1
|
Shi X, Huang Z, Liu L, Feng H, Lan R, Hong J. Electrocatalytic coupled biofilter for treating cyclohexanone-containing wastewater: Degradation, mechanism and optimization. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124533. [PMID: 38996994 DOI: 10.1016/j.envpol.2024.124533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/27/2024] [Accepted: 07/10/2024] [Indexed: 07/14/2024]
Abstract
Electrocatalytic coupled biofilter (EBF) technology organically integrates the characteristics of electrochemistry and microbial redox, providing ideas for effectively improving biological treatment performance. In this study, an EBF system was developed for enhanced degradation of cyclohexanone in contaminated water. Experimental results show that the system can effectively remove cyclohexanone in contaminated water. Under the optimal parameters, the removal rates of cyclohexanone, TP, NH4+-N and TN were 97.61 ± 1.31%, 76.31 ± 1.67%, 94.14 ± 2.13% and 95.87 ± 1.01% respectively. Degradation kinetics studies found that electrolysis, adsorption, and biodegradation pathways play a major role in the degradation of cyclohexanone. Microbial community analysis indicates that voltage can affect the structure of the microbial community, with the dominant genera shifting from Acidovorax (0 V) to Brevundimonas (0.7 V). Additionally, Acidovorax, Cupriavidus, Ralstonia, and Hydrogenophaga have high abundance in the biofilm and can effectively metabolize cyclohexanone and its intermediates, facilitating the removal of cyclohexanone. In summary, this research can guide the development and construction of highly stable EBF systems and is expected to be used for advanced treatment of industrial wastewater containing cyclohexanone.
Collapse
Affiliation(s)
- Xiuding Shi
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen 361021, China
| | - Zhi Huang
- Xiamen Research Academy of Environmental Science, Xiamen 361021, China
| | - Lihua Liu
- Fujian Xiamen Environmental Monitoring Central Station, Xiamen 361102, China
| | - Han Feng
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen 361021, China
| | - Ruisong Lan
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen 361021, China
| | - Junming Hong
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen 361021, China.
| |
Collapse
|
2
|
Piao M, Du H, Teng H. An overview of the recent advances and future prospects of three-dimensional particle electrode systems for treating wastewater. RSC Adv 2024; 14:27712-27732. [PMID: 39224647 PMCID: PMC11367087 DOI: 10.1039/d4ra04435e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Three-dimensional (3D) electrochemical technology is considered a very effective industrial wastewater treatment method for its high treatment efficiency, high current efficiency, low energy consumption, and, especially, ability to completely mineralize nonbiodegradable organic contaminants. Particle electrodes, which are the fundamental components of 3D electrochemical technology, have multiple functions in the electrochemical reaction process. Various types of particle electrodes have been created and applied for wastewater treatment. Herein, we present a thorough analysis of the research and development of particle electrodes used for electrocatalyzing pollutants. Initially, reactor designs, factors affecting the removal efficiency of pollutants and degradation mechanisms are introduced. In particular, a detailed investigation is conducted into the selection of particle electrode materials and the roles they play in the 3D electrochemical treatment of wastewater. Subsequently, the degradation efficiency and energy consumption associated with 3D electrochemical technology for different pollutants are investigated. Finally, the directions and outlook for further studies on particle electrodes are discussed. We believe that this review will offer a useful perspective on the development and application of particle electrodes for wastewater purification.
Collapse
Affiliation(s)
- Mingyue Piao
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Jilin Normal University 1301 Haifeng Road Siping 136000 China
- College of Engineering, Jilin Normal University Siping China
| | - Hongxue Du
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Jilin Normal University 1301 Haifeng Road Siping 136000 China
| | - Honghui Teng
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Jilin Normal University 1301 Haifeng Road Siping 136000 China
| |
Collapse
|
3
|
Chang S, Zhang X, Wang C, Bai J, Li X, Liang W, Mao Y, Cai J, Li Y, Jiang Y, Xu Z. Efficient adsorption of rhodamine B using synthesized Mg-Al hydrotalcite/ sodium carboxymethylcellulose/ sodium alginate hydrogel spheres: Performance and mechanistic analysis. Heliyon 2024; 10:e30345. [PMID: 38711669 PMCID: PMC11070873 DOI: 10.1016/j.heliyon.2024.e30345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/08/2024] Open
Abstract
In this study, the sodium dodecyl sulfate intercalated modified magnesium-aluminum hydrotalcite/sodium alginate/sodium carboxymethylcellulose (modified LDHs/SA/CMC) composite gel spheres were synthesized and their efficacies in adsorbing the cationic dye rhodamine B (RhB) from aqueous solutions were evaluated. The effects of adsorption time, pH and temperature on the adsorption of RhB by spheres were investigated. Remarkably, the modified LDHs/SA/CMC gel spheres achieved adsorption equilibrium after 600 min at 25 °C, and the removal rate of RhB at 60 mg/L reached 91.49 % with the maximum adsorption capacity of 59.64 mg/g. The gel spheres maintained over 80 % efficacy across four adsorption cycles. Kinetic and isotherm analyses revealed that the adsorption of RhB conformed to the secondary kinetic model and the Langmuir isotherm, indicating a spontaneous and exothermic nature of the adsorption process. The adsorption mechanisms of modified LDHs/SA/CMC gel spheres on RhB dyes include electrostatic adsorption, hydrogen bonding and hydrophobic interactions. In conclusion, modified LDHs/SA/CMC gel sphere is a green, simple, recyclable and efficient adsorbent, which is expected to be widely used for the treatment of cationic dye wastewater.
Collapse
Affiliation(s)
- Siqi Chang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Xiangling Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China
- Sanya Science and Education Innovation Park, Wuhan University of Technology, Hainan, 572024, China
| | - Chen Wang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Jing Bai
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Xuhao Li
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Wei Liang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Yajia Mao
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Jixian Cai
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Yifan Li
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China
- Sanya Science and Education Innovation Park, Wuhan University of Technology, Hainan, 572024, China
| | - Yu Jiang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Zhouying Xu
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China
| |
Collapse
|
4
|
Li X, Feng Y, Wang X, Chen H, Qiu L, Yu Y. Advanced degradation of refractory organic compounds in electroplating wastewater by an in-situ electro-catalytic biological coupling reactor: Removal performance, microbial community and possible mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167299. [PMID: 37742966 DOI: 10.1016/j.scitotenv.2023.167299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
A high-efficiency treatment system for advanced degradation of refractory organic compounds such as saccharin sodium (SS) and polyethylene glycol 6000 (PEG 6000) in electroplating wastewater was proposed, which coupled ion exchange, electrocatalysis, and microbial interactions through ion exchange particle electrode (IEPE) in a reactor, named in-situ electro-catalytic biological coupling reactor (i-SECBCR). A small-scale experimental test system was established and a feasibility investigation was conducted under the condition of 1.248 L/h continuous flow. The results revealed that (1) the i-SECBCR showed higher average removal rates of SS, PEG 6000, COD and NH4+-N, i.e. 88.48 %, 41.26 %, 66.81 % and 51.61 %,which meant an increase by 5.04 %, 12.05 %, 0.46 %, and 34.50 %, respectively, compared with BAF; (2) the optimal current intensity (CI) of i-SECBCR for simultaneous removal of SS, PEG 6000, COD and NH4+-N was 0.40 mA cm-2; (3) Rhodobacter, Defluviimonas, unclassified_f__Microscillaceae, Pseudoxanthomonas, Novosphingobium, and unclassified_f__Xanthobacteraccae accounted for the main bacterial community in i-SECBCR; (4) the possible degradation mechanism was attributed mainly to the synergistic effect of ion exchange, electrocatalytic oxidation and biology. Therefore, the i-SECBCR was suitable to simultaneously advanced remove SS, PEG 6000, COD and NH4+-N in electroplating wastewater.
Collapse
Affiliation(s)
- Xinxin Li
- School of Civil Engineering and Architecture, University of Jinan, Jinan 250022, China
| | - Yan Feng
- School of Civil Engineering and Architecture, University of Jinan, Jinan 250022, China.
| | - Xinwei Wang
- China Urban Construction Design & Research Institute Co. Ltd (Shan Dong), Jinan 250022, China
| | - Hao Chen
- Environmental Engineering Co., Ltd., Shandong Academy of Environmental Science, Jinan 250001, China
| | - Liping Qiu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Yanzhen Yu
- School of Civil Engineering and Architecture, Qilu Institute of Technology, Jinan 250022, China
| |
Collapse
|
5
|
Zhou L, Wu Y, Jiang Q, Sun S, Wang J, Gao Y, Zhang W, Du Q, Song X. Pyrolyzed sediment accelerates electron transfer and regulates rhodamine B biodegradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167126. [PMID: 37739087 DOI: 10.1016/j.scitotenv.2023.167126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/24/2023]
Abstract
Electron transfer efficiency is a key factor that determined the removal of environmental pollution through biodegradation. Electron shuttles exogenously addition is one of the measures to improve the electron transfer efficiency. In this study, the sediment was pyrolyzed at different temperature to investigate its properties of mediating electron transfer and removing of rhodamine B (RhB) in microbial electrochemical systems (MESs). Sediments pyrolyzed at 300 °C (PS300) and 600 °C (PS600) have promoted electron transfer which led to 16 % enhancement of power generation while the result is reversed at 900 °C (PS900). Although power output of PS300 and PS600 are similar, the removal efficiency of RhB is not consistent, which may be caused by the biofilm structure difference. Microbial community analysis revealed that the abundance of EAB and toxicity-degrading bacteria (TDB) in PS600 was 6 % higher than that in PS300. The differentiation of microbial community also affected the metabolic pathway, the amino synthesis and tricarboxylic acid cycle were primarily upregulated with PS600 addition, which enhanced the intracellular metabolism. However, a more active cellular anabolism occurred with PS300, which may have been triggered by RhB toxicity. This study showed that pyrolytic sediment exhibits an excellent ability to mediate electron transport and promote pollutant removal at 600 °C, which provides a techno-economically feasible scenario for the utilization of low-carbon-containing solid wastes.
Collapse
Affiliation(s)
- Lean Zhou
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province/School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China.
| | - Yongliang Wu
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province/School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Qian Jiang
- PowerChina Zhongnan Engineering Corporation Limited, Changsha 410014, China
| | - Shiquan Sun
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province/School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Jinting Wang
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province/School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Yang Gao
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province/School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Wei Zhang
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province/School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Qing Du
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Xin Song
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
6
|
Yang X, Wu L, Zhang B, Li J, Shen Y, Liu Y, Hu Y. Fabrication of a P-Si/ZnO heterojunction based on galvanic cell driven and the complete degradation of RhB via fast charge transfer. NANOSCALE 2023; 15:16323-16332. [PMID: 37796041 DOI: 10.1039/d3nr04078j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Semiconductor heterojunctions can significantly enhance photocatalytic degradation efficiency by facilitating rapid interfacial charge transfer. This article is based on the galvanic-cell driven principle; porous silicon (P-Si) was prepared by the carbon-catalytic etching method, and ZnO was loaded on its surface via electroless chemical deposition technology to form a P-Si/ZnO heterojunction, which was applied to the degradation of Rhodamine B (RhB). At a deposition temperature of 90 °C, a flawless 1D hexagonal prism structure of ZnO was formed, allowing the P-Si/ZnO heterojunction to completely degrade RhB within 2 hours with a degradation rate of 100%. Compared with a single P-Si material, the degradation performance is improved by 1.7 times. The formation of the built-in electric field and the rapid charge transfer at the heterojunction interface realized the complete degradation of RhB organic pollutants. After 20 cycles of use, the photocatalytic degradation rate remains above 70%, demonstrating excellent stability and recyclability.
Collapse
Affiliation(s)
- Xiaoyu Yang
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Lin Wu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
- Academy of Green Manufacturing Engineering, Wuhan University of science and technology, Wuhan 430081, China
| | - Baoguo Zhang
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Jingwang Li
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Yifan Shen
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Ying Liu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Ya Hu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
- Academy of Green Manufacturing Engineering, Wuhan University of science and technology, Wuhan 430081, China
| |
Collapse
|
7
|
Guo X, Liu Z, Tong Z, Jiang N, Chen W. Adsorption of Rhodamine B from an aqueous solution by acrylic-acid-modified walnut shells: characterization, kinetics, and thermodynamics. ENVIRONMENTAL TECHNOLOGY 2023; 44:1691-1704. [PMID: 34873998 DOI: 10.1080/09593330.2021.2011430] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
A batch experiment was used in studying the effect of acrylic-acid-modified walnut shell (MWNS) as a low-cost adsorbent for removing Rhodamine B (RB) cationic dye in aqueous solutions. The adsorbent dosage, initial dye concentration, contact time, temperature, pH, and supporting electrolyte concentration on the adsorption behaviour of the adsorbent were explored. The adsorbent was characterized using the point of zero charge (pHPZC), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), automatic specific surface analysis (BET), and X-ray photoelectron spectroscopy (XPS). Results showed that MWNS had abundant active groups and rough surface, which is conducive to the adsorption process. The kinetics and equilibrium data of MWNS-to-RB adsorption were in accordance pseudo-second-order kinetic and Freundlich isotherm models, respectively. Under optimal adsorption conditions, the maximum adsorption capacity of RB was 48.87 mg·g-1. Thermodynamic results showed spontaneously and exothermically the adsorption process. Moreover, the addition of electrolyte had a negative effect on equilibrium adsorption capacity and adsorption rate.HIGHLIGHTS Acrylic-acid-modified walnut shells was used as an adsorbent for the removal of Rhodamine B (RB).The adsorption of RB by modified walnut shells was greatly affected by pH.Pseudo-second-order kinetic and Freundlich model fit the experimental data.The modified walnut shell can remove RB through electrostatic attraction, hydrogen bonding, and electron donor-acceptor interaction.
Collapse
Affiliation(s)
- Xianzhe Guo
- School of Chemistry and Environmental Engineering, Yangtze University, Hubei, People's Republic of China
| | - Zhuozhuang Liu
- School of Chemistry and Environmental Engineering, Yangtze University, Hubei, People's Republic of China
| | - Zhiming Tong
- School of Chemistry and Environmental Engineering, Yangtze University, Hubei, People's Republic of China
| | - Nan Jiang
- School of Chemistry and Environmental Engineering, Yangtze University, Hubei, People's Republic of China
| | - Wu Chen
- School of Chemistry and Environmental Engineering, Yangtze University, Hubei, People's Republic of China
| |
Collapse
|
8
|
Elgarahy AM, Maged A, Elwakeel KZ, El-Gohary F, El-Qelish M. Tuning cationic/anionic dyes sorption from aqueous solution onto green algal biomass for biohydrogen production. ENVIRONMENTAL RESEARCH 2023; 216:114522. [PMID: 36243056 DOI: 10.1016/j.envres.2022.114522] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/10/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Global water security and energy demands associated with uncontrollable population growth and rapid industrial progress are one of the utmost serious needs dangerously confronting humanity. On account of waste as a wealth strategy; a multifunctional eco-friendly sorbent (MGAP) from green alga was prepared successfully for remediation of cationic/anionic organic dyes and biohydrogen production. The structural and morphological properties of sorbent were systematically scrutinized by a variety of spectral analyses. The loading capacity of MGAP towards rhodamine B (RhB) and methyl orange (MO) dyes was inclusivity inspected under variable experimental conditions. The adsorption kinetics of both dyes onto MGAP was in good agreement with pseudo-second-order theory, whereas adsorption isotherms could fit well with the Langmuir model, with satisfactory loading capacities of 144.92 and 196.04 mg g-1 for RhB and MO molecules, respectively. Moreover, ultra-sonication treatment admirably decreased the sorption equilibrium time from 180.0 min to 30.0 min. Furthermore, spent sorbent was managed particularly for biohydrogen production with a measured yield of 112.89, 116.59, and 128.17 mL-H2/gVS for MGAP, MGAP-MO, and MGAP-RhB, respectively. Overall, the produced MGAP can potentially be offered up as a promising dye scavenger for wastewater remediation and biohydrogen production, thereby fulfilling waste management and circular economy.
Collapse
Affiliation(s)
- Ahmed M Elgarahy
- Egyptian Propylene and Polypropylene Company (EPPC), Port Said, Egypt; Environmental Chemistry Division, Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt
| | - Ali Maged
- Geology Department, Faculty of Science, Suez University, P.O. Box 43518, El Salam City, Suez Governorate, Egypt.
| | - Khalid Z Elwakeel
- Environmental Chemistry Division, Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt
| | - Fatma El-Gohary
- Water Pollution Research Department, National Research Centre, El Buhouth St., Dokki, 12622, Cairo, Egypt
| | - Mohamed El-Qelish
- Water Pollution Research Department, National Research Centre, El Buhouth St., Dokki, 12622, Cairo, Egypt
| |
Collapse
|
9
|
Wu ZY, Xu J, Wu L, Ni BJ. Three-dimensional biofilm electrode reactors (3D-BERs) for wastewater treatment. BIORESOURCE TECHNOLOGY 2022; 344:126274. [PMID: 34737054 DOI: 10.1016/j.biortech.2021.126274] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Three-dimensional biofilm electrode reactors (3D-BERs) are highly efficient in refractory wastewater treatment. In comparison to conventional bio-electrochemical systems, the filled particle electrodes act as both electrodes and microbial carriers in 3D-BERs. This article reviews the conception and basic mechanisms of 3D-BERs, as well as their current development. The advantages of 3D-BERs are illustrated with an emphasis on the synergy of electricity and microorganisms. Electrode materials utilized in 3D-BERs are systematically summarized, especially the critical particle electrodes. The configurations of 3D-BERs and their integration with wastewater treatment reactors are introduced. Operational parameters and the adaptation of 3D-BERs to varieties of wastewater are discussed. The prospects and challenges of 3D-BERs for wastewater treatment are then presented, and the future research directions are proposed. We believe that this timely review will help to attract more attentions on 3D-BERs investigation, thus promoting the potential application of 3D-BERs in wastewater treatment.
Collapse
Affiliation(s)
- Zhen-Yu Wu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Juan Xu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, No. 20 Cuiniao Road, ChenJiazhen, Shanghai 202162, China.
| | - Lan Wu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
10
|
Wu X, Song X, Chen H, Yu J. Treatment of phenolic compound wastewater using CuFe 2O 4/Al 2O 3 particle electrodes in a three-dimensional electrochemical oxidation system. ENVIRONMENTAL TECHNOLOGY 2021; 42:4393-4404. [PMID: 32427515 DOI: 10.1080/09593330.2020.1760356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 04/19/2020] [Indexed: 06/11/2023]
Abstract
Three-dimensional electrochemical oxidation (3D-ECO) technology is considered as one of the most promising advanced oxidation processes for degrading refractory organic pollutants. However, the preparation of the particle electrodes (PEs) is a key factor for industrial applications. In this study, a new Al2O3-based PE was proposed for 3D-ECO system. The prepared PEs were characterized by scanning electron microscopy, energy-dispersive X-ray microscopy, and X-ray diffraction to examine their morphology, elementary composition, and amount of CuFe2O4 respectively. Experiments comparing different conditions showed that 3D-ECO system equipped with prepared PEs and persulphate (PS) was more efficient in degradingp-nitrophenol (PNP). Based on these results, the critical process parameters of the dosage of the PEs, initial PS concentration, and current density for 3D-ECO using the proposed PEs were examined. Under the optimized operations, the PNP removal rate reached 80.23% with a low electrical energy consumption of 3.97 kW h/mg PNP, which was significantly better than the 69.16% and 9.50 kW·h/mg PNP under conventional ECO process. Moreover, cycling experimental results indicated that the performance of the PEs had no declining trend during the 5 h test period, suggesting acceptable stability of the particles without particle damage or mass loss. These investigations provide a novel route for preparing high-efficiency PEs.
Collapse
Affiliation(s)
- Xingyu Wu
- State Environment Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Xingfu Song
- State Environment Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, People's Republic of China
- National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Hang Chen
- State Environment Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Jianguo Yu
- State Environment Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, People's Republic of China
- National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, Shanghai, People's Republic of China
- Resource Process Engineering Research Center of Ministry of Education, East China University of Science and Technology, Shanghai, People's Republic of China
| |
Collapse
|
11
|
Gemeay AH, El-Halwagy ME, Elsherbiny AS, Zaki AB. Amine-rich quartz nanoparticles for Cu(II) chelation and their application as an efficient catalyst for oxidative degradation of Rhodamine B dye. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:28289-28306. [PMID: 33534102 DOI: 10.1007/s11356-021-12497-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
The study describes the loading of the quartz SiO2 nanoparticles (NPs) with (3-aminopropyl)triethoxysilane (APTES) linker with simultaneous lengthening of the linker through the terminal amine group by glutaraldehyde (GA). The reactive polyethylenimine (PEI) was introduced to the surface to increase the ability to capture Cu(II) ions. The composite got the abbreviation SiO2/PEI-Cu(II). The Cu(II) ions were the active center with a peroxo-complex activation state. The composite characterization included scanning electron microscopy (SEM), transmission electron microscopy (TEM), electron-dispersive X-ray analysis (EDX), Fourier transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), thermogravimetric analysis (TGA), and Brunauer-Emmett-Teller (BET) surface analyzer. The kinetics of the oxidative degradation of Rhodamine B (RhB) dye obeyed the pseudo-first order under flooding conditions. The reaction parameters including the catalyst dose, solution pH, initial concentration of reactants, and temperature got some attention. The obtained results showed that more than 91.7 ± 1% of RhB dye was degraded to CO2, NH4+, NO3-, H2O, and some inorganic acids after 30 min as confirmed by gas chromatography mass spectrometry and total organic carbon (TOC) measurements. Also, GC-MS spectra for water samples drawn from the reaction in successive periods had suggested a conceivable degradation pathway for RhB by hydroxyl radicals. Degradation starts with de-alkylation then carboxyphenyl removal followed by two successive ring-opening stages. Both the effects of the catalyst recycling and treated water reusability on the reaction rate were studied. The catalyst provided noticeable stability over three consecutive cycles.
Collapse
Affiliation(s)
- Ali H Gemeay
- Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Mohamed E El-Halwagy
- Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
- Ethylene Production Sector, Sidi Kerir Petrochemicals Company, Alexandria, Egypt
| | - Abeer S Elsherbiny
- Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Ahmed B Zaki
- Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
12
|
A Three-Component Hybrid Templated by Asymmetric Viologen Exhibiting Visible-Light-Driven Photocatalytic Degradation on Dye Pollutant in Maritime Accident Seawater. Catalysts 2021. [DOI: 10.3390/catal11050640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The increasing dangerous chemical pollutants led by shipping accidents call for the new pollutant treatment strategy. In this work, a new three-component hybrid {[(BiI6)I13]·2I3·(H-BPA)4}n (1) can be used in dye degradation in seawater. The highly interesting feature of 1 lies in its unique 1-D Z-shape [(BiI6)I13]n6− infinite chain constructed from the I···I contacts between mono-nuclear (BiI6)3− anions and I133− polyiodide anions. Finally, the hydrogen bonds between [(BiI6)I13]n6− polyanions and H-BPA2+ cations contribute to the formation a quasi-3-D network. Specifically, 1 exhibits the wide absorption zone from ultraviolet to visible regions and high charge-separation efficiency, hinting its application in visible-light catalysis. As expected, 1 represents photocatalytic activity for the degradation of rhodamine B in seawater with degradation ratio of 90%, and the photocatalytic performance is stable. This work might provide new photocatalytic material for pollutant treatment in shipping accidents.
Collapse
|
13
|
Synthesis and characterization of a series of cross-linked polyamines for removal of Erichrome Black T from aqueous solution. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.09.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Defect engineered mesoporous 2D graphitic carbon nitride nanosheet photocatalyst for rhodamine B degradation under LED light illumination. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112582] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Yang S, Feng Y, Liu N, Zhao Y, Wang X, Zhang Z, Chen H, Yu Y. Enhancement on the removal of Rhodamine B (RhB) by means of the Enlarged Anode Electric Biological (EAEB) reactor. CHEMOSPHERE 2020; 245:125566. [PMID: 31883498 DOI: 10.1016/j.chemosphere.2019.125566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 05/16/2023]
Abstract
The Enlarged Anode Electric Biological (EAEB) Reactor was proposed, as an alternative to the common BAF. The goal of this research was to develop a new process for simultaneously removing, NH4+-N and Rhodamine B (RhB) from dyeing wastewater. The performance of EAEB was evaluated based on COD, NH4+-N and RhB removal efficiency in the effluent. The study found that the removal rate of RhB, which is a characteristic of the inoculation and start period, reaches 80% in EAEB and 30% in common BAF. A current intensity of 0.5 A, HRT of 3.5 h, and electrode area of 0.13 m2 were identified as operating parameters that could guarantee excellent RhB removal efficiency. It is worth noting that the removal of RhB in the two reactors was mainly concentrated in the 80 cm-140 cm area (measuring upwards at the top of the support layer). The removal rate of EAEB in this area was 97.7%, and the common BAF was 84.3%. Besides, in each segment of EAEB, the removal effect of RhB was better than in common BAF. This study elucidated the synergistic effects of electricity and biofilm on contaminant removal and identified important roles of improvements to the anode electro-biodegradation process. As compared to conventional technologies, the proposed process provides a highly efficient new alternative to dyeing wastewater treatment technology.
Collapse
Affiliation(s)
- Shumin Yang
- School of Civil Engineering and Architecture, University of Jinan, Jinan, 250022, China
| | - Yan Feng
- School of Civil Engineering and Architecture, University of Jinan, Jinan, 250022, China.
| | - Na Liu
- Shandong Water and Waste Water Monitoring Center, Jinan, 250001, China
| | - Youheng Zhao
- Environmental Engineering Co., Ltd., Shandong Academy of Environmental Science, Jinan, 250001, China
| | - Xinwei Wang
- China Urban Construction Design & Research Institute Co. Ltd (Shang Dong), Jinan, 250022, China
| | - Zhijie Zhang
- School of Civil Engineering and Architecture, University of Jinan, Jinan, 250022, China
| | - Hao Chen
- School of Civil Engineering and Architecture, University of Jinan, Jinan, 250022, China
| | - Yanzhen Yu
- School of Civil Engineering and Architecture, Qilu Institute of Technology, Jinan, 250022, China
| |
Collapse
|