1
|
Cortés Meneses L, Castro JDL, Murillo Vega F, Villalta-Romero F, Brenes AU, Wu-Wu JWF. Development of a Methodology for the Extraction of Potential Food-Grade Phycocyanin From Arthrospira maxima. J Food Sci 2025; 90:e70240. [PMID: 40344581 DOI: 10.1111/1750-3841.70240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 03/20/2025] [Accepted: 04/14/2025] [Indexed: 05/11/2025]
Abstract
This study develops an optimized methodology for extracting food-grade phycocyanin (PC) from Arthrospira maxima using cell disruption techniques, specifically ultrasound and freeze-thaw cycles. The research investigates the impact of various operational parameters, such as pH, temperature, and biomass concentration, on PC stability and extraction yield. Filtration was found to preserve higher PC concentrations compared to centrifugation, while spray drying effectively retained the pigment. Results indicate that pH 6.0 and temperatures below 45°C best preserved PC stability. Ultrasound treatment at 50% amplitude for 7 min maximized extraction yield (72.6 mg/g) with a purity of 1.18, though extending treatment time did not significantly improve results. Combining freeze-thaw cycles with ultrasound yielded lower extraction efficiency compared to ultrasound alone. The findings offer a scalable approach for producing high-purity PC, with potential applications in the food industry as a natural dye.
Collapse
Affiliation(s)
- Lucía Cortés Meneses
- Chemical Engineering Department, University of Costa Rica, San José, Costa Rica
- Biotechnology Research Center (CIB), School of Biology, Costa Rica Institute of Technology, San José, Costa Rica
| | | | - Francinie Murillo Vega
- Biotechnology Research Center (CIB), School of Biology, Costa Rica Institute of Technology, San José, Costa Rica
| | | | - Adolfo Ulate Brenes
- Chemical Engineering Department, University of Costa Rica, San José, Costa Rica
| | | |
Collapse
|
2
|
González-Contreras M, Hernández-Escoto H, Aguilar-Garnica E. A comprehensive analysis of bioethanol and ethyl lactate joint production in second-generation biorefinery: Simulation, techno-economic, and profitability assessments. BIORESOURCE TECHNOLOGY 2023:129470. [PMID: 37429556 DOI: 10.1016/j.biortech.2023.129470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/12/2023]
Abstract
Second-generation biorefineries (2GBR) represent an innovative application of bioresources technologies to produce bioenergy and valuable products. This paper aims to introduce and analyze the joint production of bioethanol and ethyl lactate in a 2GBR. Techno-economic and profitability perspectives are considered in the analysis which is conducted via simulation considering corn stover as raw material. A key aspect in the analysis is a joint production parameter named α, whose values can dictate either the sole production of bioethanol (α = 0), joint production (0 < α < 1), or the unique production of ethyl lactate (α = 1). In other words, the proposed joint production scheme provides versatility in production. Simulations show that the lowest Total Capital Investment, Unit Production Cost, and Operating Cost values were associated with low values of α. Furthermore, when α ≥ 0.4, the 2GBR under study can achieve internal rates of return above 30%, which implies that the project offers a potentially high profitability.
Collapse
Affiliation(s)
- Moisés González-Contreras
- Departamento de Ciencias Biotecnológicas y Ambientales, Universidad Autónoma de Guadalajara, 1201 Av. Patria, 44100 Guadalajara, Mexico
| | - Héctor Hernández-Escoto
- Departamento de Ingeniería Química, Universidad de Guanajuato, Noria Alta S/N, Guanajuato, Guanajuato 36050, Mexico
| | - Efrén Aguilar-Garnica
- Departamento de Ciencias Biotecnológicas y Ambientales, Universidad Autónoma de Guadalajara, 1201 Av. Patria, 44100 Guadalajara, Mexico.
| |
Collapse
|
3
|
Composition and apparent digestibility coefficients of essential nutrients and energy of cyanobacterium meal produced from Spirulina (Arthrospira platensis) for freshwater-phase Atlantic salmon (Salmo salar L.) pre-smolts. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
4
|
Valorization of rice straw, sugarcane bagasse and sweet sorghum bagasse for the production of bioethanol and phenylacetylcarbinol. Sci Rep 2023; 13:727. [PMID: 36639688 PMCID: PMC9839728 DOI: 10.1038/s41598-023-27451-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023] Open
Abstract
Open burning of agricultural residues causes numerous complications including particulate matter pollution in the air, soil degradation, global warming and many more. Since they possess bio-conversion potential, agro-industrial residues including sugarcane bagasse (SCB), rice straw (RS), corncob (CC) and sweet sorghum bagasse (SSB) were chosen for the study. Yeast strains, Candida tropicalis, C. shehatae, Saccharomyces cerevisiae, and Kluyveromyces marxianus var. marxianus were compared for their production potential of bioethanol and phenylacetylcarbinol (PAC), an intermediate in the manufacture of crucial pharmaceuticals, namely, ephedrine, and pseudoephedrine. Among the substrates and yeasts evaluated, RS cultivated with C. tropicalis produced significantly (p ≤ 0.05) higher ethanol concentration at 15.3 g L-1 after 24 h cultivation. The product per substrate yield (Yeth/s) was 0.38 g g-1 with the volumetric productivity (Qp) of 0.64 g L-1 h-1 and fermentation efficiency of 73.6% based on a theoretical yield of 0.51 g ethanol/g glucose. C. tropicalis grown in RS medium produced 0.303 U mL-1 pyruvate decarboxylase (PDC), a key enzyme that catalyzes the production of PAC, with a specific activity of 0.400 U mg-1 protein after 24 h cultivation. This present study also compared the whole cells biomass of C. tropicalis with its partially purified PDC preparation for PAC biotransformation. The whole cells C. tropicalis PDC at 1.29 U mL-1 produced an overall concentration of 62.3 mM PAC, which was 68.4% higher when compared to partially purified enzyme preparation. The results suggest that the valorization of lignocellulosic residues into bioethanol and PAC will not only aid in mitigating the environmental challenge posed by their surroundings but also has the potential to improve the bioeconomy.
Collapse
|
5
|
Thanigaivel S, Vickram S, Manikandan S, Deena SR, Subbaiya R, Karmegam N, Govarthanan M, Kim W. Sustainability and carbon neutralization trends in microalgae bioenergy production from wastewater treatment: A review. BIORESOURCE TECHNOLOGY 2022; 364:128057. [PMID: 36195218 DOI: 10.1016/j.biortech.2022.128057] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Reducing CO2 emissions using biomass is gaining popularity as an environmentally friendly strategy. Due to high growth rates, low production costs, and ability to withstand harsh conditions, microalgae have become quite popular. Microalgae may also undertake photosynthesis, converting CO2 and solar energy into sugar before becoming biomass, making them an excellent source of renewable and promising biofuels. CO2 sequestration and biofixation was utilized to compare the synthesis of biodiesel as a third-generation biofuel from various types of wastewater was also used as a source for the algal cultivation. This review article focuses on recent developments, research discoveries in the field of microalgal CO2 capture modification and the optimization of conversion efficiency. This review is intended to serve as a helpful and reference for the use of wastewater treatment with microalgae to collect CO2. The overarching objective of this study is to assist wastewater treatment systems in achieving carbon neutrality.
Collapse
Affiliation(s)
- Sundaram Thanigaivel
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chennai - 603 203, Tamil Nadu, India
| | - Sundaram Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai - 602 105, Tamil Nadu, India
| | - Sivasubramanian Manikandan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai - 602 105, Tamil Nadu, India
| | - Santhana Raj Deena
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai - 602 105, Tamil Nadu, India
| | - Ramasamy Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P O Box 21692, Kitwe, Zambia
| | - Natchimuthu Karmegam
- PG and Research Department of Botany, Government Arts College (Autonomous), Salem 636 007, Tamil Nadu, India
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
6
|
da Silva J, de Brito ES, Ferreira SRS. Biorefinery of Cashew By-Products: Recovery of Value-Added Compounds. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02916-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Zoltan Boboescu I, Kazbar A, Stegemüller L, Lazeroms P, Triantafyllou T, Gao F, Lo C, Barbosa MJ, Eppink MHM, Wijffels RH. Mild acoustic processing of Tisochrysis lutea for multiproduct biorefineries. BIORESOURCE TECHNOLOGY 2022; 360:127582. [PMID: 35798166 DOI: 10.1016/j.biortech.2022.127582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Cellular agriculture could represent a more sustainable alternative to current food and nutraceutical production processes. Tisochrysis lutea microalgae represents a rich source of antioxidants and omega-3 fatty acids essential for human health. However, current downstream technologies are limiting its use. The present work investigates mild targeted acoustic treatment of Tisochrysis lutea biomass at different growth stages and acoustic frequencies, intensities and treatment times. Significant differences have been observed in terms of the impact of these variables on the cell disruption and energy requirements. Lower frequencies of 20 kHz required a minimum of 4500 J to disrupt 90% of the cells, while only 1000 J at 1146 kHz. Comparing these results with current industry standards such as bead milling, up to six times less energy use has been identified. These mild biomass processing approaches offer a certain tunability which could suit a wide range of microorganisms with only minor adjustments.
Collapse
Affiliation(s)
| | - Antoinette Kazbar
- Bioprocess Engineering, Wageningen University & Research, Wageningen, the Netherlands
| | - Lars Stegemüller
- Bioprocess Engineering, Wageningen University & Research, Wageningen, the Netherlands
| | - Piet Lazeroms
- Bioprocess Engineering, Wageningen University & Research, Wageningen, the Netherlands
| | | | - Fengzheng Gao
- Bioprocess Engineering, Wageningen University & Research, Wageningen, the Netherlands
| | - Calvin Lo
- Bioprocess Engineering, Wageningen University & Research, Wageningen, the Netherlands
| | - Maria J Barbosa
- Bioprocess Engineering, Wageningen University & Research, Wageningen, the Netherlands
| | - Michel H M Eppink
- Bioprocess Engineering, Wageningen University & Research, Wageningen, the Netherlands
| | - Rene H Wijffels
- Bioprocess Engineering, Wageningen University & Research, Wageningen, the Netherlands; Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| |
Collapse
|
8
|
Venugopal V, Sasidharan A. Functional proteins through green refining of seafood side streams. Front Nutr 2022; 9:974447. [PMID: 36091241 PMCID: PMC9454818 DOI: 10.3389/fnut.2022.974447] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/29/2022] [Indexed: 01/09/2023] Open
Abstract
Scarcity of nutritive protein is a major global problem, the severity of which is bound to increase with the rising population. The situation demands finding additional sources of proteins that can be both safe as well as acceptable to the consumer. Food waste, particularly from seafood is a plausible feedstock of proteins in this respect. Fishing operations result in appreciable amounts of bycatch having poor food value. In addition, commercial processing results in 50 to 60% of seafood as discards, which consist of shell, head, fileting frames, bones, viscera, fin, skin, roe, and others. Furthermore, voluminous amounts of protein-rich effluents are released during commercial seafood processing. While meat from the bycatch can be raw material for proteinous edible products, proteins from the process discards and effluents can be recovered through biorefining employing upcoming, environmental-friendly, low-cost green processes. Microbial or enzyme treatments release proteins bound to the seafood matrices. Physico-chemical processes such as ultrasound, pulse electric field, high hydrostatic pressure, green solvent extractions and others are available to recover proteins from the by-products. Cultivation of photosynthetic microalgae in nutrient media consisting of seafood side streams generates algal cell mass, a rich source of functional proteins. A zero-waste marine bio-refinery approach can help almost total recovery of proteins and other ingredients from the seafood side streams. The recovered proteins can have high nutritive value and valuable applications as nutraceuticals and food additives.
Collapse
|
9
|
Thevarajah B, Nishshanka GKSH, Premaratne M, Nimarshana P, Nagarajan D, Chang JS, Ariyadasa TU. Large-scale production of Spirulina-based proteins and c-phycocyanin: A biorefinery approach. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
10
|
Abstract
Cultivation of photosynthetic microorganisms in wastewater is a potential cost-effective method of treating wastewater and simultaneously providing the essential nutrients for high-value biomass production. This study investigates the cultivation of the cyanobacterium Arthrospira platensis in non-diluted and non-pretreated brewery wastewater under non-sterile and alkaline growth conditions. The system’s performance in terms of biomass productivity, pollutant consumption, pigment production and biomass composition was evaluated under different media formulations (i.e., addition of sodium chloride and/or bicarbonate) and different irradiation conditions (i.e., continuous illumination and 16:8 light:dark photoperiod). It was observed that the combination of sodium bicarbonate with sodium chloride resulted in maximum pigment production recorded at the end of the experiments, and the use of the photoperiod led to increased pollutant removal (up to 90% of initial concentrations) and biomass concentration (950 mg/L). The composition of the microbial communities established during the experiments was also determined. It was observed that heterotrophic bacteria dominated by the phyla of Pseudomonadota, Bacillota, and Bacteroidota prevailed, while the cyanobacteria population showcased a dynamic behavior throughout the experiments, as it increased towards the end of cultivation (relative abundance of 10% and 30% under continuous illumination and photoperiod application, respectively). Overall, Arthrospira platensis-based cultivation proved to be an effective method of brewery wastewater treatment, although the large numbers of heterotrophic bacteria limit the usage of the produced biomass to applications such as biofuel and biofertilizer production.
Collapse
|
11
|
Prabha S, Vijay AK, Paul RR, George B. Cyanobacterial biorefinery: Towards economic feasibility through the maximum valorization of biomass. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152795. [PMID: 34979226 DOI: 10.1016/j.scitotenv.2021.152795] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Cyanobacteria are well known for their plethora of applications in the fields of food industry, pharmaceuticals and bioenergy. Their simple growth requirements, remarkable growth rate and the ability to produce a wide range of bio-active compounds enable them to act as an efficient biorefinery for the production of valuable metabolites. Most of the cyanobacteria based biorefineries are targeting single products and thus fails to meet the efficient valorization of biomass. On the other hand, multiple products recovering cyanobacterial biorefineries can efficiently valorize the biomass with minimum to zero waste generation. But there are plenty of bottlenecks and challenges allied with cyanobacterial biorefineries. Most of them are being associated with the production processes and downstream strategies, which are difficult to manage economically. There is a need to propose new solutions to eliminate these tailbacks so on to elevate the cyanobacterial biorefinery to be an economically feasible, minimum waste generating multiproduct biorefinery. Cost-effective approaches implemented from production to downstream processing without affecting the quality of products will be beneficial for attaining economic viability. The integrated approaches in cultivation systems as well as downstream processing, by simplifying individual processes to unit operation systems can obviously increase the economic feasibility to a certain extent. Low cost approaches for biomass production, multiparameter optimization and successive sequential retrieval of multiple value-added products according to their high to low market value from a biorefinery is possible. The nanotechnological approaches in cyanobacterial biorefineries make it one step closer to the goal. The current review gives an overview of strategies used for constructing self-sustainable- economically feasible- minimum waste generating; multiple products based cyanobacterial biorefineries by the efficient valorization of biomass. Also the possibility of uplifting new cyanobacterial strains for biorefineries is discussed.
Collapse
Affiliation(s)
- Syama Prabha
- Department of Botany, CMS College (Autonomous), Kottayam 686001. Kerala, India
| | - Aravind K Vijay
- Department of Botany, CMS College (Autonomous), Kottayam 686001. Kerala, India
| | - Rony Rajan Paul
- Department of Chemistry, CMS College (Autonomous), Kottayam 686001. Kerala, India
| | - Basil George
- Department of Botany, CMS College (Autonomous), Kottayam 686001. Kerala, India.
| |
Collapse
|
12
|
Arthrospira platensis Cultivation in a Bench-Scale Helical Tubular Photobioreactor. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Cultivations of Arthrospira platensis were carried out to evaluate the CO2 capture capacity of this cyanobacterium under bench-scale conditions. For this purpose, the influence of light intensity on the microbial growth and the photosynthetic efficiency has been investigated in a helical photobioreactor. Five cultivations were performed at different photosynthetic photon flux densities (23 ≤ PPFD ≤ 225 µmol photons m−2 s−1) by fed-batch pulse-feeding pure carbon dioxide from a cylinder into the helicoidal photobioreactor. In particular, a range of PPFD (82–190 µmol photons m−2 s−1) was identified in which biomass concentration reached values (9–11 gDW L−1) significantly higher than those reported in the literature for other configurations of closed photobioreactors. Furthermore, as A. platensis suspensions behave as Newtonian and non-Newtonian (pseudoplastic) fluids at very low and high biomass concentrations, respectively, a flow analysis was carried out for evaluating the most suitable mixing conditions depending on growth. The results obtained in this study appear to be very promising and suggest the use of this helicoidal photobioreactor configuration to reduce CO2 emissions from industrial gaseous effluents.
Collapse
|
13
|
Esquivel-Hernández DA, Pennacchio A, Torres-Acosta MA, Parra-Saldívar R, de Souza Vandenberghe LP, Faraco V. Multi-product biorefinery from Arthrospira platensis biomass as feedstock for bioethanol and lactic acid production. Sci Rep 2021; 11:19309. [PMID: 34588465 PMCID: PMC8481326 DOI: 10.1038/s41598-021-97803-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 07/20/2021] [Indexed: 02/08/2023] Open
Abstract
With the aim to reach the maximum recovery of bulk and specialty bioproducts while minimizing waste generation, a multi-product biorefinery for ethanol and lactic acid production from the biomass of cyanobacterium Arthrospira platensis was investigated. Therefore, the residual biomass resulting from different pretreatments consisting of supercritical fluid extraction (SF) and microwave assisted extraction with non-polar (MN) and polar solvents (MP), previously applied on A. platensis to extract bioactive metabolites, was further valorized. In particular, it was used as a substrate for fermentation with Saccharomyces cerevisiae LPB-287 and Lactobacillus acidophilus ATCC 43121 to produce bioethanol (BE) and lactic acid (LA), respectively. The maximum concentrations achieved were 3.02 ± 0.07 g/L of BE by the MN process at 120 rpm 30 °C, and 9.67 ± 0.05 g/L of LA by the SF process at 120 rpm 37 °C. An economic analysis of BE and LA production was carried out to elucidate the impact of fermentation scale, fermenter costs, production titer, fermentation time and cyanobacterial biomass production cost. The results indicated that the critical variables are fermenter scale, equipment cost, and product titer; time process was analyzed but was not critical. As scale increased, costs tended to stabilize, but also more product was generated, which causes production costs per unit of product to sharply decrease. The median value of production cost was US$ 1.27 and US$ 0.39, for BE and LA, respectively, supporting the concept of cyanobacterium biomass being used for fermentation and subsequent extraction to obtain ethanol and lactic acid as end products from A. platensis.
Collapse
Affiliation(s)
- Diego A. Esquivel-Hernández
- grid.419886.a0000 0001 2203 4701Escuela de Ingenieria y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Ave. Eugenio Garza Sada 2501, 64849 Monterrey, NL Mexico ,grid.9486.30000 0001 2159 0001Present Address: Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autónoma de México, Ave. Universidad 2001, 62210 Cuernavaca, Morelos Mexico ,grid.9486.30000 0001 2159 0001Present Address: Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito Exterior s/n, 04510 Mexico City, Mexico
| | - Anna Pennacchio
- grid.4691.a0000 0001 0790 385XDepartment of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy
| | - Mario A. Torres-Acosta
- grid.83440.3b0000000121901201Department of Biochemical Engineering, The Advance Centre for Biochemical Engineering, University College London, London, WC1E 6BT UK
| | - Roberto Parra-Saldívar
- grid.419886.a0000 0001 2203 4701Escuela de Ingenieria y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Ave. Eugenio Garza Sada 2501, 64849 Monterrey, NL Mexico
| | - Luciana Porto de Souza Vandenberghe
- grid.20736.300000 0001 1941 472XDepartment of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Coronel Francisco H. dos Santos Avenue, 210, Curitiba, 81531-980 Brazil
| | - Vincenza Faraco
- grid.4691.a0000 0001 0790 385XDepartment of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy
| |
Collapse
|
14
|
A Novel Three-Step Extraction Strategy for High-Value Products from Red Algae Porphyridium purpureum. Foods 2021; 10:foods10092164. [PMID: 34574272 PMCID: PMC8471847 DOI: 10.3390/foods10092164] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/03/2021] [Accepted: 09/09/2021] [Indexed: 01/13/2023] Open
Abstract
The microalga Porphyridium accumulates high-value compounds such as phycoerythrin, polyunsaturated fatty acids, and polysaccharides, and thus, the extraction of these compounds could significantly expand the value of Porphyridium biomass. In the present study, a novel fractional extraction strategy based on the characteristics of these compounds was established using cold water, 95% ethanol, and hot water. The yield of phycoerythrin, lipids, and polysaccharides was 63.3, 74.3, and 75.2%, respectively. The phycoerythrin exhibited excellent fluorescence characteristics but had low purity. The crude lipid was dark with poor fluidity. Digalactosyldiacylglycerol and sulphoquinovosyldiacylglycerol containing C20:5 and C20:4 were the most abundant glycerolipids, while glucose, xylose, and galactose constituted the intracellular polysaccharides that had covalently bound to proteins (8.01%), uronic acid (4.13%), and sulfate (8.31%). Compared with polysaccharides and crude lipids, crude phycoerythrin showed the best antioxidant activity. Overall, the three-step fractional extraction process was feasible for Porphyridium; however, further purification is necessary for downstream applications.
Collapse
|
15
|
Comparison of two strains of the edible cyanobacteria Arthrospira: Biochemical characterization and antioxidant properties. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
16
|
Recent Advances in Carbon Dioxide Conversion: A Circular Bioeconomy Perspective. SUSTAINABILITY 2021. [DOI: 10.3390/su13126962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Managing the concentration of atmospheric CO2 requires a multifaceted engineering strategy, which remains a highly challenging task. Reducing atmospheric CO2 (CO2R) by converting it to value-added chemicals in a carbon neutral footprint manner must be the ultimate goal. The latest progress in CO2R through either abiotic (artificial catalysts) or biotic (natural enzymes) processes is reviewed herein. Abiotic CO2R can be conducted in the aqueous phase that usually leads to the formation of a mixture of CO, formic acid, and hydrogen. By contrast, a wide spectrum of hydrocarbon species is often observed by abiotic CO2R in the gaseous phase. On the other hand, biotic CO2R is often conducted in the aqueous phase and a wide spectrum of value-added chemicals are obtained. Key to the success of the abiotic process is understanding the surface chemistry of catalysts, which significantly governs the reactivity and selectivity of CO2R. However, in biotic CO2R, operation conditions and reactor design are crucial to reaching a neutral carbon footprint. Future research needs to look toward neutral or even negative carbon footprint CO2R processes. Having a deep insight into the scientific and technological aspect of both abiotic and biotic CO2R would advance in designing efficient catalysts and microalgae farming systems. Integrating the abiotic and biotic CO2R such as microbial fuel cells further diversifies the spectrum of CO2R.
Collapse
|
17
|
Venugopal V. Valorization of Seafood Processing Discards: Bioconversion and Bio-Refinery Approaches. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.611835] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The seafood industry generates large volumes of waste. These include processing discards consisting of shell, head, bones intestine, fin, skin, voluminous amounts of wastewater discharged as effluents, and low-value under-utilized fish, which are caught as by-catch of commercial fishing operations. The discards, effluents, and by-catch are rich in nutrients including proteins, amino acids, lipids containing good proportions of polyunsaturated fatty acids (PUFA), carotenoids, and minerals. The seafood waste is, therefore, responsible for loss of nutrients and serious environmental hazards. It is important that the waste is subjected to secondary processing and valorization to address the problems. Although chemical processes are available for waste treatment, most of these processes have inherent weaknesses. Biological treatments, however, are environmentally friendly, safe, and cost-effective. Biological treatments are based on bioconversion processes, which help with the recovery of valuable ingredients from by-catch, processing discards, and effluents, without losing their inherent bioactivities. Major bioconversion processes make use of microbial fermentations or actions of exogenously added enzymes on the waste components. Recent developments in algal biotechnology offer novel processes for biotransformation of nutrients as single cell proteins, which can be used as feedstock for the recovery of valuable ingredients and also biofuel. Bioconversion options in conjunction with a bio-refinery approach have potential for eco-friendly and economical management of seafood waste that can support sustainable seafood production.
Collapse
|
18
|
Aslam A, Bahadar A, Liaquat R, Saleem M, Waqas A, Zwawi M. Algae as an attractive source for cosmetics to counter environmental stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:144905. [PMID: 33770892 DOI: 10.1016/j.scitotenv.2020.144905] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/27/2020] [Accepted: 12/25/2020] [Indexed: 06/12/2023]
Abstract
In recent times, a considerable amount of evidence has come to light regarding the effect that air pollution has on skin conditions. The human skin is the chief protection we have against environmental harm, whether biological, chemical, or physical. The stress from these environmental factors, along with internal influences, can be a cause of skin aging and enlarged pores, thinner skin, skin laxity, wrinkles, fine lines, dryness, and a more fragile dermal layer. This knowledge has led to greater demand for skin cosmetics and a requirement for natural raw ingredients with a high degree of safety and efficiency in combating skin complications. Recent developments in green technology have made the employment of naturally occurring bioactive compounds more popular, and novel extraction methods have ensured that the use of these compounds has greater compatibility with sustainable development principles. Thus, there is a demand for investigations into efficient non-harmful naturally occurring raw ingredients; compounds derived from algae could be beneficial in this area. Algae, both macroalgae and microalgae, consists of waterborne photosynthetic organisms that are potentially valuable as they have a range of bioactive compounds in their composition. Several beneficial metabolites can be obtained from algae, such as antioxidants, carotenoids, mycosporine-like amino acids (MAA), pigments, polysaccharides, and scytonemin. Various algae strains are now widely employed in skincare products for various purposes, such as a moisturizer, anti-wrinkle agent, texture-enhancing agents, or sunscreen. This research considers the environmental stresses on human skin and how they may be mitigated using cosmetics created using algae; special attention will be paid to external factors, both generally and specifically (amongst them light exposure and pollutants).
Collapse
Affiliation(s)
- Ayesha Aslam
- US Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Ali Bahadar
- Department of Chemical and Materials Engineering, King Abdulaziz University, Rabigh 21911, Saudi Arabia.
| | - Rabia Liaquat
- US Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Muhammad Saleem
- Department of Industrial Engineering, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Adeel Waqas
- US Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Mohammed Zwawi
- Department of Mechanical Engineering, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| |
Collapse
|
19
|
Pagels F, Vasconcelos V, Guedes AC. Carotenoids from Cyanobacteria: Biotechnological Potential and Optimization Strategies. Biomolecules 2021; 11:biom11050735. [PMID: 34063485 PMCID: PMC8156961 DOI: 10.3390/biom11050735] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/16/2022] Open
Abstract
Carotenoids are tetraterpenoids molecules present in all photosynthetic organisms, responsible for better light-harvesting and energy dissipation in photosynthesis. In cyanobacteria, the biosynthetic pathway of carotenoids is well described, and apart from the more common compounds (e.g., β-carotene, zeaxanthin, and echinenone), specific carotenoids can also be found, such as myxoxanthophyll. Moreover, cyanobacteria have a protein complex called orange carotenoid protein (OCP) as a mechanism of photoprotection. Although cyanobacteria are not the organism of choice for the industrial production of carotenoids, the optimisation of their production and the evaluation of their bioactive capacity demonstrate that these organisms may indeed be a potential candidate for future pigment production in a more environmentally friendly and sustainable approach of biorefinery. Carotenoids-rich extracts are described as antioxidant, anti-inflammatory, and anti-tumoral agents and are proposed for feed and cosmetical industries. Thus, several strategies for the optimisation of a cyanobacteria-based bioprocess for the obtention of pigments were described. This review aims to give an overview of carotenoids from cyanobacteria not only in terms of their chemistry but also in terms of their biotechnological applicability and the advances and the challenges in the production of such compounds.
Collapse
Affiliation(s)
- Fernando Pagels
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Novo Edifício do Terminal de Cruzeiros de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; (F.P.); (V.V.)
- FCUP—Faculty of Science, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Vitor Vasconcelos
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Novo Edifício do Terminal de Cruzeiros de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; (F.P.); (V.V.)
- FCUP—Faculty of Science, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Ana Catarina Guedes
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Novo Edifício do Terminal de Cruzeiros de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; (F.P.); (V.V.)
- Correspondence:
| |
Collapse
|
20
|
A Multi-Objective Life Cycle Optimization Model of an Integrated Algal Biorefinery toward a Sustainable Circular Bioeconomy Considering Resource Recirculation. ENERGIES 2021. [DOI: 10.3390/en14051416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Biofuel production from microalgae biomass has been considered a viable alternative to harmful fossil fuels; however, challenges are faced regarding its economic sustainability. Process integration to yield various high-value bioproducts is implemented to raise profitability and sustainability. By incorporating a circular economy outlook, recirculation of resource flows is maximized to yield economic and environmental benefits through waste minimization. However, previous modeling studies have not looked into the opportunity of integrating productivity reduction related to the continuous recirculation and reuse of resources until it reaches its end of life. In this work, a novel multi-objective optimization model is developed centered on an algal biorefinery that simultaneously optimizes cost and environmental impact, adopts the principle of resource recovery and recirculation, and incorporates the life cycle assessment methodology to properly account for the environmental impacts of the system. An algal biorefinery involving end-products such as biodiesel, glycerol, biochar, and fertilizer was used for a case study to validate the optimization model. The generated optimal results are assessed and further analyzed through scenario analysis. It was seen that demand fluctuations and process unit efficiencies have significant effect on the optimal results.
Collapse
|
21
|
Ubando AT, Africa ADM, Maniquiz-Redillas MC, Culaba AB, Chen WH. Reduction of particulate matter and volatile organic compounds in biorefineries: A state-of-the-art review. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123955. [PMID: 33264999 DOI: 10.1016/j.jhazmat.2020.123955] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/14/2020] [Accepted: 09/03/2020] [Indexed: 06/12/2023]
Abstract
A biorefinery is an efficient approach to generate multiple bio-products from biomass. With the increasing demand for bioenergy and bio-products, biorefineries are essential industrial platforms that provide needed demand while significantly reducing greenhouse gas emissions. A biorefinery consists of various conversion technologies where particulate matter (PM) and volatile organic compounds (VOCs) are emitted. The released PM and VOCs pose detrimental health and environmental risks for society. Moreover, the projected rise of global bioenergy demand may lead to an increase in PM and VOCs from biorefineries. With the use of cleaner technologies and approaches, PM and VOCs can be avoided in biorefineries. The study presents the landscape of the research field through a bibliometric review of emissions from a biorefinery. A comprehensive review of works on the reduction of PM and VOCs in a biorefinery is outlined. The study includes a perspective of cleaner technologies and approaches utilized in biorefineries to mitigate these hazardous materials. The results reveal that the employment of life cycle assessment, safety assessment, and green chemistry processes can significantly reduce PM and VOC emissions as well as the consumption of hazardous substances in the biorefinery.
Collapse
Affiliation(s)
- Aristotle T Ubando
- Mechanical Engineering Department, De La Salle University, 2401 Taft Avenue, Manila 0922, The Philippines; Thermomechanical Laboratory, De La Salle University, Laguna Campus, LTI Spine Road, Laguna Blvd, Biñan, Laguna 4024, The Philippines; Center for Engineering and Sustainable Development Research, De La Salle University, 2401 Taft Avenue, Manila 0922, The Philippines
| | - Aaron Don M Africa
- Center for Engineering and Sustainable Development Research, De La Salle University, 2401 Taft Avenue, Manila 0922, The Philippines; Electronics and Communication Engineering Department, De La Salle University, 2401 Taft Avenue, Manila 0922, The Philippines
| | - Marla C Maniquiz-Redillas
- Center for Engineering and Sustainable Development Research, De La Salle University, 2401 Taft Avenue, Manila 0922, The Philippines; Civil Engineering Department, De La Salle University, 2401 Taft Avenue, Manila 0922, The Philippines
| | - Alvin B Culaba
- Mechanical Engineering Department, De La Salle University, 2401 Taft Avenue, Manila 0922, The Philippines; Center for Engineering and Sustainable Development Research, De La Salle University, 2401 Taft Avenue, Manila 0922, The Philippines
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan.
| |
Collapse
|
22
|
Amorim ML, Soares J, Coimbra JSDR, Leite MDO, Albino LFT, Martins MA. Microalgae proteins: production, separation, isolation, quantification, and application in food and feed. Crit Rev Food Sci Nutr 2020; 61:1976-2002. [PMID: 32462889 DOI: 10.1080/10408398.2020.1768046] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Many countries have been experienced an increase in protein consumption due to the population growth and adoption of protein-rich dietaries. Unfortunately, conventional-based protein agroindustry is associated with environmental impacts that might aggravate as the humankind increase. Thus, it is important to screen for novel protein sources that are environmentally friendly. Microalgae farming is a promising alternative to couple the anthropic emissions with the production of food and feed. Some microalgae show protein contents two times higher than conventional protein sources. The use of whole microalgae biomass as a protein source in food and feed is simple and well-established. Conversely, the production of microalgae protein supplements and isolates requires the development of feasible and robust processes able to fractionate the microalgae biomass in different value-added products. Since most of the proteins are inside the microalgae cells, several techniques of disruption have been proposed to increase the efficiency to extract them. After the disruption of the microalgae cells, the proteins can be extracted, concentrated, isolated or purified allowing the development of different products. This critical review addresses the current state of the production of microalgae proteins for multifarious applications, and possibilities to concatenate the production of proteins and advanced biofuels.
Collapse
Affiliation(s)
- Matheus Lopes Amorim
- Department of Agricultural Engineering, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Jimmy Soares
- Department of Agricultural Engineering, Universidade Federal de Viçosa, Viçosa, Brazil
| | | | | | | | - Marcio Arêdes Martins
- Department of Agricultural Engineering, Universidade Federal de Viçosa, Viçosa, Brazil
| |
Collapse
|
23
|
Sarkar S, Manna MS, Bhowmick TK, Gayen K. Priority-based multiple products from microalgae: review on techniques and strategies. Crit Rev Biotechnol 2020; 40:590-607. [DOI: 10.1080/07388551.2020.1753649] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Sambit Sarkar
- Department of Chemical Engineering, National Institute of Technology Agartala, Agartala, India
| | - Mriganka Sekhar Manna
- Department of Chemical Engineering, National Institute of Technology Agartala, Agartala, India
| | - Tridib Kumar Bhowmick
- Department of Bioengineering, National Institute of Technology Agartala, Agartala, India
| | - Kalyan Gayen
- Department of Chemical Engineering, National Institute of Technology Agartala, Agartala, India
| |
Collapse
|