1
|
Roh Y, Je S, Sheen N, Shin CH, Yamaoka Y. Putative Endoplasmic Reticulum Stress Inducers Enhance Triacylglycerol Accumulation in Chlorella sorokiniana. Bioengineering (Basel) 2025; 12:452. [PMID: 40428071 DOI: 10.3390/bioengineering12050452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/01/2025] [Accepted: 04/22/2025] [Indexed: 05/29/2025] Open
Abstract
Chlorella, recognized for its high lipid and protein content, is increasingly studied for its potential in the food and bio industries. To enhance its production and understand the underlying mechanisms of lipid accumulation, this study investigated the role of endoplasmic reticulum (ER) stress in modulating lipid metabolism in Chlorella sorokiniana UTEX 2714, using six putative ER stress inducers: 2-deoxy-D-glucose (2-DG), dithiothreitol (DTT), tunicamycin (TM), thapsigargin (TG), brefeldin A (BFA), and monensin (Mon). The results showed that 2-DG, DTT, TM, BFA, and Mon significantly inhibited cell growth in C. sorokiniana. Treatment with 2-DG, DTT, TM, BFA, or Mon resulted in substantial increases in the triacylglycerol (TAG) to total fatty acid (tFA) ratio, with fold changes of 14.8, 7.9, 6.2, 10.1, and 8.9, respectively. Among the tFAs, cells treated with these compounds exhibited higher levels of saturated fatty acids and lower levels of polyunsaturated fatty acids (PUFAs). In contrast, the fatty acid composition of TAGs showed the opposite trend, with relative enrichment in PUFAs. This study enhances our understanding of Chlorella lipid metabolism, providing valuable insights for optimizing lipid production, particularly TAGs enriched with PUFA content, for applications in functional foods, nutraceuticals, and sustainable bioresources.
Collapse
Affiliation(s)
- Yoomi Roh
- Division of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Sujeong Je
- Division of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Naeun Sheen
- Chong Kun Dang Bio (CKDBiO) Research Institute, Ansan 15604, Republic of Korea
| | - Chang Hun Shin
- Chong Kun Dang Bio (CKDBiO) Research Institute, Ansan 15604, Republic of Korea
| | - Yasuyo Yamaoka
- Division of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| |
Collapse
|
2
|
Imamura S, Yamada K, Takebe H, Kiuchi R, Iwashita H, Toyokawa C, Suzuki K, Sakurai A, Takaya K. Optimal conditions of algal breeding using neutral beam and applying it to breed Euglena gracilis strains with improved lipid accumulation. Sci Rep 2024; 14:14716. [PMID: 38961078 PMCID: PMC11222385 DOI: 10.1038/s41598-024-65175-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/18/2024] [Indexed: 07/05/2024] Open
Abstract
Microalgae are considered to be more useful and effective to use in biomass production than other photosynthesis organisms. However, microalgae need to be altered to acquire more desirable traits for the relevant purpose. Although neutron radiation is known to induce DNA mutations, there have been few studies on its application to microalgae, and the optimal relationship between irradiation intensity and mutation occurrence has not been established. In this study, using the unicellular red alga Cyanidioschyzon merolae as a model, we analyzed the relationship between the absorbed dose of two types of neutrons, high-energy (above 1 MeV) and thermal (around 25 meV) neutrons, and mutation occurrence while monitoring mutations in URA5.3 gene encoding UMP synthase. As a result, the highest mutational occurrence was observed when the cells were irradiated with 20 Gy of high-energy neutrons and 13 Gy of thermal neutrons. Using these optimal neutron irradiation conditions, we next attempted to improve the lipid accumulation of Euglena gracilis, which is a candidate strain for biofuel feedstock production. As a result, we obtained several strains with a maximum 1.3-fold increase in lipid accumulation compared with the wild-type. These results indicate that microalgae breeding by neutron irradiation is effective.
Collapse
Affiliation(s)
- Sousuke Imamura
- Space Environment and Energy Laboratories, Nippon Telegraph and Telephone Corporation, Musashino-shi, 180-8585, Japan.
| | - Koji Yamada
- Advanced Science Research Institute, Euglena Co., Ltd., Yokohama-shi, 230-0045, Japan
| | - Hiroaki Takebe
- Space Environment and Energy Laboratories, Nippon Telegraph and Telephone Corporation, Musashino-shi, 180-8585, Japan
| | - Ryu Kiuchi
- Space Environment and Energy Laboratories, Nippon Telegraph and Telephone Corporation, Musashino-shi, 180-8585, Japan
| | - Hidenori Iwashita
- Space Environment and Energy Laboratories, Nippon Telegraph and Telephone Corporation, Musashino-shi, 180-8585, Japan
| | - Chihana Toyokawa
- Advanced Science Research Institute, Euglena Co., Ltd., Yokohama-shi, 230-0045, Japan
| | - Kengo Suzuki
- Advanced Science Research Institute, Euglena Co., Ltd., Yokohama-shi, 230-0045, Japan
| | - Atsushi Sakurai
- Space Environment and Energy Laboratories, Nippon Telegraph and Telephone Corporation, Musashino-shi, 180-8585, Japan
| | - Kazuhiro Takaya
- Space Environment and Energy Laboratories, Nippon Telegraph and Telephone Corporation, Musashino-shi, 180-8585, Japan
| |
Collapse
|
3
|
Shi TQ, Shen YH, Li YW, Huang ZY, Nie ZK, Ye C, Wang YT, Guo Q. Improving the productivity of gibberellic acid by combining small-molecule compounds-based targeting technology and transcriptomics analysis in Fusarium fujikuroi. BIORESOURCE TECHNOLOGY 2024; 394:130299. [PMID: 38185446 DOI: 10.1016/j.biortech.2024.130299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
Gibberellic acid (GA3), produced industrially by Fusarium fujikuroi, stands as a crucial plant growth regulator extensively employed in the agriculture filed while limited understanding of the global metabolic network hinders researchers from conducting rapid targeted modifications. In this study, a small-molecule compounds-based targeting technology was developed to increase GA3 production. Firstly, various small molecules were used to target key nodes of different pathways and the result displayed that supplement of terbinafine improved significantly GA3 accumulation, which reached to 1.08 g/L. Subsequently, lipid and squalene biosynthesis pathway were identified as the key pathways influencing GA3 biosynthesis by transcriptomic analysis. Thus, the strategies including in vivo metabolic engineering modification and in vitro supplementation of lipid substrates were adopted, both contributed to an enhanced GA3 yield. Finally, the engineered strain demonstrated the ability to achieve a GA3 yield of 3.24 g/L in 5 L bioreactor when utilizing WCO as carbon source and feed.
Collapse
Affiliation(s)
- Tian-Qiong Shi
- College of Food Science and Technology, Nanchang University, 999 Xuefu Road, Nancang 330031, China; School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China; Jiangxi New Reyphon Biochemical Co., Ltd., Salt and Chemical Industry, Xingan, China
| | - Yi-Hang Shen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China
| | - Ya-Wen Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China
| | - Zi-Yi Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China
| | - Zhi-Kui Nie
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China; Jiangxi New Reyphon Biochemical Co., Ltd., Salt and Chemical Industry, Xingan, China
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China; Ministry of Education Key Laboratory of NSLSCS, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China
| | - Yue-Tong Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China
| | - Qi Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China.
| |
Collapse
|
4
|
Zhao Y, Wang Q, Gu D, Huang F, Liu J, Yu L, Yu X. Melatonin, a phytohormone for enhancing the accumulation of high-value metabolites and stress tolerance in microalgae: Applications, mechanisms, and challenges. BIORESOURCE TECHNOLOGY 2024; 393:130093. [PMID: 38000641 DOI: 10.1016/j.biortech.2023.130093] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 11/26/2023]
Abstract
High-value metabolites, such as carotenoids, lipids, and proteins, are synthesized by microalgae and find applications in various fields, including food, health supplements, and cosmetics. However, the potential of the microalgal industry to serve these sectors is constrained by low productivity and high energy consumption. Environmental stressors can not only stimulate the accumulation of secondary metabolites in microalgae but also induce oxidative stress, suppressing cell growth and activity, thereby resulting in a decrease in overall productivity. Using melatonin (MT) under stressful conditions is an effective approach to enhance the productivity of microalgal metabolites. This review underscores the role of MT in promoting the accumulation of high-value metabolites and enhancing stress resistance in microalgae under stressful and wastewater conditions. It discusses the underlying mechanisms whereby MT enhances metabolite synthesis and improves stress resistance. The review also offers new perspectives on utilizing MT to improve microalgal productivity and stress resistance in challenging environments.
Collapse
Affiliation(s)
- Yongteng Zhao
- Yunnan Urban Agricultural Engineering & Technological Research Center, College of Agronomy and Life Science, Kunming University, Kunming 650214, China
| | - Qingwei Wang
- Yunnan Urban Agricultural Engineering & Technological Research Center, College of Agronomy and Life Science, Kunming University, Kunming 650214, China
| | - Dan Gu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Feiyan Huang
- Yunnan Urban Agricultural Engineering & Technological Research Center, College of Agronomy and Life Science, Kunming University, Kunming 650214, China
| | - Jiani Liu
- Yunnan Urban Agricultural Engineering & Technological Research Center, College of Agronomy and Life Science, Kunming University, Kunming 650214, China
| | - Lei Yu
- Yunnan Urban Agricultural Engineering & Technological Research Center, College of Agronomy and Life Science, Kunming University, Kunming 650214, China.
| | - Xuya Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
5
|
Wang T, Wang F, Zeng L, Guo P, Wu Y, Chen L, Zhang W. Propanol and 1, 3-propanediol enhance fatty acid accumulation synergistically in Schizochytrium ATCC 20888. Front Microbiol 2023; 13:1106265. [PMID: 36845976 PMCID: PMC9947470 DOI: 10.3389/fmicb.2022.1106265] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/05/2022] [Indexed: 02/11/2023] Open
Abstract
The effects of propanol and 1, 3-propanediol on fatty acid and biomass accumulation in Schizochytrium ATCC 20888 were explored. Propanol increased the contents of saturated fatty acids and total fatty acids by 55.4 and15.3%, while 1, 3-propanediol elevated the polyunsaturated fatty acids, total fatty acids and biomass contents by 30.7, 17.0, and 6.89%. Although both of them quench ROS to increase fatty acids biosynthesis, the mechanisms are different. The effect of propanol did not reflect on metabolic level while 1, 3-propanediol elevated osmoregulators contents and activated triacylglycerol biosynthetic pathway. The triacylglycerol content and the ratio of polyunsaturated fatty acids to saturated fatty acids were significantly increased by 2.53-fold, which explained the higher PUFA accumulation in Schizochytrium after adding 1, 3- propanediol. At last, the combination of propanol and 1, 3-propanediol further elevated total fatty acids by approximately 1.2-fold without compromising cell growth. These findings are valuable for scale-up production of designed Schizochytrium oil for various application purposes.
Collapse
Affiliation(s)
- Tiantian Wang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China,Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Fangzhong Wang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China,Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China,Center for Biosafety Research and Strategy, Tianjin University, Tianjin, China,*Correspondence: Fangzhong Wang, ✉
| | - Lei Zeng
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China,Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Pengfei Guo
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China,Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Yawei Wu
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China,Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China,Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China,Lei Chen, ✉
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China,Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China,Center for Biosafety Research and Strategy, Tianjin University, Tianjin, China
| |
Collapse
|
6
|
Casanova LM, Mendes LBB, Corrêa TDS, da Silva RB, Joao RR, Macrae A, Vermelho AB. Development of Microalgae Biodiesel: Current Status and Perspectives. Microorganisms 2022; 11:microorganisms11010034. [PMID: 36677325 PMCID: PMC9862501 DOI: 10.3390/microorganisms11010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/07/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
Microalgae are regarded as a promising source of biodiesel. In contrast with conventional crops currently used to produce commercial biodiesel, microalgae can be cultivated on non-arable land, besides having a higher growth rate and productivity. However, microalgal biodiesel is not yet regarded as economically competitive, compared to fossil fuels and crop-based biodiesel; therefore, it is not commercially produced. This review provides an overall perspective on technologies with the potential to increase efficiency and reduce the general costs of biodiesel production from microalgae. Opportunities and challenges for large-scale production are discussed. We present the current scenario of Brazilian research in the field and show a successful case in the research and development of microalgal biodiesel in open ponds by Petrobras. This publicly held Brazilian corporation has been investing in research in this sector for over a decade.
Collapse
Affiliation(s)
- Livia Marques Casanova
- Biotechnology Center-Bioinovar, Institute of Microbiology Paulo de Goes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil
- Correspondence: (L.M.C.); (A.B.V.)
| | | | - Thamiris de Souza Corrêa
- Biotechnology Center-Bioinovar, Institute of Microbiology Paulo de Goes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil
| | | | - Rafael Richard Joao
- Centro de Pesquisa Leopoldo Miguez de Mello, Petrobrás, Rio de Janeiro 21941-915, RJ, Brazil
| | - Andrew Macrae
- Sustainable Biotechnology and Microbial Bioinformatics Laboratory, Institute of Microbiology Paulo de Goes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil
| | - Alane Beatriz Vermelho
- Biotechnology Center-Bioinovar, Institute of Microbiology Paulo de Goes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil
- Correspondence: (L.M.C.); (A.B.V.)
| |
Collapse
|
7
|
Patel AK, Vadrale AP, Tseng YS, Chen CW, Dong CD, Singhania RR. Bioprospecting of marine microalgae from Kaohsiung Seacoast for lutein and lipid production. BIORESOURCE TECHNOLOGY 2022; 351:126928. [PMID: 35257880 DOI: 10.1016/j.biortech.2022.126928] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
A bioprospecting study was conducted from Seawater samples collected at Kaohsiung Seacoast, Taiwan. The current research was aimed to isolate potential lutein-producing strain, evaluate and optimize the best cultivation mode, lutein accumulation stage, lutein-extraction method, and condition to recover maximum lutein (main product) and lipid (byproduct). Biorefinery is the latest approach worldwide to extract multi-products for cost-effectiveness. Selected isolate among several isolates, identified as Chlorella sorokiniana Kh12 and exploited under biorefinery concept for lutein and lipid extraction. Kh12 cultivated under mixotrophy: 2X-(HT)-9k yielded maximum biomass (3.46 g L-1) and lutein (13.69 mg g-1) which is among the higher yields reported so far. Among various tested solvents, methanol was the best extractor. Bead milling was most effective to disrupt algal cell walls, seven minutes of milling was best for maximum lutein (7.56 mg g-1) extraction. Kh12 could be a promising candidate for commercial lutein and lipid co-production based on the outcome.
Collapse
Affiliation(s)
- Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow-226 029, Uttar Pradesh, India
| | - Akash Pralhad Vadrale
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Yi-Sheng Tseng
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow-226 029, Uttar Pradesh, India
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow-226 029, Uttar Pradesh, India.
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow-226 029, Uttar Pradesh, India
| |
Collapse
|
8
|
Ummalyma SB, Sirohi R, Udayan A, Yadav P, Raj A, Sim SJ, Pandey A. Sustainable microalgal biomass production in food industry wastewater for low-cost biorefinery products: a review. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2022; 22:1-23. [PMID: 35431709 PMCID: PMC9006494 DOI: 10.1007/s11101-022-09814-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 02/24/2022] [Indexed: 06/10/2023]
Abstract
Microalgae are recognized as cell factories enriched with biochemicals suitable as feedstock for bio-energy, food, feed, pharmaceuticals, and nutraceuticals applications. The industrial application of microalgae is challenging due to hurdles associated with mass cultivation and biomass recovery. The scale-up production of microalgal biomass in freshwater is not a sustainable solution due to the projected increase of freshwater demands in the coming years. Microalgae cultivation in wastewater is encouraged in recent years for sustainable bioeconomy from biorefinery processes. Wastewater from the food industry is a less-toxic growth medium for microalgal biomass production. Traditional wastewater treatment and management processes are expensive; hence it is highly relevant to use low-cost wastewater treatment processes with revenue generation through different products. Microalgae are accepted as potential biocatalysts for the bioremediation of wastewater. Microalgae based purification of wastewater technology could be a universal alternative solution for the recovery of resources from wastewater for low-cost biomass feedstock for industry. This review highlights the importance of microalgal biomass production in food processing wastewater, their characteristics, and different microalgal cultivation methods, followed by nutrient absorption mechanisms. Towards the end of the review, different microalgae biomass harvesting processes with biorefinery products, and void gaps that tend to hinder the biomass production with future perspectives will be intended. Thus, the review could claim to be valuable for sustainable microalgae biomass production for eco-friendly bioproduct conversions. Graphical abstract
Collapse
Affiliation(s)
- Sabeela Beevi Ummalyma
- DBT- Institute of Bioresources and Sustainable Development, An Autonomus Institute under Department of Biotechnology, Govt.of India, Takyelpat, Imphal, 795 001 India
| | - Ranjna Sirohi
- Department of Chemical & Biological Engineering, Korea University, Seoul, 136 713 Republic of Korea
- Centre for Energy and Environmental Sustainability, Lucknow, Uttar Pradesh 226 029 India
| | - Aswathy Udayan
- Department of Chemical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Pooja Yadav
- Environmental Toxicology Division, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh 226 001 India
| | - Abhay Raj
- Environmental Toxicology Division, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh 226 001 India
| | - Sang Jun Sim
- Department of Chemical & Biological Engineering, Korea University, Seoul, 136 713 Republic of Korea
| | - Ashok Pandey
- Centre for Energy and Environmental Sustainability, Lucknow, Uttar Pradesh 226 029 India
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh 226 001 India
- Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248 007 India
| |
Collapse
|
9
|
Park WK, Min K, Yun JH, Kim M, Kim MS, Park GW, Lee SY, Lee S, Lee J, Lee JP, Moon M, Lee JS. Paradigm shift in algal biomass refinery and its challenges. BIORESOURCE TECHNOLOGY 2022; 346:126358. [PMID: 34800638 DOI: 10.1016/j.biortech.2021.126358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Microalgae have been studied and tested for over 70 years. However, biodiesel, the prime target of the algal industry, has suffered from low competitiveness and current steps toward banning the internal combustion engine all over the world. Meanwhile, interest in reducing CO2 emissions has grown as the world has witnessed disasters caused by global warming. In this situation, in order to maximize the benefits of the microalgal industry and surmount current limitations, new breakthroughs are being sought. First, drop-in fuel, mandatory for the aviation and maritime industries, has been discussed as a new product. Second, methods to secure stable and feasible outdoor cultivation focusing on CO2 sequestration were investigated. Lastly, the need for an integrated refinery process to simultaneously produce multiple products has been discussed. While the merits of microalgae industry remain valid, further investigations into these new frontiers would put algal industry at the core of future bio-based economy.
Collapse
Affiliation(s)
- Won-Kun Park
- Department of Chemistry & Energy Engineering, Sangmyung University, Seoul 03016, Republic of Korea
| | - Kyoungseon Min
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea
| | - Jin-Ho Yun
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Minsik Kim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Min-Sik Kim
- Energy Resources Upcycling Research Laboratory, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea
| | - Gwon Woo Park
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea
| | - Soo Youn Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea
| | - Sangmin Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea
| | - Jiye Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea
| | - Joon-Pyo Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea
| | - Myounghoon Moon
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea.
| | - Jin-Suk Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea
| |
Collapse
|
10
|
Bao Z, Zhu Y, Feng Y, Zhang K, Zhang M, Wang Z, Yu L. Enhancement of lipid accumulation and docosahexaenoic acid synthesis in Schizochytrium sp. H016 by exogenous supplementation of sesamol. BIORESOURCE TECHNOLOGY 2022; 345:126527. [PMID: 34896539 DOI: 10.1016/j.biortech.2021.126527] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Schizochytrium sp. is one of the most promising marine oleaginous microorganisms for industrial production of docosahexaenoic acid (DHA). In this study, the exogenous supplementation of 1 mM sesamol to the fermentation medium effectively prevented the peroxidation of polyunsaturated fatty acids in the fermentation process, which thereby significantly increasing the lipid and DHA yield by 53.52% and 78.30%, respectively. The addition of sesamol also increased the total antioxidant capacity of cells and induce the gene expression of polyketide synthase and antioxidant enzyme system. Moreover, the supply of nicotinamide adenine dinucleotide phosphate was regulated by sesamol by inhibiting the malic enzyme activity and promoting the glucose-6-phosphate dehydrogenase activity. Finally, fed-batch fermentation showed that the addition of sesamol significantly enhanced the DHA yield by 90.76%. This study provides an important reference for enhancing the DHA productivity of Schizochytrium sp. in industrial fermentation.
Collapse
Affiliation(s)
- Zhendong Bao
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China; Hubei Engineering Research Center for Both Edible and Medicinal Resources, Wuhan 430074, China
| | - Yuanmin Zhu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China; Hubei Engineering Research Center for Both Edible and Medicinal Resources, Wuhan 430074, China
| | - Yumei Feng
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China; Hubei Engineering Research Center for Both Edible and Medicinal Resources, Wuhan 430074, China
| | - Kai Zhang
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China; Hubei Engineering Research Center for Both Edible and Medicinal Resources, Wuhan 430074, China
| | - Meng Zhang
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China; Hubei Engineering Research Center for Both Edible and Medicinal Resources, Wuhan 430074, China
| | - Zhikuan Wang
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China; Hubei Engineering Research Center for Both Edible and Medicinal Resources, Wuhan 430074, China
| | - Longjiang Yu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China; Hubei Engineering Research Center for Both Edible and Medicinal Resources, Wuhan 430074, China.
| |
Collapse
|
11
|
Huang PW, Xu YS, Sun XM, Shi TQ, Gu Y, Ye C, Huang H. Development of an Efficient Gene Editing Tool in Schizochytrium sp. and Improving Its Lipid and Terpenoid Biosynthesis. Front Nutr 2022; 8:795651. [PMID: 34970583 PMCID: PMC8712325 DOI: 10.3389/fnut.2021.795651] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/24/2021] [Indexed: 01/04/2023] Open
Abstract
Schizochytrium sp. HX-308 is a marine microalga with fast growth and high lipid content, which has potential as microbial cell factories for lipid compound biosynthesis. It is significant to develop efficient genetic editing tool and discover molecular target in Schizochytrium sp. HX-308 for lipid compound biosynthesis. In this study, we developed an efficient gene editing tool in HX-308 which was mediated by Agrobacterium tumefaciens AGL-1. Results showed that the random integration efficiency reached 100%, and the homologous recombination efficiency reached about 30%. Furthermore, the metabolic pathway of lipid and terpenoid biosynthesis were engineered. Firstly, the acetyl-CoA c-acetyltransferase was overexpressed in HX-308 with a strong constitutive promoter. With the overexpression of acetyl-CoA c-acetyltransferase, more acetyl-CoA was used to synthesize terpenoids, and the production of squalene, β-carotene and astaxanthin was increased 5.4, 1.8, and 2.4 times, respectively. Interestingly, the production of saturated fatty acids and polyunsaturated fatty acids also changed. Moreover, three Acyl-CoA oxidase genes which catalyze the first step of β-oxidation were knocked out using homologous recombination. Results showed that the production of lipids increased in the three knock-out strains. Our results demonstrated that the A. tumefaciens-mediated transformation method will be of great use for the study of function genes, as well as developing Schizochytrium sp. as a strong cell factory for producing high value products.
Collapse
Affiliation(s)
- Peng-Wei Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Ying-Shuang Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Yang Gu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China.,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| |
Collapse
|
12
|
Ogawa T, Nakamoto M, Tanaka Y, Sato K, Okazawa A, Kanaya S, Ohta D. Exploration and characterization of chemical stimulators to maximize the wax ester production by Euglena gracilis. J Biosci Bioeng 2021; 133:243-249. [PMID: 34952786 DOI: 10.1016/j.jbiosc.2021.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/25/2021] [Accepted: 12/06/2021] [Indexed: 12/26/2022]
Abstract
Euglena gracilis, a phototrophic protist, is a valuable biomass producer that is often employed in sustainable development efforts. E. gracilis accumulates wax esters as byproducts during anaerobic ATP production via the reductive tricarboxylic acid cycle, utilizing the storage carbohydrate β-1,3-glucan paramylon as the carbon source. Here, we report a library screening for chemical stimulators that accelerate both wax ester production and paramylon consumption. Among the 115 compounds tested, we identified nine compounds that increased wax ester production by more than 2.0-fold relative to the solvent control. In the presence of these nine compounds, the paramylon content decreased compared with the control experiment, and the residual paramylon content varied between 7% and 26% of the initial level. The most active compound, 1,4-diaminoanthracene-9,10-dione (OATQ008), stimulated wax ester production up to 2.7-fold within 24 h, and 93% of the cellular paramylon was consumed. In terms of the structural features of the chemical stimulators, we discuss the potential target sites to stimulate wax ester production in mitochondria under anaerobic conditions.
Collapse
Affiliation(s)
- Takumi Ogawa
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai 599-8531, Japan
| | - Masatoshi Nakamoto
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai 599-8531, Japan; Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Japan
| | - Yuki Tanaka
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai 599-8531, Japan
| | - Kazuhiro Sato
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai 599-8531, Japan
| | - Atsushi Okazawa
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai 599-8531, Japan
| | - Shigehiko Kanaya
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Japan
| | - Daisaku Ohta
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai 599-8531, Japan; Center for the 21st Century, Research Institute for Bioeconomy, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai 599-8531, Japan.
| |
Collapse
|
13
|
Srinivasan R, Subramanian P, Tirumani S, Gothandam KM, Ramya M. Ectopic expression of bacterial 1-aminocyclopropane 1-carboxylate deaminase in Chlamydomonas reinhardtii enhances algal biomass and lipid content under nitrogen deficit condition. BIORESOURCE TECHNOLOGY 2021; 341:125830. [PMID: 34455253 DOI: 10.1016/j.biortech.2021.125830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
1-Aminocyclopropane-1-carboxylate (ACC) deaminase is a well-known bacterial producing enzyme that helps plants to overcome stress conditions by modulating ethylene biosynthesis. However, the functional role of ACC deaminase and ethylene in microalgae during stress remains to be explored. In this study, to investigate the role of ACC deaminase (acds) from Pseudomonas putida UW4 in enhancing the biomass and lipid content of Chlamydomonas under nitrogen deficit condition. The synthetic codon-optimized acds gene was cloned into vector pChlamy_4 and introduced into Chlamydomonas. Results indicated that Chlamydomonas-expressing acds lines showed significant tolerance to nitrogen-deficit by reducing the ethylene content. The biomass, chlorophyll content and photosynthetic activity of acds-expressing lines were significantly increased during nitrogen deficit condition. Moreover, the intracellular lipid and fatty acid content were much higher in acds-expressing lines than the wild-type. In terms of stress alleviation, the transgenic lines displayed increased antioxidant enzymes, reduced ROS and lipid peroxidation levels.
Collapse
Affiliation(s)
- Ramachandran Srinivasan
- Molecular Genetics Laboratory, Department of Genetic Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - Parthiban Subramanian
- Department of Biotechnology and Microbiology, National College, Karumandapam, Thiruchirapalli 620001, Tamil Nadu, India
| | - Srikanth Tirumani
- Indian Institute of Science Education and Research, Karkambadi Road, Mangalam (P.O), Tirupati 517507, Andhra Pradesh, India
| | - Kodiveri Muthukaliannan Gothandam
- Department of Biotechnology, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Mohandass Ramya
- Molecular Genetics Laboratory, Department of Genetic Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
14
|
Uprety BK, Morrison EN, Emery RJN, Farrow SC. Customizing lipids from oleaginous microbes: leveraging exogenous and endogenous approaches. Trends Biotechnol 2021; 40:482-508. [PMID: 34625276 DOI: 10.1016/j.tibtech.2021.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 12/22/2022]
Abstract
To meet the growing demands of the oleochemical industry, tailored lipid sources are expanding to oleaginous microbes. To control the fatty acid composition of microbial lipids, ground-breaking exogenous and endogenous approaches are being developed. Exogenous approaches employ extracellular tools such as product-specific feedstocks, process optimization, elicitors, and magnetic and mechanical energy, whereas endogenous approaches leverage biology through the use of product-specific microbes, adaptive laboratory evolution (ALE), and the creation of custom strains via random and targeted cellular engineering. We consolidate recent advances from both fields into a review that will serve as a resource for those striving to fulfill the vision of microbial cell factories for tailored lipid production.
Collapse
Affiliation(s)
- Bijaya K Uprety
- Discovery Biology, Noblegen Inc., Peterborough, ON K9L 1Z8, Canada; Biology Department, Trent University, Peterborough, ON K9L 0G2, Canada
| | - Erin N Morrison
- Discovery Biology, Noblegen Inc., Peterborough, ON K9L 1Z8, Canada; Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON K9L 0G2, Canada
| | - R J Neil Emery
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON K9L 0G2, Canada; Biology Department, Trent University, Peterborough, ON K9L 0G2, Canada
| | - Scott C Farrow
- Discovery Biology, Noblegen Inc., Peterborough, ON K9L 1Z8, Canada; Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON K9L 0G2, Canada.
| |
Collapse
|
15
|
Abstract
In recent years, there has been considerable interest in using microalgal lipids in the food, chemical, pharmaceutical, and cosmetic industries. Several microalgal species can accumulate appreciable lipid quantities and therefore are characterized as oleaginous. In cosmetic formulations, lipids and their derivatives are one of the main ingredients. Different lipid classes are great moisturizing, emollient, and softening agents, work as surfactants and emulsifiers, give consistence to products, are color and fragrance carriers, act as preservatives to maintain products integrity, and can be part of the molecules delivery system. In the past, chemicals have been widely used but today’s market and customers’ demands are oriented towards natural products. Microalgae are an extraordinary source of lipids and other many bioactive molecules. Scientists’ attention to microalgae cultivation for their industrial application is increasing. For the high costs associated, commercialization of microalgae and their products is still not very widespread. The possibility to use biomass for various industrial purposes could make microalgae more economically competitive.
Collapse
|
16
|
Rawat J, Gupta PK, Pandit S, Prasad R, Pande V. Current perspectives on integrated approaches to enhance lipid accumulation in microalgae. 3 Biotech 2021; 11:303. [PMID: 34194896 DOI: 10.1007/s13205-021-02851-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/19/2021] [Indexed: 11/30/2022] Open
Abstract
In recent years, research initiatives on renewable bioenergy or biofuels have been gaining momentum, not only due to fast depletion of finite reserves of fossil fuels but also because of the associated concerns for the environment and future energy security. In the last few decades, interest is growing concerning microalgae as the third-generation biofuel feedstock. The CO2 fixation ability and conversion of it into value-added compounds, devoid of challenging food and feed crops, make these photosynthetic microorganisms an optimistic producer of biofuel from an environmental point of view. Microalgal-derived fuels are currently being considered as clean, renewable, and promising sustainable biofuel. Therefore, most research targets to obtain strains with the highest lipid productivity and a high growth rate at the lowest cultivation costs. Different methods and strategies to attain higher biomass and lipid accumulation in microalgae have been extensively reported in the previous research, but there are fewer inclusive reports that summarize the conventional methods with the modern techniques for lipid enhancement and biodiesel production from microalgae. Therefore, the current review focuses on the latest techniques and advances in different cultivation conditions, the effect of different abiotic and heavy metal stress, and the role of nanoparticles (NPs) in the stimulation of lipid accumulation in microalgae. Techniques such as genetic engineering, where particular genes associated with lipid metabolism, are modified to boost lipid synthesis within the microalgae, the contribution of "Omics" in metabolic pathway studies. Further, the contribution of CRISPR/Cas9 system technique to the production of microalgae biofuel is also briefly described.
Collapse
Affiliation(s)
- Jyoti Rawat
- Department of Biotechnology, Sir J. C. Bose Technical Campus Bhimtal, Kumaun University, Nainital, Uttarakhand 263136 India
| | - Piyush Kumar Gupta
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh 201310 India
| | - Soumya Pandit
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh 201310 India
| | - Ram Prasad
- Department of Botany, Mahatma Gandhi Central University, Motihari, Bihar 845801 India
| | - Veena Pande
- Department of Biotechnology, Sir J. C. Bose Technical Campus Bhimtal, Kumaun University, Nainital, Uttarakhand 263136 India
| |
Collapse
|
17
|
Zhu J, Tan X, Hafid HS, Wakisaka M. Enhancement of biomass yield and lipid accumulation of freshwater microalga Euglena gracilis by phenolic compounds from basic structures of lignin. BIORESOURCE TECHNOLOGY 2021; 321:124441. [PMID: 33268047 DOI: 10.1016/j.biortech.2020.124441] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Introducing biomass-derived additives into microalgae cultivation to increase its yield has been regarded as a more cost-effective and environment-friendly method compared with gene-editing and nutrients supplementation. In this research, feasibility of three major phenolic compounds from lignin's basic structures (guaiacyl-, hydroxyphenyl- and syringyl- types) for freshwater microalga Euglena gracilis cultivation was evaluated. The results indicated that trans-4-hydroxy-3-methoxycinnamic acid (HMA), 4-hydroxybenzaldehyde (HBA), and syringaldehyde (SRA) could all promote microalgae growth in a phytohormone-like role, and the highest promotion effect was achieved under HMA treatment. HMA at 0.5 g·L-1 enhanced the cell biomass yield by 2.30 times, while HBA and SRA at the concentration of 0.1 g·L-1 increased the yield by 1.30 and 1.21 times, respectively. In addition, increased carotenoids and lipid biosynthesis were also observed under the treatments of phenolic compounds, which would contribute to the microalgae biofuel production, since the growth and lipid accumulation of E. gracilis were simultaneously enhanced.
Collapse
Affiliation(s)
- Jiangyu Zhu
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Fukuoka 808-0196, Japan
| | - Xiaomiao Tan
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Fukuoka 808-0196, Japan; School of Food Science and Engineering, Yangzhou University, No.196 Huayang West Road, Hanjiang District, Yangzhou City, Jiangsu Province 225127, China
| | - Halimatun Saadiah Hafid
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Fukuoka 808-0196, Japan
| | - Minato Wakisaka
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Fukuoka 808-0196, Japan.
| |
Collapse
|
18
|
Ran W, Xiang Q, Pan Y, Xie T, Zhang Y, Yao C. Enhancing Photosynthetic Starch Production by γ-Aminobutyric Acid Addition in a Marine Green Microalga Tetraselmis subcordiformis under Nitrogen Stress. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00398] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wenyi Ran
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Qi Xiang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yunyun Pan
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Tonghui Xie
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yongkui Zhang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Changhong Yao
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|