1
|
Ihsanullah I, Bilal M, Tariq Khan M. Harnessing Nanomaterials for Enhanced Biohydrogen Generation from Wastewater. Chem Asian J 2024; 19:e202300618. [PMID: 37642141 DOI: 10.1002/asia.202300618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 08/31/2023]
Abstract
Biohydrogen is considered a green fuel due to its eco-friendly nature since it only produces water and energy on combustion. However, their lower yield and production rate is one of the foremost challenges that need an instant sustainable approach. The use of nanotechnology is a potential approach for the enhanced generation of biohydrogen, owing to the significant characteristics of the nanomaterials such as greater specificity, high surface-area-to-volume ratio, better reactivity and dispersibility, enhanced catalytic activity, superb selectivity, greater electron transfer, and better anaerobic microbiota activity. This article explores the recent trends and innovations in the production of biohydrogen from wastewater through the applications of different nanomaterials. The potential of various nanomaterials employed for biohydrogen production from wastewater is evaluated and the impacts of important parameters such as the concentration and size of the nanomaterials, temperature, and pH on the production and yield of biohydrogen are explained in detail. Several pathways involved in the mechanistic approach of biohydrogen generation from wastewater are critically assessed. Lastly, numerous technological challenges are highlighted and recommendations regarding future research are also provided.
Collapse
Affiliation(s)
- I Ihsanullah
- Chemical and Water Desalination Engineering Program, College of Engineering, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Muhammad Bilal
- Department of Chemical Engineering, University of Engineering and Technology, Peshawar, 25120, Pakistan
| | - Muhammad Tariq Khan
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai po New Territories, Hong Kong
| |
Collapse
|
2
|
Srivastava N, Singh R, Lal B, Haque S. Evaluation of bioprocess parameters for pilot scale fermentative biohydrogen production using organic waste: Environmental remediation, techno-economic challenges & future solutions. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 2024. [DOI: 10.1016/j.ijhydene.2024.05.211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Sharma P, Bano A, Singh SP, Atkinson JD, Lam SS, Iqbal HM, Tong YW. Biotransformation of food waste into biogas and hydrogen fuel – A review. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 2024; 52:46-60. [DOI: 10.1016/j.ijhydene.2022.08.081] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
|
4
|
Bae DW, Lee SH, Park JH, Son SY, Lin Y, Lee J, Jang BR, Lee KH, Lee YH, Lee H, Kang S, Kim B, Cha SS. An archaeal transcription factor EnfR with a novel 'eighth note' fold controls hydrogen production of a hyperthermophilic archaeon Thermococcus onnurineus NA1. Nucleic Acids Res 2023; 51:10026-10040. [PMID: 37650645 PMCID: PMC10570040 DOI: 10.1093/nar/gkad699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 07/13/2023] [Accepted: 08/14/2023] [Indexed: 09/01/2023] Open
Abstract
Thermococcus onnurineus NA1, a hyperthermophilic carboxydotrophic archaeon, produces H2 through CO oxidation catalyzed by proteins encoded in a carbon monoxide dehydrogenase (CODH) gene cluster. TON_1525 with a DNA-binding helix-turn-helix (HTH) motif is a putative repressor regulating the transcriptional expression of the codh gene cluster. The T55I mutation in TON_1525 led to enhanced H2 production accompanied by the increased expression of genes in the codh cluster. Here, TON_1525 was demonstrated to be a dimer. Monomeric TON_1525 adopts a novel 'eighth note' symbol-like fold (referred to as 'eighth note' fold regulator, EnfR), and the dimerization mode of EnfR is unique in that it has no resemblance to structures in the Protein Data Bank. According to footprinting and gel shift assays, dimeric EnfR binds to a 36-bp pseudo-palindromic inverted repeat in the promoter region of the codh gene cluster, which is supported by an in silico EnfR/DNA complex model and mutational studies revealing the implication of N-terminal loops as well as HTH motifs in DNA recognition. The DNA-binding affinity of the T55I mutant was lowered by ∼15-fold, for which the conformational change of N-terminal loops is responsible. In addition, transcriptome analysis suggested that EnfR could regulate diverse metabolic processes besides H2 production.
Collapse
Affiliation(s)
- Da-Woon Bae
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Seong Hyuk Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, South Korea
| | - Ji Hye Park
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Se-Young Son
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yuxi Lin
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Cheongju, Chungbuk 28119, Republic of Korea
| | - Jung Hyen Lee
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Bo-Ram Jang
- Department of Life Science, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul, South Korea
| | - Kyu-Ho Lee
- Department of Life Science, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul, South Korea
| | - Young-Ho Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Cheongju, Chungbuk 28119, Republic of Korea
- Bio-Analytical Science, University of Science and Technology, Daejeon 34113, Republic of Korea
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Gyeonggi 17546, Republic of Korea
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Hyun Sook Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, South Korea
- Department of Marine Biotechnology, KIOST School, University of Science and Technology, Daejeon, South Korea
| | - Sung Gyun Kang
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, South Korea
- Department of Marine Biotechnology, KIOST School, University of Science and Technology, Daejeon, South Korea
| | - Byoung Sik Kim
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Sun-Shin Cha
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
5
|
Chandran EM, Mohan E. Sustainable biohydrogen production from lignocellulosic biomass sources - metabolic pathways, production enhancement, and challenges. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:102129-102157. [PMID: 37684507 DOI: 10.1007/s11356-023-29617-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023]
Abstract
Hydrogen production from biological processes has been hailed as a promising strategy for generating sustainable energy. Fermentative hydrogen production processes such as dark and photofermentation are considered more sustainable and economical than other biological methods such as biophotolysis. However, these methods have constraints such as low hydrogen yield and conversion efficiency, so practical implementations still need to be made. The present review provides an assessment and feasibility of producing biohydrogen through dark and photofermentation techniques utilizing various lignocellulosic biomass wastes as substrates. Furthermore, this review includes information about the strategies to increase the productivity rate of biohydrogen in an eco-friendly and sustainable manner, like integration of dark and photofermentation techniques, pretreatment of biomass, genetic modification of microorganisms, and application of nanoadditives.
Collapse
Affiliation(s)
- Eniyan Moni Chandran
- Department of Mechanical Engineering, University College of Engineering, Nagercoil, Anna University Constituent College, Nagercoil, India
| | - Edwin Mohan
- Department of Mechanical Engineering, University College of Engineering, Nagercoil, Anna University Constituent College, Nagercoil, India.
| |
Collapse
|
6
|
Kim D, Joung YS. Sodium alginate based artificial biofilms polymerized by electrophoretic deposition for microbial hydrogen generation. Int J Biol Macromol 2023; 248:125887. [PMID: 37473879 DOI: 10.1016/j.ijbiomac.2023.125887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
This study developed an artificial biofilm of Rhodospirillum rubrum bacteria immobilized within an alginate matrix using electrophoretic deposition (EPD) on an electrode. The resulting biofilm immobilized bacteria effectively and maintained a high survival rate, facilitating stable and high-efficiency hydrogen generation for longer periods compared to biofilms produced using free bacteria. Hydrogen production efficiency remained constant when the substrate was periodically replaced, indicating that the bacteria could survive within the biofilm for long-term hydrogen production. EPD produced mechanically stable large-scale biofilms economically and rapidly, which effectively overcame operational limitations such as culture medium temperature, pH, and flow rate. Therefore, this proposed method has the potential to accelerate the commercialization of biohydrogen production systems through large-scale biofilm production to facilitate continuous hydrogen generation. The technique can be utilized in various hydrogel-based applications, providing a cost-effective and efficient manufacturing process with customized biological and mechanical properties. The developed biofilms have implications beyond biohydrogen production and could be applied to hydrogel-based medical, cosmetic, and food applications. This study highlights the importance of immobilizing bacteria for stable and efficient hydrogen generation and demonstrates the potential of EPD in fabricating mechanically stable biofilms for large-scale production.
Collapse
Affiliation(s)
- Dogyeong Kim
- Department of Mechanical Systems Engineering, Sookmyung Women's University, 100, Cheongpa-ro 47-gil, Yongsan-gu, Seoul, Republic of Korea
| | - Young Soo Joung
- Department of Mechanical Systems Engineering, Sookmyung Women's University, 100, Cheongpa-ro 47-gil, Yongsan-gu, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Anjum S, Aslam S, Hussain N, Bilal M, Boczkaj G, Smułek W, Jesionowski T, Iqbal HM. Bioreactors and biophoton-driven biohydrogen production strategies. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 2023; 48:21176-21188. [DOI: 10.1016/j.ijhydene.2023.01.363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
|
8
|
Enhancing Biobased Volatile Fatty Acids Production from Olive Mill Solid Waste by Optimization of pH and Substrate to Inoculum Ratio. Processes (Basel) 2023. [DOI: 10.3390/pr11020338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The pH and substrate-to-inoculum ratio (S/I) are important parameters in the anaerobic fermentation of agroindustrial residues, and therefore the optimization of these two parameters is needed for a stable, efficient, and sustainable reactor operation. In this work, the parameters pH (5–9) and S/I (0.5–3 gVS gVS−1) were optimized to produce biobased volatile fatty acids (VFAs) from hydrothermally pretreated olive mill solid waste (HPOMSW). The response variables evaluated in the Doehlert design were total VFAs concentration (tVFAs) (mg L−1) and amounts (%) of isobutyric, butyric, isovaleric, and valeric acids on the VFAs profile. The pH was the variable that most influenced the mixed culture fermentation of HPOMSW, proving to be a key parameter in the process. Microbial community analyses of conditions 1 (S/I = 3 gVS gVS−1 and pH = 7) and 4 (S/I = 1.13 gVS gVS−1 and pH = 5) showed that Proteobacteria and Firmicutes accounted for more than 87% of the total microorganisms identified for both conditions. In addition, the second-order model best fitted the experimental data for the VFAs production at the desirable condition (S/I = 3 gVS gVS−1 and pH = 8).
Collapse
|
9
|
Ubando AT, Chen WH, Hurt DA, Conversion A, Rajendran S, Lin SL. Biohydrogen in a circular bioeconomy: A critical review. BIORESOURCE TECHNOLOGY 2022; 366:128168. [PMID: 36283666 DOI: 10.1016/j.biortech.2022.128168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Hydrogen produced from biomass feedstocks is considered an effective solution in moving toward a decarbonized economy. Biohydrogen is a clean energy source that has gained global attention for adoption as it promises to mitigate climate change and human environmental damage. Through the circular economy framework, sustainable biohydrogen production with other bioproducts while addressing issues such as waste management is possible. This study presents a comprehensive review of the various biomass feedstocks and processing technologies associated with biohydrogen generation, as well as the possible integration of existing industries into a circular bioeconomy framework. The currently standing challenges and future perspectives are also discussed.
Collapse
Affiliation(s)
- Aristotle T Ubando
- Department of Mechanical Engineering, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines; Thermomechanical Laboratory, De La Salle University, Laguna Campus, LTI Spine Road, Laguna Blvd, Biñan, Laguna 4024, Philippines; Center for Engineering and Sustainable Development Research, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung, 411, Taiwan.
| | - Dennis A Hurt
- Department of Mechanical Engineering, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines
| | - Ariel Conversion
- Department of Mechanical Engineering, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines; Thermomechanical Laboratory, De La Salle University, Laguna Campus, LTI Spine Road, Laguna Blvd, Biñan, Laguna 4024, Philippines
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile
| | - Sheng-Lun Lin
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
10
|
Deivayanai VC, Yaashikaa PR, Senthil Kumar P, Rangasamy G. A comprehensive review on the biological conversion of lignocellulosic biomass into hydrogen: Pretreatment strategy, technology advances and perspectives. BIORESOURCE TECHNOLOGY 2022; 365:128166. [PMID: 36283663 DOI: 10.1016/j.biortech.2022.128166] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 05/16/2023]
Abstract
The globe has dependent on energy generation and utilization for many years; conversely, ecological concerns constrained the world to view hydrogen as an alternative for economic development. Lignocellulosic biomass is broadly accessible as a low-cost renewable feedstock and nonreactive nature; it has received a lot of consideration as a global energy source and the most attractive alternative to replace fossil natural substances for energy production. Pretreatment of lignocellulosic biomass is essential to advance its fragmentation and lower the lignin content for sustainable energy generation. This review's goal is to provide the different pretreatment strategies for enlarging the solubility and surface area of lignocellulosic biomass. The biological conversion of lignocellulosic biomass to hydrogen was reviewed and operational conditions and enhancing methods were discussed. This review summarizes the working conditions, parameters, yield percentages, techno-economic analysis, challenges, and future recommendations on the direct conversion of biomass to hydrogen.
Collapse
Affiliation(s)
- V C Deivayanai
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai 602105, India
| | - P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India; School of Engineering, Lebanese American University, Byblos, Lebanon.
| | - Gayathri Rangasamy
- University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab 140413, India
| |
Collapse
|
11
|
Decavoli C, Boldrini CL, Faroldi F, Baldini L, Sansone F, Ranaudo A, Greco C, Cosentino U, Moro G, Manfredi N, Abbotto A. Calix[4]arene‐Based Sensitizers for Host‐Guest Supramolecular Dyads for Solar Energy Conversion in Photoelectrochemical Cells. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Cristina Decavoli
- Department of Materials Science and Milano-Bicocca Solar Energy Research Center – MIB-Solar University of Milano-Bicocca Via Cozzi 55 20125 Milano Italy
| | - Chiara L. Boldrini
- Department of Materials Science and Milano-Bicocca Solar Energy Research Center – MIB-Solar University of Milano-Bicocca Via Cozzi 55 20125 Milano Italy
| | - Federica Faroldi
- Dipartimento di Scienze Chimiche della Vita e della Sostenibilità Ambientale University of Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Laura Baldini
- Dipartimento di Scienze Chimiche della Vita e della Sostenibilità Ambientale University of Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Francesco Sansone
- Dipartimento di Scienze Chimiche della Vita e della Sostenibilità Ambientale University of Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Anna Ranaudo
- Department of Earth and Environmental Sciences University of Milano-Bicocca Piazza della Scienza 1 20126 Milano Italy
| | - Claudio Greco
- Department of Earth and Environmental Sciences University of Milano-Bicocca Piazza della Scienza 1 20126 Milano Italy
| | - Ugo Cosentino
- Department of Earth and Environmental Sciences University of Milano-Bicocca Piazza della Scienza 1 20126 Milano Italy
| | - Giorgio Moro
- Department of Biotechnology and Biosciences University of Milano-Bicocca Piazza della Scienza 2 20126 Milano Italy
| | - Norberto Manfredi
- Department of Materials Science and Milano-Bicocca Solar Energy Research Center – MIB-Solar University of Milano-Bicocca Via Cozzi 55 20125 Milano Italy
| | - Alessandro Abbotto
- Department of Materials Science and Milano-Bicocca Solar Energy Research Center – MIB-Solar University of Milano-Bicocca Via Cozzi 55 20125 Milano Italy
| |
Collapse
|
12
|
Dattatraya Saratale G, Rajesh Banu J, Nastro RA, Kadier A, Ashokkumar V, Lay CH, Jung JH, Seung Shin H, Ganesh Saratale R, Chandrasekhar K. Bioelectrochemical systems in aid of sustainable biorefineries for the production of value-added products and resource recovery from wastewater: A critical review and future perspectives. BIORESOURCE TECHNOLOGY 2022; 359:127435. [PMID: 35680092 DOI: 10.1016/j.biortech.2022.127435] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
Bioelectrochemical systems (BES) have the potential to be used in a variety of applications such as waste biorefinery, pollutants removal, CO2 capture, and the electrosynthesis of clean and renewable biofuels or byproducts, among others. In contrast, many technical challenges need to be addressed before BES can be scaled up and put into real-world applications. Utilizing BES, this review article presents a state-of-the-art overall view of crucial concepts and the most recent innovative results and achievements acquired from the BES system. Special attention is placed on a hybrid approach for product recovery and wastewater treatment. There is also a comprehensive overview of waste biorefinery designs that are included. In conclusion, the significant obstacles and technical concerns found throughout the BES studies are discussed, and suggestions and future requirements for the virtual usage of the BES concept in actual waste treatment are outlined.
Collapse
Affiliation(s)
- Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Republic of Korea
| | - J Rajesh Banu
- Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur 610 005, India
| | - Rosa Anna Nastro
- Department of Science and Technology, University Parthenope of Naples- Centro Direzionale Isola C4, 80143, Naples, Italy
| | - Abudukeremu Kadier
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Veeramuthu Ashokkumar
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
| | - Chyi-How Lay
- Master's Program of Green Energy Science and Technology, Feng Chia University, Taichung 40724, Taiwan
| | - Ju-Hyeong Jung
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Han Seung Shin
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Republic of Korea
| | - Rijuta Ganesh Saratale
- Research Institute of Integrative Life Sciences, Dongguk University-Seoul, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, South Korea
| | - K Chandrasekhar
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research, Vadlamudi-522213, Guntur, Andhra Pradesh, India.
| |
Collapse
|
13
|
Stikane A, Dace E, Stalidzans E. Closing the loop in bioproduction: Spent Microbial Biomass as a resource within circular bioeconomy. N Biotechnol 2022; 70:109-115. [DOI: 10.1016/j.nbt.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/15/2022] [Accepted: 06/03/2022] [Indexed: 11/30/2022]
|
14
|
Cheng D, Ngo HH, Guo W, Chang SW, Nguyen DD, Deng L, Chen Z, Ye Y, Bui XT, Hoang NB. Advanced strategies for enhancing dark fermentative biohydrogen production from biowaste towards sustainable environment. BIORESOURCE TECHNOLOGY 2022; 351:127045. [PMID: 35331884 DOI: 10.1016/j.biortech.2022.127045] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
As a clean energy carrier, hydrogen is a promising alternative to fossil fuel so as the global growing energy demand can be met. Currently, producing hydrogen from biowastes through fermentation has attracted much attention due to its multiple advantages of biowastes management and valuable energy generation. Nevertheless, conventional dark fermentation (DF) processes are still hindered by the low biohydrogen yields and challenges of biohydrogen purification, which limit their commercialization. In recent years, researchers have focused on various advanced strategies for enhancing biohydrogen yields, such as screening of super hydrogen-producing bacteria, genetic engineering, cell immobilization, nanomaterials utilization, bioreactors modification, and combination of different processes. This paper critically reviews by discussing the above stated technologies employed in DF, respectively, to improve biohydrogen generation and stating challenges and future perspectives on biowaste-based biohydrogen production.
Collapse
Affiliation(s)
- Dongle Cheng
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Huu Hao Ngo
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia; Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam.
| | - Wenshan Guo
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Soon Woong Chang
- Department of Environmental Energy Engineering, Kyonggi University 442-760, Republic of Korea
| | - Dinh Duc Nguyen
- Department of Environmental Energy Engineering, Kyonggi University 442-760, Republic of Korea
| | - Lijuan Deng
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Zhuo Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Yuanyao Ye
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan 430074, PR China
| | - Xuan Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh (VNU-HCM), Ho Chi Minh City 700000, Vietnam
| | - Ngoc Bich Hoang
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| |
Collapse
|
15
|
Jung JH, Sim YB, Ko J, Park SY, Kim GB, Kim SH. Biohydrogen and biomethane production from food waste using a two-stage dynamic membrane bioreactor (DMBR) system. BIORESOURCE TECHNOLOGY 2022; 352:127094. [PMID: 35367325 DOI: 10.1016/j.biortech.2022.127094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
This study examined a two-stage dynamic membrane bioreactor (DMBR) system for biohydrogen and biomethane production from food waste (FW) in mesophilic condition. The two-stage DMBR system enabled high-rate H2 and CH4 production from particulate feedstock by enhanced microorganism retention. Chemical energy in FW was recovered up to 79% as renewable energy. The highest average hydrogen production rate of 7.09 ± 0.42 L/L-d was observed at a hydraulic retention time (HRT) of 8 h in the H2-DMBR, while the highest CH4 average production rate of 0.99 ± 0.02 L/L-d was observed at an HRT of 6 d in the CH4-DMBR. The high specific methanogenic activity of 71.7 mL CH4/g VSS-d was maintained at the short HRT, which also contributed to the high MPR. The genus Clostridium was dominant in the H2-DMBR, while bacterial and archaeal populations in the CH4-DMBR were dominated by the class Clostridia and genera Methanobacterium and Methanosaeta, respectively.
Collapse
Affiliation(s)
- Ju-Hyeong Jung
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Young-Bo Sim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jeun Ko
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - So Young Park
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Gi-Beom Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
16
|
Study on Comparisons of Bio-Hydrogen Yield Potential and Energy Conversion Efficiency between Stem and Leaf of Sweet Potato by Photo-Fermentation. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8040165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The source of raw materials for hydrogen production can be expanded by using vine waste as a substrate. Likewise, the effectiveness of vine waste can also be improved. However, plant parts such as stems and leaves often differ in physicochemical properties, which significantly affects the effectiveness of biochemical transformation. In this research, sweet potato was used as substrate in photo-fermentative hydrogen production (PFHP) to evaluate differences in bio-hydrogen production yield potential and energy conversion efficiency for its stem and leaf. Physicochemical properties were determined using the following techniques: elementary analysis, SEM, and X-ray diffraction. The Gompertz model was adopted to analyze the kinetic parameters, and energy conversion efficiency was calculated. The results showed that stem samples with loose structures produced more hydrogen, with a total cellulose and hemicellulose content of 44.6%, but crystallinity was only 29.67%. Cumulative bio-hydrogen yield of stem was 66.03 mL/g TS, which was 3.59 times higher than that of leaf. An increase of 258.93% in energy conversion efficiency was obtained when stem was used for PFHP. In conclusion, stem samples were more suitable for PFHP than leaf samples.
Collapse
|
17
|
Liu H, Zhang Z, Lu C, Wang J, Wang K, Guo S, Zhang Q. Effects of enzymatic hydrolysis and alkalization pretreatment on biohydrogen production by chlorella photosynthesis. BIORESOURCE TECHNOLOGY 2022; 349:126859. [PMID: 35183718 DOI: 10.1016/j.biortech.2022.126859] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
The effects of alkalization pretreatment and enzymolysis on biohydrogen production with Chlorella vulgaris microalgae biomass by photosynthesis were studied, the alkalization pretreatment enzymolysis was to alkalize biomass raw materials before enzymolysis, the biohydrogen production kinetics equation of microalgae biomass was put forward by comparing the biohydrogen process of enzymatic hydrolysis with that of alkaline pretreatment enzymatic hydrolysis. The experimental results show: the optimum initial substrate concentration for biohydrogen production by enzymatic hydrolysis and alkaline pretreatment was 24 g/L, the maximum biohydrogen was 132.1 mL and 294.5 mL, the maximum specific biohydrogen production was 22.0 mL/g and 49.1 mL/g, and the maximum biohydrogen content was 43.9% and 56.8%. The effect of biohydrogen production by enzymatic hydrolysis after alkaline pretreatment of microalgae biomass is obviously better than that by direct enzymatic hydrolysis, which provides scientific reference and development of high efficiency and low cost biohydrogen production technology by photosynthesis of microalgae biomass.
Collapse
Affiliation(s)
- Hong Liu
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy, (MOA of China), Henan Agricultural University, Zhengzhou 450002, China; Institute of Agricultural engineering, Huanghe S & T University, Zhengzhou 450006, China
| | - Zhiping Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy, (MOA of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Chaoyang Lu
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy, (MOA of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Jian Wang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy, (MOA of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Kaixin Wang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy, (MOA of China), Henan Agricultural University, Zhengzhou 450002, China; Institute of Agricultural engineering, Huanghe S & T University, Zhengzhou 450006, China
| | - Siyi Guo
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy, (MOA of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Quanguo Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy, (MOA of China), Henan Agricultural University, Zhengzhou 450002, China; Institute of Agricultural engineering, Huanghe S & T University, Zhengzhou 450006, China.
| |
Collapse
|
18
|
Singh M, Mal N, Mohapatra R, Bagchi T, Parambath SD, Chavali M, Rao KM, Ramanaiah SV, Kadier A, Kumar G, Chandrasekhar K, Kim SH. Recent biotechnological developments in reshaping the microalgal genome: A signal for green recovery in biorefinery practices. CHEMOSPHERE 2022; 293:133513. [PMID: 34990720 DOI: 10.1016/j.chemosphere.2022.133513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/13/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
The use of renewable energy sources as a substitute for nonrenewable fossil fuels is urgently required. Algae biorefinery platform provides an excellent alternate to overcome future energy problems. However, to let this viable biomass be competent with existing feedstocks, it is necessary to exploit genetic manipulation and improvement in upstream and downstream platforms for optimal bio-product recovery. Furthermore, the techno-economic strategies further maximize metabolites production for biofuel, biohydrogen, and other industrial applications. The experimental methodologies in algal photobioreactor promote high biomass production, enriched in lipid and starch content in limited environmental conditions. This review presents an optimization framework combining genetic manipulation methods to simulate microalgal growth dynamics, understand the complexity of algal biorefinery to scale up, and identify green strategies for techno-economic feasibility of algae for biomass conversion. Overall, the algal biorefinery opens up new possibilities for the valorization of algae biomass and the synthesis of various novel products.
Collapse
Affiliation(s)
- Meenakshi Singh
- Department of Botany, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, Gujarat, India
| | - Navonil Mal
- Department of Botany, University of Calcutta, Kolkata, 700019, West Bengal, India
| | - Reecha Mohapatra
- Department of Life Sciences, NIT Rourkela, 769008, Odisha, India
| | - Trisha Bagchi
- Department of Botany, West Bengal State University, Barasat, 700126, West Bengal, India
| | | | - Murthy Chavali
- Office of the Dean (Research) & Division of Chemistry, Department of Science, Faculty of Science & Technology, Alliance University (Central Campus), Chandapura-Anekal Main Road, Bengaluru, 562106, Karnataka, India; NTRC-MCETRC and 109 Nano Composite Technologies Pvt. Ltd., Guntur District, 522201, Andhra Pradesh, India
| | - Kummara Madhusudana Rao
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Joyeong-dong, Gyeongsan-si, Gyeongsangbuk-do, 38541, South Korea; Department of Automotive Lighting Convergence Engineering, Yeungnam University, 280 Daehak-ro, Joyeong-dong, Gyeongsan-si, Gyeongsangbuk-do, 38541, South Korea
| | - S V Ramanaiah
- Food and Biotechnology Research Lab, South Ural State University (National Research University), 454080, Chelyabinsk, Russian Federation
| | - Abudukeremu Kadier
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi, 830011, China; Center of Material and Opto-electronic Research, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, 4036, Stavanger, Norway
| | - K Chandrasekhar
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
19
|
Morya R, Kumar M, Tyagi I, Kumar Pandey A, Park J, Raj T, Sirohi R, Kumar V, Kim SH. Recent advances in black liquor valorization. BIORESOURCE TECHNOLOGY 2022; 350:126916. [PMID: 35231597 DOI: 10.1016/j.biortech.2022.126916] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Lignocellulosic biomass is projected as a prospective renewable alternative to petroleum for the production of fuel and chemicals. Pretreatment is necessary to disrupt the lignocellulosic structure for extraction of cellulose. Biomass after pretreatment is segregated into cellulose rich solid fraction and black liquor (lignin and hemicelluloses) as a liquid stream. The plant polysaccharide-based industry primarily utilizes the cellulosic fraction as raw material, and carbon rich black liquor discarded as waste or burnt for energy recovery. This review highlights the recent advancements in the biological and chemical valorization of black liquor into fuels and chemicals. The recent research attempted for bioconversion of black liquor into Bioplastic, Biohydrogen, Biogas, and chemicals has been discussed. In addition, the efforts to replace the conventional energy recovery method with the advanced chemical process along with their modifications have been reviewed that will decide the sustainability of the lignocellulosic biomass-based industry.
Collapse
Affiliation(s)
- Raj Morya
- Civil and Environmental Engineering Department, Yonsei University, Seoul 03722, Republic of Korea
| | - Madan Kumar
- Centre for Rural Development and Technology, IIT Delhi, New Delhi 110016, India
| | - Isha Tyagi
- Centre for Rural Development and Technology, IIT Delhi, New Delhi 110016, India
| | - Ashutosh Kumar Pandey
- Civil and Environmental Engineering Department, Yonsei University, Seoul 03722, Republic of Korea
| | - Jungsu Park
- Civil and Environmental Engineering Department, Yonsei University, Seoul 03722, Republic of Korea
| | - Tirath Raj
- Civil and Environmental Engineering Department, Yonsei University, Seoul 03722, Republic of Korea
| | - Ranjna Sirohi
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Vivek Kumar
- Centre for Rural Development and Technology, IIT Delhi, New Delhi 110016, India
| | - Sang-Hyoun Kim
- Civil and Environmental Engineering Department, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
20
|
Awasthi MK, Sindhu R, Sirohi R, Kumar V, Ahluwalia V, Binod P, Juneja A, Kumar D, Yan B, Sarsaiya S, Zhang Z, Pandey A, Taherzadeh MJ. Agricultural waste biorefinery development towards circular bioeconomy. RENEWABLE AND SUSTAINABLE ENERGY REVIEWS 2022; 158:112122. [DOI: 10.1016/j.rser.2022.112122] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
|
21
|
Optimization of Lipid Production by Schizochytrium limacinum Biomass Modified with Ethyl Methane Sulfonate and Grown on Waste Glycerol. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19053108. [PMID: 35270800 PMCID: PMC8910453 DOI: 10.3390/ijerph19053108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 11/24/2022]
Abstract
One of the most promising avenues of biofuel research relates to using waste as a starting feedstock to produce liquid or gaseous energy carriers. The global production of waste glycerol by the refinery industry is rising year after year. The aim of the present study was to examine the effect of ethyl methane sulfonate (EMS) on the growth rates and intracellular lipid accumulation in heterotrophically-cultured Schizochytrium limacinum microalgae, grown on waste glycerol as the carbon source. The strain S. limacinum E20, produced by incubating a reference strain in EMS for 20 min, was found to perform the best in terms of producing biomass (0.054 gDW/dm3·h) and accumulating intracellular bio-oil (0.021 g/dm3·h). The selected parameters proved to be optimal for S. limacinum E20 biomass growth at the following values: temperature 27.3 °C, glycerol level 249.0 g/dm3, oxygen in the culture 26%, and yeast extract concentration 45.0 g/dm3. In turn, the optimal values for lipid production in an S. limacinum E20 culture were: temperature 24.2 °C, glycerol level 223.0 g/dm3, oxygen in the culture 10%, and yeast extract concentration 10.0 g/dm3. As the process conditions are different for biomass growth and for intracellular lipid accumulation, it is recommended to use a two-step culture process, which resulted in a lipid synthesis rate of 0.41 g/dm3·h.
Collapse
|
22
|
Aqueous phase reforming process for the valorization of wastewater streams: Application to different industrial scenarios. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
23
|
Mohanty A, Mankoti M, Rout PR, Meena SS, Dewan S, Kalia B, Varjani S, Wong JW, Banu JR. Sustainable utilization of food waste for bioenergy production: A step towards circular bioeconomy. Int J Food Microbiol 2022; 365:109538. [DOI: 10.1016/j.ijfoodmicro.2022.109538] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/10/2021] [Accepted: 01/08/2022] [Indexed: 10/19/2022]
|
24
|
Gudiukaite R, Nadda AK, Gricajeva A, Shanmugam S, Nguyen DD, Lam SS. Bioprocesses for the recovery of bioenergy and value-added products from wastewater: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 300:113831. [PMID: 34649321 DOI: 10.1016/j.jenvman.2021.113831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 09/04/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Wastewater and activated sludge present a major challenge worldwide. Wastewater generated from large and small-scale industries, laundries, human residential areas and other sources is emerging as a main problem in sanitation and maintenance of smart/green cities. During the last decade, different technologies and processes have been developed to recycle and purify the wastewater. Currently, identification and fundamental consideration of development of more advanced microbial-based technologies that enable wastewater treatment and simultaneous resource recovery to produce bioenergy, biofuels and other value-added compounds (organic acids, fatty acids, bioplastics, bio-pesticides, bio-surfactants and bio-flocculants etc.) became an emerging topic. In the last several decades, significant development of bioprocesses and techniques for the extraction and recovery of mentioned valuable molecules and compounds from wastewater, waste biomass or sludge has been made. This review presents different microbial-based process routes related to resource recovery and wastewater application for the production of value-added products and bioenergy. Current process limitations and insights for future research to promote more efficient and sustainable routes for this under-utilized and continually growing waste stream are also discussed.
Collapse
Affiliation(s)
- Renata Gudiukaite
- Department of Microbiology and Biotechnology, Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekis Avenue 7, LT-10257, Vilnius, Lithuania.
| | - Ashok Kumar Nadda
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, 173 234, India.
| | - Alisa Gricajeva
- Department of Microbiology and Biotechnology, Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekis Avenue 7, LT-10257, Vilnius, Lithuania
| | - Sabarathinam Shanmugam
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, 400044, China
| | - D Duc Nguyen
- Department of Environmental Energy Engineering, Kyonggi University, Gwanggyosan-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 442-760, South Korea
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
25
|
Zhang C, Wang G, Ma S, Huang H, Ma Y, Li Z. Enhancing Hydrogen Productivity of Photosynthetic Bacteria from the Formulated Carbon Source by Mixing Xylose with Glucose. Appl Biochem Biotechnol 2021; 193:3996-4017. [PMID: 34661867 DOI: 10.1007/s12010-021-03708-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/08/2021] [Indexed: 10/20/2022]
Abstract
To develop an efficient photofermentative process capable of higher rate biohydrogen production using carbon components of lignocellulosic hydrolysate, a desired carbon substrate by mixing xylose with glucose was formulated. Effects of crucial process parameters affecting cellular biochemical reaction of hydrogen by photosynthetic bacteria (PSB), i.e., variation in initial concentration of total carbon, glucose content in initial carbon substrate, and light intensity, were experimentally investigated using response surface methodology (RSM) with a Box-Behnken design (BBD). Hydrogen production rate (HPR) in the maximum value of 30.6 mL h-1 L-1 was attained under conditions of 39 mM initial concentration of total carbon, 59% (mol/mol) glucose content in initial carbon substrate, and 12.6 W m-2 light intensity at light wavelength of 590 nm. Synergic effects of metabolizing such a well-formulated carbon substrate for sustaining the active microbial synthesis to sufficiently accumulate biomass in bioreactor, as well as stimulating enzyme activity of nitrogenase for the higher rate biohydrogen production, were attributed to this carbon substrate that can enable PSB to maintain the relatively consistent microenvironment in suitable culture pH condition during the optimized photofermentative process.
Collapse
Affiliation(s)
- Chuan Zhang
- School of Electric Power, North China University of Water Resource and Electric Power, No. 36 Beihuan Road, Jinshui District, Zhengzhou, 450045, People's Republic of China. .,Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, 400044, People's Republic of China.
| | - Guihong Wang
- School of Electric Power, North China University of Water Resource and Electric Power, No. 36 Beihuan Road, Jinshui District, Zhengzhou, 450045, People's Republic of China
| | - Shuaishuai Ma
- School of Electric Power, North China University of Water Resource and Electric Power, No. 36 Beihuan Road, Jinshui District, Zhengzhou, 450045, People's Republic of China
| | - Hao Huang
- School of Electric Power, North China University of Water Resource and Electric Power, No. 36 Beihuan Road, Jinshui District, Zhengzhou, 450045, People's Republic of China
| | - Yixiao Ma
- School of Electric Power, North China University of Water Resource and Electric Power, No. 36 Beihuan Road, Jinshui District, Zhengzhou, 450045, People's Republic of China
| | - Zhaoran Li
- School of Electric Power, North China University of Water Resource and Electric Power, No. 36 Beihuan Road, Jinshui District, Zhengzhou, 450045, People's Republic of China.,Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, 400044, People's Republic of China
| |
Collapse
|
26
|
Rodríguez A, Hernández-Herreros N, García JL, Auxiliadora Prieto M. Enhancement of biohydrogen production rate in Rhodospirillum rubrum by a dynamic CO-feeding strategy using dark fermentation. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:168. [PMID: 34362414 PMCID: PMC8343937 DOI: 10.1186/s13068-021-02017-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Rhodospirillum rubrum is a purple non-sulphur bacterium that produces H2 by photofermentation of several organic compounds or by water gas-shift reaction during CO fermentation. Successful strategies for both processes have been developed in light-dependent systems. This work explores a dark fermentation bioprocess for H2 production from water using CO as the electron donor. RESULTS The study of the influence of the stirring and the initial CO partial pressure (pCO) demonstrated that the process was inhibited at pCO of 1.00 atm. Optimal pCO value was established in 0.60 atm. CO dose adaptation to bacterial growth in fed-batch fermentations increased the global rate of H2 production, yielding 27.2 mmol H2 l-1 h-1 and reduced by 50% the operation time. A kinetic model was proposed to describe the evolution of the molecular species involved in gas and liquid phases in a wide range of pCO conditions from 0.10 to 1.00 atm. CONCLUSIONS Dark fermentation in R. rubrum expands the ways to produce biohydrogen from CO. This work optimizes this bioprocess at lab-bioreactor scale studying the influence of the stirring speed, the initial CO partial pressure and the operation in batch and fed-batch regimes. Dynamic CO supply adapted to the biomass growth enhances the productivity reached in darkness by other strategies described in the literature, being similar to that obtained under light continuous syngas fermentations. The kinetic model proposed describes all the conditions tested.
Collapse
Affiliation(s)
- Alberto Rodríguez
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy‐of the Spanish National Research Council (SusPlast‐CSIC), Madrid, Spain
- Polymer Biotechnology Group, Department of Plant and Microbial Biotechnology, Biological Research Center, Margarita Salas”-CSIC, 28040 Madrid, Spain
| | - Natalia Hernández-Herreros
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy‐of the Spanish National Research Council (SusPlast‐CSIC), Madrid, Spain
- Polymer Biotechnology Group, Department of Plant and Microbial Biotechnology, Biological Research Center, Margarita Salas”-CSIC, 28040 Madrid, Spain
| | - José L. García
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy‐of the Spanish National Research Council (SusPlast‐CSIC), Madrid, Spain
- Environmental Biotechnology Group, Department of Plant and Microbial Biotechnology, Biological Research Center, Margarita Salas”-CSIC 28040, Madrid, Spain
| | - M. Auxiliadora Prieto
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy‐of the Spanish National Research Council (SusPlast‐CSIC), Madrid, Spain
- Polymer Biotechnology Group, Department of Plant and Microbial Biotechnology, Biological Research Center, Margarita Salas”-CSIC, 28040 Madrid, Spain
| |
Collapse
|
27
|
Srivastava RK, Shetti NP, Reddy KR, Kwon EE, Nadagouda MN, Aminabhavi TM. Biomass utilization and production of biofuels from carbon neutral materials. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 276:116731. [PMID: 33607352 DOI: 10.1016/j.envpol.2021.116731] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/01/2021] [Accepted: 02/09/2021] [Indexed: 05/22/2023]
Abstract
The availability of organic matters in vast quantities from the agricultural/industrial practices has long been a significant environmental challenge. These wastes have created global issues in increasing the levels of BOD or COD in water as well as in soil or air segments. Such wastes can be converted into bioenergy using a specific conversion platform in conjunction with the appropriate utilization of the methods such as anaerobic digestion, secondary waste treatment, or efficient hydrolytic breakdown as these can promote bioenergy production to mitigate the environmental issues. By the proper utilization of waste organics and by adopting innovative approaches, one can develop bioenergy processes to meet the energy needs of the society. Waste organic matters from plant origins or other agro-sources, biopolymers, or complex organic matters (cellulose, hemicelluloses, non-consumable starches or proteins) can be used as cheap raw carbon resources to produce biofuels or biogases to fulfill the ever increasing energy demands. Attempts have been made for bioenergy production by biosynthesizing, methanol, n-butanol, ethanol, algal biodiesel, and biohydrogen using different types of organic matters via biotechnological/chemical routes to meet the world's energy need by producing least amount of toxic gases (reduction up to 20-70% in concentration) in order to promote sustainable green environmental growth. This review emphasizes on the nature of available wastes, different strategies for its breakdown or hydrolysis, efficient microbial systems. Some representative examples of biomasses source that are used for bioenergy production by providing critical information are discussed. Furthermore, bioenergy production from the plant-based organic matters and environmental issues are also discussed. Advanced biofuels from the organic matters are discussed with efficient microbial and chemical processes for the promotion of biofuel production from the utilization of plant biomasses.
Collapse
Affiliation(s)
- Rajesh K Srivastava
- Department of Biotechnology, GIT, GITAM (Deemed to Be University), Rushikonda, Visakhapatnam, 530045, (A.P.), India
| | - Nagaraj P Shetti
- Department of Chemistry, K. L. E. Institute of Technology, Gokul, Hubballi, 580027, Karnataka, India
| | - Kakarla Raghava Reddy
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Eilhann E Kwon
- Department of Environment and Energy, Sejong University, Seoul, 05006, Republic of Korea
| | - Mallikarjuna N Nadagouda
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH, 45324, USA
| | | |
Collapse
|
28
|
Chandrasekhar K, Naresh Kumar A, Kumar G, Kim DH, Song YC, Kim SH. Electro-fermentation for biofuels and biochemicals production: Current status and future directions. BIORESOURCE TECHNOLOGY 2021; 323:124598. [PMID: 33401164 DOI: 10.1016/j.biortech.2020.124598] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
Electro-fermentation is an emerging bioporcess that could regulate the metabolism of electrochemically active microorganisms. The provision of electrodes for the fermentation process that functions as an electron acceptor and supports the formation and transportation of electrons and protons, consequently producing bioelectricity and value-added chemicals. The traditional method of fermentation has several limitations in usability and economic feasibility. Subsequently, a series of metabolic processes occurring in conventional fermentation processes are most often redox misaligned. In this regard, electro-fermentation emerged as a hybrid technology which can regulate a series of metabolic processes occurring in a bioreactor by regulating the redox instabilities and boosting the overall metabolic process towards high biomass yield and enhanced product formation. The present article deals with microorganisms-electrode interactions, various types of electro-fermentation systems, comparative evaluation of pure and mixed culture electro-fermentation application, and value-added fuels and chemical synthesis.
Collapse
Affiliation(s)
- K Chandrasekhar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - A Naresh Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea; Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, 4036 Stavanger, Norway
| | - Dong-Hoon Kim
- Department of Civil Engineering, Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, Republic of Korea
| | - Young-Chae Song
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan 49112, Republic of Korea
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
29
|
Rajagopal J, Gopinath KP, Krishnan A, Vikas Madhav N, Arun J. Photocatalytic reforming of aqueous phase obtained from liquefaction of household mixed waste biomass for renewable bio-hydrogen production. BIORESOURCE TECHNOLOGY 2021; 321:124529. [PMID: 33321296 DOI: 10.1016/j.biortech.2020.124529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 05/22/2023]
Abstract
In this study, hydrothermal liquefaction of household waste was performed to produce valuable liquid hydrocarbons with aqueous phase as by-product. Photocatalytic reforming of aqueous phase was carried out for hydrogen production. Liquefaction of 15 g waste at temperature of 320 °C and solvent to biomass ratio of 13.33 mL/g produced bio-oil of 32.4 wt% and hydrogen 21 wt% in gas product. Hydrogen production from aqueous phase was studied in presence of various concentrations of activated carbon doped Fe/TiO2 catalyst (0.2-1 wt%). Hydrogen yield was 32 wt% when 0.6 wt% of catalyst was used to reform aqueous phase. To ease of operation in economical manner the reusability study of the catalyst was evaluated and it was found to be active for three consecutive cycles. As outcome of this study, household waste can serve for a whooping amount of hydrogen (53 wt%) production via liquefaction and photocatalytic reforming process.
Collapse
Affiliation(s)
- Jayaraman Rajagopal
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110 Chennai, Tamil Nadu, India
| | - Kannappan Panchamoorthy Gopinath
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110 Chennai, Tamil Nadu, India.
| | - Abhishek Krishnan
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110 Chennai, Tamil Nadu, India
| | - Nagarajan Vikas Madhav
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110 Chennai, Tamil Nadu, India
| | - Jayaseelan Arun
- Centre for Waste Management, International Research Centre, Sathyabama Institute of Science and Technology, Jeppiaar Nagar (OMR), Chennai 600119, Tamil Nadu, India
| |
Collapse
|
30
|
Qin S, Shekher Giri B, Kumar Patel A, Sar T, Liu H, Chen H, Juneja A, Kumar D, Zhang Z, Kumar Awasthi M, Taherzadeh MJ. Resource recovery and biorefinery potential of apple orchard waste in the circular bioeconomy. BIORESOURCE TECHNOLOGY 2021; 321:124496. [PMID: 33302013 DOI: 10.1016/j.biortech.2020.124496] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/26/2020] [Accepted: 11/28/2020] [Indexed: 06/12/2023]
Abstract
In this review investigate the apple orchard waste (AOW) is potential organic resources to produce multi-product and there sustainable interventions with biorefineries approaches to assesses the apple farm industrial bioeconomy. The thermochemical and biological processes like anaerobic digestion, composting and , etc., that generate distinctive products like bio-chemicals, biofuels, biofertilizers, animal feed and biomaterial, etc can be employed for AOW valorization. Integrating these processes can enhanced the yield and resource recovery sustainably. Thus, employing biorefinery approaches with allied different methods can link to the progression of circular bioeconomy. This review article mainly focused on the different biological processes and thermochemical that can be occupied for the production of waste to-energy and multi-bio-product in a series of reaction based on sustainability. Therefore, the biorefinery for AOW move towards identification of the serious of the reaction with each individual thermochemical and biological processes for the conversion of one-dimensional providences to circular bioeconomy.
Collapse
Affiliation(s)
- Shiyi Qin
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Balendu Shekher Giri
- Center for Excellence for Sustainable Polymer, Department of Chemical Engineering, Indian Institute of Technology, Guwahati 781039, India
| | - Anil Kumar Patel
- Centre for Energy and Environmental Sustainability, Lucknow 226029, Uttar Pradesh, India
| | - Taner Sar
- Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden; Department of Molecular Biology and Genetics, Gebze Technical University, Gebze-Kocaeli, 41400, Turkey
| | - Huimin Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Hongyu Chen
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, 14195 Berlin, Germany
| | - Ankita Juneja
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana Champaign, 1304 W. Pennsylvania Avenue, Urbana, IL 61801, USA
| | - Deepak Kumar
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, 402 Walters Hall, 1 Forestry Drive, Syracuse, NY 13210, USA
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden.
| | | |
Collapse
|
31
|
Yang E, Omar Mohamed H, Park SG, Obaid M, Al-Qaradawi SY, Castaño P, Chon K, Chae KJ. A review on self-sustainable microbial electrolysis cells for electro-biohydrogen production via coupling with carbon-neutral renewable energy technologies. BIORESOURCE TECHNOLOGY 2021; 320:124363. [PMID: 33186801 DOI: 10.1016/j.biortech.2020.124363] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 06/11/2023]
Abstract
Microbial electrolysis cell (MEC) technology is a promising bioelectrochemical hydrogen production technology that utilizes anodic bio-catalytic oxidation and cathodic reduction processes. MECs require a lower external energy input than water electrolysis; however, as they also require the application of external power sources, this inevitably renders MEC systems a less sustainable option. This issue is the main obstacle hindering the practical application of MECs. Therefore, this review aims to introduce a self-sustainable MEC technology by combining conventional MECs with advanced carbon-neutral technologies, such as solar-, microbial-, osmotic-, and thermoelectric-powers (and their combinations). Moreover, new approaches to overcome the thermodynamic barriers and attain self-sustaining MECs are discussed in detail, thereby providing a working principle, current challenges, and future perspective in the field. This review provides comprehensive insights into reliable hydrogen production as well as the latest trends towards self-sustainable MECs for practical application.
Collapse
Affiliation(s)
- Euntae Yang
- Department of Marine Environmental Engineering, Gyeongsang National University, Gyeongsangnam-do 53064, Republic of Korea
| | - Hend Omar Mohamed
- Multiscale Reaction Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Sung-Gwan Park
- Department of Environmental Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - M Obaid
- Chemical Engineering Department, Faculty of Engineering, Minia University, Al-Minia, Egypt
| | - Siham Y Al-Qaradawi
- Department of Chemistry & Earth Sciences, College of Arts and Sciences, Qatar University, P.P. Box 2713, Doha, Qatar
| | - Pedro Castaño
- Multiscale Reaction Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Kangmin Chon
- Department of Environmental Engineering, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon-si, Gangwon-do, Republic of Korea
| | - Kyu-Jung Chae
- Department of Environmental Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea.
| |
Collapse
|
32
|
Park JH, Chandrasekhar K, Jeon BH, Jang M, Liu Y, Kim SH. State-of-the-art technologies for continuous high-rate biohydrogen production. BIORESOURCE TECHNOLOGY 2021; 320:124304. [PMID: 33129085 DOI: 10.1016/j.biortech.2020.124304] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
Dark fermentation is a technically feasible technology for achieving carbon dioxide-free hydrogen production. This review presents the current findings on continuous hydrogen production using dark fermentation. Several operational strategies and reactor configurations have been suggested. The formation of attached mixed-culture microorganisms is a typical prerequisite for achieving high production rate, hydrogen yield, and resilience. To date, fixed-bed reactors and dynamic membrane bioreactors yielded higher biohydrogen performance than other configurations. The symbiosis between H2-producing bacteria and biofilm-forming bacteria was essential to avoid washout and maintain the high loading rates and hydrogenic metabolic flux. Recent research has initiated a more in-depth comparison of microbial community changes during dark fermentation, primarily with computational science techniques based on 16S rRNA gene sequencing investigations. Future techno-economic analysis of dark fermentative biohydrogen production and perspectives on unraveling mitigation mechanisms induced by attached microorganisms in dark fermentation processes are further discussed.
Collapse
Affiliation(s)
- Jong-Hun Park
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - K Chandrasekhar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Min Jang
- Department of Environmental Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Yang Liu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Canada
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
33
|
Kumar G, Kim SH, Lay CH, Ponnusamy VK. Recent developments on alternative fuels, energy and environment for sustainability. BIORESOURCE TECHNOLOGY 2020; 317:124010. [PMID: 32822890 DOI: 10.1016/j.biortech.2020.124010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Enhancing energy and environmental systems through sustainable development, in particular integrating concepts of circular economy and cleaner production are important for the emerging needs of humankind. In recent years, the developments in alternative sources of renewable energy counterparts has been prompted to substitute the nonrenewable fossil fuel consumptions towards clearner environment. However, environmental problems arising currently must be carefully addressed and to be solved to conserve the energy, water and other environmental resources for the future. This article highlights the recent developments on alternative energy sources that mainly focus on energy and environmental sustainability, that has been discussed on "The 4th International Conference on Alternative Fuels & Energy (ICAFE-2019)", which was held at Taichung City, Taiwan on October 18-21, 2019. Additionally, it provides useful insights from some of the papers published on a virtual special issue (VSI) of the Bioresourse Technology Journal. The highlighted research works in this review can be used as route-map towards sustainable development and energy efficiency.
Collapse
Affiliation(s)
- Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, 4036 Stavanger, Norway; School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Chyi-How Lay
- Master's Program of Green Energy Science and Technology, Feng Chia University, Taiwan
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry & Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung City 807, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung City 807, Taiwan
| |
Collapse
|
34
|
Orsi E, Beekwilder J, Eggink G, Kengen SWM, Weusthuis RA. The transition of Rhodobacter sphaeroides into a microbial cell factory. Biotechnol Bioeng 2020; 118:531-541. [PMID: 33038009 PMCID: PMC7894463 DOI: 10.1002/bit.27593] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/29/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022]
Abstract
Microbial cell factories are the workhorses of industrial biotechnology and improving their performances can significantly optimize industrial bioprocesses. Microbial strain engineering is often employed for increasing the competitiveness of bio‐based product synthesis over more classical petroleum‐based synthesis. Recently, efforts for strain optimization have been standardized within the iterative concept of “design‐build‐test‐learn” (DBTL). This approach has been successfully employed for the improvement of traditional cell factories like Escherichia coli and Saccharomyces cerevisiae. Within the past decade, several new‐to‐industry microorganisms have been investigated as novel cell factories, including the versatile α‐proteobacterium Rhodobacter sphaeroides. Despite its history as a laboratory strain for fundamental studies, there is a growing interest in this bacterium for its ability to synthesize relevant compounds for the bioeconomy, such as isoprenoids, poly‐β‐hydroxybutyrate, and hydrogen. In this study, we reflect on the reasons for establishing R. sphaeroides as a cell factory from the perspective of the DBTL concept. Moreover, we discuss current and future opportunities for extending the use of this microorganism for the bio‐based economy. We believe that applying the DBTL pipeline for R. sphaeroides will further strengthen its relevance as a microbial cell factory. Moreover, the proposed use of strain engineering via the DBTL approach may be extended to other microorganisms that have not been critically investigated yet for industrial applications.
Collapse
Affiliation(s)
- Enrico Orsi
- Bioprocess Engineering, Wageningen University, Wageningen, The Netherlands.,Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | | | - Gerrit Eggink
- Bioprocess Engineering, Wageningen University, Wageningen, The Netherlands.,Wageningen Food and Biobased Research, Wageningen, The Netherlands
| | - Servé W M Kengen
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Ruud A Weusthuis
- Bioprocess Engineering, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
35
|
Duan Y, Pandey A, Zhang Z, Awasthi MK, Bhatia SK, Taherzadeh MJ. Organic solid waste biorefinery: Sustainable strategy for emerging circular bioeconomy in China. INDUSTRIAL CROPS AND PRODUCTS 2020; 153:112568. [DOI: 10.1016/j.indcrop.2020.112568] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
|
36
|
Dhanya BS, Mishra A, Chandel AK, Verma ML. Development of sustainable approaches for converting the organic waste to bioenergy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 723:138109. [PMID: 32229385 DOI: 10.1016/j.scitotenv.2020.138109] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/09/2020] [Accepted: 03/20/2020] [Indexed: 05/22/2023]
Abstract
Dependence on fossil fuels such as oil, coal and natural gas are on alarming increase, thereby causing such resources to be in a depletion mode and a novel sustainable approach for bioenergy production are in demand. Successful implementation of zero waste discharge policy is one such way to attain a sustainable development of bioenergy. Zero waste discharge can be induced only through the conversion of organic wastes into bioenergy. Waste management is pivotal and considering its importance of minimizing the issue and menace of wastes, conversion strategy of organic waste is effectively recommended. Present review is concentrated on providing a keen view on the potential organic waste sources and the way in which the bioenergy is produced through efficient conversion processes. Biogas, bioethanol, biocoal, biohydrogen and biodiesel are the principal renewable energy sources. Different types of organic wastes used for bioenergy generation and its sources, anaerobic digestion-biogas production and its related process affecting parameters including fermentation, photosynthetic process and novel nano-inspired techniques are discussed. Bioenergy production from organic waste is associated with mitigation of lump waste generation and its dumping into land, specifically reducing all hazards and negativities in all sectors during waste disposal. A sustainable bioenergy sector with upgraded security for fuels, tackles the challenging climatic change problem also. Thus, intensification of organic waste conversion strategies to bioenergy, specially, biogas and biohydrogen production is elaborated and analyzed in the present article. Predominantly, persistent drawbacks of the existing organic waste conversion methods have been noted, providing consideration to economic, environmental and social development.
Collapse
Affiliation(s)
- B S Dhanya
- Department of Biotechnology, Udaya School of Engineering, Udaya Nagar, Kanyakumari, Tamil Nadu 629 204, India
| | - Archana Mishra
- Sustainable Agriculture Division, The Energy and Resources Institute, New Delhi, India
| | - Anuj K Chandel
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Brazil
| | - Madan L Verma
- Department of Biotechnology, School of Basic Sciences, Indian Institute of Information Technology, Una, Himachal Pradesh, India.
| |
Collapse
|