ran Hong
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China
| | - Yu Chen
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China
| | - Xiaolu Tang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China
| | - Shuai Zeng
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China
| | - Siyu Wang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China
| |
Collapse
|
12
|
Raj S, Singh H, Bhattacharya J. Treatment of textile industry wastewater based on coagulation-flocculation aided sedimentation followed by adsorption: Process studies in an industrial ecology concept. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159464. [PMID: 36257438 DOI: 10.1016/j.scitotenv.2022.159464] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/05/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
This study examines the feasibility of treatment of textile industry wastewater using a two-step process that includes coagulation-flocculation aided sedimentation and adsorption. It also aims at finding reuse potential of the generated sludge while making the treated water recyclable for the same industry in an industrial ecology concept. The wastewater was collected from a small-scale textile plant with a discharge of 400 L/week, where more than 70 similar textile plants are located in and around the area. FeCl3 was selected as the coagulant for the initial step in the treatment process, and a bimetallic oxide Graphene Oxide (GO) hybrid was selected as the adsorbent for the latter step of the treatment process. The experimental conditions for the coagulation process included the optimization of dose, stirring speed, stirring time, and settling time. For the adsorption process it included the optimization of stirring time, dose, and rate. The parameters like Chemical Oxygen Demand (COD) and color were checked during the treatment process and near complete removal of COD and color were achieved using the suggested materials and process. The treated water was found fit for recycling - towards making zero liquid discharge plant. Later, the sludge generated from both the steps in the processes was sundried and mixed with cement and tested for 7 days and 28 days of compressive strength. A total of 26 kg of cement was replaced, by using sludge generated from treating 100 L of textile wastewater, in the sludge-cement mix. In addition to solving the sludge problem, the process can help in reducing the requirement of cement in concrete. Finally, a detailed economic assessment for the entire study was also performed and is reported.
Collapse
Affiliation(s)
- Sankalp Raj
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, India
| | - Hemant Singh
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, India
| | - Jayanta Bhattacharya
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, India; Department of Mining Engineering Indian Institute of Technology Kharagpur, India; Zelence Industries Pvt. Ltd., India.
| |
Collapse
|
13
|
Samuchiwal S, Vishwakarma R, Singh NV, Kalia S, Wadhawan G, Ahammad SZ, Malik A. Integration of coagulation-flocculation process for improved solid–liquid separation of anaerobically treated textile effluent. SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2022.2140437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Saurabh Samuchiwal
- Applied Microbiology Lab, Centre for Rural Development and Technology, Indian Institute of Technology, Delhi, Hauz Khas, India
| | - Rashi Vishwakarma
- Applied Microbiology Lab, Centre for Rural Development and Technology, Indian Institute of Technology, Delhi, Hauz Khas, India
| | - Nagesh Vikram Singh
- Applied Microbiology Lab, Centre for Rural Development and Technology, Indian Institute of Technology, Delhi, Hauz Khas, India
| | - Shweta Kalia
- Applied Microbiology Lab, Centre for Rural Development and Technology, Indian Institute of Technology, Delhi, Hauz Khas, India
| | - Gunisha Wadhawan
- Environmental Microbiology Lab, Guru Gobind Singh Indraprastha University, Delhi, Hauz Khas, India
| | - Shaikh Ziauddin Ahammad
- Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology, Delhi, Hauz Khas, India
| | - Anushree Malik
- Applied Microbiology Lab, Centre for Rural Development and Technology, Indian Institute of Technology, Delhi, Hauz Khas, India
| |
Collapse
|
14
|
Lu H, Xu H, Yang P, Bilal M, Zhu S, Zhong M, Zhao L, Gu C, Liu S, Zhao Y, Geng C. Transcriptome Analysis of Bacillus amyloliquefaciens Reveals Fructose Addition Effects on Fengycin Synthesis. Genes (Basel) 2022; 13:genes13060984. [PMID: 35741746 PMCID: PMC9222730 DOI: 10.3390/genes13060984] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 02/05/2023] Open
Abstract
Fengycin is a lipopeptide produced by Bacillus that has a strong inhibitory effect on filamentous fungi; however, its use is restricted due to poor production and low yield. Previous studies have shown that fengycin biosynthesis in B. amyloliquefaciens was found to be significantly increased after fructose addition. This study investigated the effect of fructose on fengycin production and its regulation mechanism in B. amyloliquefaciens by transcriptome sequencing. According to the RNA sequencing data, 458 genes were upregulated and 879 genes were downregulated. Transcriptome analysis results showed that fructose changed the transcription of amino acid synthesis, fatty acid metabolism, and energy metabolism; alterations in these metabolic pathways contribute to the synthesis of fengycin. In an MLF medium (modified Landy medium with fructose), the expression level of the fengycin operon was two-times higher than in an ML medium (modified Landy medium). After fructose was added to B. amyloliquefaciens, the fengycin-synthesis-associated genes were activated in the process of fengycin synthesis.
Collapse
Affiliation(s)
- Hedong Lu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China; (H.L.); (H.X.); (P.Y.); (M.B.); (S.Z.); (M.Z.); (L.Z.); (C.G.); (S.L.); (Y.Z.)
- National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hai Xu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China; (H.L.); (H.X.); (P.Y.); (M.B.); (S.Z.); (M.Z.); (L.Z.); (C.G.); (S.L.); (Y.Z.)
| | - Panping Yang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China; (H.L.); (H.X.); (P.Y.); (M.B.); (S.Z.); (M.Z.); (L.Z.); (C.G.); (S.L.); (Y.Z.)
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China; (H.L.); (H.X.); (P.Y.); (M.B.); (S.Z.); (M.Z.); (L.Z.); (C.G.); (S.L.); (Y.Z.)
| | - Shaohui Zhu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China; (H.L.); (H.X.); (P.Y.); (M.B.); (S.Z.); (M.Z.); (L.Z.); (C.G.); (S.L.); (Y.Z.)
| | - Mengyuan Zhong
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China; (H.L.); (H.X.); (P.Y.); (M.B.); (S.Z.); (M.Z.); (L.Z.); (C.G.); (S.L.); (Y.Z.)
| | - Li Zhao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China; (H.L.); (H.X.); (P.Y.); (M.B.); (S.Z.); (M.Z.); (L.Z.); (C.G.); (S.L.); (Y.Z.)
| | - Chengyuan Gu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China; (H.L.); (H.X.); (P.Y.); (M.B.); (S.Z.); (M.Z.); (L.Z.); (C.G.); (S.L.); (Y.Z.)
| | - Shuai Liu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China; (H.L.); (H.X.); (P.Y.); (M.B.); (S.Z.); (M.Z.); (L.Z.); (C.G.); (S.L.); (Y.Z.)
| | - Yuping Zhao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China; (H.L.); (H.X.); (P.Y.); (M.B.); (S.Z.); (M.Z.); (L.Z.); (C.G.); (S.L.); (Y.Z.)
| | - Chengxin Geng
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China; (H.L.); (H.X.); (P.Y.); (M.B.); (S.Z.); (M.Z.); (L.Z.); (C.G.); (S.L.); (Y.Z.)
- Correspondence: ; Tel.: +86-517-83559107
| |
Collapse
|
15
|
Zhang Z, Xi H, Yu Y, Wu C, Yang Y, Guo Z, Zhou Y. Coupling of membrane-based bubbleless micro-aeration for 2,4-dinitrophenol degradation in a hydrolysis acidification reactor. WATER RESEARCH 2022; 212:118119. [PMID: 35114527 DOI: 10.1016/j.watres.2022.118119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/20/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Micro-aeration hydrolysis acidification (HA) is an effective method to enhance the removal of toxic and refractory organic matter, but the difficulty in stable dosing control of trace oxygen limits its wide application. Membrane-based bubbleless aeration has been proved as an ideal aeration method because of its higher oxygen transfer rate, more uniform mass transfer, and lower cost than HA. However, the available information on its application in HA is limited. In this study, membrane-based bubbleless micro-aeration coupled with hydrolysis acidification (MBL-MHA) was exploited to investigate the performance of 2,4-dinitrophenol (2,4-DNP) degradation via comparing it with bubble micro-aeration HA (MHA) and anaerobic HA. The results indicated that the performances in MBL-MHA and MHA were higher than those in HA during the experiment. 2,4-DNP degradation rates under redox microenvironments caused by counter-diffusion in MBL-MHA (84.43∼97.28%) were higher than those caused by co-diffusion in MHA (82.41∼94.71%) under micro-aeration of 0.5-5.0 mL air/min. The 2,4-DNP degradation pathways in MBL-MHA were nitroreduction, deamination, aromatic ring cleavage, and fermentation, while those in MHA were hydroxylation, aromatic ring cleavage, and fermentation. Reduction/oxidation-related, interspecific electron transfer-related species, and fermentative species in MBL-MHA were more abundant than that in MHA. Ultimately, more reducing/oxidizing forces formed by more redox proteins/enzymes from these rich species could enhance 2,4-DNP degradation in MBL-MHA.
Collapse
Affiliation(s)
- Zhuowei Zhang
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing, 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, China
| | - Hongbo Xi
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, China
| | - Yin Yu
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, China.
| | - Changyong Wu
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, China
| | - Yang Yang
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, China; College of Chemical and Environmental Engineering, China University of Mining & Technology, Beijing, 100083, China
| | - Zhenzhen Guo
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, China; College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070China
| | - Yuexi Zhou
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing, 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, China.
| |
Collapse
|
16
|
Photosynthetic Protein-Based Edible Quality Formation in Various Porphyra dentata Harvests Determined by Label-Free Proteomics Analysis. Cells 2022; 11:cells11071136. [PMID: 35406700 PMCID: PMC8997503 DOI: 10.3390/cells11071136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/18/2022] [Accepted: 03/25/2022] [Indexed: 12/04/2022] Open
Abstract
The influence of harvest time on the photosynthetic protein quality of the red alga Porphyra dentata was determined using label-free proteomics. Of 2716 differentially abundant proteins that were identified in this study, 478 were upregulated and 374 were downregulated. The top enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene ontology (GO) pathways were metabolic processes and biosynthetic pathways such as photosynthesis, light harvesting, and carbon fixation in photosynthetic organisms. Nine important photosynthetic proteins were screened. Correlations among their expression levels were contrasted and verified by western blotting. PSII D1 and 44-kDa protein levels increased with later harvest time and increased light exposure. Specific photoprotective protein expression accelerated P. dentata growth and development. Biological processes such as photosynthesis and carbon cycling increased carbohydrate metabolism and decreased the total protein content. The results of the present study provide a scientific basis for the optimization of the culture and harvest of P. dentata.
Collapse
|
17
|
Cong J, Xie X, Liu Y, Qin Y, Fan J, Fang Y, Liu N, Zhang Q, Song X, Sand W. Biochemical characterization of a novel azo reductase named BVU5 from the bacterial flora DDMZ1: application for decolorization of azo dyes. RSC Adv 2022; 12:1968-1981. [PMID: 35425265 PMCID: PMC8979046 DOI: 10.1039/d1ra08090c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/09/2021] [Indexed: 12/07/2022] Open
Abstract
One of the main mechanisms of bacterial decolorization and degradation of azo dyes is the use of biological enzymes to catalyze the breaking of azo bonds. This paper shows the expression and properties of a novel azo reductase (hybrid-cluster NAD(P)-dependent oxidoreductase, accession no. A0A1S1BVU5, named BVU5) from the bacterial flora DDMZ1 for degradation of azo dyes. The molecular weight of BVU5 is about 40.1 kDa, and it contains the prosthetic group flavin mononucleotide (FMN). It has the decolorization ability of 80.1 ± 2.5% within 3 min for a dye concentration of 20 mg L−1, and 53.5 ± 1.8% even for a dye concentration of 200 mg L−1 after 30 min. The optimum temperature of enzyme BVU5 is 30 °C and the optimum pH is 6. It is insensitive to salt concentration up to a salinity level of 10%. Furthermore, enzyme BVU5 has good tolerance toward some metal ions (2 mM) such as Mn2+, Ca2+, Mg2+ and Cu2+ and some organic solvents (20%) such as DMSO, methanol, isopentyl, ethylene glycol and N-hexane. However, the enzyme BVU5 has a low tolerance to high concentrations of denaturants. In particular, it is sensitive to the denaturants guanidine hydrochloride (GdmCl) (2 M) and urea (2 M). Analysis of the dye substrate specificity shows that enzyme BVU5 decolorizes most azo dyes, which is indicating that the enzyme is not strictly substrate specific, it is a functional enzyme for breaking the azo structure. Liquid chromatography/time-of-flight/mass spectrometry (LC-TOF-MS) revealed after the action of enzyme BVU5 that some intermediate products with relatively large molecular weights were produced; this illustrates a symmetric or an asymmetric rapid cleavage of the azo bonds by this enzyme. The potential degradation pathways and the enzyme-catalyzed degradation mechanism are deduced in the end of this paper. The results give insight into the potential of a rapid bio-pretreatment by enzyme BVU5 for processing azo dye wastewater. The combination of BVU5 enzyme and coenzyme NADH can quickly degrade the azo dye RB5.![]()
Collapse
Affiliation(s)
- Junhao Cong
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Key Laboratory of Pollution Control and Emission Reduction Technology for Textile Industry, Donghua University Shanghai 201620 China
| | - Xuehui Xie
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Key Laboratory of Pollution Control and Emission Reduction Technology for Textile Industry, Donghua University Shanghai 201620 China.,Shanghai Institute of Pollution Control and Ecological Security Shanghai 200092 P. R. China
| | - Yanbiao Liu
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Key Laboratory of Pollution Control and Emission Reduction Technology for Textile Industry, Donghua University Shanghai 201620 China
| | - Yan Qin
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Key Laboratory of Pollution Control and Emission Reduction Technology for Textile Industry, Donghua University Shanghai 201620 China
| | - Jiao Fan
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Key Laboratory of Pollution Control and Emission Reduction Technology for Textile Industry, Donghua University Shanghai 201620 China
| | - Yingrong Fang
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Key Laboratory of Pollution Control and Emission Reduction Technology for Textile Industry, Donghua University Shanghai 201620 China
| | - Na Liu
- School of Environment and Surveying Engineering, Suzhou University Suzhou Anhui 234000 China
| | - Qingyun Zhang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University Wuhu Anhui 241000 China
| | - Xinshan Song
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Key Laboratory of Pollution Control and Emission Reduction Technology for Textile Industry, Donghua University Shanghai 201620 China.,Shanghai Institute of Pollution Control and Ecological Security Shanghai 200092 P. R. China
| | - Wolfgang Sand
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Key Laboratory of Pollution Control and Emission Reduction Technology for Textile Industry, Donghua University Shanghai 201620 China.,Institute of Biosciences, Freiberg University of Mining and Technology Freiberg 09599 Germany
| |
Collapse
|
18
|
Khan S, Bhardwaj U, Iqbal HMN, Joshi N. Synergistic role of bacterial consortium to biodegrade toxic dyes containing wastewater and its simultaneous reuse as an added value. CHEMOSPHERE 2021; 284:131273. [PMID: 34216920 DOI: 10.1016/j.chemosphere.2021.131273] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 02/05/2023]
Abstract
The current environmental research has fascinated the sustainable exploitation of mix bacterial consortium to biodegrade the environmentally-related toxic compounds, including hazardous synthetic dyes. Based on the existing literature evidence, textile and other industrial waste effluents pollute the natural water bodies. Textile effluent contains synthetic dyes which are liberated in the environment without proper treatment. The presence of toxic dyes added to the textile effluents undoubtedly affects the flora and fauna as that untreated water is used for irrigation by local farmers. Many conventional and biological methods are in action for the treatment of wastewater. Physical and chemical processes are expensive as compared to microbial treatments. The use of microbial consortia generates efficient results. Wastewater is a valuable resource, however, up to 80% of wastewater is released to different water matrices. This discernment needs to change for a better tomorrow. In this context, herein, we present a robust microbial-assisted treatment and simultaneously reuse of the treated wastewater as an added value to induce plant growth. Thus, the microbial approach for textile waste treatment release by-product after degradation should be non-toxic for the environment. In the present study, the toxicity of synthetic textile dye named Reactive Red 120, Reactive Orange 122, Reactive Yellow 160, and Reactive Blue 19 was investigated using a bioassay method with plant species namely Sorghum bicolor. Plate and Pot experiment was conducted with respect to untreated Azo dyes, degraded metabolites obtained from single bacteria, and consortium. Efficient Seed germination (89%), shoot length (12.4 cm), root length (15.6 cm) of the plants were observed for bacterial consortium degraded metabolites exposed seeds after comparing with the control. The degraded metabolite also increases protein (45.56 mg/g) and sugar (3.15 mg/g) contents. Bioremediation of various textile industrial effluents saves the ecosystem from the harmful effects of hazardous dyes. The biological decolorization of the textile azo dyes was investigated under co-metabolic conditions. The degraded metabolites can be used to enhance crop productivity and for commercial application. This mandates the current and future research to develop economically feasible and environmentally sustainable wastewater treatment practices.
Collapse
Affiliation(s)
- Shellina Khan
- Department of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh, 332311, Sikar, Rajasthan, India
| | - Uma Bhardwaj
- Department of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh, 332311, Sikar, Rajasthan, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| | - Navneet Joshi
- Department of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh, 332311, Sikar, Rajasthan, India.
| |
Collapse
|
19
|
Recent advances in the biodegradation of azo dyes. World J Microbiol Biotechnol 2021; 37:137. [PMID: 34273009 DOI: 10.1007/s11274-021-03110-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/12/2021] [Indexed: 01/14/2023]
Abstract
As dye demand continues to rapidly increase in the food, pharmaceutical, cosmetic, paper, textile, and leather industries, an industrialization increase is occurring. Meanwhile, the degradation and removal of azo dyes have raised broad concern regarding the hazards posed by these dyes to the ecological environment and human health. Physicochemical treatments have been applied but are hindered by high energy and economic costs, high sludge production, and chemicals handling. Comparatively, the bioremediation technique is an eco-friendly, removal-efficient, and cost-competitive method to resolve the problem. This paper provides scientific and technical information about recent advances in the biodegradation of azo dyes. It expands the biodegradation efficiency, characteristics, and mechanisms of various microorganisms containing bacteria, fungi, microalgae, and microbial consortia, which have been reported to biodegrade azo dyes. In addition, information about physicochemical factors affecting dye biodegradation has been compiled. Furthermore, this paper also sketches the recent development and characteristics of advanced bioreactors.
Collapse
|
20
|
Guo G, Liu C, Hao J, Tian F, Ding K, Zhang C, Yang F, Liu T, Xu J, Guan Z. Development and characterization of a halo-thermophilic bacterial consortium for decolorization of azo dye. CHEMOSPHERE 2021; 272:129916. [PMID: 33601203 DOI: 10.1016/j.chemosphere.2021.129916] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 01/14/2021] [Accepted: 02/06/2021] [Indexed: 06/12/2023]
Abstract
Textile wastewater is characterized by high salinity and high temperature, and azo dye decolorization by mixed cultures under extreme salinity and thermophilic environments has received little attention. High salinity and temperature inhibit the biodecolorization efficiency in textile wastewater. In the present study, a halo-thermophilic bacterial consortium (HT1) that can decolorize azo dye at 10% salinity and 50 °C was enriched. Bacillus was the dominant genus, and this genus may play a key role in the decolorization process. HT1 can decolorize metanil yellow G (MYG) at a wide range of pH values (6-8), temperatures (40-60 °C), dye concentrations (100-200 mg/L) and salinities (1-15%). Laccase, manganese peroxidase, lignin peroxidase and azoreductase are involved in the decolorization process of MYG. In addition, the decolorization pathway of MYG was proposed based on GC-MS and FTIR results. The toxicity of MYG decreased after decolorization by HT1. A metagenomic sequencing approach was applied to identify the functional genes involved in degradation. Overall, this halo-thermophilic bacterial consortium could be a promising candidate for the treatment of textile wastewater under elevated temperature and salinity conditions.
Collapse
Affiliation(s)
- Guang Guo
- College of Environmental Engineering, Nanjing Institute of Technology, Nanjing, 211167, China
| | - Chong Liu
- Chinese Academy of Agricultural Sciences, Institute of Environment and Sustainable Development in Agriculture, Beijing, 100081, China
| | - Jiuxiao Hao
- China National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Fang Tian
- College of Environmental Engineering, Nanjing Institute of Technology, Nanjing, 211167, China.
| | - Keqiang Ding
- College of Environmental Engineering, Nanjing Institute of Technology, Nanjing, 211167, China
| | - Can Zhang
- Center for Disease Prevention and Control of Chinese PLA, Beijing, 100071, China.
| | - Feng Yang
- College of Environmental Engineering, Nanjing Institute of Technology, Nanjing, 211167, China
| | - Tingfeng Liu
- College of Environmental Engineering, Nanjing Institute of Technology, Nanjing, 211167, China
| | - Jin Xu
- College of Environmental Engineering, Nanjing Institute of Technology, Nanjing, 211167, China
| | - Zhengbing Guan
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
21
|
Yuan T, Zhang S, Chen Y, Zhang R, Chen L, Ruan X, Zhang S, Zhang F. Enhanced Reactive Blue 4 Biodegradation Performance of Newly Isolated white rot fungus Antrodia P5 by the Synergistic Effect of Herbal Extraction Residue. Front Microbiol 2021; 12:644679. [PMID: 33868203 PMCID: PMC8044803 DOI: 10.3389/fmicb.2021.644679] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/08/2021] [Indexed: 11/13/2022] Open
Abstract
In this study, a white rot fungus Antrodia was newly isolated and named P5. Then its dye biodegradation ability was investigated. Our results showed that P5 could effectively degrade 1,000 mg/L Reactive Blue 4 (RB4) in 24 h with 95% decolorization under shaking conditions. It could tolerate a high dye concentration of 2,500 mg/L as well as 10% salt concentration and a wide range of pH values (4-9). Herbal extraction residues (HER) were screened as additional medium elements for P5 biodegradation. Following the addition of Fructus Gardeniae (FG) extraction residue, the biodegradation performance of P5 was significantly enhanced, achieving 92% decolorization in 12 h. Transcriptome analysis showed that the expression of multiple peroxidase genes was simultaneously increased: Lignin Peroxidase, Manganese Peroxidase, Laccase, and Dye Decolorization Peroxidase. The maximum increase in Lignin Peroxidase reached 10.22-fold in the presence of FG. The results of UV scanning and LC-HRMS showed that with the synergistic effect of FG, P5 could remarkably accelerate the biodegradation process of RB4 intermediates. Moreover, the fungal treatment with FG also promoted the abatement of RB4 toxicity. In sum, white rot fungus and herbal extraction residue were combined and used in the treatment of anthraquinone dye. This could be applied in practical contexts to realize an efficient and eco-friendly strategy for industrial dye wastewater treatment.
Collapse
Affiliation(s)
- Tianjie Yuan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shuyi Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yifei Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ran Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Letian Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoshu Ruan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Sen Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Chinese Medical Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fang Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
22
|
Samuchiwal S, Gola D, Malik A. Decolourization of textile effluent using native microbial consortium enriched from textile industry effluent. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123835. [PMID: 33254813 DOI: 10.1016/j.jhazmat.2020.123835] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/01/2020] [Accepted: 08/28/2020] [Indexed: 06/12/2023]
Abstract
A robust and efficient treatment process is required to address the problem of residual colour and avoid expensive post-treatment steps while dealing with textile effluents. In the present work, a novel microbial consortium enriched from textile effluent was used to optimize the process of decolourization under extreme conditions with minimum inputs. With PreTreatment Range (PTR) effluent as a carbon source and only 0.5 g/L yeast extract as external input, the process enabled 70-73% colour reduction (from 1910-1930 to 516-555 hazen) in dyeing unit wastewater. Unhindered performance at higher temperatures (30 °C-50 °C) and wide pH range (7-12) makes this process highly suitable for the treatment of warm and extremely alkaline textile effluents. No significant difference was observed in the decolourization efficiency for effluents from different batches (Colour: 1647-4307 hazen; pH-11.5-12.0) despite wide variation in nature and concentration of dyes employed. Long term (60 days) continuous mode performance monitoring at hydraulic retention time of 48 h in lab-scale bioreactor showed consistent colour (from 1734-1980 to 545-723 hazen) and chemical oxygen demand (1720-2170 to 669-844 mg/L) removal and consistently neutral pH of the treated water. Present study thus makes a significant contribution by uncovering the ability of native microbial consortium to reliably treat dye laden textile wastewater without any dilution or pre-treatment and with minimum external inputs. The results ensure easy applicability of this indigenously developed process at the industrial scale.
Collapse
Affiliation(s)
- Saurabh Samuchiwal
- Applied Microbiology Lab, Centre for Rural Development and Technology, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, 110016, India
| | - Deepak Gola
- Applied Microbiology Lab, Centre for Rural Development and Technology, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, 110016, India; Department of Biotechnology, Noida Institute of Engineering and Technology, Uttar Pradesh, India
| | - Anushree Malik
- Applied Microbiology Lab, Centre for Rural Development and Technology, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
23
|
Shi Y, Yang Z, Xing L, Zhou J, Ren J, Ming L, Hua Z, Li X, Zhang D. Ethanol as an efficient cosubstrate for the biodegradation of azo dyes by Providencia rettgeri: Mechanistic analysis based on kinetics, pathways and genomics. BIORESOURCE TECHNOLOGY 2021; 319:124117. [PMID: 32979594 DOI: 10.1016/j.biortech.2020.124117] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/06/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
Azo dyes pose hazards to ecosystems and human health and the cosubstrate strategy has become the focus for the bioremediation of azo dyes. Herein, Brilliant Crocein (BC), a model pollutant, was biodegraded by Providencia rettgeri domesticated from activated sludge. Additional ethanol, as a cosubstrate, could accelerate P. rettgeri growth and BC biodegradation, as reflected by the Gompertz models. This phenomenon was attributed to the smaller metabolites and greater number of potential pathways observed under the synergistic effect of ethanol. Genomic analysis of P. rettgeri showed that functional genes related to azo bond cleavage, redox reactions, ring opening and hydrolysis played crucial roles in azo dye biodegradation. Furthermore, the mechanism proposed was that ethanol might stimulate the production of additional reducing power via the expression of related genes, leading to the cleavage of azo bonds and aromatic rings. However, biodegradation without ethanol could only partly cleave the azo bonds.
Collapse
Affiliation(s)
- Yaqi Shi
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, Shandong, PR China
| | - Zonglin Yang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, Shandong, PR China
| | - Lei Xing
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, Shandong, PR China
| | - Jingru Zhou
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, Shandong, PR China
| | - Jiaqi Ren
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, Shandong, PR China
| | - Leiqiang Ming
- Air Liquide (China) R&D Co., Ltd., Shanghai 201108, PR China
| | - Zhiliang Hua
- Air Liquide (China) R&D Co., Ltd., Shanghai 201108, PR China
| | - Xianguo Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, Shandong, PR China
| | - Dahai Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, Shandong, PR China.
| |
Collapse
|
24
|
Guo G, Hao J, Tian F, Liu C, Ding K, Zhang C, Yang F, Xu J. Decolorization of Metanil Yellow G by a halophilic alkalithermophilic bacterial consortium. BIORESOURCE TECHNOLOGY 2020; 316:123923. [PMID: 32763804 DOI: 10.1016/j.biortech.2020.123923] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
Increased temperature, salinity and alkalinity restrict the biodecolorization rate of textile wastewater. In the present study, the halophilic alkalithermophilic bacterial consortium ZSY, which can decolorize azo dyes under 10% salinity, pH 10 and 50 °C, was enriched. It can decolorize Metanil Yellow G (MYG) under a wide range of pH values (8-10), temperatures (40-50 °C), dye concentrations (100-400 mg/L) and salinity levels (1%-10%). Laccase (Lac), lignin peroxidase (Lip), nicotinamide adenine dinucleotide-dichlorophenol indophenol reductase (NADH-DCIP) and azoreductase are involved in the decolorization process. A decolorization pathway of MYG was proposed via gas chromatography-mass spectrometry (GC-MS) and Fourier transform infrared spectroscopy (FTIR). The toxicity of MYG decreased after decolorization by ZSY consortium. A metagenomic sequencing approach was subsequently applied to identify the functional genes involved in decolorization. Overall, this halophilic alkalithermophilic bacterial consortium could be a promising candidate for the treatment of textile wastewater in environments with increased temperature, salinity and alkalinity.
Collapse
Affiliation(s)
- Guang Guo
- College of Environmental Engineering, Nanjing Institute of Technology, Nanjing 211167, China
| | - Jiuxiao Hao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
| | - Fang Tian
- College of Environmental Engineering, Nanjing Institute of Technology, Nanjing 211167, China.
| | - Chong Liu
- Chinese Academy of Agricultural Sciences, Institute of Environment and Sustainable Development in Agriculture, Beijing 100081, China
| | - Keqiang Ding
- College of Environmental Engineering, Nanjing Institute of Technology, Nanjing 211167, China
| | - Can Zhang
- Center for Disease Prevention and Control of Chinese PLA, Beijing 100071, China
| | - Feng Yang
- College of Environmental Engineering, Nanjing Institute of Technology, Nanjing 211167, China
| | - Jin Xu
- College of Environmental Engineering, Nanjing Institute of Technology, Nanjing 211167, China
| |
Collapse
|
25
|
Wang Y, Wang H, Wang X, Xiao Y, Zhou Y, Su X, Cai J, Sun F. Resuscitation, isolation and immobilization of bacterial species for efficient textile wastewater treatment: A critical review and update. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 730:139034. [PMID: 32416505 DOI: 10.1016/j.scitotenv.2020.139034] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/23/2020] [Accepted: 04/25/2020] [Indexed: 06/11/2023]
Abstract
Given highly complex and recalcitrant nature of synthetic dyes, textile wastewater poses a serious challenge on surrounding environments. Until now, biological treatment of textile wastewater using efficient bacterial species is still considered as an environmentally friendly and cost-effective approach. The advances in resuscitating viable but non-culturable (VBNC) bacteria via signaling compounds such as resuscitation-promoting factors (Rpfs) and quorum sensing (QS) autoinducers, provide a vast majority of potent microbial resources for biological wastewater treatment. So far, textile wastewater treatment from resuscitating and isolating VBNC state bacteria has not been critically reviewed. Thus, this review aims to provide a comprehensive picture of resuscitation, isolation and application of bacterial species with this new strategy, while the recent advances in synthetic dye decolorization were also elaborated together with the mechanisms involved. Discussion was further extended to immobilization methods to tackle its application. We concluded that the resuscitation of VBNC bacteria via signaling compounds, together with biochar-based immobilization technologies, may lead to an appealing biological treatment of textile wastewater. However, further development and optimization of the integrated process are still required for their wide applications.
Collapse
Affiliation(s)
- Yuyang Wang
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Hangli Wang
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Xiaomin Wang
- Zhejiang Environmental Science Research Institute Co., Ltd., Hangzhou 310007, China
| | - Yeyuan Xiao
- Department of Civil and Environmental Engineering, Shantou University, Shantou 515063, China
| | - Yan Zhou
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore
| | - Xiaomei Su
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Jiafang Cai
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Faqian Sun
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
26
|
Zheng X, Xie X, Liu Y, Cong J, Fan J, Fang Y, Liu N, He Z, Liu J. Deciphering the mechanism of carbon sources inhibiting recolorization in the removal of refractory dye: Based on an untargeted LC-MS metabolomics approach. BIORESOURCE TECHNOLOGY 2020; 307:123248. [PMID: 32248066 DOI: 10.1016/j.biortech.2020.123248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/20/2020] [Accepted: 03/22/2020] [Indexed: 06/11/2023]
Abstract
In this study, the biological decolorization of reactive black 5 (RB5) by Klebsiella sp. KL-1 in yeast extract (YE) medium was captured the recolorization after exposure to O2, which induced a 15.82% reduction in decolorization efficiency. Similar result was also observed in YE + lactose medium, but not in YE + glucose/xylose media (groups YE + Glu/Xyl). Through biodegradation studies, several degradation intermediates without quinoid structure were produced in groups YE + Glu/Xyl and differential degradation pathways were deduced in diverse groups. Metabolomics analysis revealed significant variations in up-/down-regulated metabolites using RB5 and different carbon sources. Moreover, the underlying mechanism of recolorization inhibition was proposed. Elevated reducing power associated with variable metabolites (2-hydroxyhexadecanoic acid, 9(R)-HODE cholesteryl ester, linoleamide, oleamide) rendered additional reductive cleavage of C-N bond on naphthalene ring. This study provided a new orientation to inhibit recolorization and deepened the understanding of the molecular mechanism of carbon sources inhibiting recolorization in the removal of refractory dyes.
Collapse
Affiliation(s)
- Xiulin Zheng
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xuehui Xie
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Yanbiao Liu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Junhao Cong
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jiao Fan
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yingrong Fang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Na Liu
- School of Environment and Surveying Engineering, Suzhou University, Suzhou, Anhui 234000, China
| | - Zhenjiang He
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China
| | - Jianshe Liu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
27
|
Zhang Q, Xie X, Liu Y, Zheng X, Wang Y, Cong J, Yu C, Liu N, Sand W, Liu J. Co-metabolic degradation of refractory dye: A metagenomic and metaproteomic study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113456. [PMID: 31784270 DOI: 10.1016/j.envpol.2019.113456] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/18/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Abstract
Fructose was utilized as an additional co-substrate to systematically investigate the molecular mechanism of its boosting effect for the degradation of refractory dye reactive black 5 (RB5) by a natural bacterial flora DDMZ1. A decolorizing rate of 98% was measured for sample YE + FRU(200) (with 3 g/L fructose additionally to yeast extract medium, 10% (v/v) inoculation size of flora DDMZ1, 200 mg/L RB5) after 48 h. This result was 21% and 77%, respectively, higher than those of samples with only yeast extract or only fructose. Fructose was found to significantly stimulated both intracellular and extracellular azoreductase secretion causing enhanced activity. Metagenomic sequencing technology was used to analyze the functional potential of genes. A label-free quantitative proteomic approach further confirmed the encoding of functional proteins by the candidate genes. Subsequently, the molecular mechanism of RB5 degradation by candidate genes and functional proteins of the dominant species were proposed. This study provides important perspectives to the molecular mechanism of co-metabolic degradation of refractory pollutants by a natural bacterial flora.
Collapse
Affiliation(s)
- Qingyun Zhang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Xuehui Xie
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| | - Yanbiao Liu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Xiulin Zheng
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yiqin Wang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Junhao Cong
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Chengzhi Yu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Na Liu
- School of Environment and Surveying Engineering, Suzhou University, Suzhou, Anhui, 234000, China
| | - Wolfgang Sand
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China; Institute of Biosciences, Freiberg University of Mining and Technology, Freiberg, 09599, Germany; Biofilm Centre, University Duisburg-Essen, Essen, Germany
| | - Jianshe Liu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| |
Collapse
|
28
|
Zhang Q, Xie X, Liu Y, Zheng X, Wang Y, Cong J, Yu C, Liu N, He Z, Liu J, Sand W. Sugar sources as Co-substrates promoting the degradation of refractory dye: A comparative study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 184:109613. [PMID: 31491606 DOI: 10.1016/j.ecoenv.2019.109613] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/23/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
Four sugar sources were used as co-substrates to promote the degradation of a selected refractory dye reactive black 5 (RB5) by the natural bacterial flora DDMZ1. The boosting performance of the four sugar sources on RB5 decolorization ranked as: fructose > sucrose > glucose > glucose + fructose. Kinetic results of these four co-metabolism systems agreed well with a first-order kinetic model. Four sugar sources stimulated the extracellular azoreductase secretion causing enhanced enzyme activity. An increased formation of low molecular weight intermediates was caused by the addition of sugar sources. The toxicity of RB5 degradation products was significantly reduced in the presence of sugar sources. The bacterial community structure differed remarkably as a result of sugar sources addition. For a fructose addition, a considerably enriched population of the functional species Burkholderia-Paraburkholderia and Klebsiella was noted. The results enlarge our knowledge of the microkinetic and microbiological mechanisms of co-metabolic degradation of refractory pollutants.
Collapse
Affiliation(s)
- Qingyun Zhang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Xuehui Xie
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| | - Yanbiao Liu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Xiulin Zheng
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Yiqin Wang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Junhao Cong
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Chengzhi Yu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Na Liu
- School of Environment and Surveying Engineering, Suzhou University, Suzhou, Anhui, 234000, China
| | - Zhenjiang He
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Jianshe Liu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Wolfgang Sand
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, PR China; Institute of Biosciences, Freiberg University of Mining and Technology, Freiberg, 09599, Germany
| |
Collapse
|
29
|
Zheng X, Xie X, Yu C, Zhang Q, Wang Y, Cong J, Liu N, He Z, Yang B, Liu J. Unveiling the activating mechanism of tea residue for boosting the biological decolorization performance of refractory dye. CHEMOSPHERE 2019; 233:110-119. [PMID: 31173951 DOI: 10.1016/j.chemosphere.2019.05.205] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 04/06/2019] [Accepted: 05/22/2019] [Indexed: 06/09/2023]
Abstract
Conventional microbial treatments are challenged by new synthetic refractory dyes. In this work, tea residue was found serving as an effective activator to boost the decolorization performance of anthraquinone dye (reactive blue 19, RB19) by a new bacterial flora DDMY2. The unfermented West Lake Longjing tea residue showed the best enhancement performance. Seventeen main kinds of components in tea residue had been selected to take separate and orthogonal experiments on decolorization of RB19 by DDMY2. Results suggested epigallocatechin gallate (EGCG) in tea residue played important roles in boosting the treatment performance. Illumina MiSeq sequencing results confirmed that EGCG and tea residue pose similar impact on the change of DDMY2 community structure. Some functional bacterial genera unclassified_o_Pseudomonadales, Stenotrophomonas and Bordetella were enriched during the treatment of RB19 by EGCG and tea residue. These evidences suggested EGCG might be the key active component in tea residue that responsible for the enhancement effect on decolorization performance. These results revealed the activating mechanism of tea residue from the perspective of composition.
Collapse
Affiliation(s)
- Xiulin Zheng
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
| | - Xuehui Xie
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| | - Chengzhi Yu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
| | - Qingyun Zhang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
| | - Yiqin Wang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
| | - Junhao Cong
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
| | - Na Liu
- School of Environment and Surveying Engineering, Suzhou University, Suzhou, Anhui, 234000, China.
| | - Zhenjiang He
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China.
| | - Bo Yang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
| | - Jianshe Liu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
30
|
Xie X, Zheng X, Yu C, Zhang Q, Wang Y, Cong J, Liu N, He Z, Yang B, Liu J. Highly efficient biodegradation of reactive blue 19 under the activation of tea residue by a newly screened mixed bacterial flora DDMY2. RSC Adv 2019; 9:24791-24801. [PMID: 35528667 PMCID: PMC9069888 DOI: 10.1039/c9ra04507d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 07/28/2019] [Indexed: 11/21/2022] Open
Abstract
In this study, a newly screened mixed bacterial flora DDMY2 had high decolorization capacity for anthraquinone dye reactive blue 19 (RB19) and the decolorization efficiency of 300 mg L-1 RB19 could reach up to 98% within 48 h in the presence of tea residue. Results indicated that RB19 could be efficiently decolorized by flora DDMY2 in wide ranges of pH values (5.0-9.0), temperatures (30-40 °C) and initial dye concentrations (50-500 mg L-1) under the activation of tea residue. Concentration of tea residue had been proved to significantly impact the decolorization performance. UV-vis spectrophotometry, Fourier transform infrared spectrometry and liquid chromatography/time-of-flight/mass spectrometry analysis showed three identified degradation products and the possible degradation pathway of RB19 was speculated. High-throughput sequencing analysis revealed the community structures of bacterial flora before and after domestication by tea residue. Based on the result, it was inferred that unclassified_o_Pseudomonadales, Brevibacillus, Stenotrophomonas and Bordetella activated by tea residue were responsible for the excellent decolorization performance. Results of this research deepen our understanding of the biodegradation process of anthraquinone dyes by bacterial flora and broaden the knowledge of utilizing tea residue as a bioactivator in biological treatment.
Collapse
Affiliation(s)
- Xuehui Xie
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University 2999# North Renmin Road, Songjiang District Shanghai 201620 China +86-21-67792522
- Shanghai Institute of Pollution Control and Ecological Security Shanghai 200092 P. R. China
| | - Xiulin Zheng
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University 2999# North Renmin Road, Songjiang District Shanghai 201620 China +86-21-67792522
| | - Chengzhi Yu
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University 2999# North Renmin Road, Songjiang District Shanghai 201620 China +86-21-67792522
| | - Qingyun Zhang
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University 2999# North Renmin Road, Songjiang District Shanghai 201620 China +86-21-67792522
| | - Yiqin Wang
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University 2999# North Renmin Road, Songjiang District Shanghai 201620 China +86-21-67792522
| | - Junhao Cong
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University 2999# North Renmin Road, Songjiang District Shanghai 201620 China +86-21-67792522
| | - Na Liu
- School of Environment and Surveying Engineering, Suzhou University Suzhou Anhui 234000 China
| | - Zhenjiang He
- School of Metallurgy and Environment, Central South University Changsha 410083 P. R. China
| | - Bo Yang
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University 2999# North Renmin Road, Songjiang District Shanghai 201620 China +86-21-67792522
| | - Jianshe Liu
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University 2999# North Renmin Road, Songjiang District Shanghai 201620 China +86-21-67792522
- Shanghai Institute of Pollution Control and Ecological Security Shanghai 200092 P. R. China
| |
Collapse
|
31
|
Process Optimization by a Response Surface Methodology for Adsorption of Congo Red Dye onto Exfoliated Graphite-Decorated MnFe2O4 Nanocomposite: The Pivotal Role of Surface Chemistry. Processes (Basel) 2019. [DOI: 10.3390/pr7050305] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Natural graphite, a locally available, eco-friendly, and low-cost carbonaceous source, can be easily transformed into exfoliated graphite (EG) with many surface functional groups via a chemical oxidation route. Combination between EG and magnetic MnFe2O4 is a promising strategy to create a hybrid kind of nanocomposite (EG@MnFe2O4) for the efficient adsorptive removal of Congo red (CR) dye from water. Here, we reported the facile synthesis and characterization of chemical bonds of EG@MnFe2O4 using several techniques such as Fourier-transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS). In particular, the quantity method by Boehm titration was employed to identify the content of functional groups: Carboxylic acid (0.044 mmol/g), phenol (0.032 mmol/g), lactone (0.020 mmol/g), and total base (0.0156 mmol/g) on the surface of EG@MnFe2O4. Through the response surface methodology-optimized models, we found a clear difference in the adsorption capacity between EG-decorated MnFe2O4 (62.0 mg/g) and MnFe2O4 without EG decoration (11.1 mg/g). This result was also interpreted via a proposed mechanism to elucidate the contribution of surface functional groups of EG@MnFe2O4 to adsorption efficiency towards CR dye.
Collapse
|