1
|
Han Q, Yang ML, Liu ZS, Zhao YH, Liu XH, Ai GM, Qin WH, Liu XY, Li DF. Simultaneous high molecular weight PAHs degradation and chromate and arsenite detoxification by Altererythrobacter sp. H2. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138314. [PMID: 40250277 DOI: 10.1016/j.jhazmat.2025.138314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/14/2025] [Accepted: 04/14/2025] [Indexed: 04/20/2025]
Abstract
The cooccurrence of high molecular weight PAHs and heavy metals Cr and As is frequently observed in soil and water and challenges public health and environmental management. Yet the limited microbial resources were reported to simultaneously detoxify PAHs, Cr(VI) and As(III), which restricts the bioremediation of co-contaminated soil by PAHs, Cr and As. Here, we isolated Altererythrobacter sp. H2 and found it could degrade various PAHs, including phenanthrene, fluoranthene, pyrene, benzo[a]anthracene, and benzo[a]pyrene, and tolerate and detoxify high concentrations of Cr(VI) and As(III). Genomic, transcriptomic, and biochemical assays reveal strain H2 degrades PAHs, reduces Cr(VI), and oxidize As(III) via a horizontally transferred RHO gene cluster, a chromate reductase ChrR, and a arsenite resistance gene cluster arsRBC. The horizontally transferred PAHs-degrading gene cluster encodes the Rieske dioxygenase three-component system and other enzymes required for PAHs degradation, which suggested those heavy metal-detoxifying bacteria could be excellent PAHs-degrading and heavy metal-detoxifying agents after accommodating a PAHs degradation gene cluster like strain H2 did. To our knowledge, strain H2 is the only reported Altererythrobacter member that uses a classical Rieske dioxygenase three-component system to initial PAHs degradation and the only one could simultaneously detoxify PAHs, Cr(VI), and As(III). Our study provides insights into the PAHs degradation mechanism of Altererythrobacter members and demonstrates the excellent potential of H2 in the bioremediation of both PAHs and heavy metal pollutants.
Collapse
Affiliation(s)
- Qun Han
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Mei-Ling Yang
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ze-Shen Liu
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ying-Hao Zhao
- Institute of Earth Science, China University of Geosciences, Beijing, China
| | - Xue-Hui Liu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Guo-Min Ai
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Wei-Hong Qin
- School of Life Sciences, Yunnan University, Kunming, China
| | - Xing-Yu Liu
- Institute of Earth Science, China University of Geosciences, Beijing, China.
| | - De-Feng Li
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Mohamed AY, Gill L, Monleon A, Pronk M, van Loosdrecht M, Saikaly PE, Ali M. Genome-Resolved Metatranscriptomics Provide Insights on Immigration Influence in Structuring Microbial Community Assembly of a Full-Scale Aerobic Granular Sludge Plant. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:6126-6141. [PMID: 40106496 PMCID: PMC11966751 DOI: 10.1021/acs.est.4c14471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/24/2025] [Accepted: 03/10/2025] [Indexed: 03/22/2025]
Abstract
Understanding the relative influence of immigration and species sorting in wastewater treatment systems is essential, as bacteria in influent wastewater can significantly impact treatment system functionality. This study investigated the contribution of immigration to the community assembly of different-sized microbial aggregates in a full-scale aerobic granular sludge (AGS) system using genome-resolved metatranscriptomics. Our novel analysis revealed that negative-net-growth-rate populations, which persist due to immigration, can exhibit substantial activity and potentially contribute to the AGS system's functionality. The results also highlighted that sulfate-reducing and fermenting bacteria, along with some nitrifiers and glycogen-accumulating organisms (GAOs), were more active in the influent wastewater, serving as a continuous source of both beneficial and competing immigrants to the AGS system. Granular sludge (size >0.2 mm) demonstrated a robust capacity to resist immigration effects from competing immigrants, whereas flocculent sludge (size <0.2 mm) was more susceptible. Importantly, flocculent sludge harbored functional microbial groups such as active nitrifiers and fermentative polyphosphate-accumulating organisms (PAOs) belonging to Ca. Phosphoribacter, while granular sludge enriched for active conventional PAOs such as Ca. Accumulibacter. These findings provide valuable insights for engineers to design and operate AGS systems by optimizing microbial aggregate sizes and emphasizing the importance of influent microbial characterization in the design of wastewater treatment plants to enhance the functionality and activity of AGS systems.
Collapse
Affiliation(s)
- A. Y.
A. Mohamed
- Department
of Civil, Structural & Environmental Engineering, Trinity College
Dublin, The University of Dublin, Dublin D2, Ireland
| | - Laurence Gill
- Department
of Civil, Structural & Environmental Engineering, Trinity College
Dublin, The University of Dublin, Dublin D2, Ireland
| | - Alejandro Monleon
- Department
of Civil, Structural & Environmental Engineering, Trinity College
Dublin, The University of Dublin, Dublin D2, Ireland
| | - Mario Pronk
- Department
of Biotechnology, Delft University of Technology, Delft 2629 HZ, The Netherlands
| | - Mark van Loosdrecht
- Department
of Biotechnology, Delft University of Technology, Delft 2629 HZ, The Netherlands
| | - Pascal E. Saikaly
- Environmental
Science and Engineering Program, Biological and Environmental Science
and Engineering (BESE) Division, King Abdullah
University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Water
Desalination and Reuse Center, Biological and Environmental Science
and Engineering (BESE) Division, King Abdullah
University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Muhammad Ali
- Department
of Civil, Structural & Environmental Engineering, Trinity College
Dublin, The University of Dublin, Dublin D2, Ireland
| |
Collapse
|
3
|
Lin X, Zhang J, Luo Z, Li J, Xiao X, Wang X, Cai Q, Yu W, Tao J, Zeng J, Tu H, Qiu J. Optimization of degradation conditions for sulfachlorpyridazine by Bacillus sp. DLY-11 and analysis of biodegradation mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135755. [PMID: 39244986 DOI: 10.1016/j.jhazmat.2024.135755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/26/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Sulfachloropyridazine (SCP) is a common sulfonamide antibiotic pollutant found in animal excreta. Finding highly efficient degrading bacterial strains is an important measure to reduce SCP antibiotic pollution. Although some strains with degradation capabilities have been screened, the degradation pathways and biotransformation mechanisms of SCP during bacterial growth are still unclear. In this study, a strain capable of efficiently degrading SCP, named Bacillus sp. DLY-11, was isolated from pig manure aerobic compost. Under optimized conditions (5 % Vaccination dose, 51.5 ℃ reaction temperature, pH=7.92 and 0.5 g/L MgSO4), this strain was able to degrade 97.7 % of 20 mg/L SCP within 48 h. Through the analysis of nine possible degradation products (including a new product of 1,4-benzoquinone with increased toxicity), three potential biodegradation pathways were proposed. The biodegradation reactions include S-N bond cleavage, dechlorination, hydroxylation, deamination, methylation, sulfur dioxide release, and oxidation reactions. This discovery not only provides a new efficient SCP-degrading bacterial strain but also expands our understanding of the mechanisms of bacterial degradation of SCP, filling a knowledge gap. It offers important reference for the bioremediation of antibiotic pollutants in livestock and poultry farming.
Collapse
Affiliation(s)
- Xiaojun Lin
- South China Institute of Environmental Sciences, MEE, Guangzhou 510655, Guangdong, China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, Guangzhou 510655, Guangdong, China
| | - Jun Zhang
- Zhejiang Lishui Ecological and Environmental Monitoring Center, Lishui 323000, Zhejiang, China
| | - Zifeng Luo
- South China Institute of Environmental Sciences, MEE, Guangzhou 510655, Guangdong, China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, Guangzhou 510655, Guangdong, China.
| | - Jingtong Li
- College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
| | - Xue Xiao
- South China Institute of Environmental Sciences, MEE, Guangzhou 510655, Guangdong, China
| | - Xiujuan Wang
- South China Institute of Environmental Sciences, MEE, Guangzhou 510655, Guangdong, China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, Guangzhou 510655, Guangdong, China
| | - Qianyi Cai
- South China Institute of Environmental Sciences, MEE, Guangzhou 510655, Guangdong, China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, Guangzhou 510655, Guangdong, China
| | - Weida Yu
- South China Institute of Environmental Sciences, MEE, Guangzhou 510655, Guangdong, China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, Guangzhou 510655, Guangdong, China
| | - Junshi Tao
- South China Institute of Environmental Sciences, MEE, Guangzhou 510655, Guangdong, China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, Guangzhou 510655, Guangdong, China
| | - Jingwen Zeng
- South China Institute of Environmental Sciences, MEE, Guangzhou 510655, Guangdong, China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, Guangzhou 510655, Guangdong, China
| | - Hongxing Tu
- South China Institute of Environmental Sciences, MEE, Guangzhou 510655, Guangdong, China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, Guangzhou 510655, Guangdong, China
| | - Jinrong Qiu
- South China Institute of Environmental Sciences, MEE, Guangzhou 510655, Guangdong, China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, Guangzhou 510655, Guangdong, China.
| |
Collapse
|
4
|
Messner K, Yurkov V. Abundance, Characterization and Diversity of Culturable Anoxygenic Phototrophic Bacteria in Manitoban Marshlands. Microorganisms 2024; 12:1007. [PMID: 38792836 PMCID: PMC11123896 DOI: 10.3390/microorganisms12051007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Marshes are an important ecosystem, acting as a biodiversity hotspot, a carbon sink and a bioremediation site, breaking down anthropogenic waste such as antibiotics, metals and fertilizers. Due to their participation in these metabolic activities and their capability to contribute to primary productivity, the microorganisms in such habitats have become of interest to investigate. Since Proteobacteria were previously found to be abundant and the waters are well aerated and organic-rich, this study on the presence of anoxygenic phototrophic bacteria, purple non-sulfur bacteria and aerobic anoxygenic phototrophs in marshes was initiated. One sample was collected at each of the seven Manitoban sites, and anoxygenic phototrophs were cultivated and enumerated. A group of 14 strains, which represented the phylogenetic diversity of the isolates, was physiologically investigated further. Aerobic anoxygenic phototrophs and purple non-sulfur bacteria were present at each location, and they belonged to the α- and β-Proteobacteria subphyla. Some were closely related to known heavy metal reducers (Brevundimonas) and xenobiotic decomposers (Novosphingobium and Sphingomonas). All were able to synthesize the photosynthetic complexes aerobically. This research highlights the diversity of and the potential contributions that anoxygenic phototrophs make to the essential functions taking place in wetlands.
Collapse
Affiliation(s)
| | - Vladimir Yurkov
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| |
Collapse
|
5
|
Li J, Ou Y, Wang L, Zheng Y, Xu W, Peng J, Zhang X, Cao Z, Ye J. Responses of a polycyclic aromatic hydrocarbon-degrading bacterium, Paraburkholderia fungorum JT-M8, to Cd (II) under P-limited oligotrophic conditions. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133123. [PMID: 38056271 DOI: 10.1016/j.jhazmat.2023.133123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/28/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
For the bioremediation of mixed-contamination sites, studies on polycyclic aromatic hydrocarbon (PAH) degradation or Cd (II) tolerance in bacteria are commonly implemented in nutrient-rich media. In contrast, in the field, inocula usually encounter harsh oligotrophic habitats. In this study, the environmental strain Paraburkholderia fungorum JT-M8 was used to explore the overlooked Cd (II) defense mechanism during PAH dissipation under P-limited oligotrophic condition. The results showed that the growth and PAH degradation ability of JT-M8 under Cd (II) stress were correlated with phosphate contents and exhibited self-regulating properties. Phosphates mainly affected the Cd (II) content in solution, while the cellular distribution of Cd (II) depended on Cd (II) levels; Cd (II) was mainly located in the cytoplasm when exposed to less Cd (II), and vice versa. The unique Cd (II) detoxification pathways could be classified into three aspects: (i) Cd (II) ionic equilibrium and dose-response effects regulated by environmental matrices (phosphate contents); (ii) bacterial physiological self-regulation, e.g., cell surface-binding, protein secretion and active transport systems; and (iii) specific adaptive responses (flagellum aggregation). This study emphasizes the importance of considering culture conditions when assessing the metal tolerance and provides new insight into the bacterial detoxification process of complex PAH-Cd (II) pollutants.
Collapse
Affiliation(s)
- Jinghua Li
- School of Environment, Henan Normal University, Xinxiang, Henan 453007, PR China; International Joint Laboratory on Key Techniques in Water Treatment, Xinxiang, Henan 453007, PR China; Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China; Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Xinxiang, Henan 453007, PR China.
| | - Yiwen Ou
- School of Environment, Henan Normal University, Xinxiang, Henan 453007, PR China; School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Lijuan Wang
- School of Environment, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Yue Zheng
- School of Environment, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Weiyun Xu
- School of Environment, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Jianbiao Peng
- School of Environment, Henan Normal University, Xinxiang, Henan 453007, PR China; International Joint Laboratory on Key Techniques in Water Treatment, Xinxiang, Henan 453007, PR China; Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China; Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Xinxiang, Henan 453007, PR China
| | - Xin Zhang
- School of Environment, Henan Normal University, Xinxiang, Henan 453007, PR China; International Joint Laboratory on Key Techniques in Water Treatment, Xinxiang, Henan 453007, PR China; Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China; Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Xinxiang, Henan 453007, PR China
| | - Zhiguo Cao
- School of Environment, Henan Normal University, Xinxiang, Henan 453007, PR China; International Joint Laboratory on Key Techniques in Water Treatment, Xinxiang, Henan 453007, PR China; Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China; Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Xinxiang, Henan 453007, PR China
| | - Junpei Ye
- School of Environment, Henan Normal University, Xinxiang, Henan 453007, PR China; International Joint Laboratory on Key Techniques in Water Treatment, Xinxiang, Henan 453007, PR China; Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China; Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Xinxiang, Henan 453007, PR China
| |
Collapse
|
6
|
Li J, Hong M, Tang R, Cui T, Yang Y, Lv J, Liu N, Lei Y. Isolation of Diaphorobacter sp. LW2 capable of degrading Phenanthrene and its migration mediated by Pythium ultimum. ENVIRONMENTAL TECHNOLOGY 2024; 45:1497-1507. [PMID: 36384417 DOI: 10.1080/09593330.2022.2145914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Phenanthrene, one of the polycyclic aromatic hydrocarbons, is stubborn and persistent and exists widely in petroleum-contaminated soil. Filamentous fungi are good assistants to bacterial transport, by hyphae passing through soil pores and reaching further positions. An isolated bacterial strain, from the contaminated soil of the coking plant, was identified as Diaphorobacter and named LW2, which could use phenanthrene as the only carbon source and energy for its growth. LW2 could degrade phenanthrene in a wide range of pH, temperature and initial concentration. When pH was 6 and 10, the removal rate of phenanthrene was 38.59% and 76.44%, respectively, and the removal rate of phenanthrene was 68.25% at 15 ℃. And LW2 could degrade 86.64% phenanthrene when the initial concentration was 100 mg L-1. The detection of DI-N-octyl phthalate, phthalic acid and p-hydroxybenzoic acid revealed that the strain LW2 metabolised phenanthrene through the phthalic acid pathway. Meanwhile, swimming and swarming test results suggested that LW2 was motile. The auxiliary effect of Pythium ultimum on LW2 migration was assessed. In the presence of Pythium ultimum, LW2 could migrate within the range of centimters by its mycelium, which was also observed by fluorescence microscopy. Meanwhile, the degradation ability of LW2 after the migration was also explored. The results proved that the migration process had no significant effect on its degradation ability, and LW2 still showed good phenanthrene metabolism ability. This study provides more possibilities for the bioremediation of phenanthrene-contaminated soil by screening the degradation bacteria and testing the effect of fungi on its migration.
Collapse
Affiliation(s)
- Jialu Li
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, People's Republic of China
| | - Mei Hong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, People's Republic of China
| | - Rui Tang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, People's Republic of China
| | - Tingchen Cui
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, People's Republic of China
| | - Yadong Yang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, People's Republic of China
| | - Jing Lv
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, People's Republic of China
| | - Na Liu
- Institute of Groundwater and Earth Science, Jinan University, Guangzhou City, People's Republic of China
| | - Yutao Lei
- South China Institute of Environmental Sciences, MEP, Guangzhou, People's Republic of China
| |
Collapse
|
7
|
Wang Y, Long C, Yin L, Liu R, Liao Y, He G, Liu Z. Effects of simulated acid rain on hydrochemical factors and microbial community structure in red soil aquifers. RSC Adv 2024; 14:4482-4491. [PMID: 38312729 PMCID: PMC10835706 DOI: 10.1039/d3ra08820k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 01/18/2024] [Indexed: 02/06/2024] Open
Abstract
Acid rain can lower the pH of groundwater and affect its hydrogeochemistry and microbial ecology. However, the effects of acid rain on the hydrogeochemistry and microbial ecology of red soil groundwater systems in southern China are poorly understood. Previous research had mainly investigated the sources and patterns of groundwater acidification, but not the microbial mechanisms that contribute to this process and their associations with hydrochemical factors. To address this knowledge gap, we conducted a soil column experiment to simulate the infiltration of acid rain through various filter materials (coarse, medium, and fine sand) and to examine the hydrochemical and microbial features of the infiltrate, which can reveal how simulated acid rain (pH 3.5-7.0) alters the hydrochemistry and microbial community composition in red soil aquifers. The results showed that the pH of the leachate decreased due to simulated acid rain, and that the leaching efficiency of nitrogen and metal ions was influenced by the particle size of the filter media. Illumina 16S rRNA gene sequencing revealed that the leachate was dominated by Proteobacteria, Patescibacteria, Actinobacteria, and Acidobacteria, with Proteobacteria accounting for 67.04-74.69% of the bacterial community and containing a high proportion of nitrifying and denitrifying bacteria. Additionally, several genera with heavy metal tolerance, such as Burkholderia-Caballeronia-Paraburkholderia, Delftia, Methylversatilis, Aquicella, and Ralstonia, were widely distributed in the leachate, indicating the strong adaptive capacity of the microbial population. A correlation analysis between the hydrochemical factors and the microbial community structure revealed that pH was the most influential factor, followed by NO2--N, Fe, Al, Cu, Mn, and others. These results indicate that acidification modifies the hydrochemical conditions of the aquifer, creating an environment that is unfavorable for microbial growth and survival. However, some microorganisms may acquire resistance genes to cope with environmental changes.
Collapse
Affiliation(s)
- Yian Wang
- School of Life Science, Jinggangshan University Ji'an Jiangxi China
| | - Chao Long
- School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology Ganzhou Jiangxi China
| | - Li Yin
- School of Life Science, Jinggangshan University Ji'an Jiangxi China
| | - Renlu Liu
- School of Life Science, Jinggangshan University Ji'an Jiangxi China
| | - Yonghui Liao
- School of Life Science, Jinggangshan University Ji'an Jiangxi China
| | - Genhe He
- School of Life Science, Jinggangshan University Ji'an Jiangxi China
| | - Zuwen Liu
- School of Life Science, Jinggangshan University Ji'an Jiangxi China
- School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology Ganzhou Jiangxi China
- School of Hydraulic & Ecological Engineering, Nanchang Institute of Technology Nanchang China
| |
Collapse
|
8
|
Wang M, Zhang W, He T, Rong L, Yang Q. Degradation of polycyclic aromatic hydrocarbons in aquatic environments by a symbiotic system consisting of algae and bacteria: green and sustainable technology. Arch Microbiol 2023; 206:10. [PMID: 38059992 DOI: 10.1007/s00203-023-03734-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/27/2023] [Accepted: 11/04/2023] [Indexed: 12/08/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are genotoxic, carcinogenic, and persistent in the environment and are therefore of great concern in the environmental protection field. Due to the inherent recalcitrance, persistence and nonreactivity of PAHs, they are difficult to remediate via traditional water treatment methods. In recent years, microbial remediation has been widely used as an economical and environmentally friendly degradation technology for the treatment of PAH-contaminated water. Various bacterial and microalgal strains are capable of potentially degrading or transforming PAHs through intrinsic metabolic pathways. However, their biodegradation potential is limited by the cytotoxic effects of petroleum hydrocarbons, unfavourable environmental conditions, and biometabolic limitations. To address this limitation, microbial communities, biochemical pathways, enzyme systems, gene organization, and genetic regulation related to PAH degradation have been intensively investigated. The advantages of algal-bacterial cocultivation have been explored, and the limitations of PAHs degradation by monocultures of algae or bacteria have been overcome by algal-bacterial interactions. Therefore, a new model consisting of a "microalgal-bacterial consortium" is becoming a new management strategy for the effective degradation and removal of PAHs. This review first describes PAH pollution control technologies (physical remediation, chemical remediation, bioremediation, etc.) and proposes an algal-bacterial symbiotic system for the degradation of PAHs by analysing the advantages, disadvantages, and PAH degradation performance in this system to fill existing research gaps. Additionally, an algal-bacterial system is systematically developed, and the effects of environmental conditions are explored to optimize the degradation process and improve its technical feasibility. The aim of this paper is to provide readers with an effective green and sustainable remediation technology for removing PAHs from aquatic environments.
Collapse
Affiliation(s)
- Mengying Wang
- Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), Beijing, 100083, People's Republic of China
| | - Wenqing Zhang
- Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), Beijing, 100083, People's Republic of China
| | - Tao He
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Lingyun Rong
- Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), Beijing, 100083, People's Republic of China
| | - Qi Yang
- Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), Beijing, 100083, People's Republic of China.
| |
Collapse
|
9
|
Sheng L, Zhao W, Yang X, Mao H, Zhu S. Response characteristics of rhizosphere microbial community and metabolites of Iris tectorum to Cr stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115218. [PMID: 37441947 DOI: 10.1016/j.ecoenv.2023.115218] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/18/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023]
Abstract
Chromium (Cr) is a toxic heavy element that interferes with plant metabolite biosynthesis and modifies the plant rhizosphere microenvironment, affecting plant growth. However, the interactions and response mechanisms between plants and rhizosphere bacteria under Cr stress still need to be fully understood. In this study, we used Iris tectorum as a research target and combined physiology, metabolomics, and microbiology to reveal the stress response mechanism of I. tectorum under heavy metal chromium stress. The results showed that Cr stress-induced oxidative stress inhibited plant growth and development and increased malondialdehyde and oxygen free radicals content. Also, it increased ascorbate peroxidase, peroxidase activity, and superoxide dismutase activity, as well as glutathione and soluble sugar content. Microbiome analysis showed that Cr stress changed the rhizosphere bacterial community diversity index by 33.56%. Proteobacteria, Actinobacteriota, and Chloroflexi together accounting for 71.21% of the total sequences. Meanwhile, the abundance of rhizosphere dominant and plant-promoting bacteria increased significantly with increasing time of Cr stress. The improvement of the soil microenvironment and the recruitment of bacteria by I. tectorum root secretions were significantly enhanced. By metabolomic analysis, five vital metabolic pathways were identified, involving 89 differentially expressed metabolites, divided into 15 major categories. In summary, a multi-omics approach was used in this study to reveal the interaction and stress response mechanisms between I. tectorum and rhizosphere bacterial communities under Cr stress, which provided theoretical basis for plant-microbial bioremediation of Cr-contaminated soils in constructed wetlands. This may provide more valuable information for wetland remediation of heavy metal pollution.
Collapse
Affiliation(s)
- Luying Sheng
- College of Eco-environment Engineering, Guizhou Minzu University, China; The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Wei Zhao
- College of Eco-environment Engineering, Guizhou Minzu University, China; The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Xiuqin Yang
- College of Eco-environment Engineering, Guizhou Minzu University, China
| | - Huan Mao
- College of Eco-environment Engineering, Guizhou Minzu University, China; The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Sixi Zhu
- College of Eco-environment Engineering, Guizhou Minzu University, China; The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China.
| |
Collapse
|
10
|
Xu Z, Huang J, Chu Z, Meng F, Liu J, Li K, Chen X, Jiang Y, Ban Y. Plant and microbial communities responded to copper and/or tetracyclines in mycorrhizal enhanced vertical flow constructed wetlands microcosms with Canna indica L. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131114. [PMID: 36870129 DOI: 10.1016/j.jhazmat.2023.131114] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/17/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) play a significant role in pollutants removal in constructed wetlands (CWs). However, the purification effects of AMF on combined copper (Cu) and tetracycline (TC) pollution in CWs remains unknown. This study investigated the growth, physiological characteristics and AMF colonization of Canna indica L. living in vertical flow CWs (VFCWs) treated for Cu and/or TC pollution, the purification effects of AMF enhanced VFCWs on Cu and TC, and the microbial community structures. The results showed that (1) Cu and TC inhibited plant growth and decreased AMF colonization; (2) the removal rates of TC and Cu by VFCWs were 99.13-99.80% and 93.17-99.64%, respectively; (3) the growth, Cu and TC uptakes of C. indica and Cu removal rates were enhanced by AMF inoculation; (4) TC and Cu stresses reduced and AMF inoculation increased bacterial operational taxonomic units (OTUs) in the VFCWs, Proteobacteria, Bacteroidetes, Firmicutes and Acidobacteria were the dominant bacteria, and AMF inoculation decreased the relative abundance of Novosphingobium and Cupriavidus. Therefore, AMF could enhance the pollutants purification in VFCWs by promoting plant growth and altering the microbial community structures.
Collapse
Affiliation(s)
- Zhouying Xu
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Jun Huang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Zhenya Chu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Fake Meng
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Jianjun Liu
- POWERCHINA Huadong Engineering Corporation Limited, Hangzhou 311122, Zhejiang, China
| | - Kaiguo Li
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Xi Chen
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Yinghe Jiang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Yihui Ban
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, Hubei, China.
| |
Collapse
|
11
|
Goveas LC, Selvaraj R, Vinayagam R, Sajankila SP, Pugazhendhi A. Biodegradation of benzo(a)pyrene by Pseudomonas strains, isolated from petroleum refinery effluent: Degradation, inhibition kinetics and metabolic pathway. CHEMOSPHERE 2023; 321:138066. [PMID: 36781003 DOI: 10.1016/j.chemosphere.2023.138066] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/19/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Benzo(a)pyrene, a five-ring polyaromatic hydrocarbon, originating from coal tar, crude oil, tobacco, grilled foods, car exhaust etc, is highly persistent in the environment. It has been classified as a Group I carcinogen, as on its ingestion in human body, diol epoxide metabolites are generated, which bind to DNA causing mutations and eventual cancer. Among various removal methods, bioremediation is most preferred as it is a sustainable approach resulting in complete mineralization of benzo(a)pyrene. Therefore, in this study, biodegradation of benzo(a)pyrene was performed by two strains of Pseudomonas, i. e WDE11 and WD23, isolated from refinery effluent. Maximum benzo(a)pyrene tolerance was 250 mg/L and 225 mg/L against Pseudomonas sp. WD23 and Pseudomonas sp. WDE11 correspondingly. Degradation rate constants varied between 0.0468 and 0.0513/day at 50 mg/L with half-life values between 13.5 and 14.3 days as per first order kinetics, while for 100 mg/L, the respective values varied between 0.006 and 0.007 L/mg. day and 15.28-16.67 days, as per second order kinetics. The maximum specific growth rate of strains WDE11 and WD23 was 0.3512/day and 0.38/day accordingly, while concentrations over 75 mg/L had an inhibitory effect on growth. Major degradation metabolites were identified as dihydroxy-pyrene, naphthalene-1,2-dicarboxylic acid, salicylic acid, and oxalic acid, indicating benzo(a)pyrene was degraded via pyrene intermediates by salicylate pathway through catechol meta-cleavage. The substantial activity of the catechol 2,3 dioxygenase enzyme was noted during the benzo(a)pyrene metabolism by both strains with minimal catechol 1,2 dioxygenase activity. This study demonstrates the exceptional potential of indigenous Pseudomonas strains in complete metabolism of benzo(a)pyrene.
Collapse
Affiliation(s)
- Louella Concepta Goveas
- Nitte (Deemed to be University), Department of Biotechnology Engineering, NMAM Institute of Technology, Nitte - 574110, Karnataka, India.
| | - Raja Selvaraj
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Ramesh Vinayagam
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shyama Prasad Sajankila
- Nitte (Deemed to be University), Department of Biotechnology Engineering, NMAM Institute of Technology, Nitte - 574110, Karnataka, India
| | - Arivalagan Pugazhendhi
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research & Development, Department of Civil Engineering, Chandigarh University, Mohali, India.
| |
Collapse
|
12
|
Yin Q, Nie H, Nie M, Guo Y, Zhang B, Wang L, Wang Y, Bai X. Rapid effective treatment of waxy oily sludge using a method of dispersion combined with biodegradation in a semi-fluid state. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120971. [PMID: 36603759 DOI: 10.1016/j.envpol.2022.120971] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/14/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Waxy oily sludge (WOS) from petrochemical enterprises has complex components and difficult treatment. Long-term large-scale stacking has seriously threatened human health and the ecological environment. In this paper, a new rapid and effective treatment method combining dispersion and biodegradation in a semi-fluid state was developed for the WOS. The degradation mechanism of the WOS in the bioreactor was preliminarily discussed. The component analysis results showed that the compounds with large molecular weight (M ≥ 282) in the WOS accounted for more than 50%. Among all microbial consortiums, the treatment effect of the consortium FF: NY3 = 9: 1 was the best for treating the crude oil in WOS, which was significantly different from that of a single strain (p < 0.05). Under the optimal nitrogen source NH4NO3 and the concentration of rhamnolipid, the developed high-efficiency microbial consortium (FF: NY3 = 9:1) could remove 85% of the total hydrocarbon pollutants in the 20 L semi-fluid bioreactor within 9 days. The degradation characteristics of WOS components in the bioreactor showed that the developed consortium has good degradation ability for n-alkanes (about 90%), middle- (77.35%)/long-chain (72.66%) isomeric alkanes, alkenes (79.12%), alicyclic hydrocarbons (78.9%) and aromatic hydrocarbons (62.78%). The kinetic analysis results indicated that, in comparison, the middle-chain n-alkanes, middle-chain isomeric saturated alkanes, alkenes, and alicyclic hydrocarbons were most easily removed. The removal rates of long-chain n-alkanes, long-chain isomeric saturated alkanes, and aromatic hydrocarbons were relatively low. The biological toxicity test showed that the germination rate of wheat seeds in treated waxy sludge was Significantly higher than that in untreated waxy sludge (p < 0.01). These results suggest that the new method developed in this paper can treat refractory WOS quickly and effectively. This method lays the foundation for the pilot-scale treatment of the semi-fluid bioreactor.
Collapse
Affiliation(s)
- Qiuyue Yin
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Hongyun Nie
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Research Institute of Membrane Separation of Shaanxi Province, Xi'an, 710055, China
| | - Maiqian Nie
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Research Institute of Membrane Separation of Shaanxi Province, Xi'an, 710055, China.
| | - Yonghua Guo
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Bo Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Lei Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Research Institute of Membrane Separation of Shaanxi Province, Xi'an, 710055, China
| | - Yan Wang
- Microbiology Institute of Shaanxi Province, Xi'an, 710043, China
| | - Xuerui Bai
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
13
|
Tan Z, Yang X, Liu Y, Chen L, Xu H, Li Y, Gong B. The capability of chloramphenicol biotransformation of Klebsiella sp. YB1 under cadmium stress and its genome analysis. CHEMOSPHERE 2023; 313:137375. [PMID: 36435315 DOI: 10.1016/j.chemosphere.2022.137375] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/30/2022] [Accepted: 11/22/2022] [Indexed: 06/16/2023]
Abstract
Co-contamination by antibiotics and heavy metal is common in the environment, however, there is scarce information about antibiotics biodegradation under heavy metals stress. In this study, Klebsiella sp. Strain YB1 was isolated which is capable of biodegrading chloramphenicol (CAP) with a biodegradation efficiency of 22.41% at an initial CAP of 10 mg L-1 within 2 days. CAP biodegradation which fitted well with the first-order kinetics. YB1 still degrades CAP under Cd stress, however 10 mg L-1 Cd inhibited CAP biodegradation by 15.1%. Biotransformation pathways remained the same under Cd stress, but two new products (Cmpd 19 and Cmpd 20) were identified. Five parallel metabolism pathways of CAP were proposed with/without Cd stress, including one novel pathway (pathway 5) that has not been reported before. In pathway 5, the initial reaction was oxidation of CAP by disruption of C-C bond at the side chain of C1 and C2 with the formation of 4-nitrobenzyl alcohol and CY7, then these intermediates were oxidized into p-nitrobenzoic acid and CY1, respectively. CAP acetyltransferase and nitroreductase and 2,3/4,5-dioxygenase may play an important role in CAP biodegradation through genome analysis and prediction. This study deepens our understanding of mechanism of antibiotic degradation under heavy metal stress in the environment.
Collapse
Affiliation(s)
- Zewen Tan
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou, 510642, PR China
| | - Xiuyue Yang
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou, 510642, PR China
| | - Yiling Liu
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou, 510642, PR China
| | - Lian Chen
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou, 510642, PR China
| | - Huijuan Xu
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou, 510642, PR China
| | - Yongtao Li
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou, 510642, PR China
| | - Beini Gong
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou, 510642, PR China.
| |
Collapse
|
14
|
Lee SY, Lee YY, Cho KS. Effect of Novosphingobium sp. CuT1 inoculation on the rhizoremediation of heavy metal- and diesel-contaminated soil planted with tall fescue. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:16612-16625. [PMID: 36184709 DOI: 10.1007/s11356-022-23339-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Rhizoremediation is a promising method based on the synergism between plant and rhizobacteria to remediate soil co-contaminated with heavy metals and total petroleum hydrocarbons (TPHs). A plant growth-promoting (PGP) rhizobacterium with diesel-degrading capacity and heavy metal tolerance was isolated from the rhizosphere of tall fescue (Festuca arundinacea L.), after which the effects of its inoculation on rhizoremediation performance were evaluated in heavy metal- and diesel-contaminated soil planted with tall fescue. The bacterial isolate (Novosphingobium sp. CuT1) was characterized by its indole-3-acetic acid (IAA) production, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity, and siderophore productivity as PGP traits. CuT1 was able to grow on 1/10 LB-agar plates containing 5 mM of Cu or 5 mM of Pb. To evaluate the remediation effect of heavy metal- and diesel-contaminated soil by CuT1 inoculation, the experimental conditions were prepared as follows. The soil was artificially contaminated with heavy metals (Cu and Pb) at a final concentration of 500 ppm. The soil was then further contaminated with diesel at final concentrations of 0, 10,000, and 30,000 ppm. Finally, all plots were planted with tall fescue, a representative hyperaccumulating plant. Compared to the rhizoremediation performance of the co-contaminated soil (Cu + Pb + diesel) without inoculation, the bioavailable Cu concentrations in the soil and the tall fescue biomass were significantly increased in CuT1 inoculation. Additionally, the root growth of tall fescue was also promoted in CuT1 inoculation. Correlation analysis showed that Cu bioavailability and bioconcentration factor were positively correlated with CuT1 inoculation. The diesel removal efficiency showed a positive correlation with CuT1 inoculation, although the diesel removal was below 30%. CuT1 inoculation was positively correlated with IAA and dehydrogenase activity in the soil. Moreover, the dry biomass of the tall fescue's roots was highly associated with CuT1 inoculation. Collectively, our findings suggest that Novosphingobium sp. CuT1 can be utilized as an applicable bioresource to enhance rhizoremediation performance in heavy metal- and TPH-contaminated soils.
Collapse
Affiliation(s)
- Soo Yeon Lee
- Department of Environmental Science and Engineering, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Yun-Yeong Lee
- Department of Environmental Science and Engineering, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Kyung-Suk Cho
- Department of Environmental Science and Engineering, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea.
| |
Collapse
|
15
|
Goveas LC, Selvaraj R, Sajankila SP. Characterization of biosurfactant produced in response to petroleum crude oil stress by Bacillus sp. WD22 in marine environment. Braz J Microbiol 2022; 53:2015-2025. [PMID: 36053434 PMCID: PMC9679063 DOI: 10.1007/s42770-022-00811-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/25/2022] [Indexed: 01/13/2023] Open
Abstract
Bacillus sp. WD22, previously isolated from refinery effluent, degraded 71% of C8 hydrocarbons present in 1.0% v/v PCO in seawater (control medium), which reduced to 16.3%, on addition of yeast extract. The bacteria produced a biosurfactant in both media, whose surface was observed to be amorphous in nature under FESEM-EDAX analysis. The biosurfactant was characterized as a linear surfactin by LCMS and FT-IR analysis. The critical micelle concentration was observed as 50 mg/L and 60 mg/L at which the surface tension of water was reduced to 30 mN/m. Purified biosurfactant could emulsify petroleum-based oils and vegetable oils effectively and was stable at all tested conditions of pH, salinity and temperature up to 80 °C. The biosurfactant production was found to be mixed growth associated in control medium, while it was strictly growth associated in medium with yeast extract as studied by the Leudeking-Piret model.
Collapse
Affiliation(s)
- Louella Concepta Goveas
- Department of Biotechnology Engineering, NMAM Institute of Technology-Affiliated to NITTE (Deemed to Be University), Nitte, Karnataka, 574110, India.
| | - Raja Selvaraj
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shyama Prasad Sajankila
- Department of Biotechnology Engineering, NMAM Institute of Technology-Affiliated to NITTE (Deemed to Be University), Nitte, Karnataka, 574110, India
| |
Collapse
|
16
|
Goveas LC, Selvaraj R, Kumar PS, Vinayagam R, Sajankila SP. Biodegradation kinetics and metabolism of Benzo(a)fluorene by Pseudomonas strains isolated from refinery effluent. CHEMOSPHERE 2022; 307:136041. [PMID: 35981623 DOI: 10.1016/j.chemosphere.2022.136041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/07/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
The final sinkers of polyaromatic hydrocarbons are water sources, where they undergo bioaccumulation and biomagnification, leading to adverse mutagenic, carcinogenic, and teratogenic effects on exposure in flora, fauna, and humans. Two indigenous strains, Pseudomonas sp. WDE11 and Pseudomonas sp. WD23, isolated from refinery effluent, degraded over 97.5% of benzo(a)fluorene (10 mg/L) in 7 days. On growth at concentration dependent amounts (50 mg/L and 100 mg/L), the degradation reduced to approximately 90% and 80% respectively in 56 days. Degradation kinetics was concentration dependent, as degradation followed first-order and second-order kinetics for 50 mg/L and 100 mg/L respectively. The half-life for degradation of benzo(a)fluorene ranged between 11.64 - 12.26 days and 13.11-14.5 days for strains WDE11 and WD23 respectively. The values of Andrew-Haldane kinetic parameters i.e. μmax, Ks, and Ki were 0.306 day-1, 11.11 mg/L, and 120.41 mg/L for strain WDE11 respectively, while for strain WD23, the respective values were 0.312 day-1, 9.97 mg/L, and 152 mg/L. Degradation metabolites were identified by their MS patterns as 3,4-dihydroxy fluorene, 2-(1-oxo-2,3-dihydro-1H-inden-2-yl) acetic acid, 3,4-dihydrocoumarin, salicylic acid, catechol, and oxalic acid. Metabolic pathway of degradation constructed, revealed that benzo(a)fluorene was metabolized via the formation of fluorene, further metabolized by salicylate pathway forming catechol. The catechol formed was degraded into simpler metabolites by meta-cleavage pathway, which was validated by catechol 2,3 dioxygenase enzyme activity.
Collapse
Affiliation(s)
- Louella Concepta Goveas
- Nitte (Deemed to be University), NMAM Institute of Technology (NMAMIT), Department of Biotechnology Engineering, Nitte, Karnataka, 574110, India.
| | - Raja Selvaraj
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India
| | - Ramesh Vinayagam
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shyama Prasad Sajankila
- Nitte (Deemed to be University), NMAM Institute of Technology (NMAMIT), Department of Biotechnology Engineering, Nitte, Karnataka, 574110, India
| |
Collapse
|
17
|
An S, Kim K, Woo H, Yun ST, Chung J, Lee S. Coupled effect of porous network and water content on the natural attenuation of diesel in unsaturated soils. CHEMOSPHERE 2022; 302:134804. [PMID: 35533929 DOI: 10.1016/j.chemosphere.2022.134804] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/19/2022] [Accepted: 04/28/2022] [Indexed: 06/14/2023]
Abstract
The natural attenuation potential of a vadose zone against diesel is critical for optimizing remedial actions and determining groundwater vulnerability to contamination. Here, diesel attenuation in unsaturated soils was systematically examined to develop a qualitative relationship between physical soil properties and the natural attenuation capacity of a vadose zone against diesel. The uniformity coefficient (Cu) and water saturation (Sw, %) were considered as the proxies reflecting the degree of effects by porous network and water content in different soils, respectively. These, in turn, are related to the primary diesel attenuation mechanisms of volatilization and biodegradation. The volatilization of diesel was inversely proportional to Cu and Sw, which could be attributed to effective pore channels facilitating gas transport. Conversely, biodegradation was highly proportional to Cu under unsaturated conditions (Sw = 35-71%), owing to nutrients typically associated with fine soil particles. The microbial community in unsaturated soils was affected by Sw rather than Cu. The overall diesel attenuation including volatilization and biodegradation was optimized at Sw = 35% for all tested soils.
Collapse
Affiliation(s)
- Seongnam An
- Water Cycle Research Center, National Agenda Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea; Department of Earth and Environmental Sciences, Korea University, Seoul, 136-701, South Korea
| | - Kibeum Kim
- Water Cycle Research Center, National Agenda Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea
| | - Heesoo Woo
- Water Cycle Research Center, National Agenda Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea
| | - Seong-Taek Yun
- Department of Earth and Environmental Sciences, Korea University, Seoul, 136-701, South Korea
| | - Jaeshik Chung
- Water Cycle Research Center, National Agenda Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea; Division of Energy and Environmental Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, South Korea.
| | - Seunghak Lee
- Water Cycle Research Center, National Agenda Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea; Division of Energy and Environmental Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, South Korea; Graduate School of Energy and Environment (KU-KIST GREEN SCHOOL), Korea University, Seoul, 02841, South Korea.
| |
Collapse
|
18
|
Sharma S, Pandey LM. Biodegradation kinetics of binary mixture of hexadecane and phenanthrene by the bacterial microconsortium. BIORESOURCE TECHNOLOGY 2022; 358:127408. [PMID: 35667530 DOI: 10.1016/j.biortech.2022.127408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Crude oil bioremediation requires a correct selection of potential biodegraders to address the hazard. The present study investigates biodegradation kinetics of single aliphatic (Hexadecane, HEX), aromatic (Phenanthrene, PHE), and binary mixture (HEX + PHE) as co-contaminants by axenic cultures of A. fabrum SLAJ 731, B. subtilis RSL2 and P. aeruginosa P7815 and their consortium. A proposed integrated kinetic model combining first-order exponential decay and the Monod equation is well-fitted to degradation data. Maximum degradations of both the substrates were observed for microcosm, indicating synergistic effects of selected strains. The degradation rate indicated parallel utilization of HEX while serial utilization of PHE by selected strains. Maximum HEX and PHE degradations of 92.4 and 88.7 % were achieved by microconsortium, which increased to 97.2 and 91.9 % for the binary mixture. The biodegradation efficiencies of HEX and PHE were linearly correlated with Alkane hydroxylase and Catechol-2,3-dioxygenase activities, respectively.
Collapse
Affiliation(s)
- Swati Sharma
- Bio-interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Lalit M Pandey
- Bio-interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India.
| |
Collapse
|
19
|
Yuan QS, Wang L, Wang H, Wang X, Jiang W, Ou X, Xiao C, Gao Y, Xu J, Yang Y, Cui X, Guo L, Huang L, Zhou T. Pathogen-Mediated Assembly of Plant-Beneficial Bacteria to Alleviate Fusarium Wilt in Pseudostellaria heterophylla. Front Microbiol 2022; 13:842372. [PMID: 35432244 PMCID: PMC9005978 DOI: 10.3389/fmicb.2022.842372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
Fusarium wilt (FW) is a primary replant disease that affects Pseudostellaria heterophylla (Taizishen) and is caused by Fusarium oxysporum, which occurs widely in China under the continuous monocropping regime. However, the ternary interactions among the soil microbiota, P. heterophylla, and F. oxysporum remain unknown. We investigated the potential interaction relationship by which the pathogen-mediated P. heterophylla regulates the soil and the tuberous root microbiota via high-throughput sequencing. Plant-pathogen interaction assays were conducted to measure the arrival of F. oxysporum and Pseudomonas poae at the tuberous root via qPCR and subsequent seedling disease incidence. A growth assay was used to determine the effect of the tuberous root crude exudate inoculated with the pathogen on P. poae. We observed that pathogen-mediated P. heterophylla altered the diversity and the composition of the microbial communities in its rhizosphere soil and tuberous root. Beneficial microbe P. poae and pathogen F. oxysporum were significantly enriched in rhizosphere soil and within the tuberous root in the FW group with high severity. Correlation analysis showed that, accompanied with FW incidence, P. poae co-occurred with F. oxysporum. The aqueous extract of P. heterophylla tuberous root infected by F. oxysporum substantially promoted the growth of P. poae isolates (H1-3-A7, H2-3-B7, H4-3-C1, and N3-3-C4). These results indicated that the extracts from the tuberous root of P. heterophylla inoculated with F. oxysporum might attract P. poae and promote its growth. Furthermore, the colonization assay found that the gene copies of sucD in the P. poae and F. oxysporum treatment (up to 6.57 × 1010) group was significantly higher than those in the P. poae treatment group (3.29 × 1010), and a pathogen-induced attraction assay found that the relative copies of sucD of P. poae in the F. oxysporum treatment were significantly higher than in the H2O treatment. These results showed that F. oxysporum promoted the colonization of P. poae on the tuberous root via F. oxysporum mediation. In addition, the colonization assay found that the disease severity index in the P. poae and F. oxysporum treatment group was significantly lower than that in the F. oxysporum treatment group, and a pathogen-induced attraction assay found that the disease severity index in the F. oxysporum treatment group was significantly higher than that in the H2O treatment group. Together, these results suggest that pathogen-mediated P. heterophylla promoted and assembled plant-beneficial microbes against plant disease. Therefore, deciphering the beneficial associations between pathogen-mediated P. heterophylla and microbes can provide novel insights into the implementation and design of disease management strategies.
Collapse
Affiliation(s)
- Qing-Song Yuan
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Lu Wang
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Hui Wang
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xiaoai Wang
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Weike Jiang
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xiaohong Ou
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Chenghong Xiao
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yanping Gao
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jiao Xu
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Ye Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xiuming Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tao Zhou
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
20
|
Shu Y, Liang D. Effect of tetracycline on nitrogen removal in Moving Bed Biofilm Reactor (MBBR) System. PLoS One 2022; 17:e0261306. [PMID: 35007308 PMCID: PMC8746769 DOI: 10.1371/journal.pone.0261306] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
The effect of tetracycline (TC) on nitrogen removal in wastewater treatment plants has become a new problem. This study investigated the effects of TC on nitrogen removal using a Moving Bed Biofilm Reactor system. The results showed that there was no significant effect on nitrogen removal performance when the concentration of TC was 5 mg/L, and that the total nitrogen (TN) removal efficiency could reach 75–77%. However, when the concentration of TC increased to 10 mg/L, the denitrification performance was affected and the TN removal efficiency decreased to 58%. The abundance of denitrifying bacteria such as those in the genus Thauera decreased, and TC-resistant bacteria gradually became dominant. At a TC concentration of 10 mg/L, there were also increases and decreases, respectively, in the abundance of resistance and denitrification functional genes. The inhibitory effect of TC on denitrification was achieved mainly by the inhibition of nitrite-reducing bacteria.
Collapse
Affiliation(s)
- Yan Shu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
- * E-mail:
| | - Donghui Liang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
| |
Collapse
|
21
|
Ali M, Song X, Ding D, Wang Q, Zhang Z, Tang Z. Bioremediation of PAHs and heavy metals co-contaminated soils: Challenges and enhancement strategies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 295:118686. [PMID: 34920044 DOI: 10.1016/j.envpol.2021.118686] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/20/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
Systemic studies on the bioremediation of co-contaminated PAHs and heavy metals are lacking, and this paper provides an in-depth review on the topic. The released sources and transport of co-contaminated PAHs and heavy metals, including their co-occurrence through formation of cation-π interactions and their adsorption in soil are examined. Moreover, it is investigated that co-contamination of PAHs and heavy metals can drive a synergistic positive influence on bioremediation through enhanced secretion of extracellular polymeric substances (EPSs), production of biosynthetic genes, organic acid and enzymatic proliferation. However, PAHs molecular structure, PAHs-heavy metals bioavailability and their interactive cytotoxic effects on microorganisms can exert a challenging influence on the bioremediation under co-contaminated conditions. The fluctuations in bioavailability for microorganisms are associated with soil properties, chemical coordinative interactions, and biological activities under the co-contaminated PAHs-heavy metals conditions. The interactive cytotoxicity caused by the emergence of co-contaminants includes microbial cell disruption, denaturation of DNA and protein structure, and deregulation of antioxidant biological molecules. Finally, this paper presents the emerging strategies to overcome the bioavailability problems and recommends the use of biostimulation and bioaugmentation along with the microbial immobilization for enhanced bioremediation of PAHs-heavy metals co-contaminated sites. Better knowledge of the bioremediation potential is imperative to improve the use of these approaches for the sustainable and cost-effective remediation of PAHs and heavy metals co-contamination in the near future.
Collapse
Affiliation(s)
- Mukhtiar Ali
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Song
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Da Ding
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, China
| | - Qing Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Zhuanxia Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiwen Tang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
22
|
Li X, Liu H, Yang W, Sheng H, Wang F, Harindintwali JD, Herath HMSK, Zhang Y. Humic acid enhanced pyrene degradation by Mycobacterium sp. NJS-1. CHEMOSPHERE 2022; 288:132613. [PMID: 34678349 DOI: 10.1016/j.chemosphere.2021.132613] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/04/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
The search for nature-based tools to enhance bioremediation is essential for the sustainable restoration of contaminated ecosystems. Humic acid (HA) is an important component of organic matter in soil and water, but its effect on the microbial degradation of organic pollutants remains unclear. In this study, the biodegradation of pyrene by Mycobacterium sp. NJS-1 with and without HA was investigated. Only around 10.5% of pyrene was biodegraded in the pyrene treatment alone, whereas the addition of HA significantly enhanced biodegradation to the point where over 90% of pyrene was biodegraded. The production of 4,5-dihydropyrene-4,5-diol and phenanthrene-3,4-diol indicated the metabolic pathway via attacking of 4,5-positions of pyrene. Interestingly, 1,2-dimethoxypyrene was detected with the addition of HA, suggesting that HA induced a new ring-opening pathway involving the attack on the 1,2-positions of pyrene. The addition of HA first induced protein self-cleavage behavior with a significant increase in phenylalanine, tyrosine, and tryptophan containing large numbers of COO- groups. Furthermore, it altered the intracellular and extracellular ultrastructure of bacterial cells, promoting their growth in size and number as well as reducing the space between them. Overall, HA increased the ring-opening positions of pyrene and facilitated its interaction with bacterial cells, thus improving its biodegradability. Building upon the findings of this study to further research is conducive to the sustainable solution of environmental pollution.
Collapse
Affiliation(s)
- Xiaoning Li
- Nanjing Normal University Center for Analysis and Testing, College of Life Sciences, School of Chemistry and Materials Science, Nanjing, 210046, China
| | - Hailong Liu
- Nanjing Normal University Center for Analysis and Testing, College of Life Sciences, School of Chemistry and Materials Science, Nanjing, 210046, China
| | - Weiben Yang
- Nanjing Normal University Center for Analysis and Testing, College of Life Sciences, School of Chemistry and Materials Science, Nanjing, 210046, China
| | - Hongjie Sheng
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Nanjing, 210008, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Fang Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Nanjing, 210008, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jean Damascene Harindintwali
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Nanjing, 210008, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - H M S K Herath
- Department of Export Agriculture, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Passara Road, Badulla, 90 000, Sri Lanka
| | - Yinping Zhang
- Nanjing Normal University Center for Analysis and Testing, College of Life Sciences, School of Chemistry and Materials Science, Nanjing, 210046, China.
| |
Collapse
|
23
|
Effects of Adding Laccase to Bacterial Consortia Degrading Heavy Oil. Processes (Basel) 2021. [DOI: 10.3390/pr9112025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
High-efficiency bioremediation technology for heavy oil pollution has been a popular research topic in recent years. Laccase is very promising for the remediation of heavy oil pollution because it can not only convert bio-refractory hydrocarbons into less toxic or completely harmless compounds, but also accelerate the biodegradation efficiency of heavy oil. However, there are few reports on the use of laccase to enhance the biodegradation of heavy oil. In this study, we investigated the effect of laccase on the bacterial consortia degradation of heavy oil. The degradation efficiencies of bacterial consortia and the laccase-bacterial consortia were 60.6 ± 0.1% and 68.2 ± 0.6%, respectively, and the corresponding heavy oil degradation rate constants were 0.112 day−1 and 0.198 day−1, respectively. The addition of laccase increased the heavy oil biodegradation efficiency (p < 0.05) and biodegradation rate of the bacterial consortia. Moreover, gas chromatography–mass spectrometry analysis showed that the biodegradation efficiencies of the laccase-bacterial consortia for saturated hydrocarbons and aromatic hydrocarbons were 82.5 ± 0.7% and 76.2 ± 0.9%, respectively, which were 16.0 ± 0.3% and 13.0 ± 1.8% higher than those of the bacterial consortia, respectively. In addition, the degradation rate constants of the laccase-bacterial consortia for saturated hydrocarbons and aromatic hydrocarbons were 0.267 day−1 and 0.226 day−1, respectively, which were 1.07 and 1.15 times higher than those of the bacterial consortia, respectively. The degradation of C15 to C35 n-alkanes and 2 to 5-ring polycyclic aromatic hydrocarbons by laccase-bacterial consortia was higher than individual bacterial consortia. It is further seen that the addition of laccase significantly improved the biodegradation of long-chain n-alkanes of C22–C35 (p < 0.05). Overall, this study shows that the combination of laccase and bacterial consortia is an effective remediation technology for heavy oil pollution. Adding laccase can significantly improve the heavy oil biodegradation efficiency and biodegradation rate of the bacterial consortia.
Collapse
|
24
|
Chettri B, Singha NA, Singh AK. Efficiency and kinetics of Assam crude oil degradation by Pseudomonas aeruginosa and Bacillus sp. Arch Microbiol 2021; 203:5793-5803. [PMID: 34519861 DOI: 10.1007/s00203-021-02567-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/29/2022]
Abstract
We report kinetics of Assam crude oil degradation by Pseudomonas aeruginosa AKS1 and Bacillus sp. AKS2, both isolated from Assam refinery sediments. The isolates exhibited appreciable degrees of hydrophobicity, emulsification index and biosurfactant production. Crude oil degradation efficiency of isolates was assessed in (1) liquid medium amended with 1% v/v crude oil and (2) microcosm sediments (125 mg crude oil/ 10 g sand). In liquid culture, biodegradation rate (k) and half-life (t1/2) values were found to be 0.038 day-1 and 18.09 days for P. aeruginosa AKS1, and 0.020 day-1 and 33.97 days in case of Bacillus sp. AKS2, respectively. In microcosm sediments, the estimated k and t 1/2 values were 0.014 day-1 and 50 days for P. aeruginosa AKS1, and 0.011 day-1 and 61.34 days in case of Bacillus sp. AKS2. The level of nutrient treatment in microcosm sand sediment was 125 µg N and 62.5 µg P/g sediment in case of P. aeruginosa AKS1 and 375 µg N and 37.5 µg P/g sediment in case of Bacillus sp. AKS2. In microcosms without inorganic nutrients, values of k and t1/2 were found to be 0.007 day-1 and 100 days for P. aeruginosa AKS1 and for Bacillus sp. AKS2, the respective values were 0.005 day-1 and 150.68 days. Our data provides important information for predictive hydrocarbon degradation in liquid medium and contaminated sediments.
Collapse
Affiliation(s)
- Bobby Chettri
- Department of Biochemistry, North-Eastern Hill University, Shillong, 793022, India
| | - Ningombam A Singha
- Department of Biochemistry, North-Eastern Hill University, Shillong, 793022, India
| | - Arvind Kumar Singh
- Department of Biochemistry, North-Eastern Hill University, Shillong, 793022, India.
| |
Collapse
|
25
|
Ascomycetes versus Spent Mushroom Substrate in Mycoremediation of Dredged Sediments Contaminated by Total Petroleum Hydrocarbons: The Involvement of the Bacterial Metabolism. WATER 2021. [DOI: 10.3390/w13213040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Two mycoremediation approaches for the depletion of the total petroleum hydrocarbons in dredged sediments were compared: co-composting with spent mushroom substrate (SMS) from Pleurotus ostreatus and bioaugmentation with Lambertella sp. MUT 5852, an ascomycetes autochthonous to the sediment, capable of utilizing diesel oil its sole carbon source. After 28 days of incubation, 99% depletion was observed in presence of Lambertella sp. MUT 5852. No total petroleum hydrocarbon depletion was observed in sediment co-composting with the SMS after 60 days of incubation. 16S rDNA metabarcoding of the bacterial community was performed to evaluate the potential synergism between fungi and bacteria in the bioremediation process. The functional metagenomic prediction approach indicated that the biodiversity of the bacterial genera potentially involved in the degradation of TPH was higher in sediment bioaugmented with Lambertella sp. MUT 5852, which resulted in being mandatory for TPH depletion. Mechanisms of co-substrate inhibition of the hydrocarburoclastic bacterial species, due to the bioavailable organic matter of the SMS, are suggested to be involved in the observed kinetics of TPH depletion, failing in the case of SMS and successful in the case of Lambertella sp. MUT 5852.
Collapse
|
26
|
Guo Y, Rene ER, Han B, Ma W. Enhanced fluoroglucocorticoid removal from groundwater in a bio-electrochemical system with polyaniline-loaded activated carbon three-dimensional electrodes: Performance and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126197. [PMID: 34492961 DOI: 10.1016/j.jhazmat.2021.126197] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/14/2020] [Accepted: 05/20/2021] [Indexed: 06/13/2023]
Abstract
This study aimed to investigate the removal performance and mechanisms of dexamethasone (DEX), a representative fluoroglucocorticoid (FGC), from micro-polluted oligotrophic groundwater in a bio-electrochemical system amended with polyaniline-loaded activated carbon (PANI@AC) as three-dimensional particle electrodes (BES-3D). The BES-3D achieved a DEX removal efficiency of 95.7%, which was 39.0% and 14.1% higher than that of a single biological system (SBIO) and two-dimensional bio-electrochemical system (BES-2D), respectively. The preliminary metabolic mechanism of defluorination accounted for 53.5%, 41.1%, and 16.3% in BES-3D, BES-2D, and SBIO, respectively, which was accompanied by demethylation, side-chain fracture, and hydroxyl oxidation for ketone formation and final-ring opening. The main mechanism by which removal was improved in BES-3D was the enrichment of functional microbes and enhancement of the expression of dehalogenation genes. The relative abundance of functional microbes with electron transfer ability and reductive dehalogenating genera, i.e., Pseudomonas, Methylotenera, Desulfuromonas, Sphingomonas, and Microbacterium, in BES-3D was 3.7-6.1 times higher and the copy number of functional genes was 1.9 times higher than those of SBIO, which contributed to the high DEX removal.
Collapse
Affiliation(s)
- Yating Guo
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Eldon R Rene
- IHE Delft Institute for Water Education, Department of Water Supply, Sanitary and Environmental Engineering, Westvest 7, 2611AX Delft, the Netherlands
| | - Bingyi Han
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Weifang Ma
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
27
|
Zang T, Wu H, Zhang Y, Wei C. The response of polycyclic aromatic hydrocarbon degradation in coking wastewater treatment after bioaugmentation with biosurfactant-producing bacteria Pseudomonas aeruginosa S5. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 83:1017-1027. [PMID: 33724933 DOI: 10.2166/wst.2021.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The polycyclic aromatic hydrocarbons (PAHs) that accumulate during the coking wastewater treatment process are hazardous for the surrounding environment. High molecular weight (HMW) PAHs account for more than 85% of the total PAHs in coking wastewater and sludge, respectively. The degradation of total PAHs increased by 18.97% due to the increased bioavailability of PAHs, after the biosurfactant-producing bacteria Pseudomonas aeruginosa S5 was added. The toxicity of total PAHs to humans was reduced by 26.66% after inoculation with S5. The results suggest biosurfactant-producing bacteria Pseudomonas aeruginosa S5 not only increase the biodegradation of PAHs significantly, but also have a better effect on reducing the human toxicity of PAHs. Kinetic analyses show that PAHs biodegradation fits to first-order kinetics. The degradation rate constant (k) value decreases as the number of PAH rings increases, indicating that HMW PAHs are more difficult to be biodegraded than low molecular weight (LMW) PAHs. The results indicate the bioaugmentation with the biosurfactant-producing strain has significant potential and utility in remediation of PAHs-polluted sites.
Collapse
Affiliation(s)
- Tingting Zang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China E-mail: ; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haizhen Wu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China E-mail: ; School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Yuxiu Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China E-mail: ; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chaohai Wei
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China E-mail: ; School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
28
|
Shi S, Yang L, Yang C, Li S, Zhao H, Ren L, Wang X, Lu F, Li Y, Zhao H. Function and Molecular Ecology Significance of Two Catechol-Degrading Gene Clusters in Pseudomonas putida ND6. J Microbiol Biotechnol 2021; 31:259-271. [PMID: 33323670 PMCID: PMC9705993 DOI: 10.4014/jmb.2009.09026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 12/15/2022]
Abstract
Many bacteria metabolize aromatic compounds via catechol as a catabolic intermediate, and possess multiple genes or clusters encoding catechol-cleavage enzymes. The presence of multiple isozyme-encoding genes is a widespread phenomenon that seems to give the carrying strains a selective advantage in the natural environment over those with only a single copy. In the naphthalene-degrading strain Pseudomonas putida ND6, catechol can be converted into intermediates of the tricarboxylic acid cycle via either the ortho- or meta-cleavage pathways. In this study, we demonstrated that the catechol ortho-cleavage pathway genes (catBICIAI and catBIICIIAII) on the chromosome play an important role. The catI and catII operons are co-transcribed, whereas catAI and catAII are under independent transcriptional regulation. We examined the binding of regulatory proteins to promoters. In the presence of cis-cis-muconate, a well-studied inducer of the cat gene cluster, CatRI and CatRII occupy an additional downstream site, designated as the activation binding site. Notably, CatRI binds to both the catI and catII promoters with high affinity, while CatRII binds weakly. This is likely caused by a T to G mutation in the G/T-N11-A motif. Specifically, we found that CatRI and CatRII regulate catBICIAI and catBIICIIAII in a cooperative manner, which provides new insights into naphthalene degradation.
Collapse
Affiliation(s)
- Sanyuan Shi
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Liu Yang
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Chen Yang
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Shanshan Li
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710048, P.R. China
| | - Hong Zhao
- Tianjin Entry-Exit Inspection and Quarantine Bureau, Tianjin 00457, P.R. China
| | - Lu Ren
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Xiaokang Wang
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Fuping Lu
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Ying Li
- China Animal Disease Control Center, Beijing 100000, P.R. China,Y. Li Phone: +86-10-59198969 Fax: +86-10-59198969 E-mail:
| | - Huabing Zhao
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China,Corresponding authors H. Zhao Phone: +86-22-60601958 Fax: +86-22-60602298 E-mail:
| |
Collapse
|
29
|
Zhao ZQ, Wei XM, Shen XL, Abbas G, Fan R, Jin Y. Aerobic degradation of 4-fluoroaniline and 2,4-difluoroaniline: performance and microbial community in response to the inocula. Biodegradation 2021; 32:53-71. [PMID: 33428058 DOI: 10.1007/s10532-021-09925-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 01/02/2021] [Indexed: 11/27/2022]
Abstract
In this study, a distinct inoculum was investigated as an isolated variable within sequencing batch reactors via a comparison of the 4-fluoroaniline (4-FA) or 2,4-difluoroaniline (2,4-DFA) removal amounts. The inocula were derived from a treatment plant for treating pharmaceutical wastewater plus a small amount of municipal sewage (PMS), a treatment plant for treating fluoridated hydrocarbon wastewater (FHS), and a treatment plant for treating the comprehensive wastewater in an industrial park (CIS). There were slight differences among the degradation patterns of the 4-FA for the three inocula, whether during the enrichment period or the high concentration shock period. In contrast, it was observed that the degradation efficiency of 2,4-DFA initially varied with the inocula. The FHS-derived inoculum was determined to be optimal, exhibiting the earliest degradation reaction only after an acclimation of 7 days had the highest degradation rate constant of 0.519 h-1, and had the fastest recovery time of three weeks after high concentration shock. Additionally, compared with the PMS-derived inoculum, the CIS-derived inoculum exhibited an earlier degradation reaction within three weeks, and a higher microbial diversity, but a lower shock resistance and degradation rate constant of 0.257 h-1. High-throughput sequencing demonstrated that each final consortium was different in composition, and the microbial consortia developed well on the inoculum and substrate. In comparison of the similarity among the three 2,4-DFA enrichment cultures, the higher similarity (63.9-70.0%) among three final consortia enriching with 4-FA was observed. The results indicated that the inoculum played an important role in the degradation of FAs and the microbial bacterial communities of final consortia, and the effect extent might well depend on the fluorinated level of FAs.
Collapse
Affiliation(s)
- Zhi-Qing Zhao
- College of Chemical & Material Engineering, Quzhou University, Quzhou, 324000, People's Republic of China. .,College of Environment & Resource Sciences, Zhejiang University, Hangzhou, People's Republic of China.
| | - Xiao-Meng Wei
- Key Laboratory of Agro-Ecological Processes in Subtropical Region & Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, China
| | - Xiao-Li Shen
- College of Chemical & Material Engineering, Quzhou University, Quzhou, 324000, People's Republic of China
| | - Ghulam Abbas
- Department of Chemical Engineering, University of Gujrat, Gujrat, 50700, Pakistan
| | - Rui Fan
- College of Chemical & Material Engineering, Quzhou University, Quzhou, 324000, People's Republic of China
| | - Yi Jin
- College of Chemical & Material Engineering, Quzhou University, Quzhou, 324000, People's Republic of China
| |
Collapse
|
30
|
Correlating Microbial Community Characteristics with Environmental Factors along a Two-Stage Biological Aerated Filter. WATER 2020. [DOI: 10.3390/w12123317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The purification effect of a biological aerated filter (BAF) mainly comes from the microorganisms in the reactor. Understanding the correlation between microbial community characteristics and environmental factors along the filter has great significance for maintaining good operation and improving the removal efficiency of the filter. A two-stage BAF was employed to treat domestic sewage under organic loads of 1.02 and 1.55 kg/m3·d for 15 days each. 16S rDNA high-throughput sequencing technology and redundancy analysis were applied to explore the correlation between microbial community characteristics and environmental variables. The results showed that: (1) the crucial organic-degrading bacteria in the A-stage filter were of the genus Novosphingobium, which had a significant increase in terms of relative abundance at sampling outlet A3 (135 cm of the filling height) after the increase of organic load; (2) the microbial communities at different positions in the B-stage filter were similarly affected by environmental factors, and the main bacteria associated with nitrogen removal in the B-stage filter were Zoogloea and Rhodocyclus; and (3) to improve the pollutant removal performance of this two-stage biological aerated filter, a strategy of adding an internal circulation in the B-stage filter can be adopted.
Collapse
|
31
|
Rahman Z. An overview on heavy metal resistant microorganisms for simultaneous treatment of multiple chemical pollutants at co-contaminated sites, and their multipurpose application. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122682. [PMID: 32388182 DOI: 10.1016/j.jhazmat.2020.122682] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 04/02/2020] [Accepted: 04/07/2020] [Indexed: 05/24/2023]
Abstract
Anthropogenic imbalance of chemical pollutants in environment raises serious threat to all life forms. Contaminated sites often possess multiple heavy metals and other types of pollutants. Elimination of chemical pollutants at co-contaminated sites is imperative for the safe ecosystem functions, and simultaneous removal approach is an attractive scheme for their remediation. Different conventional techniques have been applied as concomitant treatment solution but fall short at various parameters. In parallel, use of microorganisms offers an innovative, cost effective and ecofriendly approach for simultaneous treatment of various chemical pollutants. However, microbiostasis due to harmful effects of heavy metals or other contaminants is a serious bottleneck facing remediation practices in co-contaminated sites. But certain microorganisms have unique mechanisms to resist heavy metals, and can act on different noxious wastes. Considering this significant, my review provides information on different heavy metal resistant microorganisms for bioremediation of different chemical pollutants, and other assistance. In this favour, the integrated approach of simultaneous treatment of multiple heavy metals and other environmental contaminants using different heavy metal resistant microorganisms is summarized. Further, the discussion also intends toward the use of heavy metal resistant microorganisms associated with industrial and environmental applications, and healthcare. PREFACE: Simultaneous treatment of multiple chemical pollutants using microorganisms is relatively a new approach. Therefore, this subject was not well received for review before. Also, multipurpose application of heavy metal microorganisms has certainly not considered for review. In this regard, this review attempts to gather information on recent progress on studies on different heavy metal resistant microorganisms for their potential of treatment of co-contaminated sites, and multipurpose application.
Collapse
Affiliation(s)
- Zeeshanur Rahman
- Department of Botany, Zakir Husain Delhi College, University of Delhi, Delhi, 110002, India.
| |
Collapse
|
32
|
Dai X, Lv J, Yan G, Chen C, Guo S, Fu P. Bioremediation of intertidal zones polluted by heavy oil spilling using immobilized laccase-bacteria consortium. BIORESOURCE TECHNOLOGY 2020; 309:123305. [PMID: 32325376 DOI: 10.1016/j.biortech.2020.123305] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
Heavy oil pollution in the intertidal zones has become a worldwide environmental problem. In this study, bioremediation on heavy oil pollutants in the intertidal zones using an immobilized laccase-bacteria consortium system was evaluated with the aid of intertidal experimental pools built in the coastal area. It is found that degradation efficiency of the immobilized laccase-bacteria consortium for heavy oil was 66.5% after 100 days remediation, with the reaction rate constant of 0.018 d-1. Gas Chromatograph-Mass Spectrometer analysis shows that degradation efficiency of saturated hydrocarbons and aromatic hydrocarbons were 79.2% and 78.7%, which were 64.9% and 65.1% higher than control. It is further seen that degradation of long-chain n-alkanes of C26-C35 and polycyclic aromatic hydrocarbons with more than three rings were significant. Metagenomic analysis indicates that the immobilized laccase-bacterial consortium has not only increased the biodiversity of heavy oil degrading bacteria, but also accelerated the degradation of heavy oil.
Collapse
Affiliation(s)
- Xiaoli Dai
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum, Beijing 102249, China; Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Environmental Protection Research Institute of Light Industry, Beijing 10089, China
| | - Jing Lv
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum, Beijing 102249, China
| | - Guangxu Yan
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum, Beijing 102249, China
| | - Chunmao Chen
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum, Beijing 102249, China
| | - Shaohui Guo
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum, Beijing 102249, China.
| | - Pengcheng Fu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Hainan 570228, China.
| |
Collapse
|